backend: clarify io scheduler setting error message
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_segments = 0;
66unsigned int cur_segment = 0;
67unsigned int stat_number = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72#else
73pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74#endif
75
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void sig_int(int sig)
79{
80 if (nr_segments) {
81 if (is_backend)
82 fio_server_got_signal(sig);
83 else {
84 log_info("\nfio: terminating on signal %d\n", sig);
85 log_info_flush();
86 exit_value = 128;
87 }
88
89 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 }
91}
92
93void sig_show_status(int sig)
94{
95 show_running_run_stats();
96}
97
98static void set_sig_handlers(void)
99{
100 struct sigaction act;
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGINT, &act, NULL);
106
107 memset(&act, 0, sizeof(act));
108 act.sa_handler = sig_int;
109 act.sa_flags = SA_RESTART;
110 sigaction(SIGTERM, &act, NULL);
111
112/* Windows uses SIGBREAK as a quit signal from other applications */
113#ifdef WIN32
114 memset(&act, 0, sizeof(act));
115 act.sa_handler = sig_int;
116 act.sa_flags = SA_RESTART;
117 sigaction(SIGBREAK, &act, NULL);
118#endif
119
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_show_status;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGUSR1, &act, NULL);
124
125 if (is_backend) {
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_int;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGPIPE, &act, NULL);
130 }
131}
132
133/*
134 * Check if we are above the minimum rate given.
135 */
136static bool __check_min_rate(struct thread_data *td, struct timespec *now,
137 enum fio_ddir ddir)
138{
139 unsigned long long bytes = 0;
140 unsigned long iops = 0;
141 unsigned long spent;
142 unsigned long long rate;
143 unsigned long long ratemin = 0;
144 unsigned int rate_iops = 0;
145 unsigned int rate_iops_min = 0;
146
147 assert(ddir_rw(ddir));
148
149 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
150 return false;
151
152 /*
153 * allow a 2 second settle period in the beginning
154 */
155 if (mtime_since(&td->start, now) < 2000)
156 return false;
157
158 iops += td->this_io_blocks[ddir];
159 bytes += td->this_io_bytes[ddir];
160 ratemin += td->o.ratemin[ddir];
161 rate_iops += td->o.rate_iops[ddir];
162 rate_iops_min += td->o.rate_iops_min[ddir];
163
164 /*
165 * if rate blocks is set, sample is running
166 */
167 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
168 spent = mtime_since(&td->lastrate[ddir], now);
169 if (spent < td->o.ratecycle)
170 return false;
171
172 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
173 /*
174 * check bandwidth specified rate
175 */
176 if (bytes < td->rate_bytes[ddir]) {
177 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
178 td->o.name, ratemin, bytes);
179 return true;
180 } else {
181 if (spent)
182 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
183 else
184 rate = 0;
185
186 if (rate < ratemin ||
187 bytes < td->rate_bytes[ddir]) {
188 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189 td->o.name, ratemin, rate);
190 return true;
191 }
192 }
193 } else {
194 /*
195 * checks iops specified rate
196 */
197 if (iops < rate_iops) {
198 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
199 td->o.name, rate_iops, iops);
200 return true;
201 } else {
202 if (spent)
203 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204 else
205 rate = 0;
206
207 if (rate < rate_iops_min ||
208 iops < td->rate_blocks[ddir]) {
209 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
210 td->o.name, rate_iops_min, rate);
211 return true;
212 }
213 }
214 }
215 }
216
217 td->rate_bytes[ddir] = bytes;
218 td->rate_blocks[ddir] = iops;
219 memcpy(&td->lastrate[ddir], now, sizeof(*now));
220 return false;
221}
222
223static bool check_min_rate(struct thread_data *td, struct timespec *now)
224{
225 bool ret = false;
226
227 for_each_rw_ddir(ddir) {
228 if (td->bytes_done[ddir])
229 ret |= __check_min_rate(td, now, ddir);
230 }
231
232 return ret;
233}
234
235/*
236 * When job exits, we can cancel the in-flight IO if we are using async
237 * io. Attempt to do so.
238 */
239static void cleanup_pending_aio(struct thread_data *td)
240{
241 int r;
242
243 /*
244 * get immediately available events, if any
245 */
246 r = io_u_queued_complete(td, 0);
247
248 /*
249 * now cancel remaining active events
250 */
251 if (td->io_ops->cancel) {
252 struct io_u *io_u;
253 int i;
254
255 io_u_qiter(&td->io_u_all, io_u, i) {
256 if (io_u->flags & IO_U_F_FLIGHT) {
257 r = td->io_ops->cancel(td, io_u);
258 if (!r)
259 put_io_u(td, io_u);
260 }
261 }
262 }
263
264 if (td->cur_depth)
265 r = io_u_queued_complete(td, td->cur_depth);
266}
267
268/*
269 * Helper to handle the final sync of a file. Works just like the normal
270 * io path, just does everything sync.
271 */
272static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
273{
274 struct io_u *io_u = __get_io_u(td);
275 enum fio_q_status ret;
276
277 if (!io_u)
278 return true;
279
280 io_u->ddir = DDIR_SYNC;
281 io_u->file = f;
282 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
283
284 if (td_io_prep(td, io_u)) {
285 put_io_u(td, io_u);
286 return true;
287 }
288
289requeue:
290 ret = td_io_queue(td, io_u);
291 switch (ret) {
292 case FIO_Q_QUEUED:
293 td_io_commit(td);
294 if (io_u_queued_complete(td, 1) < 0)
295 return true;
296 break;
297 case FIO_Q_COMPLETED:
298 if (io_u->error) {
299 td_verror(td, io_u->error, "td_io_queue");
300 return true;
301 }
302
303 if (io_u_sync_complete(td, io_u) < 0)
304 return true;
305 break;
306 case FIO_Q_BUSY:
307 td_io_commit(td);
308 goto requeue;
309 }
310
311 return false;
312}
313
314static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
315{
316 int ret, ret2;
317
318 if (fio_file_open(f))
319 return fio_io_sync(td, f);
320
321 if (td_io_open_file(td, f))
322 return 1;
323
324 ret = fio_io_sync(td, f);
325 ret2 = 0;
326 if (fio_file_open(f))
327 ret2 = td_io_close_file(td, f);
328 return (ret || ret2);
329}
330
331static inline void __update_ts_cache(struct thread_data *td)
332{
333 fio_gettime(&td->ts_cache, NULL);
334}
335
336static inline void update_ts_cache(struct thread_data *td)
337{
338 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
339 __update_ts_cache(td);
340}
341
342static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
343{
344 if (in_ramp_time(td))
345 return false;
346 if (!td->o.timeout)
347 return false;
348 if (utime_since(&td->epoch, t) >= td->o.timeout)
349 return true;
350
351 return false;
352}
353
354/*
355 * We need to update the runtime consistently in ms, but keep a running
356 * tally of the current elapsed time in microseconds for sub millisecond
357 * updates.
358 */
359static inline void update_runtime(struct thread_data *td,
360 unsigned long long *elapsed_us,
361 const enum fio_ddir ddir)
362{
363 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
364 return;
365
366 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
367 elapsed_us[ddir] += utime_since_now(&td->start);
368 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
369}
370
371static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
372 int *retptr)
373{
374 int ret = *retptr;
375
376 if (ret < 0 || td->error) {
377 int err = td->error;
378 enum error_type_bit eb;
379
380 if (ret < 0)
381 err = -ret;
382
383 eb = td_error_type(ddir, err);
384 if (!(td->o.continue_on_error & (1 << eb)))
385 return true;
386
387 if (td_non_fatal_error(td, eb, err)) {
388 /*
389 * Continue with the I/Os in case of
390 * a non fatal error.
391 */
392 update_error_count(td, err);
393 td_clear_error(td);
394 *retptr = 0;
395 return false;
396 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
397 /*
398 * We expect to hit this error if
399 * fill_device option is set.
400 */
401 td_clear_error(td);
402 fio_mark_td_terminate(td);
403 return true;
404 } else {
405 /*
406 * Stop the I/O in case of a fatal
407 * error.
