Fix typo in previous compiler patch for gcc 3.x
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_sem *startup_sem;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 td->runstate = runstate;
64}
65
66static void terminate_threads(int group_id)
67{
68 struct thread_data *td;
69 int i;
70
71 for_each_td(td, i) {
72 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
73 /*
74 * if the thread is running, just let it exit
75 */
76 if (td->runstate < TD_RUNNING)
77 kill(td->pid, SIGQUIT);
78 td->terminate = 1;
79 td->o.start_delay = 0;
80 }
81 }
82}
83
84static void sig_handler(int sig)
85{
86 switch (sig) {
87 case SIGALRM:
88 update_io_ticks();
89 disk_util_timer_arm();
90 print_thread_status();
91 break;
92 default:
93 printf("\nfio: terminating on signal %d\n", sig);
94 fflush(stdout);
95 terminate_threads(TERMINATE_ALL);
96 break;
97 }
98}
99
100/*
101 * Check if we are above the minimum rate given.
102 */
103static int check_min_rate(struct thread_data *td, struct timeval *now)
104{
105 unsigned long long bytes = 0;
106 unsigned long iops = 0;
107 unsigned long spent;
108 unsigned long rate;
109
110 /*
111 * No minimum rate set, always ok
112 */
113 if (!td->o.ratemin && !td->o.rate_iops_min)
114 return 0;
115
116 /*
117 * allow a 2 second settle period in the beginning
118 */
119 if (mtime_since(&td->start, now) < 2000)
120 return 0;
121
122 if (td_read(td)) {
123 iops += td->io_blocks[DDIR_READ];
124 bytes += td->this_io_bytes[DDIR_READ];
125 }
126 if (td_write(td)) {
127 iops += td->io_blocks[DDIR_WRITE];
128 bytes += td->this_io_bytes[DDIR_WRITE];
129 }
130
131 /*
132 * if rate blocks is set, sample is running
133 */
134 if (td->rate_bytes || td->rate_blocks) {
135 spent = mtime_since(&td->lastrate, now);
136 if (spent < td->o.ratecycle)
137 return 0;
138
139 if (td->o.rate) {
140 /*
141 * check bandwidth specified rate
142 */
143 if (bytes < td->rate_bytes) {
144 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
145 return 1;
146 } else {
147 rate = (bytes - td->rate_bytes) / spent;
148 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
149 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
150 return 1;
151 }
152 }
153 } else {
154 /*
155 * checks iops specified rate
156 */
157 if (iops < td->o.rate_iops) {
158 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
159 return 1;
160 } else {
161 rate = (iops - td->rate_blocks) / spent;
162 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
163 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
164 }
165 }
166 }
167 }
168
169 td->rate_bytes = bytes;
170 td->rate_blocks = iops;
171 memcpy(&td->lastrate, now, sizeof(*now));
172 return 0;
173}
174
175static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
176{
177 if (!td->o.timeout)
178 return 0;
179 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
180 return 1;
181
182 return 0;
183}
184
185/*
186 * When job exits, we can cancel the in-flight IO if we are using async
187 * io. Attempt to do so.
188 */
189static void cleanup_pending_aio(struct thread_data *td)
190{
191 struct list_head *entry, *n;
192 struct io_u *io_u;
193 int r;
194
195 /*
196 * get immediately available events, if any
197 */
198 r = io_u_queued_complete(td, 0);
199 if (r < 0)
200 return;
201
202 /*
203 * now cancel remaining active events
204 */
205 if (td->io_ops->cancel) {
206 list_for_each_safe(entry, n, &td->io_u_busylist) {
207 io_u = list_entry(entry, struct io_u, list);
208
209 /*
210 * if the io_u isn't in flight, then that generally
211 * means someone leaked an io_u. complain but fix
212 * it up, so we don't stall here.
