Align io units to processor cache line size
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58static pthread_t gtod_thread;
59
60struct io_log *agg_io_log[2];
61
62#define TERMINATE_ALL (-1)
63#define JOB_START_TIMEOUT (5 * 1000)
64
65void td_set_runstate(struct thread_data *td, int runstate)
66{
67 if (td->runstate == runstate)
68 return;
69
70 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
71 td->runstate, runstate);
72 td->runstate = runstate;
73}
74
75static void terminate_threads(int group_id)
76{
77 struct thread_data *td;
78 int i;
79
80 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
81
82 for_each_td(td, i) {
83 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
84 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
85 td->o.name, (int) td->pid);
86 td->terminate = 1;
87 td->o.start_delay = 0;
88
89 /*
90 * if the thread is running, just let it exit
91 */
92 if (td->runstate < TD_RUNNING)
93 kill(td->pid, SIGQUIT);
94 else {
95 struct ioengine_ops *ops = td->io_ops;
96
97 if (ops && (ops->flags & FIO_SIGQUIT))
98 kill(td->pid, SIGQUIT);
99 }
100 }
101 }
102}
103
104static void status_timer_arm(void)
105{
106 itimer.it_value.tv_sec = 0;
107 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
108 setitimer(ITIMER_REAL, &itimer, NULL);
109}
110
111static void sig_alrm(int fio_unused sig)
112{
113 if (threads) {
114 update_io_ticks();
115 print_thread_status();
116 status_timer_arm();
117 }
118}
119
120/*
121 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
122 */
123static void sig_quit(int sig)
124{
125}
126
127static void sig_int(int sig)
128{
129 if (threads) {
130 printf("\nfio: terminating on signal %d\n", sig);
131 fflush(stdout);
132 terminate_threads(TERMINATE_ALL);
133 }
134}
135
136static void sig_ill(int fio_unused sig)
137{
138 if (!threads)
139 return;
140
141 log_err("fio: illegal instruction. your cpu does not support "
142 "the sse4.2 instruction for crc32c\n");
143 terminate_threads(TERMINATE_ALL);
144 exit(4);
145}
146
147static void set_sig_handlers(void)
148{
149 struct sigaction act;
150
151 memset(&act, 0, sizeof(act));
152 act.sa_handler = sig_alrm;
153 act.sa_flags = SA_RESTART;
154 sigaction(SIGALRM, &act, NULL);
155
156 memset(&act, 0, sizeof(act));
157 act.sa_handler = sig_int;
158 act.sa_flags = SA_RESTART;
159 sigaction(SIGINT, &act, NULL);
160
161 memset(&act, 0, sizeof(act));
162 act.sa_handler = sig_ill;
163 act.sa_flags = SA_RESTART;
164 sigaction(SIGILL, &act, NULL);
165
166 memset(&act, 0, sizeof(act));
167 act.sa_handler = sig_quit;
168 act.sa_flags = SA_RESTART;
169 sigaction(SIGQUIT, &act, NULL);
170}
171
172static inline int should_check_rate(struct thread_data *td)
173{
174 struct thread_options *o = &td->o;
175
176 /*
177 * If some rate setting was given, we need to check it
178 */
179 if (o->rate || o->ratemin || o->rate_iops || o->rate_iops_min)
180 return 1;
181
182 return 0;
183}
184
185/*
186 * Check if we are above the minimum rate given.
187 */
188static int check_min_rate(struct thread_data *td, struct timeval *now)
189{
190 unsigned long long bytes = 0;
191 unsigned long iops = 0;
192 unsigned long spent;
193 unsigned long rate;
194
195 /*
196 * allow a 2 second settle period in the beginning
197 */
198 if (mtime_since(&td->start, now) < 2000)
199 return 0;
200
201 if (td_read(td)) {
202 iops += td->io_blocks[DDIR_READ];
203 bytes += td->this_io_bytes[DDIR_READ];
204 }
205 if (td_write(td)) {
206 iops += td->io_blocks[DDIR_WRITE];
207 bytes += td->this_io_bytes[DDIR_WRITE];
208 }
209
210 /*
211 * if rate blocks is set, sample is running
212 */
213 if (td->rate_bytes || td->rate_blocks) {
214 spent = mtime_since(&td->lastrate, now);
215 if (spent < td->o.ratecycle)
216 return 0;
217
218 if (td->o.rate) {
219 /*
220 * check bandwidth specified rate
221 */
222 if (bytes < td->rate_bytes) {
223 log_err("%s: min rate %u not met\n", td->o.name,
224 td->o.ratemin);
225 return 1;
226 } else {
227 rate = (bytes - td->rate_bytes) / spent;
228 if (rate < td->o.ratemin ||
229 bytes < td->rate_bytes) {
230 log_err("%s: min rate %u not met, got"
231 " %luKiB/sec\n", td->o.name,
232 td->o.ratemin, rate);
233 return 1;
234 }
235 }
236 } else {
237 /*
238 * checks iops specified rate
239 */
240 if (iops < td->o.rate_iops) {
241 log_err("%s: min iops rate %u not met\n",
242 td->o.name, td->o.rate_iops);
243 return 1;
244 } else {
245 rate = (iops - td->rate_blocks) / spent;
246 if (rate < td->o.rate_iops_min ||
247 iops < td->rate_blocks) {
248 log_err("%s: min iops rate %u not met,"
249 " got %lu\n", td->o.name,
250 td->o.rate_iops_min,
251 rate);
252 }
253 }
254 }
255 }
256
257 td->rate_bytes = bytes;
258 td->rate_blocks = iops;
259 memcpy(&td->lastrate, now, sizeof(*now));
260 return 0;
261}
262
263static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
264{
265 if (!td->o.timeout)
266 return 0;
267 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
268 return 1;
269
270 return 0;
271}
272
273/*
274 * When job exits, we can cancel the in-flight IO if we are using async
275 * io. Attempt to do so.