408 */
409 update_error_count(td, err);
410 return true;
411 }
412 }
413
414 return false;
415}
416
417static void check_update_rusage(struct thread_data *td)
418{
419 if (td->update_rusage) {
420 td->update_rusage = 0;
421 update_rusage_stat(td);
422 fio_sem_up(td->rusage_sem);
423 }
424}
425
426static int wait_for_completions(struct thread_data *td, struct timespec *time)
427{
428 const int full = queue_full(td);
429 int min_evts = 0;
430 int ret;
431
432 if (td->flags & TD_F_REGROW_LOGS)
433 return io_u_quiesce(td);
434
435 /*
436 * if the queue is full, we MUST reap at least 1 event
437 */
438 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
439 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
440 min_evts = 1;
441
442 if (time && should_check_rate(td))
443 fio_gettime(time, NULL);
444
445 do {
446 ret = io_u_queued_complete(td, min_evts);
447 if (ret < 0)
448 break;
449 } while (full && (td->cur_depth > td->o.iodepth_low));
450
451 return ret;
452}
453
454int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
455 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
456 struct timespec *comp_time)
457{
458 switch (*ret) {
459 case FIO_Q_COMPLETED:
460 if (io_u->error) {
461 *ret = -io_u->error;
462 clear_io_u(td, io_u);
463 } else if (io_u->resid) {
464 long long bytes = io_u->xfer_buflen - io_u->resid;
465 struct fio_file *f = io_u->file;
466
467 if (bytes_issued)
468 *bytes_issued += bytes;
469
470 if (!from_verify)
471 trim_io_piece(io_u);
472
473 /*
474 * zero read, fail
475 */
476 if (!bytes) {
477 if (!from_verify)
478 unlog_io_piece(td, io_u);
479 td_verror(td, EIO, "full resid");
480 put_io_u(td, io_u);
481 break;
482 }
483
484 io_u->xfer_buflen = io_u->resid;
485 io_u->xfer_buf += bytes;
486 io_u->offset += bytes;
487
488 if (ddir_rw(io_u->ddir))
489 td->ts.short_io_u[io_u->ddir]++;
490
491 if (io_u->offset == f->real_file_size)
492 goto sync_done;
493
494 requeue_io_u(td, &io_u);
495 } else {
496sync_done:
497 if (comp_time && should_check_rate(td))
498 fio_gettime(comp_time, NULL);
499
500 *ret = io_u_sync_complete(td, io_u);
501 if (*ret < 0)
502 break;
503 }
504
505 if (td->flags & TD_F_REGROW_LOGS)
506 regrow_logs(td);
507
508 /*
509 * when doing I/O (not when verifying),
510 * check for any errors that are to be ignored
511 */
512 if (!from_verify)
513 break;
514
515 return 0;
516 case FIO_Q_QUEUED:
517 /*
518 * if the engine doesn't have a commit hook,
519 * the io_u is really queued. if it does have such
520 * a hook, it has to call io_u_queued() itself.
521 */
522 if (td->io_ops->commit == NULL)
523 io_u_queued(td, io_u);
524 if (bytes_issued)
525 *bytes_issued += io_u->xfer_buflen;
526 break;
527 case FIO_Q_BUSY:
528 if (!from_verify)
529 unlog_io_piece(td, io_u);
530 requeue_io_u(td, &io_u);
531 td_io_commit(td);
532 break;
533 default:
534 assert(*ret < 0);
535 td_verror(td, -(*ret), "td_io_queue");
536 break;
537 }
538
539 if (break_on_this_error(td, ddir, ret))
540 return 1;
541
542 return 0;
543}
544
545static inline bool io_in_polling(struct thread_data *td)
546{
547 return !td->o.iodepth_batch_complete_min &&
548 !td->o.iodepth_batch_complete_max;
549}
550/*
551 * Unlinks files from thread data fio_file structure
552 */
553static int unlink_all_files(struct thread_data *td)
554{
555 struct fio_file *f;
556 unsigned int i;
557 int ret = 0;
558
559 for_each_file(td, f, i) {
560 if (f->filetype != FIO_TYPE_FILE)
561 continue;
562 ret = td_io_unlink_file(td, f);
563 if (ret)
564 break;
565 }
566
567 if (ret)
568 td_verror(td, ret, "unlink_all_files");
569
570 return ret;
571}
572
573/*
574 * Check if io_u will overlap an in-flight IO in the queue
575 */
576bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
577{
578 bool overlap;
579 struct io_u *check_io_u;
580 unsigned long long x1, x2, y1, y2;
581 int i;
582
583 x1 = io_u->offset;
584 x2 = io_u->offset + io_u->buflen;
585 overlap = false;
586 io_u_qiter(q, check_io_u, i) {
587 if (check_io_u->flags & IO_U_F_FLIGHT) {
588 y1 = check_io_u->offset;
589 y2 = check_io_u->offset + check_io_u->buflen;
590
591 if (x1 < y2 && y1 < x2) {
592 overlap = true;
593 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
594 x1, io_u->buflen,
595 y1, check_io_u->buflen);
596 break;
597 }
598 }
599 }
600
601 return overlap;
602}
603
604static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
605{
606 /*
607 * Check for overlap if the user asked us to, and we have
608 * at least one IO in flight besides this one.
609 */
610 if (td->o.serialize_overlap && td->cur_depth > 1 &&
611 in_flight_overlap(&td->io_u_all, io_u))
612 return FIO_Q_BUSY;
613
614 return td_io_queue(td, io_u);
615}
616
617/*
618 * The main verify engine. Runs over the writes we previously submitted,
619 * reads the blocks back in, and checks the crc/md5 of the data.
620 */
621static void do_verify(struct thread_data *td, uint64_t verify_bytes)
622{
623 struct fio_file *f;
624 struct io_u *io_u;
625 int ret, min_events;
626 unsigned int i;
627
628 dprint(FD_VERIFY, "starting loop\n");
629
630 /*
631 * sync io first and invalidate cache, to make sure we really
632 * read from disk.
633 */
634 for_each_file(td, f, i) {
635 if (!fio_file_open(f))
636 continue;
637 if (fio_io_sync(td, f))
638 break;
639 if (file_invalidate_cache(td, f))
640 break;
641 }
642
643 check_update_rusage(td);
644
645 if (td->error)
646 return;
647
648 /*
649 * verify_state needs to be reset before verification
650 * proceeds so that expected random seeds match actual
651 * random seeds in headers. The main loop will reset
652 * all random number generators if randrepeat is set.
653 */
654 if (!td->o.rand_repeatable)
655 td_fill_verify_state_seed(td);
656
657 td_set_runstate(td, TD_VERIFYING);
658
659 io_u = NULL;
660 while (!td->terminate) {
661 enum fio_ddir ddir;
662 int full;
663
664 update_ts_cache(td);
665 check_update_rusage(td);
666
667 if (runtime_exceeded(td, &td->ts_cache)) {
668 __update_ts_cache(td);
669 if (runtime_exceeded(td, &td->ts_cache)) {
670 fio_mark_td_terminate(td);
671 break;
672 }
673 }
674
675 if (flow_threshold_exceeded(td))
676 continue;
677
678 if (!td->o.experimental_verify) {
679 io_u = __get_io_u(td);
680 if (!io_u)
681 break;
682
683 if (get_next_verify(td, io_u)) {
684 put_io_u(td, io_u);
685 break;
686 }
687
688 if (td_io_prep(td, io_u)) {
689 put_io_u(td, io_u);
690 break;
691 }
692 } else {
693 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
694 break;
695
696 while ((io_u = get_io_u(td)) != NULL) {
697 if (IS_ERR_OR_NULL(io_u)) {
698 io_u = NULL;
699 ret = FIO_Q_BUSY;
700 goto reap;
701 }
702
703 /*
704 * We are only interested in the places where
705 * we wrote or trimmed IOs. Turn those into
706 * reads for verification purposes.