213 */
214 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
215 log_err("fio: non-busy IO on busy list\n");
216 put_io_u(td, io_u);
217 } else {
218 r = td->io_ops->cancel(td, io_u);
219 if (!r)
220 put_io_u(td, io_u);
221 }
222 }
223 }
224
225 if (td->cur_depth)
226 r = io_u_queued_complete(td, td->cur_depth);
227}
228
229/*
230 * Helper to handle the final sync of a file. Works just like the normal
231 * io path, just does everything sync.
232 */
233static int fio_io_sync(struct thread_data *td, struct fio_file *f)
234{
235 struct io_u *io_u = __get_io_u(td);
236 int ret;
237
238 if (!io_u)
239 return 1;
240
241 io_u->ddir = DDIR_SYNC;
242 io_u->file = f;
243
244 if (td_io_prep(td, io_u)) {
245 put_io_u(td, io_u);
246 return 1;
247 }
248
249requeue:
250 ret = td_io_queue(td, io_u);
251 if (ret < 0) {
252 td_verror(td, io_u->error, "td_io_queue");
253 put_io_u(td, io_u);
254 return 1;
255 } else if (ret == FIO_Q_QUEUED) {
256 if (io_u_queued_complete(td, 1) < 0)
257 return 1;
258 } else if (ret == FIO_Q_COMPLETED) {
259 if (io_u->error) {
260 td_verror(td, io_u->error, "td_io_queue");
261 return 1;
262 }
263
264 if (io_u_sync_complete(td, io_u) < 0)
265 return 1;
266 } else if (ret == FIO_Q_BUSY) {
267 if (td_io_commit(td))
268 return 1;
269 goto requeue;
270 }
271
272 return 0;
273}
274
275/*
276 * The main verify engine. Runs over the writes we previously submitted,
277 * reads the blocks back in, and checks the crc/md5 of the data.
278 */
279static void do_verify(struct thread_data *td)
280{
281 struct fio_file *f;
282 struct io_u *io_u;
283 int ret, min_events;
284 unsigned int i;
285
286 /*
287 * sync io first and invalidate cache, to make sure we really
288 * read from disk.
289 */
290 for_each_file(td, f, i) {
291 if (!(f->flags & FIO_FILE_OPEN))
292 continue;
293 if (fio_io_sync(td, f))
294 break;
295 if (file_invalidate_cache(td, f))
296 break;
297 }
298
299 if (td->error)
300 return;
301
302 td_set_runstate(td, TD_VERIFYING);
303
304 io_u = NULL;
305 while (!td->terminate) {
306 int ret2;
307
308 io_u = __get_io_u(td);
309 if (!io_u)
310 break;
311
312 if (runtime_exceeded(td, &io_u->start_time)) {
313 put_io_u(td, io_u);
314 break;
315 }
316
317 if (get_next_verify(td, io_u)) {
318 put_io_u(td, io_u);
319 break;
320 }
321
322 if (td_io_prep(td, io_u)) {
323 put_io_u(td, io_u);
324 break;
325 }
326
327 io_u->end_io = verify_io_u;
328
329 ret = td_io_queue(td, io_u);
330 switch (ret) {
331 case FIO_Q_COMPLETED:
332 if (io_u->error)
333 ret = -io_u->error;
334 else if (io_u->resid) {
335 int bytes = io_u->xfer_buflen - io_u->resid;
336
337 /*
338 * zero read, fail
339 */
340 if (!bytes) {
341 td_verror(td, ENODATA, "full resid");
342 put_io_u(td, io_u);
343 break;
344 }
345
346 io_u->xfer_buflen = io_u->resid;
347 io_u->xfer_buf += bytes;
348 io_u->offset += bytes;
349
350 if (io_u->offset == io_u->file->real_file_size)
351 goto sync_done;
352
353 requeue_io_u(td, &io_u);
354 } else {
355sync_done:
356 ret = io_u_sync_complete(td, io_u);
357 if (ret < 0)
358 break;
359 }
360 continue;
361 case FIO_Q_QUEUED:
362 break;
363 case FIO_Q_BUSY:
364 requeue_io_u(td, &io_u);
365 ret2 = td_io_commit(td);
366 if (ret2 < 0)
367 ret = ret2;
368 break;
369 default:
370 assert(ret < 0);
371 td_verror(td, -ret, "td_io_queue");
372 break;
373 }
374
375 if (ret < 0 || td->error)
376 break;
377
378 /*
379 * if we can queue more, do so. but check if there are
380 * completed io_u's first.
