verify: decouple seed generation from buffer fill
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
70
71#define JOB_START_TIMEOUT (5 * 1000)
72
73static void sig_int(int sig)
74{
75 if (threads) {
76 if (is_backend)
77 fio_server_got_signal(sig);
78 else {
79 log_info("\nfio: terminating on signal %d\n", sig);
80 log_info_flush();
81 exit_value = 128;
82 }
83
84 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
85 }
86}
87
88void sig_show_status(int sig)
89{
90 show_running_run_stats();
91}
92
93static void set_sig_handlers(void)
94{
95 struct sigaction act;
96
97 memset(&act, 0, sizeof(act));
98 act.sa_handler = sig_int;
99 act.sa_flags = SA_RESTART;
100 sigaction(SIGINT, &act, NULL);
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGTERM, &act, NULL);
106
107/* Windows uses SIGBREAK as a quit signal from other applications */
108#ifdef WIN32
109 memset(&act, 0, sizeof(act));
110 act.sa_handler = sig_int;
111 act.sa_flags = SA_RESTART;
112 sigaction(SIGBREAK, &act, NULL);
113#endif
114
115 memset(&act, 0, sizeof(act));
116 act.sa_handler = sig_show_status;
117 act.sa_flags = SA_RESTART;
118 sigaction(SIGUSR1, &act, NULL);
119
120 if (is_backend) {
121 memset(&act, 0, sizeof(act));
122 act.sa_handler = sig_int;
123 act.sa_flags = SA_RESTART;
124 sigaction(SIGPIPE, &act, NULL);
125 }
126}
127
128/*
129 * Check if we are above the minimum rate given.
130 */
131static bool __check_min_rate(struct thread_data *td, struct timespec *now,
132 enum fio_ddir ddir)
133{
134 unsigned long long bytes = 0;
135 unsigned long iops = 0;
136 unsigned long spent;
137 unsigned long long rate;
138 unsigned long long ratemin = 0;
139 unsigned int rate_iops = 0;
140 unsigned int rate_iops_min = 0;
141
142 assert(ddir_rw(ddir));
143
144 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
145 return false;
146
147 /*
148 * allow a 2 second settle period in the beginning
149 */
150 if (mtime_since(&td->start, now) < 2000)
151 return false;
152
153 iops += td->this_io_blocks[ddir];
154 bytes += td->this_io_bytes[ddir];
155 ratemin += td->o.ratemin[ddir];
156 rate_iops += td->o.rate_iops[ddir];
157 rate_iops_min += td->o.rate_iops_min[ddir];
158
159 /*
160 * if rate blocks is set, sample is running
161 */
162 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
163 spent = mtime_since(&td->lastrate[ddir], now);
164 if (spent < td->o.ratecycle)
165 return false;
166
167 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
168 /*
169 * check bandwidth specified rate
170 */
171 if (bytes < td->rate_bytes[ddir]) {
172 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
173 td->o.name, ratemin, bytes);
174 return true;
175 } else {
176 if (spent)
177 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
178 else
179 rate = 0;
180
181 if (rate < ratemin ||
182 bytes < td->rate_bytes[ddir]) {
183 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
184 td->o.name, ratemin, rate);
185 return true;
186 }
187 }
188 } else {
189 /*
190 * checks iops specified rate
191 */
192 if (iops < rate_iops) {
193 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
194 td->o.name, rate_iops, iops);
195 return true;
196 } else {
197 if (spent)
198 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
199 else
200 rate = 0;
201
202 if (rate < rate_iops_min ||
203 iops < td->rate_blocks[ddir]) {
204 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
205 td->o.name, rate_iops_min, rate);
206 return true;
207 }
208 }
209 }
210 }
211
212 td->rate_bytes[ddir] = bytes;
213 td->rate_blocks[ddir] = iops;
214 memcpy(&td->lastrate[ddir], now, sizeof(*now));
215 return false;
216}
217
218static bool check_min_rate(struct thread_data *td, struct timespec *now)
219{
220 bool ret = false;
221
222 if (td->bytes_done[DDIR_READ])
223 ret |= __check_min_rate(td, now, DDIR_READ);
224 if (td->bytes_done[DDIR_WRITE])
225 ret |= __check_min_rate(td, now, DDIR_WRITE);
226 if (td->bytes_done[DDIR_TRIM])
227 ret |= __check_min_rate(td, now, DDIR_TRIM);
228
229 return ret;
230}
231
232/*
233 * When job exits, we can cancel the in-flight IO if we are using async
234 * io. Attempt to do so.
235 */
236static void cleanup_pending_aio(struct thread_data *td)
237{
238 int r;
239
240 /*
241 * get immediately available events, if any
242 */
243 r = io_u_queued_complete(td, 0);
244
245 /*
246 * now cancel remaining active events
247 */
248 if (td->io_ops->cancel) {
249 struct io_u *io_u;
250 int i;
251
252 io_u_qiter(&td->io_u_all, io_u, i) {
253 if (io_u->flags & IO_U_F_FLIGHT) {
254 r = td->io_ops->cancel(td, io_u);
255 if (!r)
256 put_io_u(td, io_u);
257 }
258 }
259 }
260
261 if (td->cur_depth)
262 r = io_u_queued_complete(td, td->cur_depth);
263}
264
265/*
266 * Helper to handle the final sync of a file. Works just like the normal
267 * io path, just does everything sync.
268 */
269static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
270{
271 struct io_u *io_u = __get_io_u(td);
272 enum fio_q_status ret;
273
274 if (!io_u)
275 return true;
276
277 io_u->ddir = DDIR_SYNC;
278 io_u->file = f;
279 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
280
281 if (td_io_prep(td, io_u)) {
282 put_io_u(td, io_u);
283 return true;
284 }
285
286requeue:
287 ret = td_io_queue(td, io_u);
288 switch (ret) {
289 case FIO_Q_QUEUED:
290 td_io_commit(td);
291 if (io_u_queued_complete(td, 1) < 0)
292 return true;
293 break;
294 case FIO_Q_COMPLETED:
295 if (io_u->error) {
296 td_verror(td, io_u->error, "td_io_queue");
297 return true;
298 }
299
300 if (io_u_sync_complete(td, io_u) < 0)
301 return true;
302 break;
303 case FIO_Q_BUSY:
304 td_io_commit(td);
305 goto requeue;
306 }
307
308 return false;
309}
310
311static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
312{
313 int ret, ret2;
314
315 if (fio_file_open(f))
316 return fio_io_sync(td, f);
317
318 if (td_io_open_file(td, f))
319 return 1;
320
321 ret = fio_io_sync(td, f);
322 ret2 = 0;
323 if (fio_file_open(f))
324 ret2 = td_io_close_file(td, f);
325 return (ret || ret2);
326}
327
328static inline void __update_ts_cache(struct thread_data *td)
329{
330 fio_gettime(&td->ts_cache, NULL);
331}
332
333static inline void update_ts_cache(struct thread_data *td)
334{
335 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
336 __update_ts_cache(td);
337}
338
339static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
340{
341 if (in_ramp_time(td))
342 return false;
343 if (!td->o.timeout)
344 return false;
345 if (utime_since(&td->epoch, t) >= td->o.timeout)
346 return true;
347
348 return false;
349}
350
351/*
352 * We need to update the runtime consistently in ms, but keep a running
353 * tally of the current elapsed time in microseconds for sub millisecond
354 * updates.
355 */
356static inline void update_runtime(struct thread_data *td,
357 unsigned long long *elapsed_us,
358 const enum fio_ddir ddir)
359{
360 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
361 return;
362
363 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
364 elapsed_us[ddir] += utime_since_now(&td->start);
365 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
366}
367
368static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
369 int *retptr)
370{
371 int ret = *retptr;
372
373 if (ret < 0 || td->error) {
374 int err = td->error;
375 enum error_type_bit eb;
376
377 if (ret < 0)
378 err = -ret;
379
380 eb = td_error_type(ddir, err);
381 if (!(td->o.continue_on_error & (1 << eb)))
382 return true;
383
384 if (td_non_fatal_error(td, eb, err)) {
385 /*
386 * Continue with the I/Os in case of
387 * a non fatal error.
388 */
389 update_error_count(td, err);
390 td_clear_error(td);
391 *retptr = 0;
392 return false;
393 } else if (td->o.fill_device && err == ENOSPC) {
394 /*
395 * We expect to hit this error if
396 * fill_device option is set.
397 */
398 td_clear_error(td);
399 fio_mark_td_terminate(td);
400 return true;
401 } else {
402 /*
403 * Stop the I/O in case of a fatal
404 * error.