707 */
708 if (io_u->ddir == DDIR_READ) {
709 /*
710 * Pretend we issued it for rwmix
711 * accounting
712 */
713 td->io_issues[DDIR_READ]++;
714 put_io_u(td, io_u);
715 continue;
716 } else if (io_u->ddir == DDIR_TRIM) {
717 io_u->ddir = DDIR_READ;
718 io_u_set(td, io_u, IO_U_F_TRIMMED);
719 break;
720 } else if (io_u->ddir == DDIR_WRITE) {
721 io_u->ddir = DDIR_READ;
722 populate_verify_io_u(td, io_u);
723 break;
724 } else {
725 put_io_u(td, io_u);
726 continue;
727 }
728 }
729
730 if (!io_u)
731 break;
732 }
733
734 if (verify_state_should_stop(td, io_u)) {
735 put_io_u(td, io_u);
736 break;
737 }
738
739 if (td->o.verify_async)
740 io_u->end_io = verify_io_u_async;
741 else
742 io_u->end_io = verify_io_u;
743
744 ddir = io_u->ddir;
745 if (!td->o.disable_slat)
746 fio_gettime(&io_u->start_time, NULL);
747
748 ret = io_u_submit(td, io_u);
749
750 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
751 break;
752
753 /*
754 * if we can queue more, do so. but check if there are
755 * completed io_u's first. Note that we can get BUSY even
756 * without IO queued, if the system is resource starved.
757 */
758reap:
759 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
760 if (full || io_in_polling(td))
761 ret = wait_for_completions(td, NULL);
762
763 if (ret < 0)
764 break;
765 }
766
767 check_update_rusage(td);
768
769 if (!td->error) {
770 min_events = td->cur_depth;
771
772 if (min_events)
773 ret = io_u_queued_complete(td, min_events);
774 } else
775 cleanup_pending_aio(td);
776
777 td_set_runstate(td, TD_RUNNING);
778
779 dprint(FD_VERIFY, "exiting loop\n");
780}
781
782static bool exceeds_number_ios(struct thread_data *td)
783{
784 unsigned long long number_ios;
785
786 if (!td->o.number_ios)
787 return false;
788
789 number_ios = ddir_rw_sum(td->io_blocks);
790 number_ios += td->io_u_queued + td->io_u_in_flight;
791
792 return number_ios >= (td->o.number_ios * td->loops);
793}
794
795static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
796{
797 unsigned long long bytes, limit;
798
799 if (td_rw(td))
800 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
801 else if (td_write(td))
802 bytes = this_bytes[DDIR_WRITE];
803 else if (td_read(td))
804 bytes = this_bytes[DDIR_READ];
805 else
806 bytes = this_bytes[DDIR_TRIM];
807
808 if (td->o.io_size)
809 limit = td->o.io_size;
810 else
811 limit = td->o.size;
812
813 limit *= td->loops;
814 return bytes >= limit || exceeds_number_ios(td);
815}
816
817static bool io_issue_bytes_exceeded(struct thread_data *td)
818{
819 return io_bytes_exceeded(td, td->io_issue_bytes);
820}
821
822static bool io_complete_bytes_exceeded(struct thread_data *td)
823{
824 return io_bytes_exceeded(td, td->this_io_bytes);
825}
826
827/*
828 * used to calculate the next io time for rate control
829 *
830 */
831static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
832{
833 uint64_t bps = td->rate_bps[ddir];
834
835 assert(!(td->flags & TD_F_CHILD));
836
837 if (td->o.rate_process == RATE_PROCESS_POISSON) {
838 uint64_t val, iops;
839
840 iops = bps / td->o.bs[ddir];
841 val = (int64_t) (1000000 / iops) *
842 -logf(__rand_0_1(&td->poisson_state[ddir]));
843 if (val) {
844 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
845 (unsigned long long) 1000000 / val,
846 ddir);
847 }
848 td->last_usec[ddir] += val;
849 return td->last_usec[ddir];
850 } else if (bps) {
851 uint64_t bytes = td->rate_io_issue_bytes[ddir];
852 uint64_t secs = bytes / bps;
853 uint64_t remainder = bytes % bps;
854
855 return remainder * 1000000 / bps + secs * 1000000;
856 }
857
858 return 0;
859}
860
861static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
862 struct timespec *time)
863{
864 unsigned long long b;
865 uint64_t total;
866 int left;
867
868 b = ddir_rw_sum(td->thinktime_blocks_counter);
869 if (b % td->o.thinktime_blocks || !b)
870 return;
871
872 io_u_quiesce(td);
873
874 total = 0;
875 if (td->o.thinktime_spin)
876 total = usec_spin(td->o.thinktime_spin);
877
878 left = td->o.thinktime - total;
879 if (left)
880 total += usec_sleep(td, left);
881
882 /*
883 * If we're ignoring thinktime for the rate, add the number of bytes
884 * we would have done while sleeping, minus one block to ensure we
885 * start issuing immediately after the sleep.
886 */
887 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
888 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
889 uint64_t bs = td->o.min_bs[ddir];
890 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
891 uint64_t over;
892
893 if (usperop <= total)
894 over = bs;
895 else
896 over = (usperop - total) / usperop * -bs;
897
898 td->rate_io_issue_bytes[ddir] += (missed - over);
899 /* adjust for rate_process=poisson */
900 td->last_usec[ddir] += total;
901 }
902
903 if (time && should_check_rate(td))
904 fio_gettime(time, NULL);
905}
906
907/*
908 * Main IO worker function. It retrieves io_u's to process and queues
909 * and reaps them, checking for rate and errors along the way.
910 *
911 * Returns number of bytes written and trimmed.
912 */
913static void do_io(struct thread_data *td, uint64_t *bytes_done)
914{
915 unsigned int i;
916 int ret = 0;
917 uint64_t total_bytes, bytes_issued = 0;
918
919 for (i = 0; i < DDIR_RWDIR_CNT; i++)
920 bytes_done[i] = td->bytes_done[i];
921
922 if (in_ramp_time(td))
923 td_set_runstate(td, TD_RAMP);
924 else
925 td_set_runstate(td, TD_RUNNING);
926
927 lat_target_init(td);
928
929 total_bytes = td->o.size;
930 /*
931 * Allow random overwrite workloads to write up to io_size
932 * before starting verification phase as 'size' doesn't apply.
933 */
934 if (td_write(td) && td_random(td) && td->o.norandommap)
935 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
936 /*
937 * If verify_backlog is enabled, we'll run the verify in this
938 * handler as well. For that case, we may need up to twice the
939 * amount of bytes.
940 */
941 if (td->o.verify != VERIFY_NONE &&
942 (td_write(td) && td->o.verify_backlog))
943 total_bytes += td->o.size;
944
945 /* In trimwrite mode, each byte is trimmed and then written, so
946 * allow total_bytes to be twice as big */
947 if (td_trimwrite(td))
948 total_bytes += td->total_io_size;
949
950 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
951 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
952 td->o.time_based) {
953 struct timespec comp_time;
954 struct io_u *io_u;
955 int full;
956 enum fio_ddir ddir;
957
958 check_update_rusage(td);
959
960 if (td->terminate || td->done)
961 break;
962
963 update_ts_cache(td);
964
965 if (runtime_exceeded(td, &td->ts_cache)) {
966 __update_ts_cache(td);
967 if (runtime_exceeded(td, &td->ts_cache)) {
968 fio_mark_td_terminate(td);
969 break;
970 }
971 }
972
973 if (flow_threshold_exceeded(td))
974 continue;
975
976 /*
977 * Break if we exceeded the bytes. The exception is time
978 * based runs, but we still need to break out of the loop
979 * for those to run verification, if enabled.
980 * Jobs read from iolog do not use this stop condition.
981 */
982 if (bytes_issued >= total_bytes &&
983 !td->o.read_iolog_file &&
984 (!td->o.time_based ||
985 (td->o.time_based && td->o.verify != VERIFY_NONE)))
986 break;
987
988 io_u = get_io_u(td);
989 if (IS_ERR_OR_NULL(io_u)) {
990 int err = PTR_ERR(io_u);
991
992 io_u = NULL;
993 ddir = DDIR_INVAL;
994 if (err == -EBUSY) {
995 ret = FIO_Q_BUSY;
996 goto reap;
997 }
998 if (td->o.latency_target)
999 goto reap;
1000 break;
1001 }
1002
1003 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1004 populate_verify_io_u(td, io_u);
1005
1006 ddir = io_u->ddir;
1007
1008 /*
1009 * Add verification end_io handler if:
1010 * - Asked to verify (!td_rw(td))
1011 * - Or the io_u is from our verify list (mixed write/ver)
1012 */
1013 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1014 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1015
1016 if (verify_state_should_stop(td, io_u)) {
1017 put_io_u(td, io_u);
1018 break;
1019 }
1020
1021 if (td->o.verify_async)
1022 io_u->end_io = verify_io_u_async;
1023 else
1024 io_u->end_io = verify_io_u;
1025 td_set_runstate(td, TD_VERIFYING);
1026 } else if (in_ramp_time(td))
1027 td_set_runstate(td, TD_RAMP);
1028 else
1029 td_set_runstate(td, TD_RUNNING);
1030
1031 /*
1032 * Always log IO before it's issued, so we know the specific
1033 * order of it. The logged unit will track when the IO has
1034 * completed.