276 */
277static void cleanup_pending_aio(struct thread_data *td)
278{
279 struct flist_head *entry, *n;
280 struct io_u *io_u;
281 int r;
282
283 /*
284 * get immediately available events, if any
285 */
286 r = io_u_queued_complete(td, 0);
287 if (r < 0)
288 return;
289
290 /*
291 * now cancel remaining active events
292 */
293 if (td->io_ops->cancel) {
294 flist_for_each_safe(entry, n, &td->io_u_busylist) {
295 io_u = flist_entry(entry, struct io_u, list);
296
297 /*
298 * if the io_u isn't in flight, then that generally
299 * means someone leaked an io_u. complain but fix
300 * it up, so we don't stall here.
301 */
302 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
303 log_err("fio: non-busy IO on busy list\n");
304 put_io_u(td, io_u);
305 } else {
306 r = td->io_ops->cancel(td, io_u);
307 if (!r)
308 put_io_u(td, io_u);
309 }
310 }
311 }
312
313 if (td->cur_depth)
314 r = io_u_queued_complete(td, td->cur_depth);
315}
316
317/*
318 * Helper to handle the final sync of a file. Works just like the normal
319 * io path, just does everything sync.
320 */
321static int fio_io_sync(struct thread_data *td, struct fio_file *f)
322{
323 struct io_u *io_u = __get_io_u(td);
324 int ret;
325
326 if (!io_u)
327 return 1;
328
329 io_u->ddir = DDIR_SYNC;
330 io_u->file = f;
331
332 if (td_io_prep(td, io_u)) {
333 put_io_u(td, io_u);
334 return 1;
335 }
336
337requeue:
338 ret = td_io_queue(td, io_u);
339 if (ret < 0) {
340 td_verror(td, io_u->error, "td_io_queue");
341 put_io_u(td, io_u);
342 return 1;
343 } else if (ret == FIO_Q_QUEUED) {
344 if (io_u_queued_complete(td, 1) < 0)
345 return 1;
346 } else if (ret == FIO_Q_COMPLETED) {
347 if (io_u->error) {
348 td_verror(td, io_u->error, "td_io_queue");
349 return 1;
350 }
351
352 if (io_u_sync_complete(td, io_u) < 0)
353 return 1;
354 } else if (ret == FIO_Q_BUSY) {
355 if (td_io_commit(td))
356 return 1;
357 goto requeue;
358 }
359
360 return 0;
361}
362
363static inline void update_tv_cache(struct thread_data *td)
364{
365 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
366 fio_gettime(&td->tv_cache, NULL);
367}
368
369/*
370 * The main verify engine. Runs over the writes we previously submitted,
371 * reads the blocks back in, and checks the crc/md5 of the data.
372 */
373static void do_verify(struct thread_data *td)
374{
375 struct fio_file *f;
376 struct io_u *io_u;
377 int ret, min_events;
378 unsigned int i;
379
380 /*
381 * sync io first and invalidate cache, to make sure we really
382 * read from disk.
383 */
384 for_each_file(td, f, i) {
385 if (!(f->flags & FIO_FILE_OPEN))
386 continue;
387 if (fio_io_sync(td, f))
388 break;
389 if (file_invalidate_cache(td, f))
390 break;
391 }
392
393 if (td->error)
394 return;
395
396 td_set_runstate(td, TD_VERIFYING);
397
398 io_u = NULL;
399 while (!td->terminate) {
400 int ret2, full;
401
402 io_u = __get_io_u(td);
403 if (!io_u)
404 break;
405
406 update_tv_cache(td);
407
408 if (runtime_exceeded(td, &td->tv_cache)) {
409 put_io_u(td, io_u);
410 td->terminate = 1;
411 break;
412 }
413
414 if (get_next_verify(td, io_u)) {
415 put_io_u(td, io_u);
416 break;
417 }
418
419 if (td_io_prep(td, io_u)) {
420 put_io_u(td, io_u);
421 break;
422 }
423
424 io_u->end_io = verify_io_u;
425
426 ret = td_io_queue(td, io_u);
427 switch (ret) {
428 case FIO_Q_COMPLETED:
429 if (io_u->error)
430 ret = -io_u->error;
431 else if (io_u->resid) {
432 int bytes = io_u->xfer_buflen - io_u->resid;
433 struct fio_file *f = io_u->file;
434
435 /*
436 * zero read, fail
437 */
438 if (!bytes) {
439 td_verror(td, EIO, "full resid");
440 put_io_u(td, io_u);
441 break;
442 }
443
444 io_u->xfer_buflen = io_u->resid;
445 io_u->xfer_buf += bytes;
446 io_u->offset += bytes;
447
448 td->ts.short_io_u[io_u->ddir]++;
449
450 if (io_u->offset == f->real_file_size)
451 goto sync_done;
452
453 requeue_io_u(td, &io_u);
454 } else {
455sync_done:
456 ret = io_u_sync_complete(td, io_u);
457 if (ret < 0)
458 break;
459 }
460 continue;
461 case FIO_Q_QUEUED:
462 break;
463 case FIO_Q_BUSY:
464 requeue_io_u(td, &io_u);
465 ret2 = td_io_commit(td);
466 if (ret2 < 0)
467 ret = ret2;
468 break;
469 default:
470 assert(ret < 0);
471 td_verror(td, -ret, "td_io_queue");
472 break;
473 }
474
475 if (ret < 0 || td->error)
476 break;
477
478 /*
479 * if we can queue more, do so. but check if there are
480 * completed io_u's first.