381 */
382 min_events = 0;
383 if (queue_full(td) || ret == FIO_Q_BUSY) {
384 min_events = 1;
385
386 if (td->cur_depth > td->o.iodepth_low)
387 min_events = td->cur_depth - td->o.iodepth_low;
388 }
389
390 /*
391 * Reap required number of io units, if any, and do the
392 * verification on them through the callback handler
393 */
394 if (io_u_queued_complete(td, min_events) < 0)
395 break;
396 }
397
398 if (!td->error) {
399 min_events = td->cur_depth;
400
401 if (min_events)
402 ret = io_u_queued_complete(td, min_events);
403 } else
404 cleanup_pending_aio(td);
405
406 td_set_runstate(td, TD_RUNNING);
407}
408
409/*
410 * Main IO worker function. It retrieves io_u's to process and queues
411 * and reaps them, checking for rate and errors along the way.
412 */
413static void do_io(struct thread_data *td)
414{
415 struct timeval s;
416 unsigned long usec;
417 unsigned int i;
418 int ret = 0;
419
420 td_set_runstate(td, TD_RUNNING);
421
422 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
423 struct timeval comp_time;
424 long bytes_done = 0;
425 int min_evts = 0;
426 struct io_u *io_u;
427 int ret2;
428
429 if (td->terminate)
430 break;
431
432 io_u = get_io_u(td);
433 if (!io_u)
434 break;
435
436 memcpy(&s, &io_u->start_time, sizeof(s));
437
438 if (runtime_exceeded(td, &s)) {
439 put_io_u(td, io_u);
440 break;
441 }
442
443 ret = td_io_queue(td, io_u);
444 switch (ret) {
445 case FIO_Q_COMPLETED:
446 if (io_u->error)
447 ret = -io_u->error;
448 else if (io_u->resid) {
449 int bytes = io_u->xfer_buflen - io_u->resid;
450
451 /*
452 * zero read, fail
453 */
454 if (!bytes) {
455 td_verror(td, ENODATA, "full resid");
456 put_io_u(td, io_u);
457 break;
458 }
459
460 io_u->xfer_buflen = io_u->resid;
461 io_u->xfer_buf += bytes;
462 io_u->offset += bytes;
463
464 if (io_u->offset == io_u->file->real_file_size)
465 goto sync_done;
466
467 requeue_io_u(td, &io_u);
468 } else {
469sync_done:
470 fio_gettime(&comp_time, NULL);
471 bytes_done = io_u_sync_complete(td, io_u);
472 if (bytes_done < 0)
473 ret = bytes_done;
474 }
475 break;
476 case FIO_Q_QUEUED:
477 /*
478 * if the engine doesn't have a commit hook,
479 * the io_u is really queued. if it does have such
480 * a hook, it has to call io_u_queued() itself.