405 */
406 update_error_count(td, err);
407 return true;
408 }
409 }
410
411 return false;
412}
413
414static void check_update_rusage(struct thread_data *td)
415{
416 if (td->update_rusage) {
417 td->update_rusage = 0;
418 update_rusage_stat(td);
419 fio_sem_up(td->rusage_sem);
420 }
421}
422
423static int wait_for_completions(struct thread_data *td, struct timespec *time)
424{
425 const int full = queue_full(td);
426 int min_evts = 0;
427 int ret;
428
429 if (td->flags & TD_F_REGROW_LOGS)
430 return io_u_quiesce(td);
431
432 /*
433 * if the queue is full, we MUST reap at least 1 event
434 */
435 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
436 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
437 min_evts = 1;
438
439 if (time && __should_check_rate(td))
440 fio_gettime(time, NULL);
441
442 do {
443 ret = io_u_queued_complete(td, min_evts);
444 if (ret < 0)
445 break;
446 } while (full && (td->cur_depth > td->o.iodepth_low));
447
448 return ret;
449}
450
451int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
452 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
453 struct timespec *comp_time)
454{
455 switch (*ret) {
456 case FIO_Q_COMPLETED:
457 if (io_u->error) {
458 *ret = -io_u->error;
459 clear_io_u(td, io_u);
460 } else if (io_u->resid) {
461 long long bytes = io_u->xfer_buflen - io_u->resid;
462 struct fio_file *f = io_u->file;
463
464 if (bytes_issued)
465 *bytes_issued += bytes;
466
467 if (!from_verify)
468 trim_io_piece(io_u);
469
470 /*
471 * zero read, fail
472 */
473 if (!bytes) {
474 if (!from_verify)
475 unlog_io_piece(td, io_u);
476 td_verror(td, EIO, "full resid");
477 put_io_u(td, io_u);
478 break;
479 }
480
481 io_u->xfer_buflen = io_u->resid;
482 io_u->xfer_buf += bytes;
483 io_u->offset += bytes;
484
485 if (ddir_rw(io_u->ddir))
486 td->ts.short_io_u[io_u->ddir]++;
487
488 if (io_u->offset == f->real_file_size)
489 goto sync_done;
490
491 requeue_io_u(td, &io_u);
492 } else {
493sync_done:
494 if (comp_time && __should_check_rate(td))
495 fio_gettime(comp_time, NULL);
496
497 *ret = io_u_sync_complete(td, io_u);
498 if (*ret < 0)
499 break;
500 }
501
502 if (td->flags & TD_F_REGROW_LOGS)
503 regrow_logs(td);
504
505 /*
506 * when doing I/O (not when verifying),
507 * check for any errors that are to be ignored
508 */
509 if (!from_verify)
510 break;
511
512 return 0;
513 case FIO_Q_QUEUED:
514 /*
515 * if the engine doesn't have a commit hook,
516 * the io_u is really queued. if it does have such
517 * a hook, it has to call io_u_queued() itself.
518 */
519 if (td->io_ops->commit == NULL)
520 io_u_queued(td, io_u);
521 if (bytes_issued)
522 *bytes_issued += io_u->xfer_buflen;
523 break;
524 case FIO_Q_BUSY:
525 if (!from_verify)
526 unlog_io_piece(td, io_u);
527 requeue_io_u(td, &io_u);
528 td_io_commit(td);
529 break;
530 default:
531 assert(*ret < 0);
532 td_verror(td, -(*ret), "td_io_queue");
533 break;
534 }
535
536 if (break_on_this_error(td, ddir, ret))
537 return 1;
538
539 return 0;
540}
541
542static inline bool io_in_polling(struct thread_data *td)
543{
544 return !td->o.iodepth_batch_complete_min &&
545 !td->o.iodepth_batch_complete_max;
546}
547/*
548 * Unlinks files from thread data fio_file structure
549 */
550static int unlink_all_files(struct thread_data *td)
551{
552 struct fio_file *f;
553 unsigned int i;
554 int ret = 0;
555
556 for_each_file(td, f, i) {
557 if (f->filetype != FIO_TYPE_FILE)
558 continue;
559 ret = td_io_unlink_file(td, f);
560 if (ret)
561 break;
562 }
563
564 if (ret)
565 td_verror(td, ret, "unlink_all_files");
566
567 return ret;
568}
569
570/*
571 * Check if io_u will overlap an in-flight IO in the queue
572 */
573bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574{
575 bool overlap;
576 struct io_u *check_io_u;
577 unsigned long long x1, x2, y1, y2;
578 int i;
579
580 x1 = io_u->offset;
581 x2 = io_u->offset + io_u->buflen;
582 overlap = false;
583 io_u_qiter(q, check_io_u, i) {
584 if (check_io_u->flags & IO_U_F_FLIGHT) {
585 y1 = check_io_u->offset;
586 y2 = check_io_u->offset + check_io_u->buflen;
587
588 if (x1 < y2 && y1 < x2) {
589 overlap = true;
590 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
591 x1, io_u->buflen,
592 y1, check_io_u->buflen);
593 break;
594 }
595 }
596 }
597
598 return overlap;
599}
600
601static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602{
603 /*
604 * Check for overlap if the user asked us to, and we have
605 * at least one IO in flight besides this one.
606 */
607 if (td->o.serialize_overlap && td->cur_depth > 1 &&
608 in_flight_overlap(&td->io_u_all, io_u))
609 return FIO_Q_BUSY;
610
611 return td_io_queue(td, io_u);
612}
613
614/*
615 * The main verify engine. Runs over the writes we previously submitted,
616 * reads the blocks back in, and checks the crc/md5 of the data.
617 */
618static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619{
620 struct fio_file *f;
621 struct io_u *io_u;
622 int ret, min_events;
623 unsigned int i;
624
625 dprint(FD_VERIFY, "starting loop\n");
626
627 /*
628 * sync io first and invalidate cache, to make sure we really
629 * read from disk.
630 */
631 for_each_file(td, f, i) {
632 if (!fio_file_open(f))
633 continue;
634 if (fio_io_sync(td, f))
635 break;
636 if (file_invalidate_cache(td, f))
637 break;
638 }
639
640 check_update_rusage(td);
641
642 if (td->error)
643 return;
644
645 /*
646 * verify_state needs to be reset before verification
647 * proceeds so that expected random seeds match actual
648 * random seeds in headers. The main loop will reset
649 * all random number generators if randrepeat is set.
650 */
651 if (!td->o.rand_repeatable)
652 td_fill_verify_state_seed(td);
653
654 td_set_runstate(td, TD_VERIFYING);
655
656 io_u = NULL;
657 while (!td->terminate) {
658 enum fio_ddir ddir;
659 int full;
660
661 update_ts_cache(td);
662 check_update_rusage(td);
663
664 if (runtime_exceeded(td, &td->ts_cache)) {
665 __update_ts_cache(td);
666 if (runtime_exceeded(td, &td->ts_cache)) {
667 fio_mark_td_terminate(td);
668 break;
669 }
670 }
671
672 if (flow_threshold_exceeded(td))
673 continue;
674
675 if (!td->o.experimental_verify) {
676 io_u = __get_io_u(td);
677 if (!io_u)
678 break;
679
680 if (get_next_verify(td, io_u)) {
681 put_io_u(td, io_u);
682 break;
683 }
684
685 if (td_io_prep(td, io_u)) {
686 put_io_u(td, io_u);
687 break;
688 }
689 } else {
690 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691 break;
692
693 while ((io_u = get_io_u(td)) != NULL) {
694 if (IS_ERR_OR_NULL(io_u)) {
695 io_u = NULL;
696 ret = FIO_Q_BUSY;
697 goto reap;
698 }
699
700 /*
701 * We are only interested in the places where
702 * we wrote or trimmed IOs. Turn those into
703 * reads for verification purposes.