481 */
482 full = queue_full(td) || ret == FIO_Q_BUSY;
483 if (full || !td->o.iodepth_batch_complete) {
484 min_events = td->o.iodepth_batch_complete;
485 if (full && !min_events)
486 min_events = 1;
487
488 do {
489 /*
490 * Reap required number of io units, if any,
491 * and do the verification on them through
492 * the callback handler
493 */
494 if (io_u_queued_complete(td, min_events) < 0) {
495 ret = -1;
496 break;
497 }
498 } while (full && (td->cur_depth > td->o.iodepth_low));
499 }
500 if (ret < 0)
501 break;
502 }
503
504 if (!td->error) {
505 min_events = td->cur_depth;
506
507 if (min_events)
508 ret = io_u_queued_complete(td, min_events);
509 } else
510 cleanup_pending_aio(td);
511
512 td_set_runstate(td, TD_RUNNING);
513}
514
515/*
516 * Main IO worker function. It retrieves io_u's to process and queues
517 * and reaps them, checking for rate and errors along the way.
518 */
519static void do_io(struct thread_data *td)
520{
521 unsigned long usec;
522 unsigned int i;
523 int ret = 0;
524
525 if (in_ramp_time(td))
526 td_set_runstate(td, TD_RAMP);
527 else
528 td_set_runstate(td, TD_RUNNING);
529
530 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
531 struct timeval comp_time;
532 long bytes_done = 0;
533 int min_evts = 0;
534 struct io_u *io_u;
535 int ret2, full;
536
537 if (td->terminate)
538 break;
539
540 io_u = get_io_u(td);
541 if (!io_u)
542 break;
543
544 update_tv_cache(td);
545
546 if (runtime_exceeded(td, &td->tv_cache)) {
547 put_io_u(td, io_u);
548 td->terminate = 1;
549 break;
550 }
551
552 /*
553 * Add verification end_io handler, if asked to verify
554 * a previously written file.
555 */
556 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
557 io_u->end_io = verify_io_u;
558 td_set_runstate(td, TD_VERIFYING);
559 } else if (in_ramp_time(td))
560 td_set_runstate(td, TD_RAMP);
561 else
562 td_set_runstate(td, TD_RUNNING);
563
564 ret = td_io_queue(td, io_u);
565 switch (ret) {
566 case FIO_Q_COMPLETED:
567 if (io_u->error)
568 ret = -io_u->error;
569 else if (io_u->resid) {
570 int bytes = io_u->xfer_buflen - io_u->resid;
571 struct fio_file *f = io_u->file;
572
573 /*
574 * zero read, fail
575 */
576 if (!bytes) {
577 td_verror(td, EIO, "full resid");
578 put_io_u(td, io_u);
579 break;
580 }
581
582 io_u->xfer_buflen = io_u->resid;
583 io_u->xfer_buf += bytes;
584 io_u->offset += bytes;
585
586 td->ts.short_io_u[io_u->ddir]++;
587
588 if (io_u->offset == f->real_file_size)
589 goto sync_done;
590
591 requeue_io_u(td, &io_u);
592 } else {
593sync_done:
594 if (should_check_rate(td))
595 fio_gettime(&comp_time, NULL);
596
597 bytes_done = io_u_sync_complete(td, io_u);
598 if (bytes_done < 0)
599 ret = bytes_done;
600 }
601 break;
602 case FIO_Q_QUEUED:
603 /*
604 * if the engine doesn't have a commit hook,
605 * the io_u is really queued. if it does have such
606 * a hook, it has to call io_u_queued() itself.