481 */
482 if (td->io_ops->commit == NULL)
483 io_u_queued(td, io_u);
484 break;
485 case FIO_Q_BUSY:
486 requeue_io_u(td, &io_u);
487 ret2 = td_io_commit(td);
488 if (ret2 < 0)
489 ret = ret2;
490 break;
491 default:
492 assert(ret < 0);
493 put_io_u(td, io_u);
494 break;
495 }
496
497 if (ret < 0 || td->error)
498 break;
499
500 /*
501 * See if we need to complete some commands
502 */
503 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
504 min_evts = 0;
505 if (queue_full(td) || ret == FIO_Q_BUSY) {
506 min_evts = 1;
507
508 if (td->cur_depth > td->o.iodepth_low)
509 min_evts = td->cur_depth - td->o.iodepth_low;
510 }
511
512 fio_gettime(&comp_time, NULL);
513 bytes_done = io_u_queued_complete(td, min_evts);
514 if (bytes_done < 0)
515 break;
516 }
517
518 if (!bytes_done)
519 continue;
520
521 /*
522 * the rate is batched for now, it should work for batches
523 * of completions except the very first one which may look
524 * a little bursty
525 */
526 usec = utime_since(&s, &comp_time);
527
528 rate_throttle(td, usec, bytes_done);
529
530 if (check_min_rate(td, &comp_time)) {
531 if (exitall_on_terminate)
532 terminate_threads(td->groupid);
533 td_verror(td, ENODATA, "check_min_rate");
534 break;
535 }
536
537 if (td->o.thinktime) {
538 unsigned long long b;
539
540 b = td->io_blocks[0] + td->io_blocks[1];
541 if (!(b % td->o.thinktime_blocks)) {
542 int left;
543
544 if (td->o.thinktime_spin)
545 __usec_sleep(td->o.thinktime_spin);
546
547 left = td->o.thinktime - td->o.thinktime_spin;
548 if (left)
549 usec_sleep(td, left);
550 }
551 }
552 }
553
554 if (!td->error) {
555 struct fio_file *f;
556
557 i = td->cur_depth;
558 if (i)
559 ret = io_u_queued_complete(td, i);
560
561 if (should_fsync(td) && td->o.end_fsync) {
562 td_set_runstate(td, TD_FSYNCING);
563
564 for_each_file(td, f, i) {
565 if (!(f->flags & FIO_FILE_OPEN))
566 continue;
567 fio_io_sync(td, f);
568 }
569 }
570 } else
571 cleanup_pending_aio(td);
572}
573
574static void cleanup_io_u(struct thread_data *td)
575{
576 struct list_head *entry, *n;
577 struct io_u *io_u;
578
579 list_for_each_safe(entry, n, &td->io_u_freelist) {
580 io_u = list_entry(entry, struct io_u, list);
581
582 list_del(&io_u->list);
583 free(io_u);
584 }
585
586 free_io_mem(td);
587}
588
589/*
590 * "randomly" fill the buffer contents
591 */
592static void fill_rand_buf(struct io_u *io_u, int max_bs)
593{
594 int *ptr = io_u->buf;
595
596 while ((void *) ptr - io_u->buf < max_bs) {
597 *ptr = rand() * 0x9e370001;
598 ptr++;
599 }
600}
601
602static int init_io_u(struct thread_data *td)
603{
604 unsigned long long buf_size;
605 struct io_u *io_u;
606 unsigned int max_bs;
607 int i, max_units;
608 char *p;
609
610 if (td->io_ops->flags & FIO_SYNCIO)
611 max_units = 1;
612 else
613 max_units = td->o.iodepth;
614
615 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
616 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
617 buf_size += page_mask;
618 if (buf_size != (size_t) buf_size) {
619 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
620 return 1;
621 }
622
623 td->orig_buffer_size = buf_size;
624
625 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
626 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
627 else if (td->orig_buffer_size & page_mask)
628 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
629
630 if (allocate_io_mem(td))
631 return 1;
632
633 p = ALIGN(td->orig_buffer);
634 for (i = 0; i < max_units; i++) {
635 io_u = malloc(sizeof(*io_u));
636 memset(io_u, 0, sizeof(*io_u));
637 INIT_LIST_HEAD(&io_u->list);
638
639 io_u->buf = p + max_bs * i;
640 if (td_write(td) || td_rw(td))
641 fill_rand_buf(io_u, max_bs);
642
643 io_u->index = i;
644 io_u->flags = IO_U_F_FREE;
645 list_add(&io_u->list, &td->io_u_freelist);
646 }
647
648 io_u_init_timeout();
649
650 return 0;
651}
652
653static int switch_ioscheduler(struct thread_data *td)
654{
655 char tmp[256], tmp2[128];
656 FILE *f;
657 int ret;
658
659 if (td->io_ops->flags & FIO_DISKLESSIO)
660 return 0;
661
662 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
663
664 f = fopen(tmp, "r+");
665 if (!f) {
666 td_verror(td, errno, "fopen");
667 return 1;
668 }
669
670 /*
671 * Set io scheduler.