1035 */
1036 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1037 td->o.do_verify &&
1038 td->o.verify != VERIFY_NONE &&
1039 !td->o.experimental_verify)
1040 log_io_piece(td, io_u);
1041
1042 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1043 const unsigned long long blen = io_u->xfer_buflen;
1044 const enum fio_ddir __ddir = acct_ddir(io_u);
1045
1046 if (td->error)
1047 break;
1048
1049 workqueue_enqueue(&td->io_wq, &io_u->work);
1050 ret = FIO_Q_QUEUED;
1051
1052 if (ddir_rw(__ddir)) {
1053 td->io_issues[__ddir]++;
1054 td->io_issue_bytes[__ddir] += blen;
1055 td->rate_io_issue_bytes[__ddir] += blen;
1056 }
1057
1058 if (should_check_rate(td))
1059 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1060
1061 } else {
1062 ret = io_u_submit(td, io_u);
1063
1064 if (should_check_rate(td))
1065 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1066
1067 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1068 break;
1069
1070 /*
1071 * See if we need to complete some commands. Note that
1072 * we can get BUSY even without IO queued, if the
1073 * system is resource starved.
1074 */
1075reap:
1076 full = queue_full(td) ||
1077 (ret == FIO_Q_BUSY && td->cur_depth);
1078 if (full || io_in_polling(td))
1079 ret = wait_for_completions(td, &comp_time);
1080 }
1081 if (ret < 0)
1082 break;
1083
1084 if (ddir_rw(ddir) && td->o.thinktime)
1085 handle_thinktime(td, ddir, &comp_time);
1086
1087 if (!ddir_rw_sum(td->bytes_done) &&
1088 !td_ioengine_flagged(td, FIO_NOIO))
1089 continue;
1090
1091 if (!in_ramp_time(td) && should_check_rate(td)) {
1092 if (check_min_rate(td, &comp_time)) {
1093 if (exitall_on_terminate || td->o.exitall_error)
1094 fio_terminate_threads(td->groupid, td->o.exit_what);
1095 td_verror(td, EIO, "check_min_rate");
1096 break;
1097 }
1098 }
1099 if (!in_ramp_time(td) && td->o.latency_target)
1100 lat_target_check(td);
1101 }
1102
1103 check_update_rusage(td);
1104
1105 if (td->trim_entries)
1106 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1107
1108 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1109 td->error = 0;
1110 fio_mark_td_terminate(td);
1111 }
1112 if (!td->error) {
1113 struct fio_file *f;
1114
1115 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1116 workqueue_flush(&td->io_wq);
1117 i = 0;
1118 } else
1119 i = td->cur_depth;
1120
1121 if (i) {
1122 ret = io_u_queued_complete(td, i);
1123 if (td->o.fill_device &&
1124 (td->error == ENOSPC || td->error == EDQUOT))
1125 td->error = 0;
1126 }
1127
1128 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1129 td_set_runstate(td, TD_FSYNCING);
1130
1131 for_each_file(td, f, i) {
1132 if (!fio_file_fsync(td, f))
1133 continue;
1134
1135 log_err("fio: end_fsync failed for file %s\n",
1136 f->file_name);
1137 }
1138 }
1139 } else
1140 cleanup_pending_aio(td);
1141
1142 /*
1143 * stop job if we failed doing any IO
1144 */
1145 if (!ddir_rw_sum(td->this_io_bytes))
1146 td->done = 1;
1147
1148 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1149 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1150}
1151
1152static void free_file_completion_logging(struct thread_data *td)
1153{
1154 struct fio_file *f;
1155 unsigned int i;
1156
1157 for_each_file(td, f, i) {
1158 if (!f->last_write_comp)
1159 break;
1160 sfree(f->last_write_comp);
1161 }
1162}
1163
1164static int init_file_completion_logging(struct thread_data *td,
1165 unsigned int depth)
1166{
1167 struct fio_file *f;
1168 unsigned int i;
1169
1170 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1171 return 0;
1172
1173 for_each_file(td, f, i) {
1174 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1175 if (!f->last_write_comp)
1176 goto cleanup;
1177 }
1178
1179 return 0;
1180
1181cleanup:
1182 free_file_completion_logging(td);
1183 log_err("fio: failed to alloc write comp data\n");
1184 return 1;
1185}
1186
1187static void cleanup_io_u(struct thread_data *td)
1188{
1189 struct io_u *io_u;
1190
1191 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1192
1193 if (td->io_ops->io_u_free)
1194 td->io_ops->io_u_free(td, io_u);
1195
1196 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1197 }
1198
1199 free_io_mem(td);
1200
1201 io_u_rexit(&td->io_u_requeues);
1202 io_u_qexit(&td->io_u_freelist, false);
1203 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1204
1205 free_file_completion_logging(td);
1206}
1207
1208static int init_io_u(struct thread_data *td)
1209{
1210 struct io_u *io_u;
1211 int cl_align, i, max_units;
1212 int err;
1213
1214 max_units = td->o.iodepth;
1215
1216 err = 0;
1217 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1218 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1219 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1220
1221 if (err) {
1222 log_err("fio: failed setting up IO queues\n");
1223 return 1;
1224 }
1225
1226 cl_align = os_cache_line_size();
1227
1228 for (i = 0; i < max_units; i++) {
1229 void *ptr;
1230
1231 if (td->terminate)
1232 return 1;
1233
1234 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1235 if (!ptr) {
1236 log_err("fio: unable to allocate aligned memory\n");
1237 return 1;
1238 }
1239
1240 io_u = ptr;
1241 memset(io_u, 0, sizeof(*io_u));
1242 INIT_FLIST_HEAD(&io_u->verify_list);
1243 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1244
1245 io_u->index = i;
1246 io_u->flags = IO_U_F_FREE;
1247 io_u_qpush(&td->io_u_freelist, io_u);
1248
1249 /*
1250 * io_u never leaves this stack, used for iteration of all
1251 * io_u buffers.
1252 */
1253 io_u_qpush(&td->io_u_all, io_u);
1254
1255 if (td->io_ops->io_u_init) {
1256 int ret = td->io_ops->io_u_init(td, io_u);
1257
1258 if (ret) {
1259 log_err("fio: failed to init engine data: %d\n", ret);
1260 return 1;
1261 }
1262 }
1263 }
1264
1265 init_io_u_buffers(td);
1266
1267 if (init_file_completion_logging(td, max_units))
1268 return 1;
1269
1270 return 0;
1271}
1272
1273int init_io_u_buffers(struct thread_data *td)
1274{
1275 struct io_u *io_u;
1276 unsigned long long max_bs, min_write;
1277 int i, max_units;
1278 int data_xfer = 1;
1279 char *p;
1280
1281 max_units = td->o.iodepth;
1282 max_bs = td_max_bs(td);
1283 min_write = td->o.min_bs[DDIR_WRITE];
1284 td->orig_buffer_size = (unsigned long long) max_bs
1285 * (unsigned long long) max_units;
1286
1287 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1288 data_xfer = 0;
1289
1290 /*
1291 * if we may later need to do address alignment, then add any
1292 * possible adjustment here so that we don't cause a buffer
1293 * overflow later. this adjustment may be too much if we get
1294 * lucky and the allocator gives us an aligned address.