607 */
608 if (td->io_ops->commit == NULL)
609 io_u_queued(td, io_u);
610 break;
611 case FIO_Q_BUSY:
612 requeue_io_u(td, &io_u);
613 ret2 = td_io_commit(td);
614 if (ret2 < 0)
615 ret = ret2;
616 break;
617 default:
618 assert(ret < 0);
619 put_io_u(td, io_u);
620 break;
621 }
622
623 if (ret < 0 || td->error)
624 break;
625
626 /*
627 * See if we need to complete some commands
628 */
629 full = queue_full(td) || ret == FIO_Q_BUSY;
630 if (full || !td->o.iodepth_batch_complete) {
631 min_evts = td->o.iodepth_batch_complete;
632 if (full && !min_evts)
633 min_evts = 1;
634
635 if (should_check_rate(td))
636 fio_gettime(&comp_time, NULL);
637
638 do {
639 ret = io_u_queued_complete(td, min_evts);
640 if (ret <= 0)
641 break;
642
643 bytes_done += ret;
644 } while (full && (td->cur_depth > td->o.iodepth_low));
645 }
646
647 if (ret < 0)
648 break;
649 if (!bytes_done)
650 continue;
651
652 /*
653 * the rate is batched for now, it should work for batches
654 * of completions except the very first one which may look
655 * a little bursty
656 */
657 if (!in_ramp_time(td) && should_check_rate(td)) {
658 usec = utime_since(&td->tv_cache, &comp_time);
659
660 rate_throttle(td, usec, bytes_done);
661
662 if (check_min_rate(td, &comp_time)) {
663 if (exitall_on_terminate)
664 terminate_threads(td->groupid);
665 td_verror(td, EIO, "check_min_rate");
666 break;
667 }
668 }
669
670 if (td->o.thinktime) {
671 unsigned long long b;
672
673 b = td->io_blocks[0] + td->io_blocks[1];
674 if (!(b % td->o.thinktime_blocks)) {
675 int left;
676
677 if (td->o.thinktime_spin)
678 usec_spin(td->o.thinktime_spin);
679
680 left = td->o.thinktime - td->o.thinktime_spin;
681 if (left)
682 usec_sleep(td, left);
683 }
684 }
685 }
686
687 if (td->o.fill_device && td->error == ENOSPC) {
688 td->error = 0;
689 td->terminate = 1;
690 }
691 if (!td->error) {
692 struct fio_file *f;
693
694 i = td->cur_depth;
695 if (i)
696 ret = io_u_queued_complete(td, i);
697
698 if (should_fsync(td) && td->o.end_fsync) {
699 td_set_runstate(td, TD_FSYNCING);
700
701 for_each_file(td, f, i) {
702 if (!(f->flags & FIO_FILE_OPEN))
703 continue;
704 fio_io_sync(td, f);
705 }
706 }
707 } else
708 cleanup_pending_aio(td);
709
710 /*
711 * stop job if we failed doing any IO
712 */
713 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
714 td->done = 1;
715}
716
717static void cleanup_io_u(struct thread_data *td)
718{
719 struct flist_head *entry, *n;
720 struct io_u *io_u;
721
722 flist_for_each_safe(entry, n, &td->io_u_freelist) {
723 io_u = flist_entry(entry, struct io_u, list);
724
725 flist_del(&io_u->list);
726 free(io_u);
727 }
728
729 free_io_mem(td);
730}
731
732static int init_io_u(struct thread_data *td)
733{
734 struct io_u *io_u;
735 unsigned int max_bs;
736 int cl_align, i, max_units;
737 char *p;
738
739 max_units = td->o.iodepth;
740 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
741 td->orig_buffer_size = (unsigned long long) max_bs
742 * (unsigned long long) max_units;
743
744 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
745 unsigned long bs;
746
747 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
748 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
749 }
750
751 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
752 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
753 return 1;
754 }
755
756 if (allocate_io_mem(td))
757 return 1;
758
759 if (td->o.odirect)
760 p = ALIGN(td->orig_buffer);
761 else
762 p = td->orig_buffer;
763
764 cl_align = os_cache_line_size();
765
766 for (i = 0; i < max_units; i++) {
767 void *ptr;
768
769 if (td->terminate)
770 return 1;
771
772 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
773 log_err("fio: posix_memalign=%s\n", strerror(errno));
774 break;
775 }
776
777 io_u = ptr;
778 memset(io_u, 0, sizeof(*io_u));
779 INIT_FLIST_HEAD(&io_u->list);
780
781 if (!(td->io_ops->flags & FIO_NOIO)) {
782 io_u->buf = p + max_bs * i;
783
784 if (td_write(td) && !td->o.refill_buffers)
785 io_u_fill_buffer(td, io_u, max_bs);
786 }
787
788 io_u->index = i;
789 io_u->flags = IO_U_F_FREE;
790 flist_add(&io_u->list, &td->io_u_freelist);
791 }
792
793 return 0;
794}
795
796static int switch_ioscheduler(struct thread_data *td)
797{
798 char tmp[256], tmp2[128];
799 FILE *f;
800 int ret;
801
802 if (td->io_ops->flags & FIO_DISKLESSIO)
803 return 0;
804
805 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
806
807 f = fopen(tmp, "r+");
808 if (!f) {
809 if (errno == ENOENT) {
810 log_err("fio: os or kernel doesn't support IO scheduler"
811 " switching\n");
812 return 0;
813 }
814 td_verror(td, errno, "fopen iosched");
815 return 1;
816 }
817
818 /*
819 * Set io scheduler.
820 */
821 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
822 if (ferror(f) || ret != 1) {
823 td_verror(td, errno, "fwrite");
824 fclose(f);
825 return 1;
826 }
827
828 rewind(f);
829
830 /*
831 * Read back and check that the selected scheduler is now the default.