672 */
673 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
674 if (ferror(f) || ret != 1) {
675 td_verror(td, errno, "fwrite");
676 fclose(f);
677 return 1;
678 }
679
680 rewind(f);
681
682 /*
683 * Read back and check that the selected scheduler is now the default.
684 */
685 ret = fread(tmp, 1, sizeof(tmp), f);
686 if (ferror(f) || ret < 0) {
687 td_verror(td, errno, "fread");
688 fclose(f);
689 return 1;
690 }
691
692 sprintf(tmp2, "[%s]", td->o.ioscheduler);
693 if (!strstr(tmp, tmp2)) {
694 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
695 td_verror(td, EINVAL, "iosched_switch");
696 fclose(f);
697 return 1;
698 }
699
700 fclose(f);
701 return 0;
702}
703
704static int clear_io_state(struct thread_data *td)
705{
706 struct fio_file *f;
707 unsigned int i;
708 int ret;
709
710 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
711 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
712 td->zone_bytes = 0;
713 td->rate_bytes = 0;
714 td->rate_blocks = 0;
715 td->rw_end_set[0] = td->rw_end_set[1] = 0;
716
717 td->last_was_sync = 0;
718
719 for_each_file(td, f, i)
720 td_io_close_file(td, f);
721
722 ret = 0;
723 for_each_file(td, f, i) {
724 ret = td_io_open_file(td, f);
725 if (ret)
726 break;
727 }
728
729 return ret;
730}
731
732/*
733 * Entry point for the thread based jobs. The process based jobs end up
734 * here as well, after a little setup.
735 */
736static void *thread_main(void *data)
737{
738 unsigned long long runtime[2];
739 struct thread_data *td = data;
740 unsigned long elapsed;
741 int clear_state;
742
743 if (!td->o.use_thread)
744 setsid();
745
746 td->pid = getpid();
747
748 INIT_LIST_HEAD(&td->io_u_freelist);
749 INIT_LIST_HEAD(&td->io_u_busylist);
750 INIT_LIST_HEAD(&td->io_u_requeues);
751 INIT_LIST_HEAD(&td->io_log_list);
752 INIT_LIST_HEAD(&td->io_hist_list);
753 td->io_hist_tree = RB_ROOT;
754
755 if (init_io_u(td))
756 goto err_sem;
757
758 if (fio_setaffinity(td) == -1) {
759 td_verror(td, errno, "cpu_set_affinity");
760 goto err_sem;
761 }
762
763 if (init_iolog(td))
764 goto err_sem;
765
766 if (td->ioprio) {
767 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
768 td_verror(td, errno, "ioprio_set");
769 goto err_sem;
770 }
771 }
772
773 if (nice(td->o.nice) == -1) {
774 td_verror(td, errno, "nice");
775 goto err_sem;
776 }
777
778 if (td->o.ioscheduler && switch_ioscheduler(td))
779 goto err_sem;
780
781 td_set_runstate(td, TD_INITIALIZED);
782 fio_sem_up(startup_sem);
783 fio_sem_down(td->mutex);
784
785 /*
786 * the ->mutex semaphore is now no longer used, close it to avoid
787 * eating a file descriptor
788 */
789 fio_sem_remove(td->mutex);
790
791 if (!td->o.create_serialize && setup_files(td))
792 goto err;
793
794 if (td_io_init(td))
795 goto err;
796
797 if (open_files(td))
798 goto err;
799
800 if (init_random_map(td))
801 goto err;
802
803 if (td->o.exec_prerun) {
804 if (system(td->o.exec_prerun) < 0)
805 goto err;
806 }
807
808 fio_gettime(&td->epoch, NULL);