704 */
705 if (io_u->ddir == DDIR_READ) {
706 /*
707 * Pretend we issued it for rwmix
708 * accounting
709 */
710 td->io_issues[DDIR_READ]++;
711 put_io_u(td, io_u);
712 continue;
713 } else if (io_u->ddir == DDIR_TRIM) {
714 io_u->ddir = DDIR_READ;
715 io_u_set(td, io_u, IO_U_F_TRIMMED);
716 break;
717 } else if (io_u->ddir == DDIR_WRITE) {
718 io_u->ddir = DDIR_READ;
719 populate_verify_io_u(td, io_u);
720 break;
721 } else {
722 put_io_u(td, io_u);
723 continue;
724 }
725 }
726
727 if (!io_u)
728 break;
729 }
730
731 if (verify_state_should_stop(td, io_u)) {
732 put_io_u(td, io_u);
733 break;
734 }
735
736 if (td->o.verify_async)
737 io_u->end_io = verify_io_u_async;
738 else
739 io_u->end_io = verify_io_u;
740
741 ddir = io_u->ddir;
742 if (!td->o.disable_slat)
743 fio_gettime(&io_u->start_time, NULL);
744
745 ret = io_u_submit(td, io_u);
746
747 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748 break;
749
750 /*
751 * if we can queue more, do so. but check if there are
752 * completed io_u's first. Note that we can get BUSY even
753 * without IO queued, if the system is resource starved.
754 */
755reap:
756 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757 if (full || io_in_polling(td))
758 ret = wait_for_completions(td, NULL);
759
760 if (ret < 0)
761 break;
762 }
763
764 check_update_rusage(td);
765
766 if (!td->error) {
767 min_events = td->cur_depth;
768
769 if (min_events)
770 ret = io_u_queued_complete(td, min_events);
771 } else
772 cleanup_pending_aio(td);
773
774 td_set_runstate(td, TD_RUNNING);
775
776 dprint(FD_VERIFY, "exiting loop\n");
777}
778
779static bool exceeds_number_ios(struct thread_data *td)
780{
781 unsigned long long number_ios;
782
783 if (!td->o.number_ios)
784 return false;
785
786 number_ios = ddir_rw_sum(td->io_blocks);
787 number_ios += td->io_u_queued + td->io_u_in_flight;
788
789 return number_ios >= (td->o.number_ios * td->loops);
790}
791
792static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793{
794 unsigned long long bytes, limit;
795
796 if (td_rw(td))
797 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798 else if (td_write(td))
799 bytes = this_bytes[DDIR_WRITE];
800 else if (td_read(td))
801 bytes = this_bytes[DDIR_READ];
802 else
803 bytes = this_bytes[DDIR_TRIM];
804
805 if (td->o.io_size)
806 limit = td->o.io_size;
807 else
808 limit = td->o.size;
809
810 limit *= td->loops;
811 return bytes >= limit || exceeds_number_ios(td);
812}
813
814static bool io_issue_bytes_exceeded(struct thread_data *td)
815{
816 return io_bytes_exceeded(td, td->io_issue_bytes);
817}
818
819static bool io_complete_bytes_exceeded(struct thread_data *td)
820{
821 return io_bytes_exceeded(td, td->this_io_bytes);
822}
823
824/*
825 * used to calculate the next io time for rate control
826 *
827 */
828static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829{
830 uint64_t bps = td->rate_bps[ddir];
831
832 assert(!(td->flags & TD_F_CHILD));
833
834 if (td->o.rate_process == RATE_PROCESS_POISSON) {
835 uint64_t val, iops;
836
837 iops = bps / td->o.bs[ddir];
838 val = (int64_t) (1000000 / iops) *
839 -logf(__rand_0_1(&td->poisson_state[ddir]));
840 if (val) {
841 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842 (unsigned long long) 1000000 / val,
843 ddir);
844 }
845 td->last_usec[ddir] += val;
846 return td->last_usec[ddir];
847 } else if (bps) {
848 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849 uint64_t secs = bytes / bps;
850 uint64_t remainder = bytes % bps;
851
852 return remainder * 1000000 / bps + secs * 1000000;
853 }
854
855 return 0;
856}
857
858static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859{
860 unsigned long long b;
861 uint64_t total;
862 int left;
863
864 b = ddir_rw_sum(td->io_blocks);
865 if (b % td->o.thinktime_blocks)
866 return;
867
868 io_u_quiesce(td);
869
870 total = 0;
871 if (td->o.thinktime_spin)
872 total = usec_spin(td->o.thinktime_spin);
873
874 left = td->o.thinktime - total;
875 if (left)
876 total += usec_sleep(td, left);
877
878 /*
879 * If we're ignoring thinktime for the rate, add the number of bytes
880 * we would have done while sleeping, minus one block to ensure we
881 * start issuing immediately after the sleep.
882 */
883 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885 uint64_t bs = td->o.min_bs[ddir];
886 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887 uint64_t over;
888
889 if (usperop <= total)
890 over = bs;
891 else
892 over = (usperop - total) / usperop * -bs;
893
894 td->rate_io_issue_bytes[ddir] += (missed - over);
895 /* adjust for rate_process=poisson */
896 td->last_usec[ddir] += total;
897 }
898}
899
900/*
901 * Main IO worker function. It retrieves io_u's to process and queues
902 * and reaps them, checking for rate and errors along the way.
903 *
904 * Returns number of bytes written and trimmed.
905 */
906static void do_io(struct thread_data *td, uint64_t *bytes_done)
907{
908 unsigned int i;
909 int ret = 0;
910 uint64_t total_bytes, bytes_issued = 0;
911
912 for (i = 0; i < DDIR_RWDIR_CNT; i++)
913 bytes_done[i] = td->bytes_done[i];
914
915 if (in_ramp_time(td))
916 td_set_runstate(td, TD_RAMP);
917 else
918 td_set_runstate(td, TD_RUNNING);
919
920 lat_target_init(td);
921
922 total_bytes = td->o.size;
923 /*
924 * Allow random overwrite workloads to write up to io_size
925 * before starting verification phase as 'size' doesn't apply.
926 */
927 if (td_write(td) && td_random(td) && td->o.norandommap)
928 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
929 /*
930 * If verify_backlog is enabled, we'll run the verify in this
931 * handler as well. For that case, we may need up to twice the
932 * amount of bytes.
933 */
934 if (td->o.verify != VERIFY_NONE &&
935 (td_write(td) && td->o.verify_backlog))
936 total_bytes += td->o.size;
937
938 /* In trimwrite mode, each byte is trimmed and then written, so
939 * allow total_bytes to be twice as big */
940 if (td_trimwrite(td))
941 total_bytes += td->total_io_size;
942
943 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
944 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
945 td->o.time_based) {
946 struct timespec comp_time;
947 struct io_u *io_u;
948 int full;
949 enum fio_ddir ddir;
950
951 check_update_rusage(td);
952
953 if (td->terminate || td->done)
954 break;
955
956 update_ts_cache(td);
957
958 if (runtime_exceeded(td, &td->ts_cache)) {
959 __update_ts_cache(td);
960 if (runtime_exceeded(td, &td->ts_cache)) {
961 fio_mark_td_terminate(td);
962 break;
963 }
964 }
965
966 if (flow_threshold_exceeded(td))
967 continue;
968
969 /*
970 * Break if we exceeded the bytes. The exception is time
971 * based runs, but we still need to break out of the loop
972 * for those to run verification, if enabled.
973 * Jobs read from iolog do not use this stop condition.
974 */
975 if (bytes_issued >= total_bytes &&
976 !td->o.read_iolog_file &&
977 (!td->o.time_based ||
978 (td->o.time_based && td->o.verify != VERIFY_NONE)))
979 break;
980
981 io_u = get_io_u(td);
982 if (IS_ERR_OR_NULL(io_u)) {
983 int err = PTR_ERR(io_u);
984
985 io_u = NULL;
986 ddir = DDIR_INVAL;
987 if (err == -EBUSY) {
988 ret = FIO_Q_BUSY;
989 goto reap;
990 }
991 if (td->o.latency_target)
992 goto reap;
993 break;
994 }
995
996 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
997 populate_verify_io_u(td, io_u);
998
999 ddir = io_u->ddir;
1000
1001 /*
1002 * Add verification end_io handler if:
1003 * - Asked to verify (!td_rw(td))
1004 * - Or the io_u is from our verify list (mixed write/ver)
1005 */
1006 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1007 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1008
1009 if (verify_state_should_stop(td, io_u)) {
1010 put_io_u(td, io_u);
1011 break;
1012 }
1013
1014 if (td->o.verify_async)
1015 io_u->end_io = verify_io_u_async;
1016 else
1017 io_u->end_io = verify_io_u;
1018 td_set_runstate(td, TD_VERIFYING);
1019 } else if (in_ramp_time(td))
1020 td_set_runstate(td, TD_RAMP);
1021 else
1022 td_set_runstate(td, TD_RUNNING);
1023
1024 /*
1025 * Always log IO before it's issued, so we know the specific
1026 * order of it. The logged unit will track when the IO has
1027 * completed.