1295 */
1296 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1297 td_ioengine_flagged(td, FIO_RAWIO))
1298 td->orig_buffer_size += page_mask + td->o.mem_align;
1299
1300 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1301 unsigned long long bs;
1302
1303 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1304 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1305 }
1306
1307 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1308 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1309 return 1;
1310 }
1311
1312 if (data_xfer && allocate_io_mem(td))
1313 return 1;
1314
1315 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1316 td_ioengine_flagged(td, FIO_RAWIO))
1317 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1318 else
1319 p = td->orig_buffer;
1320
1321 for (i = 0; i < max_units; i++) {
1322 io_u = td->io_u_all.io_us[i];
1323 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1324
1325 if (data_xfer) {
1326 io_u->buf = p;
1327 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1328
1329 if (td_write(td))
1330 io_u_fill_buffer(td, io_u, min_write, max_bs);
1331 if (td_write(td) && td->o.verify_pattern_bytes) {
1332 /*
1333 * Fill the buffer with the pattern if we are
1334 * going to be doing writes.
1335 */
1336 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1337 }
1338 }
1339 p += max_bs;
1340 }
1341
1342 return 0;
1343}
1344
1345#ifdef FIO_HAVE_IOSCHED_SWITCH
1346/*
1347 * These functions are Linux specific.
1348 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1349 */
1350static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1351{
1352 char tmp[256], tmp2[128], *p;
1353 FILE *f;
1354 int ret;
1355
1356 assert(file->du && file->du->sysfs_root);
1357 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1358
1359 f = fopen(tmp, "r+");
1360 if (!f) {
1361 if (errno == ENOENT) {
1362 log_err("fio: os or kernel doesn't support IO scheduler"
1363 " switching\n");
1364 return 0;
1365 }
1366 td_verror(td, errno, "fopen iosched");
1367 return 1;
1368 }
1369
1370 /*
1371 * Set io scheduler.
1372 */
1373 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1374 if (ferror(f) || ret != 1) {
1375 td_verror(td, errno, "fwrite");
1376 fclose(f);
1377 return 1;
1378 }
1379
1380 rewind(f);
1381
1382 /*
1383 * Read back and check that the selected scheduler is now the default.
1384 */
1385 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1386 if (ferror(f) || ret < 0) {
1387 td_verror(td, errno, "fread");
1388 fclose(f);
1389 return 1;
1390 }
1391 tmp[ret] = '\0';
1392 /*
1393 * either a list of io schedulers or "none\n" is expected. Strip the
1394 * trailing newline.
1395 */
1396 p = tmp;
1397 strsep(&p, "\n");
1398
1399 /*
1400 * Write to "none" entry doesn't fail, so check the result here.
1401 */
1402 if (!strcmp(tmp, "none")) {
1403 log_err("fio: io scheduler is not tunable\n");
1404 fclose(f);
1405 return 0;
1406 }
1407
1408 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1409 if (!strstr(tmp, tmp2)) {
1410 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1411 td_verror(td, EINVAL, "iosched_switch");
1412 fclose(f);
1413 return 1;
1414 }
1415
1416 fclose(f);
1417 return 0;
1418}
1419
1420static int switch_ioscheduler(struct thread_data *td)
1421{
1422 struct fio_file *f;
1423 unsigned int i;
1424 int ret = 0;
1425
1426 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1427 return 0;
1428
1429 assert(td->files && td->files[0]);
1430
1431 for_each_file(td, f, i) {
1432
1433 /* Only consider regular files and block device files */
1434 switch (f->filetype) {
1435 case FIO_TYPE_FILE:
1436 case FIO_TYPE_BLOCK:
1437 /*
1438 * Make sure that the device hosting the file could
1439 * be determined.
1440 */
1441 if (!f->du)
1442 continue;
1443 break;
1444 case FIO_TYPE_CHAR:
1445 case FIO_TYPE_PIPE:
1446 default:
1447 continue;
1448 }
1449
1450 ret = set_ioscheduler(td, f);
1451 if (ret)
1452 return ret;
1453 }
1454
1455 return 0;
1456}
1457
1458#else
1459
1460static int switch_ioscheduler(struct thread_data *td)
1461{
1462 return 0;
1463}
1464
1465#endif /* FIO_HAVE_IOSCHED_SWITCH */
1466
1467static bool keep_running(struct thread_data *td)
1468{
1469 unsigned long long limit;
1470
1471 if (td->done)
1472 return false;
1473 if (td->terminate)
1474 return false;
1475 if (td->o.time_based)
1476 return true;
1477 if (td->o.loops) {
1478 td->o.loops--;
1479 return true;
1480 }
1481 if (exceeds_number_ios(td))
1482 return false;
1483
1484 if (td->o.io_size)
1485 limit = td->o.io_size;
1486 else
1487 limit = td->o.size;
1488
1489 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1490 uint64_t diff;
1491
1492 /*
1493 * If the difference is less than the maximum IO size, we
1494 * are done.
1495 */
1496 diff = limit - ddir_rw_sum(td->io_bytes);
1497 if (diff < td_max_bs(td))
1498 return false;
1499
1500 if (fio_files_done(td) && !td->o.io_size)
1501 return false;
1502
1503 return true;
1504 }
1505
1506 return false;
1507}
1508
1509static int exec_string(struct thread_options *o, const char *string,
1510 const char *mode)
1511{
1512 int ret;
1513 char *str;
1514
1515 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1516 return -1;
1517
1518 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1519 o->name, mode);
1520 ret = system(str);
1521 if (ret == -1)
1522 log_err("fio: exec of cmd <%s> failed\n", str);
1523
1524 free(str);
1525 return ret;
1526}
1527
1528/*
1529 * Dry run to compute correct state of numberio for verification.
1530 */
1531static uint64_t do_dry_run(struct thread_data *td)
1532{
1533 td_set_runstate(td, TD_RUNNING);
1534
1535 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1536 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1537 struct io_u *io_u;
1538 int ret;
1539
1540 if (td->terminate || td->done)
1541 break;
1542
1543 io_u = get_io_u(td);
1544 if (IS_ERR_OR_NULL(io_u))
1545 break;
1546
1547 io_u_set(td, io_u, IO_U_F_FLIGHT);
1548 io_u->error = 0;
1549 io_u->resid = 0;
1550 if (ddir_rw(acct_ddir(io_u)))
1551 td->io_issues[acct_ddir(io_u)]++;
1552 if (ddir_rw(io_u->ddir)) {
1553 io_u_mark_depth(td, 1);
1554 td->ts.total_io_u[io_u->ddir]++;
1555 }
1556
1557 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1558 td->o.do_verify &&
1559 td->o.verify != VERIFY_NONE &&
1560 !td->o.experimental_verify)
1561 log_io_piece(td, io_u);
1562
1563 ret = io_u_sync_complete(td, io_u);
1564 (void) ret;
1565 }
1566
1567 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1568}
1569
1570struct fork_data {
1571 struct thread_data *td;
1572 struct sk_out *sk_out;
1573};
1574
1575/*
1576 * Entry point for the thread based jobs. The process based jobs end up
1577 * here as well, after a little setup.
1578 */
1579static void *thread_main(void *data)
1580{
1581 struct fork_data *fd = data;
1582 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1583 struct thread_data *td = fd->td;
1584 struct thread_options *o = &td->o;
1585 struct sk_out *sk_out = fd->sk_out;
1586 uint64_t bytes_done[DDIR_RWDIR_CNT];
1587 int deadlock_loop_cnt;
1588 bool clear_state;
1589 int res, ret;
1590
1591 sk_out_assign(sk_out);
1592 free(fd);
1593
1594 if (!o->use_thread) {
1595 setsid();
1596 td->pid = getpid();
1597 } else
1598 td->pid = gettid();
1599
1600 fio_local_clock_init();
1601
1602 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1603
1604 if (is_backend)
1605 fio_server_send_start(td);
1606
1607 INIT_FLIST_HEAD(&td->io_log_list);
1608 INIT_FLIST_HEAD(&td->io_hist_list);
1609 INIT_FLIST_HEAD(&td->verify_list);
1610 INIT_FLIST_HEAD(&td->trim_list);
1611 td->io_hist_tree = RB_ROOT;
1612
1613 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1614 if (ret) {
1615 td_verror(td, ret, "mutex_cond_init_pshared");
1616 goto err;
1617 }
1618 ret = cond_init_pshared(&td->verify_cond);
1619 if (ret) {
1620 td_verror(td, ret, "mutex_cond_pshared");
1621 goto err;
1622 }
1623
1624 td_set_runstate(td, TD_INITIALIZED);
1625 dprint(FD_MUTEX, "up startup_sem\n");
1626 fio_sem_up(startup_sem);
1627 dprint(FD_MUTEX, "wait on td->sem\n");
1628 fio_sem_down(td->sem);
1629 dprint(FD_MUTEX, "done waiting on td->sem\n");
1630
1631 /*
1632 * A new gid requires privilege, so we need to do this before setting
1633 * the uid.