809 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
810 getrusage(RUSAGE_SELF, &td->ts.ru_start);
811
812 runtime[0] = runtime[1] = 0;
813 clear_state = 0;
814 while (td->o.loops--) {
815 fio_gettime(&td->start, NULL);
816 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
817
818 if (td->o.ratemin)
819 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
820
821 if (clear_state && clear_io_state(td))
822 break;
823
824 prune_io_piece_log(td);
825
826 do_io(td);
827
828 clear_state = 1;
829
830 if (td_read(td) && td->io_bytes[DDIR_READ]) {
831 if (td->rw_end_set[DDIR_READ])
832 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
833 else
834 elapsed = utime_since_now(&td->start);
835
836 runtime[DDIR_READ] += elapsed;
837 }
838 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
839 if (td->rw_end_set[DDIR_WRITE])
840 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
841 else
842 elapsed = utime_since_now(&td->start);
843
844 runtime[DDIR_WRITE] += elapsed;
845 }
846
847 if (td->error || td->terminate)
848 break;
849
850 if (td->o.verify == VERIFY_NONE)
851 continue;
852
853 if (clear_io_state(td))
854 break;
855
856 fio_gettime(&td->start, NULL);
857
858 do_verify(td);
859
860 runtime[DDIR_READ] += utime_since_now(&td->start);
861
862 if (td->error || td->terminate)
863 break;
864 }
865
866 update_rusage_stat(td);
867 td->ts.runtime[0] = runtime[0] / 1000;
868 td->ts.runtime[1] = runtime[1] / 1000;
869 td->ts.total_run_time = mtime_since_now(&td->epoch);
870 td->ts.io_bytes[0] = td->io_bytes[0];
871 td->ts.io_bytes[1] = td->io_bytes[1];
872
873 if (td->ts.bw_log)
874 finish_log(td, td->ts.bw_log, "bw");
875 if (td->ts.slat_log)
876 finish_log(td, td->ts.slat_log, "slat");
877 if (td->ts.clat_log)
878 finish_log(td, td->ts.clat_log, "clat");
879 if (td->o.write_iolog_file)
880 write_iolog_close(td);
881 if (td->o.exec_postrun) {
882 if (system(td->o.exec_postrun) < 0)
883 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
884 }
885
886 if (exitall_on_terminate)
887 terminate_threads(td->groupid);
888
889err:
890 if (td->error)
891 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
892 close_files(td);
893 close_ioengine(td);
894 cleanup_io_u(td);
895 options_mem_free(td);
896 td_set_runstate(td, TD_EXITED);
897 return (void *) (unsigned long) td->error;
898err_sem:
899 fio_sem_up(startup_sem);
900 goto err;
901}
902
903/*
904 * We cannot pass the td data into a forked process, so attach the td and
905 * pass it to the thread worker.
906 */
907static int fork_main(int shmid, int offset)
908{
909 struct thread_data *td;
910 void *data, *ret;
911
912 data = shmat(shmid, NULL, 0);
913 if (data == (void *) -1) {
914 int __err = errno;
915
916 perror("shmat");
917 return __err;
918 }
919
920 td = data + offset * sizeof(struct thread_data);
921 ret = thread_main(td);
922 shmdt(data);
923 return (int) (unsigned long) ret;
924}
925
926/*
927 * Run over the job map and reap the threads that have exited, if any.