1028 */
1029 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1030 td->o.do_verify &&
1031 td->o.verify != VERIFY_NONE &&
1032 !td->o.experimental_verify)
1033 log_io_piece(td, io_u);
1034
1035 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1036 const unsigned long long blen = io_u->xfer_buflen;
1037 const enum fio_ddir __ddir = acct_ddir(io_u);
1038
1039 if (td->error)
1040 break;
1041
1042 workqueue_enqueue(&td->io_wq, &io_u->work);
1043 ret = FIO_Q_QUEUED;
1044
1045 if (ddir_rw(__ddir)) {
1046 td->io_issues[__ddir]++;
1047 td->io_issue_bytes[__ddir] += blen;
1048 td->rate_io_issue_bytes[__ddir] += blen;
1049 }
1050
1051 if (should_check_rate(td))
1052 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1053
1054 } else {
1055 ret = io_u_submit(td, io_u);
1056
1057 if (should_check_rate(td))
1058 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1059
1060 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1061 break;
1062
1063 /*
1064 * See if we need to complete some commands. Note that
1065 * we can get BUSY even without IO queued, if the
1066 * system is resource starved.
1067 */
1068reap:
1069 full = queue_full(td) ||
1070 (ret == FIO_Q_BUSY && td->cur_depth);
1071 if (full || io_in_polling(td))
1072 ret = wait_for_completions(td, &comp_time);
1073 }
1074 if (ret < 0)
1075 break;
1076 if (!ddir_rw_sum(td->bytes_done) &&
1077 !td_ioengine_flagged(td, FIO_NOIO))
1078 continue;
1079
1080 if (!in_ramp_time(td) && should_check_rate(td)) {
1081 if (check_min_rate(td, &comp_time)) {
1082 if (exitall_on_terminate || td->o.exitall_error)
1083 fio_terminate_threads(td->groupid, td->o.exit_what);
1084 td_verror(td, EIO, "check_min_rate");
1085 break;
1086 }
1087 }
1088 if (!in_ramp_time(td) && td->o.latency_target)
1089 lat_target_check(td);
1090
1091 if (ddir_rw(ddir) && td->o.thinktime)
1092 handle_thinktime(td, ddir);
1093 }
1094
1095 check_update_rusage(td);
1096
1097 if (td->trim_entries)
1098 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1099
1100 if (td->o.fill_device && td->error == ENOSPC) {
1101 td->error = 0;
1102 fio_mark_td_terminate(td);
1103 }
1104 if (!td->error) {
1105 struct fio_file *f;
1106
1107 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1108 workqueue_flush(&td->io_wq);
1109 i = 0;
1110 } else
1111 i = td->cur_depth;
1112
1113 if (i) {
1114 ret = io_u_queued_complete(td, i);
1115 if (td->o.fill_device && td->error == ENOSPC)
1116 td->error = 0;
1117 }
1118
1119 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1120 td_set_runstate(td, TD_FSYNCING);
1121
1122 for_each_file(td, f, i) {
1123 if (!fio_file_fsync(td, f))
1124 continue;
1125
1126 log_err("fio: end_fsync failed for file %s\n",
1127 f->file_name);
1128 }
1129 }
1130 } else
1131 cleanup_pending_aio(td);
1132
1133 /*
1134 * stop job if we failed doing any IO
1135 */
1136 if (!ddir_rw_sum(td->this_io_bytes))
1137 td->done = 1;
1138
1139 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1140 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1141}
1142
1143static void free_file_completion_logging(struct thread_data *td)
1144{
1145 struct fio_file *f;
1146 unsigned int i;
1147
1148 for_each_file(td, f, i) {
1149 if (!f->last_write_comp)
1150 break;
1151 sfree(f->last_write_comp);
1152 }
1153}
1154
1155static int init_file_completion_logging(struct thread_data *td,
1156 unsigned int depth)
1157{
1158 struct fio_file *f;
1159 unsigned int i;
1160
1161 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1162 return 0;
1163
1164 for_each_file(td, f, i) {
1165 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1166 if (!f->last_write_comp)
1167 goto cleanup;
1168 }
1169
1170 return 0;
1171
1172cleanup:
1173 free_file_completion_logging(td);
1174 log_err("fio: failed to alloc write comp data\n");
1175 return 1;
1176}
1177
1178static void cleanup_io_u(struct thread_data *td)
1179{
1180 struct io_u *io_u;
1181
1182 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1183
1184 if (td->io_ops->io_u_free)
1185 td->io_ops->io_u_free(td, io_u);
1186
1187 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1188 }
1189
1190 free_io_mem(td);
1191
1192 io_u_rexit(&td->io_u_requeues);
1193 io_u_qexit(&td->io_u_freelist, false);
1194 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1195
1196 free_file_completion_logging(td);
1197}
1198
1199static int init_io_u(struct thread_data *td)
1200{
1201 struct io_u *io_u;
1202 int cl_align, i, max_units;
1203 int err;
1204
1205 max_units = td->o.iodepth;
1206
1207 err = 0;
1208 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1209 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1210 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1211
1212 if (err) {
1213 log_err("fio: failed setting up IO queues\n");
1214 return 1;
1215 }
1216
1217 cl_align = os_cache_line_size();
1218
1219 for (i = 0; i < max_units; i++) {
1220 void *ptr;
1221
1222 if (td->terminate)
1223 return 1;
1224
1225 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1226 if (!ptr) {
1227 log_err("fio: unable to allocate aligned memory\n");
1228 return 1;
1229 }
1230
1231 io_u = ptr;
1232 memset(io_u, 0, sizeof(*io_u));
1233 INIT_FLIST_HEAD(&io_u->verify_list);
1234 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1235
1236 io_u->index = i;
1237 io_u->flags = IO_U_F_FREE;
1238 io_u_qpush(&td->io_u_freelist, io_u);
1239
1240 /*
1241 * io_u never leaves this stack, used for iteration of all
1242 * io_u buffers.
1243 */
1244 io_u_qpush(&td->io_u_all, io_u);
1245
1246 if (td->io_ops->io_u_init) {
1247 int ret = td->io_ops->io_u_init(td, io_u);
1248
1249 if (ret) {
1250 log_err("fio: failed to init engine data: %d\n", ret);
1251 return 1;
1252 }
1253 }
1254 }
1255
1256 init_io_u_buffers(td);
1257
1258 if (init_file_completion_logging(td, max_units))
1259 return 1;
1260
1261 return 0;
1262}
1263
1264int init_io_u_buffers(struct thread_data *td)
1265{
1266 struct io_u *io_u;
1267 unsigned long long max_bs, min_write;
1268 int i, max_units;
1269 int data_xfer = 1;
1270 char *p;
1271
1272 max_units = td->o.iodepth;
1273 max_bs = td_max_bs(td);
1274 min_write = td->o.min_bs[DDIR_WRITE];
1275 td->orig_buffer_size = (unsigned long long) max_bs
1276 * (unsigned long long) max_units;
1277
1278 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1279 data_xfer = 0;
1280
1281 /*
1282 * if we may later need to do address alignment, then add any
1283 * possible adjustment here so that we don't cause a buffer
1284 * overflow later. this adjustment may be too much if we get
1285 * lucky and the allocator gives us an aligned address.
1286 */
1287 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1288 td_ioengine_flagged(td, FIO_RAWIO))
1289 td->orig_buffer_size += page_mask + td->o.mem_align;
1290
1291 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1292 unsigned long long bs;
1293
1294 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1295 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1296 }
1297
1298 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1299 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1300 return 1;
1301 }
1302
1303 if (data_xfer && allocate_io_mem(td))
1304 return 1;
1305
1306 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1307 td_ioengine_flagged(td, FIO_RAWIO))
1308 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1309 else
1310 p = td->orig_buffer;
1311
1312 for (i = 0; i < max_units; i++) {
1313 io_u = td->io_u_all.io_us[i];
1314 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1315
1316 if (data_xfer) {
1317 io_u->buf = p;
1318 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1319
1320 if (td_write(td))
1321 io_u_fill_buffer(td, io_u, min_write, max_bs);
1322 if (td_write(td) && td->o.verify_pattern_bytes) {
1323 /*
1324 * Fill the buffer with the pattern if we are
1325 * going to be doing writes.
1326 */
1327 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1328 }
1329 }
1330 p += max_bs;
1331 }
1332
1333 return 0;
1334}
1335
1336/*
1337 * This function is Linux specific.