832 */
833 ret = fread(tmp, 1, sizeof(tmp), f);
834 if (ferror(f) || ret < 0) {
835 td_verror(td, errno, "fread");
836 fclose(f);
837 return 1;
838 }
839
840 sprintf(tmp2, "[%s]", td->o.ioscheduler);
841 if (!strstr(tmp, tmp2)) {
842 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
843 td_verror(td, EINVAL, "iosched_switch");
844 fclose(f);
845 return 1;
846 }
847
848 fclose(f);
849 return 0;
850}
851
852static int keep_running(struct thread_data *td)
853{
854 unsigned long long io_done;
855
856 if (td->done)
857 return 0;
858 if (td->o.time_based)
859 return 1;
860 if (td->o.loops) {
861 td->o.loops--;
862 return 1;
863 }
864
865 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
866 + td->io_skip_bytes;
867 if (io_done < td->o.size)
868 return 1;
869
870 return 0;
871}
872
873static void reset_io_counters(struct thread_data *td)
874{
875 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
876 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
877 td->zone_bytes = 0;
878 td->rate_bytes = 0;
879 td->rate_blocks = 0;
880 td->rw_end_set[0] = td->rw_end_set[1] = 0;
881
882 td->last_was_sync = 0;
883
884 /*
885 * reset file done count if we are to start over
886 */
887 if (td->o.time_based || td->o.loops)
888 td->nr_done_files = 0;
889
890 /*
891 * Set the same seed to get repeatable runs
892 */
893 td_fill_rand_seeds(td);
894}
895
896void reset_all_stats(struct thread_data *td)
897{
898 struct timeval tv;
899 int i;
900
901 reset_io_counters(td);
902
903 for (i = 0; i < 2; i++) {
904 td->io_bytes[i] = 0;
905 td->io_blocks[i] = 0;
906 td->io_issues[i] = 0;
907 td->ts.total_io_u[i] = 0;
908 }
909
910 fio_gettime(&tv, NULL);
911 memcpy(&td->epoch, &tv, sizeof(tv));
912 memcpy(&td->start, &tv, sizeof(tv));
913}
914
915static void clear_io_state(struct thread_data *td)
916{
917 struct fio_file *f;
918 unsigned int i;
919
920 reset_io_counters(td);
921
922 close_files(td);
923 for_each_file(td, f, i)
924 f->flags &= ~FIO_FILE_DONE;
925}
926
927/*
928 * Entry point for the thread based jobs. The process based jobs end up
929 * here as well, after a little setup.
930 */
931static void *thread_main(void *data)
932{
933 unsigned long long runtime[2], elapsed;
934 struct thread_data *td = data;
935 int clear_state;
936
937 if (!td->o.use_thread)
938 setsid();
939
940 td->pid = getpid();
941
942 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
943
944 INIT_FLIST_HEAD(&td->io_u_freelist);
945 INIT_FLIST_HEAD(&td->io_u_busylist);
946 INIT_FLIST_HEAD(&td->io_u_requeues);
947 INIT_FLIST_HEAD(&td->io_log_list);
948 INIT_FLIST_HEAD(&td->io_hist_list);
949 td->io_hist_tree = RB_ROOT;
950
951 td_set_runstate(td, TD_INITIALIZED);
952 dprint(FD_MUTEX, "up startup_mutex\n");
953 fio_mutex_up(startup_mutex);
954 dprint(FD_MUTEX, "wait on td->mutex\n");
955 fio_mutex_down(td->mutex);
956 dprint(FD_MUTEX, "done waiting on td->mutex\n");
957
958 /*
959 * the ->mutex mutex is now no longer used, close it to avoid
960 * eating a file descriptor
961 */
962 fio_mutex_remove(td->mutex);
963
964 /*
965 * May alter parameters that init_io_u() will use, so we need to
966 * do this first.
967 */
968 if (init_iolog(td))
969 goto err;
970
971 if (init_io_u(td))
972 goto err;
973
974 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
975 td_verror(td, errno, "cpu_set_affinity");
976 goto err;
977 }
978
979 /*
980 * If we have a gettimeofday() thread, make sure we exclude that
981 * thread from this job
982 */
983 if (td->o.gtod_cpu) {
984 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
985 if (fio_setaffinity(td) == -1) {
986 td_verror(td, errno, "cpu_set_affinity");
987 goto err;
988 }
989 }
990
991 if (td->ioprio_set) {
992 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
993 td_verror(td, errno, "ioprio_set");
994 goto err;
995 }
996 }
997
998 if (nice(td->o.nice) == -1) {
999 td_verror(td, errno, "nice");
1000 goto err;
1001 }
1002
1003 if (td->o.ioscheduler && switch_ioscheduler(td))
1004 goto err;
1005
1006 if (!td->o.create_serialize && setup_files(td))
1007 goto err;