928 */
929static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
930{
931 struct thread_data *td;
932 int i, cputhreads, pending, status, ret;
933
934 /*
935 * reap exited threads (TD_EXITED -> TD_REAPED)
936 */
937 pending = cputhreads = 0;
938 for_each_td(td, i) {
939 int flags = 0;
940
941 /*
942 * ->io_ops is NULL for a thread that has closed its
943 * io engine
944 */
945 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
946 cputhreads++;
947
948 if (!td->pid || td->runstate == TD_REAPED)
949 continue;
950 if (td->o.use_thread) {
951 if (td->runstate == TD_EXITED) {
952 td_set_runstate(td, TD_REAPED);
953 goto reaped;
954 }
955 continue;
956 }
957
958 flags = WNOHANG;
959 if (td->runstate == TD_EXITED)
960 flags = 0;
961
962 /*
963 * check if someone quit or got killed in an unusual way
964 */
965 ret = waitpid(td->pid, &status, flags);
966 if (ret < 0) {
967 if (errno == ECHILD) {
968 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
969 td_set_runstate(td, TD_REAPED);
970 goto reaped;
971 }
972 perror("waitpid");
973 } else if (ret == td->pid) {
974 if (WIFSIGNALED(status)) {
975 int sig = WTERMSIG(status);
976
977 if (sig != SIGQUIT)
978 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
979 td_set_runstate(td, TD_REAPED);
980 goto reaped;
981 }
982 if (WIFEXITED(status)) {
983 if (WEXITSTATUS(status) && !td->error)
984 td->error = WEXITSTATUS(status);
985
986 td_set_runstate(td, TD_REAPED);
987 goto reaped;
988 }
989 }
990
991 /*
992 * thread is not dead, continue
993 */
994 continue;
995reaped:
996 if (td->o.use_thread) {
997 long ret;
998
999 if (pthread_join(td->thread, (void *) &ret))
1000 perror("pthread_join");
1001 }
1002
1003 (*nr_running)--;
1004 (*m_rate) -= td->o.ratemin;
1005 (*t_rate) -= td->o.rate;
1006
1007 if (td->error)
1008 exit_value++;
1009 }
1010
1011 if (*nr_running == cputhreads && !pending)
1012 terminate_threads(TERMINATE_ALL);
1013}
1014
1015/*
1016 * Main function for kicking off and reaping jobs, as needed.
1017 */
1018static void run_threads(void)
1019{
1020 struct thread_data *td;
1021 unsigned long spent;
1022 int i, todo, nr_running, m_rate, t_rate, nr_started;
1023
1024 if (fio_pin_memory())
1025 return;
1026
1027 if (!terse_output) {
1028 printf("Starting ");
1029 if (nr_thread)
1030 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1031 if (nr_process) {
1032 if (nr_thread)
1033 printf(" and ");
1034 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1035 }
1036 printf("\n");
1037 fflush(stdout);
1038 }
1039
1040 signal(SIGINT, sig_handler);
1041 signal(SIGALRM, sig_handler);
1042
1043 todo = thread_number;
1044 nr_running = 0;
1045 nr_started = 0;
1046 m_rate = t_rate = 0;
1047
1048 for_each_td(td, i) {
1049 print_status_init(td->thread_number - 1);
1050
1051 if (!td->o.create_serialize) {
1052 init_disk_util(td);
1053 continue;
1054 }
1055
1056 /*
1057 * do file setup here so it happens sequentially,
1058 * we don't want X number of threads getting their
1059 * client data interspersed on disk
1060 */
1061 if (setup_files(td)) {
1062 exit_value++;
1063 if (td->error)
1064 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1065 td_set_runstate(td, TD_REAPED);
1066 todo--;
1067 }
1068
1069 init_disk_util(td);
1070 }
1071
1072 set_genesis_time();
1073
1074 while (todo) {
1075 struct thread_data *map[MAX_JOBS];
1076 struct timeval this_start;
1077 int this_jobs = 0, left;
1078
1079 /*
1080 * create threads (TD_NOT_CREATED -> TD_CREATED)
1081 */
1082 for_each_td(td, i) {
1083 if (td->runstate != TD_NOT_CREATED)
1084 continue;
1085
1086 /*
1087 * never got a chance to start, killed by other
1088 * thread for some reason
1089 */
1090 if (td->terminate) {
1091 todo--;
1092 continue;
1093 }
1094
1095 if (td->o.start_delay) {
1096 spent = mtime_since_genesis();
1097
1098 if (td->o.start_delay * 1000 > spent)
1099 continue;
1100 }
1101
1102 if (td->o.stonewall && (nr_started || nr_running))
1103 break;
1104
1105 /*
1106 * Set state to created. Thread will transition
1107 * to TD_INITIALIZED when it's done setting up.