1338 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1339 */
1340static int switch_ioscheduler(struct thread_data *td)
1341{
1342#ifdef FIO_HAVE_IOSCHED_SWITCH
1343 char tmp[256], tmp2[128], *p;
1344 FILE *f;
1345 int ret;
1346
1347 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1348 return 0;
1349
1350 assert(td->files && td->files[0]);
1351 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1352
1353 f = fopen(tmp, "r+");
1354 if (!f) {
1355 if (errno == ENOENT) {
1356 log_err("fio: os or kernel doesn't support IO scheduler"
1357 " switching\n");
1358 return 0;
1359 }
1360 td_verror(td, errno, "fopen iosched");
1361 return 1;
1362 }
1363
1364 /*
1365 * Set io scheduler.
1366 */
1367 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1368 if (ferror(f) || ret != 1) {
1369 td_verror(td, errno, "fwrite");
1370 fclose(f);
1371 return 1;
1372 }
1373
1374 rewind(f);
1375
1376 /*
1377 * Read back and check that the selected scheduler is now the default.
1378 */
1379 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1380 if (ferror(f) || ret < 0) {
1381 td_verror(td, errno, "fread");
1382 fclose(f);
1383 return 1;
1384 }
1385 tmp[ret] = '\0';
1386 /*
1387 * either a list of io schedulers or "none\n" is expected. Strip the
1388 * trailing newline.
1389 */
1390 p = tmp;
1391 strsep(&p, "\n");
1392
1393 /*
1394 * Write to "none" entry doesn't fail, so check the result here.
1395 */
1396 if (!strcmp(tmp, "none")) {
1397 log_err("fio: io scheduler is not tunable\n");
1398 fclose(f);
1399 return 0;
1400 }
1401
1402 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1403 if (!strstr(tmp, tmp2)) {
1404 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1405 td_verror(td, EINVAL, "iosched_switch");
1406 fclose(f);
1407 return 1;
1408 }
1409
1410 fclose(f);
1411 return 0;
1412#else
1413 return 0;
1414#endif
1415}
1416
1417static bool keep_running(struct thread_data *td)
1418{
1419 unsigned long long limit;
1420
1421 if (td->done)
1422 return false;
1423 if (td->terminate)
1424 return false;
1425 if (td->o.time_based)
1426 return true;
1427 if (td->o.loops) {
1428 td->o.loops--;
1429 return true;
1430 }
1431 if (exceeds_number_ios(td))
1432 return false;
1433
1434 if (td->o.io_size)
1435 limit = td->o.io_size;
1436 else
1437 limit = td->o.size;
1438
1439 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1440 uint64_t diff;
1441
1442 /*
1443 * If the difference is less than the maximum IO size, we
1444 * are done.
1445 */
1446 diff = limit - ddir_rw_sum(td->io_bytes);
1447 if (diff < td_max_bs(td))
1448 return false;
1449
1450 if (fio_files_done(td) && !td->o.io_size)
1451 return false;
1452
1453 return true;
1454 }
1455
1456 return false;
1457}
1458
1459static int exec_string(struct thread_options *o, const char *string, const char *mode)
1460{
1461 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 13 + 1;
1462 int ret;
1463 char *str;
1464
1465 str = malloc(newlen);
1466 sprintf(str, "%s > %s.%s.txt 2>&1", string, o->name, mode);
1467
1468 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1469 ret = system(str);
1470 if (ret == -1)
1471 log_err("fio: exec of cmd <%s> failed\n", str);
1472
1473 free(str);
1474 return ret;
1475}
1476
1477/*
1478 * Dry run to compute correct state of numberio for verification.
1479 */
1480static uint64_t do_dry_run(struct thread_data *td)
1481{
1482 td_set_runstate(td, TD_RUNNING);
1483
1484 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1485 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1486 struct io_u *io_u;
1487 int ret;
1488
1489 if (td->terminate || td->done)
1490 break;
1491
1492 io_u = get_io_u(td);
1493 if (IS_ERR_OR_NULL(io_u))
1494 break;
1495
1496 io_u_set(td, io_u, IO_U_F_FLIGHT);
1497 io_u->error = 0;
1498 io_u->resid = 0;
1499 if (ddir_rw(acct_ddir(io_u)))
1500 td->io_issues[acct_ddir(io_u)]++;
1501 if (ddir_rw(io_u->ddir)) {
1502 io_u_mark_depth(td, 1);
1503 td->ts.total_io_u[io_u->ddir]++;
1504 }
1505
1506 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1507 td->o.do_verify &&
1508 td->o.verify != VERIFY_NONE &&
1509 !td->o.experimental_verify)
1510 log_io_piece(td, io_u);
1511
1512 ret = io_u_sync_complete(td, io_u);
1513 (void) ret;
1514 }
1515
1516 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1517}
1518
1519struct fork_data {
1520 struct thread_data *td;
1521 struct sk_out *sk_out;
1522};
1523
1524/*
1525 * Entry point for the thread based jobs. The process based jobs end up
1526 * here as well, after a little setup.
1527 */
1528static void *thread_main(void *data)
1529{
1530 struct fork_data *fd = data;
1531 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1532 struct thread_data *td = fd->td;
1533 struct thread_options *o = &td->o;
1534 struct sk_out *sk_out = fd->sk_out;
1535 uint64_t bytes_done[DDIR_RWDIR_CNT];
1536 int deadlock_loop_cnt;
1537 bool clear_state;
1538 int ret;
1539
1540 sk_out_assign(sk_out);
1541 free(fd);
1542
1543 if (!o->use_thread) {
1544 setsid();
1545 td->pid = getpid();
1546 } else
1547 td->pid = gettid();
1548
1549 fio_local_clock_init();
1550
1551 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1552
1553 if (is_backend)
1554 fio_server_send_start(td);
1555
1556 INIT_FLIST_HEAD(&td->io_log_list);
1557 INIT_FLIST_HEAD(&td->io_hist_list);
1558 INIT_FLIST_HEAD(&td->verify_list);
1559 INIT_FLIST_HEAD(&td->trim_list);
1560 td->io_hist_tree = RB_ROOT;
1561
1562 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1563 if (ret) {
1564 td_verror(td, ret, "mutex_cond_init_pshared");
1565 goto err;
1566 }
1567 ret = cond_init_pshared(&td->verify_cond);
1568 if (ret) {
1569 td_verror(td, ret, "mutex_cond_pshared");
1570 goto err;
1571 }
1572
1573 td_set_runstate(td, TD_INITIALIZED);
1574 dprint(FD_MUTEX, "up startup_sem\n");
1575 fio_sem_up(startup_sem);
1576 dprint(FD_MUTEX, "wait on td->sem\n");
1577 fio_sem_down(td->sem);
1578 dprint(FD_MUTEX, "done waiting on td->sem\n");
1579
1580 /*
1581 * A new gid requires privilege, so we need to do this before setting
1582 * the uid.
1583 */
1584 if (o->gid != -1U && setgid(o->gid)) {
1585 td_verror(td, errno, "setgid");
1586 goto err;
1587 }
1588 if (o->uid != -1U && setuid(o->uid)) {
1589 td_verror(td, errno, "setuid");
1590 goto err;
1591 }
1592
1593 td_zone_gen_index(td);
1594
1595 /*
1596 * Do this early, we don't want the compress threads to be limited
1597 * to the same CPUs as the IO workers. So do this before we set
1598 * any potential CPU affinity
1599 */
1600 if (iolog_compress_init(td, sk_out))
1601 goto err;
1602
1603 /*
1604 * If we have a gettimeofday() thread, make sure we exclude that
1605 * thread from this job
1606 */
1607 if (o->gtod_cpu)
1608 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1609
1610 /*
1611 * Set affinity first, in case it has an impact on the memory
1612 * allocations.