1008
1009 if (td_io_init(td))
1010 goto err;
1011
1012 if (init_random_map(td))
1013 goto err;
1014
1015 if (td->o.exec_prerun) {
1016 if (system(td->o.exec_prerun) < 0)
1017 goto err;
1018 }
1019
1020 fio_gettime(&td->epoch, NULL);
1021 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1022
1023 runtime[0] = runtime[1] = 0;
1024 clear_state = 0;
1025 while (keep_running(td)) {
1026 fio_gettime(&td->start, NULL);
1027 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1028 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1029
1030 if (td->o.ratemin)
1031 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1032 sizeof(td->lastrate));
1033
1034 if (clear_state)
1035 clear_io_state(td);
1036
1037 prune_io_piece_log(td);
1038
1039 do_io(td);
1040
1041 clear_state = 1;
1042
1043 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1044 if (td->rw_end_set[DDIR_READ])
1045 elapsed = utime_since(&td->start,
1046 &td->rw_end[DDIR_READ]);
1047 else
1048 elapsed = utime_since_now(&td->start);
1049
1050 runtime[DDIR_READ] += elapsed;
1051 }
1052 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1053 if (td->rw_end_set[DDIR_WRITE])
1054 elapsed = utime_since(&td->start,
1055 &td->rw_end[DDIR_WRITE]);
1056 else
1057 elapsed = utime_since_now(&td->start);
1058
1059 runtime[DDIR_WRITE] += elapsed;
1060 }
1061
1062 if (td->error || td->terminate)
1063 break;
1064
1065 if (!td->o.do_verify ||
1066 td->o.verify == VERIFY_NONE ||
1067 (td->io_ops->flags & FIO_UNIDIR))
1068 continue;
1069
1070 clear_io_state(td);
1071
1072 fio_gettime(&td->start, NULL);
1073
1074 do_verify(td);
1075
1076 runtime[DDIR_READ] += utime_since_now(&td->start);
1077
1078 if (td->error || td->terminate)
1079 break;
1080 }
1081
1082 update_rusage_stat(td);
1083 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1084 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1085 td->ts.total_run_time = mtime_since_now(&td->epoch);
1086 td->ts.io_bytes[0] = td->io_bytes[0];
1087 td->ts.io_bytes[1] = td->io_bytes[1];
1088
1089 if (td->ts.bw_log) {
1090 if (td->o.bw_log_file) {
1091 finish_log_named(td, td->ts.bw_log,
1092 td->o.bw_log_file, "bw");
1093 } else
1094 finish_log(td, td->ts.bw_log, "bw");
1095 }
1096 if (td->ts.slat_log) {
1097 if (td->o.lat_log_file) {
1098 finish_log_named(td, td->ts.slat_log,
1099 td->o.lat_log_file, "clat");
1100 } else
1101 finish_log(td, td->ts.slat_log, "slat");
1102 }
1103 if (td->ts.clat_log) {
1104 if (td->o.lat_log_file) {
1105 finish_log_named(td, td->ts.clat_log,
1106 td->o.lat_log_file, "clat");
1107 } else
1108 finish_log(td, td->ts.clat_log, "clat");
1109 }
1110 if (td->o.exec_postrun) {
1111 if (system(td->o.exec_postrun) < 0)
1112 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1113 }
1114
1115 if (exitall_on_terminate)
1116 terminate_threads(td->groupid);
1117
1118err:
1119 if (td->error)
1120 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1121 td->verror);
1122 close_and_free_files(td);
1123 close_ioengine(td);
1124 cleanup_io_u(td);
1125
1126 if (td->o.cpumask_set) {
1127 int ret = fio_cpuset_exit(&td->o.cpumask);
1128
1129 td_verror(td, ret, "fio_cpuset_exit");
1130 }
1131
1132 /*
1133 * do this very late, it will log file closing as well
1134 */
1135 if (td->o.write_iolog_file)
1136 write_iolog_close(td);
1137
1138 options_mem_free(td);
1139 td_set_runstate(td, TD_EXITED);
1140 return (void *) (unsigned long) td->error;
1141}
1142
1143/*
1144 * We cannot pass the td data into a forked process, so attach the td and
1145 * pass it to the thread worker.
1146 */
1147static int fork_main(int shmid, int offset)
1148{
1149 struct thread_data *td;
1150 void *data, *ret;
1151
1152 data = shmat(shmid, NULL, 0);
1153 if (data == (void *) -1) {
1154 int __err = errno;
1155
1156 perror("shmat");
1157 return __err;
1158 }
1159
1160 td = data + offset * sizeof(struct thread_data);
1161 ret = thread_main(td);
1162 shmdt(data);
1163 return (int) (unsigned long) ret;
1164}
1165
1166/*
1167 * Run over the job map and reap the threads that have exited, if any.