1108 */
1109 td_set_runstate(td, TD_CREATED);
1110 map[this_jobs++] = td;
1111 nr_started++;
1112
1113 if (td->o.use_thread) {
1114 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1115 perror("thread_create");
1116 nr_started--;
1117 break;
1118 }
1119 } else {
1120 if (!fork()) {
1121 int ret = fork_main(shm_id, i);
1122
1123 exit(ret);
1124 }
1125 }
1126 fio_sem_down(startup_sem);
1127 }
1128
1129 /*
1130 * Wait for the started threads to transition to
1131 * TD_INITIALIZED.
1132 */
1133 fio_gettime(&this_start, NULL);
1134 left = this_jobs;
1135 while (left && !fio_abort) {
1136 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1137 break;
1138
1139 usleep(100000);
1140
1141 for (i = 0; i < this_jobs; i++) {
1142 td = map[i];
1143 if (!td)
1144 continue;
1145 if (td->runstate == TD_INITIALIZED) {
1146 map[i] = NULL;
1147 left--;
1148 } else if (td->runstate >= TD_EXITED) {
1149 map[i] = NULL;
1150 left--;
1151 todo--;
1152 nr_running++; /* work-around... */
1153 }
1154 }
1155 }
1156
1157 if (left) {
1158 log_err("fio: %d jobs failed to start\n", left);
1159 for (i = 0; i < this_jobs; i++) {
1160 td = map[i];
1161 if (!td)
1162 continue;
1163 kill(td->pid, SIGTERM);
1164 }
1165 break;
1166 }
1167
1168 /*
1169 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1170 */
1171 for_each_td(td, i) {
1172 if (td->runstate != TD_INITIALIZED)
1173 continue;
1174
1175 td_set_runstate(td, TD_RUNNING);
1176 nr_running++;
1177 nr_started--;
1178 m_rate += td->o.ratemin;
1179 t_rate += td->o.rate;
1180 todo--;
1181 fio_sem_up(td->mutex);
1182 }
1183
1184 reap_threads(&nr_running, &t_rate, &m_rate);
1185
1186 if (todo)
1187 usleep(100000);
1188 }
1189
1190 while (nr_running) {
1191 reap_threads(&nr_running, &t_rate, &m_rate);
1192 usleep(10000);
1193 }
1194
1195 update_io_ticks();
1196 fio_unpin_memory();
1197}
1198
1199int main(int argc, char *argv[])
1200{
1201 long ps;
1202
1203 /*
1204 * We need locale for number printing, if it isn't set then just
1205 * go with the US format.
1206 */
1207 if (!getenv("LC_NUMERIC"))
1208 setlocale(LC_NUMERIC, "en_US");
1209
1210 if (parse_options(argc, argv))
1211 return 1;
1212
1213 if (!thread_number) {
1214 log_err("Nothing to do\n");
1215 return 1;
1216 }
1217
1218 ps = sysconf(_SC_PAGESIZE);
1219 if (ps < 0) {
1220 log_err("Failed to get page size\n");
1221 return 1;
1222 }
1223
1224 page_size = ps;
1225 page_mask = ps - 1;
1226
1227 if (write_bw_log) {
1228 setup_log(&agg_io_log[DDIR_READ]);
1229 setup_log(&agg_io_log[DDIR_WRITE]);
1230 }
1231
1232 startup_sem = fio_sem_init(0);
1233
1234 set_genesis_time();
1235
1236 disk_util_timer_arm();
1237
1238 run_threads();
1239
1240 if (!fio_abort) {
1241 show_run_stats();
1242 if (write_bw_log) {
1243 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1244 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1245 }
1246 }
1247
1248 fio_sem_remove(startup_sem);
1249 return exit_value;
1250}