1613 */
1614 if (fio_option_is_set(o, cpumask)) {
1615 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1616 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1617 if (!ret) {
1618 log_err("fio: no CPUs set\n");
1619 log_err("fio: Try increasing number of available CPUs\n");
1620 td_verror(td, EINVAL, "cpus_split");
1621 goto err;
1622 }
1623 }
1624 ret = fio_setaffinity(td->pid, o->cpumask);
1625 if (ret == -1) {
1626 td_verror(td, errno, "cpu_set_affinity");
1627 goto err;
1628 }
1629 }
1630
1631#ifdef CONFIG_LIBNUMA
1632 /* numa node setup */
1633 if (fio_option_is_set(o, numa_cpunodes) ||
1634 fio_option_is_set(o, numa_memnodes)) {
1635 struct bitmask *mask;
1636
1637 if (numa_available() < 0) {
1638 td_verror(td, errno, "Does not support NUMA API\n");
1639 goto err;
1640 }
1641
1642 if (fio_option_is_set(o, numa_cpunodes)) {
1643 mask = numa_parse_nodestring(o->numa_cpunodes);
1644 ret = numa_run_on_node_mask(mask);
1645 numa_free_nodemask(mask);
1646 if (ret == -1) {
1647 td_verror(td, errno, \
1648 "numa_run_on_node_mask failed\n");
1649 goto err;
1650 }
1651 }
1652
1653 if (fio_option_is_set(o, numa_memnodes)) {
1654 mask = NULL;
1655 if (o->numa_memnodes)
1656 mask = numa_parse_nodestring(o->numa_memnodes);
1657
1658 switch (o->numa_mem_mode) {
1659 case MPOL_INTERLEAVE:
1660 numa_set_interleave_mask(mask);
1661 break;
1662 case MPOL_BIND:
1663 numa_set_membind(mask);
1664 break;
1665 case MPOL_LOCAL:
1666 numa_set_localalloc();
1667 break;
1668 case MPOL_PREFERRED:
1669 numa_set_preferred(o->numa_mem_prefer_node);
1670 break;
1671 case MPOL_DEFAULT:
1672 default:
1673 break;
1674 }
1675
1676 if (mask)
1677 numa_free_nodemask(mask);
1678
1679 }
1680 }
1681#endif
1682
1683 if (fio_pin_memory(td))
1684 goto err;
1685
1686 /*
1687 * May alter parameters that init_io_u() will use, so we need to
1688 * do this first.
1689 */
1690 if (!init_iolog(td))
1691 goto err;
1692
1693 if (td_io_init(td))
1694 goto err;
1695
1696 if (init_io_u(td))
1697 goto err;
1698
1699 if (td->io_ops->post_init && td->io_ops->post_init(td))
1700 goto err;
1701
1702 if (o->verify_async && verify_async_init(td))
1703 goto err;
1704
1705 if (fio_option_is_set(o, ioprio) ||
1706 fio_option_is_set(o, ioprio_class)) {
1707 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1708 if (ret == -1) {
1709 td_verror(td, errno, "ioprio_set");
1710 goto err;
1711 }
1712 }
1713
1714 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1715 goto err;
1716
1717 errno = 0;
1718 if (nice(o->nice) == -1 && errno != 0) {
1719 td_verror(td, errno, "nice");
1720 goto err;
1721 }
1722
1723 if (o->ioscheduler && switch_ioscheduler(td))
1724 goto err;
1725
1726 if (!o->create_serialize && setup_files(td))
1727 goto err;
1728
1729 if (!init_random_map(td))
1730 goto err;
1731
1732 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1733 goto err;
1734
1735 if (o->pre_read && !pre_read_files(td))
1736 goto err;
1737
1738 fio_verify_init(td);
1739
1740 if (rate_submit_init(td, sk_out))
1741 goto err;
1742
1743 set_epoch_time(td, o->log_unix_epoch);
1744 fio_getrusage(&td->ru_start);
1745 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1746 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1747 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1748
1749 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1750 o->ratemin[DDIR_TRIM]) {
1751 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1752 sizeof(td->bw_sample_time));
1753 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1754 sizeof(td->bw_sample_time));
1755 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1756 sizeof(td->bw_sample_time));
1757 }
1758
1759 memset(bytes_done, 0, sizeof(bytes_done));
1760 clear_state = false;
1761
1762 while (keep_running(td)) {
1763 uint64_t verify_bytes;
1764
1765 fio_gettime(&td->start, NULL);
1766 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1767
1768 if (clear_state) {
1769 clear_io_state(td, 0);
1770
1771 if (o->unlink_each_loop && unlink_all_files(td))
1772 break;
1773 }
1774
1775 prune_io_piece_log(td);
1776
1777 if (td->o.verify_only && td_write(td))
1778 verify_bytes = do_dry_run(td);
1779 else {
1780 do_io(td, bytes_done);
1781
1782 if (!ddir_rw_sum(bytes_done)) {
1783 fio_mark_td_terminate(td);
1784 verify_bytes = 0;
1785 } else {
1786 verify_bytes = bytes_done[DDIR_WRITE] +
1787 bytes_done[DDIR_TRIM];
1788 }
1789 }
1790
1791 /*
1792 * If we took too long to shut down, the main thread could
1793 * already consider us reaped/exited. If that happens, break
1794 * out and clean up.
1795 */
1796 if (td->runstate >= TD_EXITED)
1797 break;
1798
1799 clear_state = true;
1800
1801 /*
1802 * Make sure we've successfully updated the rusage stats
1803 * before waiting on the stat mutex. Otherwise we could have
1804 * the stat thread holding stat mutex and waiting for
1805 * the rusage_sem, which would never get upped because
1806 * this thread is waiting for the stat mutex.
1807 */
1808 deadlock_loop_cnt = 0;
1809 do {
1810 check_update_rusage(td);
1811 if (!fio_sem_down_trylock(stat_sem))
1812 break;
1813 usleep(1000);
1814 if (deadlock_loop_cnt++ > 5000) {
1815 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1816 td->error = EDEADLK;
1817 goto err;
1818 }
1819 } while (1);
1820
1821 if (td_read(td) && td->io_bytes[DDIR_READ])
1822 update_runtime(td, elapsed_us, DDIR_READ);
1823 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1824 update_runtime(td, elapsed_us, DDIR_WRITE);
1825 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1826 update_runtime(td, elapsed_us, DDIR_TRIM);
1827 fio_gettime(&td->start, NULL);
1828 fio_sem_up(stat_sem);
1829
1830 if (td->error || td->terminate)
1831 break;
1832
1833 if (!o->do_verify ||
1834 o->verify == VERIFY_NONE ||
1835 td_ioengine_flagged(td, FIO_UNIDIR))
1836 continue;
1837
1838 clear_io_state(td, 0);
1839
1840 fio_gettime(&td->start, NULL);
1841
1842 do_verify(td, verify_bytes);
1843
1844 /*
1845 * See comment further up for why this is done here.
1846 */
1847 check_update_rusage(td);
1848
1849 fio_sem_down(stat_sem);
1850 update_runtime(td, elapsed_us, DDIR_READ);
1851 fio_gettime(&td->start, NULL);
1852 fio_sem_up(stat_sem);
1853
1854 if (td->error || td->terminate)
1855 break;
1856 }
1857
1858 /*
1859 * Acquire this lock if we were doing overlap checking in
1860 * offload mode so that we don't clean up this job while
1861 * another thread is checking its io_u's for overlap
1862 */
1863 if (td_offload_overlap(td))
1864 pthread_mutex_lock(&overlap_check);
1865 td_set_runstate(td, TD_FINISHING);
1866 if (td_offload_overlap(td))
1867 pthread_mutex_unlock(&overlap_check);
1868
1869 update_rusage_stat(td);
1870 td->ts.total_run_time = mtime_since_now(&td->epoch);
1871 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1872 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1873 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1874
1875 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1876 (td->o.verify != VERIFY_NONE && td_write(td)))
1877 verify_save_state(td->thread_number);
1878
1879 fio_unpin_memory(td);
1880
1881 td_writeout_logs(td, true);
1882
1883 iolog_compress_exit(td);
1884 rate_submit_exit(td);
1885
1886 if (o->exec_postrun)
1887 exec_string(o, o->exec_postrun, (const char *)"postrun");
1888
1889 if (exitall_on_terminate || (o->exitall_error && td->error))
1890 fio_terminate_threads(td->groupid, td->o.exit_what);
1891
1892err:
1893 if (td->error)
1894 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1895 td->verror);
1896
1897 if (o->verify_async)
1898 verify_async_exit(td);
1899
1900 close_and_free_files(td);
1901 cleanup_io_u(td);
1902 close_ioengine(td);
1903 cgroup_shutdown(td, cgroup_mnt);
1904 verify_free_state(td);
1905 td_zone_free_index(td);
1906
1907 if (fio_option_is_set(o, cpumask)) {
1908 ret = fio_cpuset_exit(&o->cpumask);
1909 if (ret)
1910 td_verror(td, ret, "fio_cpuset_exit");
1911 }
1912
1913 /*
1914 * do this very late, it will log file closing as well
1915 */
1916 if (o->write_iolog_file)
1917 write_iolog_close(td);
1918 if (td->io_log_rfile)
1919 fclose(td->io_log_rfile);
1920
1921 td_set_runstate(td, TD_EXITED);
1922
1923 /*
1924 * Do this last after setting our runstate to exited, so we
1925 * know that the stat thread is signaled.