1634 */
1635 if (o->gid != -1U && setgid(o->gid)) {
1636 td_verror(td, errno, "setgid");
1637 goto err;
1638 }
1639 if (o->uid != -1U && setuid(o->uid)) {
1640 td_verror(td, errno, "setuid");
1641 goto err;
1642 }
1643
1644 td_zone_gen_index(td);
1645
1646 /*
1647 * Do this early, we don't want the compress threads to be limited
1648 * to the same CPUs as the IO workers. So do this before we set
1649 * any potential CPU affinity
1650 */
1651 if (iolog_compress_init(td, sk_out))
1652 goto err;
1653
1654 /*
1655 * If we have a gettimeofday() thread, make sure we exclude that
1656 * thread from this job
1657 */
1658 if (o->gtod_cpu)
1659 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1660
1661 /*
1662 * Set affinity first, in case it has an impact on the memory
1663 * allocations.
1664 */
1665 if (fio_option_is_set(o, cpumask)) {
1666 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1667 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1668 if (!ret) {
1669 log_err("fio: no CPUs set\n");
1670 log_err("fio: Try increasing number of available CPUs\n");
1671 td_verror(td, EINVAL, "cpus_split");
1672 goto err;
1673 }
1674 }
1675 ret = fio_setaffinity(td->pid, o->cpumask);
1676 if (ret == -1) {
1677 td_verror(td, errno, "cpu_set_affinity");
1678 goto err;
1679 }
1680 }
1681
1682#ifdef CONFIG_LIBNUMA
1683 /* numa node setup */
1684 if (fio_option_is_set(o, numa_cpunodes) ||
1685 fio_option_is_set(o, numa_memnodes)) {
1686 struct bitmask *mask;
1687
1688 if (numa_available() < 0) {
1689 td_verror(td, errno, "Does not support NUMA API\n");
1690 goto err;
1691 }
1692
1693 if (fio_option_is_set(o, numa_cpunodes)) {
1694 mask = numa_parse_nodestring(o->numa_cpunodes);
1695 ret = numa_run_on_node_mask(mask);
1696 numa_free_nodemask(mask);
1697 if (ret == -1) {
1698 td_verror(td, errno, \
1699 "numa_run_on_node_mask failed\n");
1700 goto err;
1701 }
1702 }
1703
1704 if (fio_option_is_set(o, numa_memnodes)) {
1705 mask = NULL;
1706 if (o->numa_memnodes)
1707 mask = numa_parse_nodestring(o->numa_memnodes);
1708
1709 switch (o->numa_mem_mode) {
1710 case MPOL_INTERLEAVE:
1711 numa_set_interleave_mask(mask);
1712 break;
1713 case MPOL_BIND:
1714 numa_set_membind(mask);
1715 break;
1716 case MPOL_LOCAL:
1717 numa_set_localalloc();
1718 break;
1719 case MPOL_PREFERRED:
1720 numa_set_preferred(o->numa_mem_prefer_node);
1721 break;
1722 case MPOL_DEFAULT:
1723 default:
1724 break;
1725 }
1726
1727 if (mask)
1728 numa_free_nodemask(mask);
1729
1730 }
1731 }
1732#endif
1733
1734 if (fio_pin_memory(td))
1735 goto err;
1736
1737 /*
1738 * May alter parameters that init_io_u() will use, so we need to
1739 * do this first.
1740 */
1741 if (!init_iolog(td))
1742 goto err;
1743
1744 if (td_io_init(td))
1745 goto err;
1746
1747 if (init_io_u(td))
1748 goto err;
1749
1750 if (td->io_ops->post_init && td->io_ops->post_init(td))
1751 goto err;
1752
1753 if (o->verify_async && verify_async_init(td))
1754 goto err;
1755
1756 if (fio_option_is_set(o, ioprio) ||
1757 fio_option_is_set(o, ioprio_class)) {
1758 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1759 if (ret == -1) {
1760 td_verror(td, errno, "ioprio_set");
1761 goto err;
1762 }
1763 }
1764
1765 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1766 goto err;
1767
1768 errno = 0;
1769 if (nice(o->nice) == -1 && errno != 0) {
1770 td_verror(td, errno, "nice");
1771 goto err;
1772 }
1773
1774 if (o->ioscheduler && switch_ioscheduler(td))
1775 goto err;
1776
1777 if (!o->create_serialize && setup_files(td))
1778 goto err;
1779
1780 if (!init_random_map(td))
1781 goto err;
1782
1783 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1784 goto err;
1785
1786 if (o->pre_read && !pre_read_files(td))
1787 goto err;
1788
1789 fio_verify_init(td);
1790
1791 if (rate_submit_init(td, sk_out))
1792 goto err;
1793
1794 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
1795 td->thinktime_blocks_counter = td->io_blocks;
1796 else
1797 td->thinktime_blocks_counter = td->io_issues;
1798
1799 set_epoch_time(td, o->log_unix_epoch);
1800 fio_getrusage(&td->ru_start);
1801 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1802 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1803 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1804
1805 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1806 o->ratemin[DDIR_TRIM]) {
1807 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1808 sizeof(td->bw_sample_time));
1809 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1810 sizeof(td->bw_sample_time));
1811 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1812 sizeof(td->bw_sample_time));
1813 }
1814
1815 memset(bytes_done, 0, sizeof(bytes_done));
1816 clear_state = false;
1817
1818 while (keep_running(td)) {
1819 uint64_t verify_bytes;
1820
1821 fio_gettime(&td->start, NULL);
1822 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1823
1824 if (clear_state) {
1825 clear_io_state(td, 0);
1826
1827 if (o->unlink_each_loop && unlink_all_files(td))
1828 break;
1829 }
1830
1831 prune_io_piece_log(td);
1832
1833 if (td->o.verify_only && td_write(td))
1834 verify_bytes = do_dry_run(td);
1835 else {
1836 do_io(td, bytes_done);
1837
1838 if (!ddir_rw_sum(bytes_done)) {
1839 fio_mark_td_terminate(td);
1840 verify_bytes = 0;
1841 } else {
1842 verify_bytes = bytes_done[DDIR_WRITE] +
1843 bytes_done[DDIR_TRIM];
1844 }
1845 }
1846
1847 /*
1848 * If we took too long to shut down, the main thread could
1849 * already consider us reaped/exited. If that happens, break
1850 * out and clean up.
1851 */
1852 if (td->runstate >= TD_EXITED)
1853 break;
1854
1855 clear_state = true;
1856
1857 /*
1858 * Make sure we've successfully updated the rusage stats
1859 * before waiting on the stat mutex. Otherwise we could have
1860 * the stat thread holding stat mutex and waiting for
1861 * the rusage_sem, which would never get upped because
1862 * this thread is waiting for the stat mutex.
1863 */
1864 deadlock_loop_cnt = 0;
1865 do {
1866 check_update_rusage(td);
1867 if (!fio_sem_down_trylock(stat_sem))
1868 break;
1869 usleep(1000);
1870 if (deadlock_loop_cnt++ > 5000) {
1871 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1872 td->error = EDEADLK;
1873 goto err;
1874 }
1875 } while (1);
1876
1877 if (td_read(td) && td->io_bytes[DDIR_READ])
1878 update_runtime(td, elapsed_us, DDIR_READ);
1879 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1880 update_runtime(td, elapsed_us, DDIR_WRITE);
1881 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1882 update_runtime(td, elapsed_us, DDIR_TRIM);
1883 fio_gettime(&td->start, NULL);
1884 fio_sem_up(stat_sem);
1885
1886 if (td->error || td->terminate)
1887 break;
1888
1889 if (!o->do_verify ||
1890 o->verify == VERIFY_NONE ||
1891 td_ioengine_flagged(td, FIO_UNIDIR))
1892 continue;
1893
1894 clear_io_state(td, 0);
1895
1896 fio_gettime(&td->start, NULL);
1897
1898 do_verify(td, verify_bytes);
1899
1900 /*
1901 * See comment further up for why this is done here.