1168 */
1169static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1170{
1171 struct thread_data *td;
1172 int i, cputhreads, realthreads, pending, status, ret;
1173
1174 /*
1175 * reap exited threads (TD_EXITED -> TD_REAPED)
1176 */
1177 realthreads = pending = cputhreads = 0;
1178 for_each_td(td, i) {
1179 int flags = 0;
1180
1181 /*
1182 * ->io_ops is NULL for a thread that has closed its
1183 * io engine
1184 */
1185 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1186 cputhreads++;
1187 else
1188 realthreads++;
1189
1190 if (!td->pid) {
1191 pending++;
1192 continue;
1193 }
1194 if (td->runstate == TD_REAPED)
1195 continue;
1196 if (td->o.use_thread) {
1197 if (td->runstate == TD_EXITED) {
1198 td_set_runstate(td, TD_REAPED);
1199 goto reaped;
1200 }
1201 continue;
1202 }
1203
1204 flags = WNOHANG;
1205 if (td->runstate == TD_EXITED)
1206 flags = 0;
1207
1208 /*
1209 * check if someone quit or got killed in an unusual way
1210 */
1211 ret = waitpid(td->pid, &status, flags);
1212 if (ret < 0) {
1213 if (errno == ECHILD) {
1214 log_err("fio: pid=%d disappeared %d\n",
1215 (int) td->pid, td->runstate);
1216 td_set_runstate(td, TD_REAPED);
1217 goto reaped;
1218 }
1219 perror("waitpid");
1220 } else if (ret == td->pid) {
1221 if (WIFSIGNALED(status)) {
1222 int sig = WTERMSIG(status);
1223
1224 if (sig != SIGQUIT)
1225 log_err("fio: pid=%d, got signal=%d\n",
1226 (int) td->pid, sig);
1227 td_set_runstate(td, TD_REAPED);
1228 goto reaped;
1229 }
1230 if (WIFEXITED(status)) {
1231 if (WEXITSTATUS(status) && !td->error)
1232 td->error = WEXITSTATUS(status);
1233
1234 td_set_runstate(td, TD_REAPED);
1235 goto reaped;
1236 }
1237 }
1238
1239 /*
1240 * thread is not dead, continue
1241 */
1242 pending++;
1243 continue;
1244reaped:
1245 (*nr_running)--;
1246 (*m_rate) -= td->o.ratemin;
1247 (*t_rate) -= td->o.rate;
1248 if (!td->pid)
1249 pending--;
1250
1251 if (td->error)
1252 exit_value++;
1253
1254 done_secs += mtime_since_now(&td->epoch) / 1000;
1255 }
1256
1257 if (*nr_running == cputhreads && !pending && realthreads)
1258 terminate_threads(TERMINATE_ALL);
1259}
1260
1261static void *gtod_thread_main(void *data)
1262{
1263 fio_mutex_up(startup_mutex);
1264
1265 /*
1266 * As long as we have jobs around, update the clock. It would be nice
1267 * to have some way of NOT hammering that CPU with gettimeofday(),
1268 * but I'm not sure what to use outside of a simple CPU nop to relax
1269 * it - we don't want to lose precision.
1270 */
1271 while (threads) {
1272 fio_gtod_update();
1273 nop;
1274 }
1275
1276 return NULL;
1277}
1278
1279static int fio_start_gtod_thread(void)
1280{
1281 int ret;
1282
1283 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1284 if (ret) {
1285 log_err("Can't create gtod thread: %s\n", strerror(ret));
1286 return 1;
1287 }
1288
1289 ret = pthread_detach(gtod_thread);
1290 if (ret) {
1291 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1292 return 1;
1293 }
1294
1295 dprint(FD_MUTEX, "wait on startup_mutex\n");
1296 fio_mutex_down(startup_mutex);
1297 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1298 return 0;
1299}
1300
1301/*
1302 * Main function for kicking off and reaping jobs, as needed.
1303 */
1304static void run_threads(void)
1305{
1306 struct thread_data *td;
1307 unsigned long spent;
1308 int i, todo, nr_running, m_rate, t_rate, nr_started;
1309
1310 if (fio_pin_memory())
1311 return;
1312
1313 if (fio_gtod_offload && fio_start_gtod_thread())
1314 return;
1315
1316 if (!terse_output) {
1317 printf("Starting ");
1318 if (nr_thread)
1319 printf("%d thread%s", nr_thread,
1320 nr_thread > 1 ? "s" : "");
1321 if (nr_process) {
1322 if (nr_thread)
1323 printf(" and ");
1324 printf("%d process%s", nr_process,
1325 nr_process > 1 ? "es" : "");
1326 }
1327 printf("\n");
1328 fflush(stdout);
1329 }
1330
1331 set_sig_handlers();
1332
1333 todo = thread_number;
1334 nr_running = 0;
1335 nr_started = 0;
1336 m_rate = t_rate = 0;
1337
1338 for_each_td(td, i) {
1339 print_status_init(td->thread_number - 1);
1340
1341 if (!td->o.create_serialize) {
1342 init_disk_util(td);
1343 continue;
1344 }
1345
1346 /*
1347 * do file setup here so it happens sequentially,
1348 * we don't want X number of threads getting their
1349 * client data interspersed on disk
1350 */
1351 if (setup_files(td)) {
1352 exit_value++;
1353 if (td->error)
1354 log_err("fio: pid=%d, err=%d/%s\n",
1355 (int) td->pid, td->error, td->verror);
1356 td_set_runstate(td, TD_REAPED);
1357 todo--;
1358 } else {
1359 struct fio_file *f;
1360 unsigned int i;
1361
1362 /*
1363 * for sharing to work, each job must always open
1364 * its own files. so close them, if we opened them
1365 * for creation
1366 */
1367 for_each_file(td, f, i)
1368 td_io_close_file(td, f);
1369 }
1370
1371 init_disk_util(td);
1372 }
1373
1374 set_genesis_time();
1375
1376 while (todo) {
1377 struct thread_data *map[MAX_JOBS];
1378 struct timeval this_start;
1379 int this_jobs = 0, left;
1380
1381 /*
1382 * create threads (TD_NOT_CREATED -> TD_CREATED)
1383 */
1384 for_each_td(td, i) {
1385 if (td->runstate != TD_NOT_CREATED)
1386 continue;
1387
1388 /*
1389 * never got a chance to start, killed by other
1390 * thread for some reason
1391 */
1392 if (td->terminate) {
1393 todo--;
1394 continue;
1395 }
1396
1397 if (td->o.start_delay) {
1398 spent = mtime_since_genesis();
1399
1400 if (td->o.start_delay * 1000 > spent)
1401 continue;
1402 }
1403
1404 if (td->o.stonewall && (nr_started || nr_running)) {
1405 dprint(FD_PROCESS, "%s: stonewall wait\n",
1406 td->o.name);
1407 break;
1408 }
1409
1410 /*
1411 * Set state to created. Thread will transition
1412 * to TD_INITIALIZED when it's done setting up.