1926 */
1927 check_update_rusage(td);
1928
1929 sk_out_drop();
1930 return (void *) (uintptr_t) td->error;
1931}
1932
1933/*
1934 * Run over the job map and reap the threads that have exited, if any.
1935 */
1936static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1937 uint64_t *m_rate)
1938{
1939 struct thread_data *td;
1940 unsigned int cputhreads, realthreads, pending;
1941 int i, status, ret;
1942
1943 /*
1944 * reap exited threads (TD_EXITED -> TD_REAPED)
1945 */
1946 realthreads = pending = cputhreads = 0;
1947 for_each_td(td, i) {
1948 int flags = 0;
1949
1950 if (!strcmp(td->o.ioengine, "cpuio"))
1951 cputhreads++;
1952 else
1953 realthreads++;
1954
1955 if (!td->pid) {
1956 pending++;
1957 continue;
1958 }
1959 if (td->runstate == TD_REAPED)
1960 continue;
1961 if (td->o.use_thread) {
1962 if (td->runstate == TD_EXITED) {
1963 td_set_runstate(td, TD_REAPED);
1964 goto reaped;
1965 }
1966 continue;
1967 }
1968
1969 flags = WNOHANG;
1970 if (td->runstate == TD_EXITED)
1971 flags = 0;
1972
1973 /*
1974 * check if someone quit or got killed in an unusual way
1975 */
1976 ret = waitpid(td->pid, &status, flags);
1977 if (ret < 0) {
1978 if (errno == ECHILD) {
1979 log_err("fio: pid=%d disappeared %d\n",
1980 (int) td->pid, td->runstate);
1981 td->sig = ECHILD;
1982 td_set_runstate(td, TD_REAPED);
1983 goto reaped;
1984 }
1985 perror("waitpid");
1986 } else if (ret == td->pid) {
1987 if (WIFSIGNALED(status)) {
1988 int sig = WTERMSIG(status);
1989
1990 if (sig != SIGTERM && sig != SIGUSR2)
1991 log_err("fio: pid=%d, got signal=%d\n",
1992 (int) td->pid, sig);
1993 td->sig = sig;
1994 td_set_runstate(td, TD_REAPED);
1995 goto reaped;
1996 }
1997 if (WIFEXITED(status)) {
1998 if (WEXITSTATUS(status) && !td->error)
1999 td->error = WEXITSTATUS(status);
2000
2001 td_set_runstate(td, TD_REAPED);
2002 goto reaped;
2003 }
2004 }
2005
2006 /*
2007 * If the job is stuck, do a forceful timeout of it and
2008 * move on.
2009 */
2010 if (td->terminate &&
2011 td->runstate < TD_FSYNCING &&
2012 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2013 log_err("fio: job '%s' (state=%d) hasn't exited in "
2014 "%lu seconds, it appears to be stuck. Doing "
2015 "forceful exit of this job.\n",
2016 td->o.name, td->runstate,
2017 (unsigned long) time_since_now(&td->terminate_time));
2018 td_set_runstate(td, TD_REAPED);
2019 goto reaped;
2020 }
2021
2022 /*
2023 * thread is not dead, continue
2024 */
2025 pending++;
2026 continue;
2027reaped:
2028 (*nr_running)--;
2029 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2030 (*t_rate) -= ddir_rw_sum(td->o.rate);
2031 if (!td->pid)
2032 pending--;
2033
2034 if (td->error)
2035 exit_value++;
2036
2037 done_secs += mtime_since_now(&td->epoch) / 1000;
2038 profile_td_exit(td);
2039 }
2040
2041 if (*nr_running == cputhreads && !pending && realthreads)
2042 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2043}
2044
2045static bool __check_trigger_file(void)
2046{
2047 struct stat sb;
2048
2049 if (!trigger_file)
2050 return false;
2051
2052 if (stat(trigger_file, &sb))
2053 return false;
2054
2055 if (unlink(trigger_file) < 0)
2056 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2057 strerror(errno));
2058
2059 return true;
2060}
2061
2062static bool trigger_timedout(void)
2063{
2064 if (trigger_timeout)
2065 if (time_since_genesis() >= trigger_timeout) {
2066 trigger_timeout = 0;
2067 return true;
2068 }
2069
2070 return false;
2071}
2072
2073void exec_trigger(const char *cmd)
2074{
2075 int ret;
2076
2077 if (!cmd || cmd[0] == '\0')
2078 return;
2079
2080 ret = system(cmd);
2081 if (ret == -1)
2082 log_err("fio: failed executing %s trigger\n", cmd);
2083}
2084
2085void check_trigger_file(void)
2086{
2087 if (__check_trigger_file() || trigger_timedout()) {
2088 if (nr_clients)
2089 fio_clients_send_trigger(trigger_remote_cmd);
2090 else {
2091 verify_save_state(IO_LIST_ALL);
2092 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2093 exec_trigger(trigger_cmd);
2094 }
2095 }
2096}
2097
2098static int fio_verify_load_state(struct thread_data *td)
2099{
2100 int ret;
2101
2102 if (!td->o.verify_state)
2103 return 0;
2104
2105 if (is_backend) {
2106 void *data;
2107
2108 ret = fio_server_get_verify_state(td->o.name,
2109 td->thread_number - 1, &data);
2110 if (!ret)
2111 verify_assign_state(td, data);
2112 } else {
2113 char prefix[PATH_MAX];
2114
2115 if (aux_path)
2116 sprintf(prefix, "%s%clocal", aux_path,
2117 FIO_OS_PATH_SEPARATOR);
2118 else
2119 strcpy(prefix, "local");
2120 ret = verify_load_state(td, prefix);
2121 }
2122
2123 return ret;
2124}
2125
2126static void do_usleep(unsigned int usecs)
2127{
2128 check_for_running_stats();
2129 check_trigger_file();
2130 usleep(usecs);
2131}
2132
2133static bool check_mount_writes(struct thread_data *td)
2134{
2135 struct fio_file *f;
2136 unsigned int i;
2137
2138 if (!td_write(td) || td->o.allow_mounted_write)
2139 return false;
2140
2141 /*
2142 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2143 * are mkfs'd and mounted.
2144 */
2145 for_each_file(td, f, i) {
2146#ifdef FIO_HAVE_CHARDEV_SIZE
2147 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2148#else
2149 if (f->filetype != FIO_TYPE_BLOCK)
2150#endif
2151 continue;
2152 if (device_is_mounted(f->file_name))
2153 goto mounted;
2154 }
2155
2156 return false;
2157mounted:
2158 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2159 return true;
2160}
2161
2162static bool waitee_running(struct thread_data *me)
2163{
2164 const char *waitee = me->o.wait_for;
2165 const char *self = me->o.name;
2166 struct thread_data *td;
2167 int i;
2168
2169 if (!waitee)
2170 return false;
2171
2172 for_each_td(td, i) {
2173 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2174 continue;
2175
2176 if (td->runstate < TD_EXITED) {
2177 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2178 self, td->o.name,
2179 runstate_to_name(td->runstate));
2180 return true;
2181 }
2182 }
2183
2184 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2185 return false;
2186}
2187
2188/*
2189 * Main function for kicking off and reaping jobs, as needed.