1902 */
1903 check_update_rusage(td);
1904
1905 fio_sem_down(stat_sem);
1906 update_runtime(td, elapsed_us, DDIR_READ);
1907 fio_gettime(&td->start, NULL);
1908 fio_sem_up(stat_sem);
1909
1910 if (td->error || td->terminate)
1911 break;
1912 }
1913
1914 /*
1915 * Acquire this lock if we were doing overlap checking in
1916 * offload mode so that we don't clean up this job while
1917 * another thread is checking its io_u's for overlap
1918 */
1919 if (td_offload_overlap(td)) {
1920 int res = pthread_mutex_lock(&overlap_check);
1921 assert(res == 0);
1922 }
1923 td_set_runstate(td, TD_FINISHING);
1924 if (td_offload_overlap(td)) {
1925 res = pthread_mutex_unlock(&overlap_check);
1926 assert(res == 0);
1927 }
1928
1929 update_rusage_stat(td);
1930 td->ts.total_run_time = mtime_since_now(&td->epoch);
1931 for_each_rw_ddir(ddir) {
1932 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1933 }
1934
1935 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1936 (td->o.verify != VERIFY_NONE && td_write(td)))
1937 verify_save_state(td->thread_number);
1938
1939 fio_unpin_memory(td);
1940
1941 td_writeout_logs(td, true);
1942
1943 iolog_compress_exit(td);
1944 rate_submit_exit(td);
1945
1946 if (o->exec_postrun)
1947 exec_string(o, o->exec_postrun, "postrun");
1948
1949 if (exitall_on_terminate || (o->exitall_error && td->error))
1950 fio_terminate_threads(td->groupid, td->o.exit_what);
1951
1952err:
1953 if (td->error)
1954 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1955 td->verror);
1956
1957 if (o->verify_async)
1958 verify_async_exit(td);
1959
1960 close_and_free_files(td);
1961 cleanup_io_u(td);
1962 close_ioengine(td);
1963 cgroup_shutdown(td, cgroup_mnt);
1964 verify_free_state(td);
1965 td_zone_free_index(td);
1966
1967 if (fio_option_is_set(o, cpumask)) {
1968 ret = fio_cpuset_exit(&o->cpumask);
1969 if (ret)
1970 td_verror(td, ret, "fio_cpuset_exit");
1971 }
1972
1973 /*
1974 * do this very late, it will log file closing as well
1975 */
1976 if (o->write_iolog_file)
1977 write_iolog_close(td);
1978 if (td->io_log_rfile)
1979 fclose(td->io_log_rfile);
1980
1981 td_set_runstate(td, TD_EXITED);
1982
1983 /*
1984 * Do this last after setting our runstate to exited, so we
1985 * know that the stat thread is signaled.
1986 */
1987 check_update_rusage(td);
1988
1989 sk_out_drop();
1990 return (void *) (uintptr_t) td->error;
1991}
1992
1993/*
1994 * Run over the job map and reap the threads that have exited, if any.
1995 */
1996static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1997 uint64_t *m_rate)
1998{
1999 struct thread_data *td;
2000 unsigned int cputhreads, realthreads, pending;
2001 int i, status, ret;
2002
2003 /*
2004 * reap exited threads (TD_EXITED -> TD_REAPED)
2005 */
2006 realthreads = pending = cputhreads = 0;
2007 for_each_td(td, i) {
2008 int flags = 0;
2009
2010 if (!strcmp(td->o.ioengine, "cpuio"))
2011 cputhreads++;
2012 else
2013 realthreads++;
2014
2015 if (!td->pid) {
2016 pending++;
2017 continue;
2018 }
2019 if (td->runstate == TD_REAPED)
2020 continue;
2021 if (td->o.use_thread) {
2022 if (td->runstate == TD_EXITED) {
2023 td_set_runstate(td, TD_REAPED);
2024 goto reaped;
2025 }
2026 continue;
2027 }
2028
2029 flags = WNOHANG;
2030 if (td->runstate == TD_EXITED)
2031 flags = 0;
2032
2033 /*
2034 * check if someone quit or got killed in an unusual way
2035 */
2036 ret = waitpid(td->pid, &status, flags);
2037 if (ret < 0) {
2038 if (errno == ECHILD) {
2039 log_err("fio: pid=%d disappeared %d\n",
2040 (int) td->pid, td->runstate);
2041 td->sig = ECHILD;
2042 td_set_runstate(td, TD_REAPED);
2043 goto reaped;
2044 }
2045 perror("waitpid");
2046 } else if (ret == td->pid) {
2047 if (WIFSIGNALED(status)) {
2048 int sig = WTERMSIG(status);
2049
2050 if (sig != SIGTERM && sig != SIGUSR2)
2051 log_err("fio: pid=%d, got signal=%d\n",
2052 (int) td->pid, sig);
2053 td->sig = sig;
2054 td_set_runstate(td, TD_REAPED);
2055 goto reaped;
2056 }
2057 if (WIFEXITED(status)) {
2058 if (WEXITSTATUS(status) && !td->error)
2059 td->error = WEXITSTATUS(status);
2060
2061 td_set_runstate(td, TD_REAPED);
2062 goto reaped;
2063 }
2064 }
2065
2066 /*
2067 * If the job is stuck, do a forceful timeout of it and
2068 * move on.
2069 */
2070 if (td->terminate &&
2071 td->runstate < TD_FSYNCING &&
2072 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2073 log_err("fio: job '%s' (state=%d) hasn't exited in "
2074 "%lu seconds, it appears to be stuck. Doing "
2075 "forceful exit of this job.\n",
2076 td->o.name, td->runstate,
2077 (unsigned long) time_since_now(&td->terminate_time));
2078 td_set_runstate(td, TD_REAPED);
2079 goto reaped;
2080 }
2081
2082 /*
2083 * thread is not dead, continue
2084 */
2085 pending++;
2086 continue;
2087reaped:
2088 (*nr_running)--;
2089 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2090 (*t_rate) -= ddir_rw_sum(td->o.rate);
2091 if (!td->pid)
2092 pending--;
2093
2094 if (td->error)
2095 exit_value++;
2096
2097 done_secs += mtime_since_now(&td->epoch) / 1000;
2098 profile_td_exit(td);
2099 flow_exit_job(td);
2100 }
2101
2102 if (*nr_running == cputhreads && !pending && realthreads)
2103 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2104}
2105
2106static bool __check_trigger_file(void)
2107{
2108 struct stat sb;
2109
2110 if (!trigger_file)
2111 return false;
2112
2113 if (stat(trigger_file, &sb))
2114 return false;
2115
2116 if (unlink(trigger_file) < 0)
2117 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2118 strerror(errno));
2119
2120 return true;
2121}
2122
2123static bool trigger_timedout(void)
2124{
2125 if (trigger_timeout)
2126 if (time_since_genesis() >= trigger_timeout) {
2127 trigger_timeout = 0;
2128 return true;
2129 }
2130
2131 return false;
2132}
2133
2134void exec_trigger(const char *cmd)
2135{
2136 int ret;
2137
2138 if (!cmd || cmd[0] == '\0')
2139 return;
2140
2141 ret = system(cmd);
2142 if (ret == -1)
2143 log_err("fio: failed executing %s trigger\n", cmd);
2144}
2145
2146void check_trigger_file(void)
2147{
2148 if (__check_trigger_file() || trigger_timedout()) {
2149 if (nr_clients)
2150 fio_clients_send_trigger(trigger_remote_cmd);
2151 else {
2152 verify_save_state(IO_LIST_ALL);
2153 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2154 exec_trigger(trigger_cmd);
2155 }
2156 }
2157}
2158
2159static int fio_verify_load_state(struct thread_data *td)
2160{
2161 int ret;
2162
2163 if (!td->o.verify_state)
2164 return 0;
2165
2166 if (is_backend) {
2167 void *data;
2168
2169 ret = fio_server_get_verify_state(td->o.name,
2170 td->thread_number - 1, &data);
2171 if (!ret)
2172 verify_assign_state(td, data);
2173 } else {
2174 char prefix[PATH_MAX];
2175
2176 if (aux_path)
2177 sprintf(prefix, "%s%clocal", aux_path,
2178 FIO_OS_PATH_SEPARATOR);
2179 else
2180 strcpy(prefix, "local");
2181 ret = verify_load_state(td, prefix);
2182 }
2183
2184 return ret;
2185}
2186
2187static void do_usleep(unsigned int usecs)
2188{
2189 check_for_running_stats();
2190 check_trigger_file();
2191 usleep(usecs);
2192}
2193
2194static bool check_mount_writes(struct thread_data *td)
2195{
2196 struct fio_file *f;
2197 unsigned int i;
2198
2199 if (!td_write(td) || td->o.allow_mounted_write)
2200 return false;
2201
2202 /*
2203 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2204 * are mkfs'd and mounted.