1413 */
1414 td_set_runstate(td, TD_CREATED);
1415 map[this_jobs++] = td;
1416 nr_started++;
1417
1418 if (td->o.use_thread) {
1419 int ret;
1420
1421 dprint(FD_PROCESS, "will pthread_create\n");
1422 ret = pthread_create(&td->thread, NULL,
1423 thread_main, td);
1424 if (ret) {
1425 log_err("pthread_create: %s\n",
1426 strerror(ret));
1427 nr_started--;
1428 break;
1429 }
1430 ret = pthread_detach(td->thread);
1431 if (ret)
1432 log_err("pthread_detach: %s",
1433 strerror(ret));
1434 } else {
1435 pid_t pid;
1436 dprint(FD_PROCESS, "will fork\n");
1437 pid = fork();
1438 if (!pid) {
1439 int ret = fork_main(shm_id, i);
1440
1441 _exit(ret);
1442 } else if (i == fio_debug_jobno)
1443 *fio_debug_jobp = pid;
1444 }
1445 dprint(FD_MUTEX, "wait on startup_mutex\n");
1446 fio_mutex_down(startup_mutex);
1447 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1448 }
1449
1450 /*
1451 * Wait for the started threads to transition to
1452 * TD_INITIALIZED.
1453 */
1454 fio_gettime(&this_start, NULL);
1455 left = this_jobs;
1456 while (left && !fio_abort) {
1457 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1458 break;
1459
1460 usleep(100000);
1461
1462 for (i = 0; i < this_jobs; i++) {
1463 td = map[i];
1464 if (!td)
1465 continue;
1466 if (td->runstate == TD_INITIALIZED) {
1467 map[i] = NULL;
1468 left--;
1469 } else if (td->runstate >= TD_EXITED) {
1470 map[i] = NULL;
1471 left--;
1472 todo--;
1473 nr_running++; /* work-around... */
1474 }
1475 }
1476 }
1477
1478 if (left) {
1479 log_err("fio: %d jobs failed to start\n", left);
1480 for (i = 0; i < this_jobs; i++) {
1481 td = map[i];
1482 if (!td)
1483 continue;
1484 kill(td->pid, SIGTERM);
1485 }
1486 break;
1487 }
1488
1489 /*
1490 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1491 */
1492 for_each_td(td, i) {
1493 if (td->runstate != TD_INITIALIZED)
1494 continue;
1495
1496 if (in_ramp_time(td))
1497 td_set_runstate(td, TD_RAMP);
1498 else
1499 td_set_runstate(td, TD_RUNNING);
1500 nr_running++;
1501 nr_started--;
1502 m_rate += td->o.ratemin;
1503 t_rate += td->o.rate;
1504 todo--;
1505 fio_mutex_up(td->mutex);
1506 }
1507
1508 reap_threads(&nr_running, &t_rate, &m_rate);
1509
1510 if (todo)
1511 usleep(100000);
1512 }
1513
1514 while (nr_running) {
1515 reap_threads(&nr_running, &t_rate, &m_rate);
1516 usleep(10000);
1517 }
1518
1519 update_io_ticks();
1520 fio_unpin_memory();
1521}
1522
1523int main(int argc, char *argv[])
1524{
1525 long ps;
1526
1527 sinit();
1528
1529 /*
1530 * We need locale for number printing, if it isn't set then just
1531 * go with the US format.
1532 */
1533 if (!getenv("LC_NUMERIC"))
1534 setlocale(LC_NUMERIC, "en_US");
1535
1536 if (parse_options(argc, argv))
1537 return 1;
1538
1539 if (!thread_number)
1540 return 0;
1541
1542 ps = sysconf(_SC_PAGESIZE);
1543 if (ps < 0) {
1544 log_err("Failed to get page size\n");
1545 return 1;
1546 }
1547
1548 page_size = ps;
1549 page_mask = ps - 1;
1550
1551 if (write_bw_log) {
1552 setup_log(&agg_io_log[DDIR_READ]);
1553 setup_log(&agg_io_log[DDIR_WRITE]);
1554 }
1555
1556 startup_mutex = fio_mutex_init(0);
1557
1558 set_genesis_time();
1559
1560 status_timer_arm();
1561
1562 run_threads();
1563
1564 if (!fio_abort) {
1565 show_run_stats();
1566 if (write_bw_log) {
1567 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1568 __finish_log(agg_io_log[DDIR_WRITE],
1569 "agg-write_bw.log");
1570 }
1571 }
1572
1573 fio_mutex_remove(startup_mutex);
1574 return exit_value;
1575}