2190 */
2191static void run_threads(struct sk_out *sk_out)
2192{
2193 struct thread_data *td;
2194 unsigned int i, todo, nr_running, nr_started;
2195 uint64_t m_rate, t_rate;
2196 uint64_t spent;
2197
2198 if (fio_gtod_offload && fio_start_gtod_thread())
2199 return;
2200
2201 fio_idle_prof_init();
2202
2203 set_sig_handlers();
2204
2205 nr_thread = nr_process = 0;
2206 for_each_td(td, i) {
2207 if (check_mount_writes(td))
2208 return;
2209 if (td->o.use_thread)
2210 nr_thread++;
2211 else
2212 nr_process++;
2213 }
2214
2215 if (output_format & FIO_OUTPUT_NORMAL) {
2216 struct buf_output out;
2217
2218 buf_output_init(&out);
2219 __log_buf(&out, "Starting ");
2220 if (nr_thread)
2221 __log_buf(&out, "%d thread%s", nr_thread,
2222 nr_thread > 1 ? "s" : "");
2223 if (nr_process) {
2224 if (nr_thread)
2225 __log_buf(&out, " and ");
2226 __log_buf(&out, "%d process%s", nr_process,
2227 nr_process > 1 ? "es" : "");
2228 }
2229 __log_buf(&out, "\n");
2230 log_info_buf(out.buf, out.buflen);
2231 buf_output_free(&out);
2232 }
2233
2234 todo = thread_number;
2235 nr_running = 0;
2236 nr_started = 0;
2237 m_rate = t_rate = 0;
2238
2239 for_each_td(td, i) {
2240 print_status_init(td->thread_number - 1);
2241
2242 if (!td->o.create_serialize)
2243 continue;
2244
2245 if (fio_verify_load_state(td))
2246 goto reap;
2247
2248 /*
2249 * do file setup here so it happens sequentially,
2250 * we don't want X number of threads getting their
2251 * client data interspersed on disk
2252 */
2253 if (setup_files(td)) {
2254reap:
2255 exit_value++;
2256 if (td->error)
2257 log_err("fio: pid=%d, err=%d/%s\n",
2258 (int) td->pid, td->error, td->verror);
2259 td_set_runstate(td, TD_REAPED);
2260 todo--;
2261 } else {
2262 struct fio_file *f;
2263 unsigned int j;
2264
2265 /*
2266 * for sharing to work, each job must always open
2267 * its own files. so close them, if we opened them
2268 * for creation
2269 */
2270 for_each_file(td, f, j) {
2271 if (fio_file_open(f))
2272 td_io_close_file(td, f);
2273 }
2274 }
2275 }
2276
2277 /* start idle threads before io threads start to run */
2278 fio_idle_prof_start();
2279
2280 set_genesis_time();
2281
2282 while (todo) {
2283 struct thread_data *map[REAL_MAX_JOBS];
2284 struct timespec this_start;
2285 int this_jobs = 0, left;
2286 struct fork_data *fd;
2287
2288 /*
2289 * create threads (TD_NOT_CREATED -> TD_CREATED)
2290 */
2291 for_each_td(td, i) {
2292 if (td->runstate != TD_NOT_CREATED)
2293 continue;
2294
2295 /*
2296 * never got a chance to start, killed by other
2297 * thread for some reason
2298 */
2299 if (td->terminate) {
2300 todo--;
2301 continue;
2302 }
2303
2304 if (td->o.start_delay) {
2305 spent = utime_since_genesis();
2306
2307 if (td->o.start_delay > spent)
2308 continue;
2309 }
2310
2311 if (td->o.stonewall && (nr_started || nr_running)) {
2312 dprint(FD_PROCESS, "%s: stonewall wait\n",
2313 td->o.name);
2314 break;
2315 }
2316
2317 if (waitee_running(td)) {
2318 dprint(FD_PROCESS, "%s: waiting for %s\n",
2319 td->o.name, td->o.wait_for);
2320 continue;
2321 }
2322
2323 init_disk_util(td);
2324
2325 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2326 td->update_rusage = 0;
2327
2328 /*
2329 * Set state to created. Thread will transition
2330 * to TD_INITIALIZED when it's done setting up.
2331 */
2332 td_set_runstate(td, TD_CREATED);
2333 map[this_jobs++] = td;
2334 nr_started++;
2335
2336 fd = calloc(1, sizeof(*fd));
2337 fd->td = td;
2338 fd->sk_out = sk_out;
2339
2340 if (td->o.use_thread) {
2341 int ret;
2342
2343 dprint(FD_PROCESS, "will pthread_create\n");
2344 ret = pthread_create(&td->thread, NULL,
2345 thread_main, fd);
2346 if (ret) {
2347 log_err("pthread_create: %s\n",
2348 strerror(ret));
2349 free(fd);
2350 nr_started--;
2351 break;
2352 }
2353 fd = NULL;
2354 ret = pthread_detach(td->thread);
2355 if (ret)
2356 log_err("pthread_detach: %s",
2357 strerror(ret));
2358 } else {
2359 pid_t pid;
2360 dprint(FD_PROCESS, "will fork\n");
2361 pid = fork();
2362 if (!pid) {
2363 int ret;
2364
2365 ret = (int)(uintptr_t)thread_main(fd);
2366 _exit(ret);
2367 } else if (i == fio_debug_jobno)
2368 *fio_debug_jobp = pid;
2369 }
2370 dprint(FD_MUTEX, "wait on startup_sem\n");
2371 if (fio_sem_down_timeout(startup_sem, 10000)) {
2372 log_err("fio: job startup hung? exiting.\n");
2373 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2374 fio_abort = true;
2375 nr_started--;
2376 free(fd);
2377 break;
2378 }
2379 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2380 }
2381
2382 /*
2383 * Wait for the started threads to transition to
2384 * TD_INITIALIZED.
2385 */
2386 fio_gettime(&this_start, NULL);
2387 left = this_jobs;
2388 while (left && !fio_abort) {
2389 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2390 break;
2391
2392 do_usleep(100000);
2393
2394 for (i = 0; i < this_jobs; i++) {
2395 td = map[i];
2396 if (!td)
2397 continue;
2398 if (td->runstate == TD_INITIALIZED) {
2399 map[i] = NULL;
2400 left--;
2401 } else if (td->runstate >= TD_EXITED) {
2402 map[i] = NULL;
2403 left--;
2404 todo--;
2405 nr_running++; /* work-around... */
2406 }
2407 }
2408 }
2409
2410 if (left) {
2411 log_err("fio: %d job%s failed to start\n", left,
2412 left > 1 ? "s" : "");
2413 for (i = 0; i < this_jobs; i++) {
2414 td = map[i];
2415 if (!td)
2416 continue;
2417 kill(td->pid, SIGTERM);
2418 }
2419 break;
2420 }
2421
2422 /*
2423 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2424 */
2425 for_each_td(td, i) {
2426 if (td->runstate != TD_INITIALIZED)
2427 continue;
2428
2429 if (in_ramp_time(td))
2430 td_set_runstate(td, TD_RAMP);
2431 else
2432 td_set_runstate(td, TD_RUNNING);
2433 nr_running++;
2434 nr_started--;
2435 m_rate += ddir_rw_sum(td->o.ratemin);
2436 t_rate += ddir_rw_sum(td->o.rate);
2437 todo--;
2438 fio_sem_up(td->sem);
2439 }
2440
2441 reap_threads(&nr_running, &t_rate, &m_rate);
2442
2443 if (todo)
2444 do_usleep(100000);
2445 }
2446
2447 while (nr_running) {
2448 reap_threads(&nr_running, &t_rate, &m_rate);
2449 do_usleep(10000);
2450 }
2451
2452 fio_idle_prof_stop();
2453
2454 update_io_ticks();
2455}
2456
2457static void free_disk_util(void)
2458{
2459 disk_util_prune_entries();
2460 helper_thread_destroy();
2461}
2462
2463int fio_backend(struct sk_out *sk_out)
2464{
2465 struct thread_data *td;
2466 int i;
2467
2468 if (exec_profile) {
2469 if (load_profile(exec_profile))
2470 return 1;
2471 free(exec_profile);
2472 exec_profile = NULL;
2473 }
2474 if (!thread_number)
2475 return 0;
2476
2477 if (write_bw_log) {
2478 struct log_params p = {
2479 .log_type = IO_LOG_TYPE_BW,
2480 };
2481
2482 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2483 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2484 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2485 }
2486
2487 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2488 if (!sk_out)
2489 is_local_backend = true;
2490 if (startup_sem == NULL)
2491 return 1;
2492
2493 set_genesis_time();
2494 stat_init();
2495 if (helper_thread_create(startup_sem, sk_out))
2496 log_err("fio: failed to create helper thread\n");
2497
2498 cgroup_list = smalloc(sizeof(*cgroup_list));
2499 if (cgroup_list)
2500 INIT_FLIST_HEAD(cgroup_list);
2501
2502 run_threads(sk_out);
2503
2504 helper_thread_exit();
2505
2506 if (!fio_abort) {
2507 __show_run_stats();
2508 if (write_bw_log) {
2509 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2510 struct io_log *log = agg_io_log[i];
2511
2512 flush_log(log, false);
2513 free_log(log);
2514 }
2515 }
2516 }
2517
2518 for_each_td(td, i) {
2519 steadystate_free(td);
2520 fio_options_free(td);
2521 if (td->rusage_sem) {
2522 fio_sem_remove(td->rusage_sem);
2523 td->rusage_sem = NULL;
2524 }
2525 fio_sem_remove(td->sem);
2526 td->sem = NULL;
2527 }
2528
2529 free_disk_util();
2530 if (cgroup_list) {
2531 cgroup_kill(cgroup_list);
2532 sfree(cgroup_list);
2533 }
2534
2535 fio_sem_remove(startup_sem);
2536 stat_exit();
2537 return exit_value;
2538}