2205 */
2206 for_each_file(td, f, i) {
2207#ifdef FIO_HAVE_CHARDEV_SIZE
2208 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2209#else
2210 if (f->filetype != FIO_TYPE_BLOCK)
2211#endif
2212 continue;
2213 if (device_is_mounted(f->file_name))
2214 goto mounted;
2215 }
2216
2217 return false;
2218mounted:
2219 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2220 return true;
2221}
2222
2223static bool waitee_running(struct thread_data *me)
2224{
2225 const char *waitee = me->o.wait_for;
2226 const char *self = me->o.name;
2227 struct thread_data *td;
2228 int i;
2229
2230 if (!waitee)
2231 return false;
2232
2233 for_each_td(td, i) {
2234 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2235 continue;
2236
2237 if (td->runstate < TD_EXITED) {
2238 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2239 self, td->o.name,
2240 runstate_to_name(td->runstate));
2241 return true;
2242 }
2243 }
2244
2245 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2246 return false;
2247}
2248
2249/*
2250 * Main function for kicking off and reaping jobs, as needed.
2251 */
2252static void run_threads(struct sk_out *sk_out)
2253{
2254 struct thread_data *td;
2255 unsigned int i, todo, nr_running, nr_started;
2256 uint64_t m_rate, t_rate;
2257 uint64_t spent;
2258
2259 if (fio_gtod_offload && fio_start_gtod_thread())
2260 return;
2261
2262 fio_idle_prof_init();
2263
2264 set_sig_handlers();
2265
2266 nr_thread = nr_process = 0;
2267 for_each_td(td, i) {
2268 if (check_mount_writes(td))
2269 return;
2270 if (td->o.use_thread)
2271 nr_thread++;
2272 else
2273 nr_process++;
2274 }
2275
2276 if (output_format & FIO_OUTPUT_NORMAL) {
2277 struct buf_output out;
2278
2279 buf_output_init(&out);
2280 __log_buf(&out, "Starting ");
2281 if (nr_thread)
2282 __log_buf(&out, "%d thread%s", nr_thread,
2283 nr_thread > 1 ? "s" : "");
2284 if (nr_process) {
2285 if (nr_thread)
2286 __log_buf(&out, " and ");
2287 __log_buf(&out, "%d process%s", nr_process,
2288 nr_process > 1 ? "es" : "");
2289 }
2290 __log_buf(&out, "\n");
2291 log_info_buf(out.buf, out.buflen);
2292 buf_output_free(&out);
2293 }
2294
2295 todo = thread_number;
2296 nr_running = 0;
2297 nr_started = 0;
2298 m_rate = t_rate = 0;
2299
2300 for_each_td(td, i) {
2301 print_status_init(td->thread_number - 1);
2302
2303 if (!td->o.create_serialize)
2304 continue;
2305
2306 if (fio_verify_load_state(td))
2307 goto reap;
2308
2309 /*
2310 * do file setup here so it happens sequentially,
2311 * we don't want X number of threads getting their
2312 * client data interspersed on disk
2313 */
2314 if (setup_files(td)) {
2315reap:
2316 exit_value++;
2317 if (td->error)
2318 log_err("fio: pid=%d, err=%d/%s\n",
2319 (int) td->pid, td->error, td->verror);
2320 td_set_runstate(td, TD_REAPED);
2321 todo--;
2322 } else {
2323 struct fio_file *f;
2324 unsigned int j;
2325
2326 /*
2327 * for sharing to work, each job must always open
2328 * its own files. so close them, if we opened them
2329 * for creation
2330 */
2331 for_each_file(td, f, j) {
2332 if (fio_file_open(f))
2333 td_io_close_file(td, f);
2334 }
2335 }
2336 }
2337
2338 /* start idle threads before io threads start to run */
2339 fio_idle_prof_start();
2340
2341 set_genesis_time();
2342
2343 while (todo) {
2344 struct thread_data *map[REAL_MAX_JOBS];
2345 struct timespec this_start;
2346 int this_jobs = 0, left;
2347 struct fork_data *fd;
2348
2349 /*
2350 * create threads (TD_NOT_CREATED -> TD_CREATED)
2351 */
2352 for_each_td(td, i) {
2353 if (td->runstate != TD_NOT_CREATED)
2354 continue;
2355
2356 /*
2357 * never got a chance to start, killed by other
2358 * thread for some reason
2359 */
2360 if (td->terminate) {
2361 todo--;
2362 continue;
2363 }
2364
2365 if (td->o.start_delay) {
2366 spent = utime_since_genesis();
2367
2368 if (td->o.start_delay > spent)
2369 continue;
2370 }
2371
2372 if (td->o.stonewall && (nr_started || nr_running)) {
2373 dprint(FD_PROCESS, "%s: stonewall wait\n",
2374 td->o.name);
2375 break;
2376 }
2377
2378 if (waitee_running(td)) {
2379 dprint(FD_PROCESS, "%s: waiting for %s\n",
2380 td->o.name, td->o.wait_for);
2381 continue;
2382 }
2383
2384 init_disk_util(td);
2385
2386 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2387 td->update_rusage = 0;
2388
2389 /*
2390 * Set state to created. Thread will transition
2391 * to TD_INITIALIZED when it's done setting up.
2392 */
2393 td_set_runstate(td, TD_CREATED);
2394 map[this_jobs++] = td;
2395 nr_started++;
2396
2397 fd = calloc(1, sizeof(*fd));
2398 fd->td = td;
2399 fd->sk_out = sk_out;
2400
2401 if (td->o.use_thread) {
2402 int ret;
2403
2404 dprint(FD_PROCESS, "will pthread_create\n");
2405 ret = pthread_create(&td->thread, NULL,
2406 thread_main, fd);
2407 if (ret) {
2408 log_err("pthread_create: %s\n",
2409 strerror(ret));
2410 free(fd);
2411 nr_started--;
2412 break;
2413 }
2414 fd = NULL;
2415 ret = pthread_detach(td->thread);
2416 if (ret)
2417 log_err("pthread_detach: %s",
2418 strerror(ret));
2419 } else {
2420 pid_t pid;
2421 dprint(FD_PROCESS, "will fork\n");
2422 pid = fork();
2423 if (!pid) {
2424 int ret;
2425
2426 ret = (int)(uintptr_t)thread_main(fd);
2427 _exit(ret);
2428 } else if (i == fio_debug_jobno)
2429 *fio_debug_jobp = pid;
2430 }
2431 dprint(FD_MUTEX, "wait on startup_sem\n");
2432 if (fio_sem_down_timeout(startup_sem, 10000)) {
2433 log_err("fio: job startup hung? exiting.\n");
2434 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2435 fio_abort = true;
2436 nr_started--;
2437 free(fd);
2438 break;
2439 }
2440 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2441 }
2442
2443 /*
2444 * Wait for the started threads to transition to
2445 * TD_INITIALIZED.
2446 */
2447 fio_gettime(&this_start, NULL);
2448 left = this_jobs;
2449 while (left && !fio_abort) {
2450 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2451 break;
2452
2453 do_usleep(100000);
2454
2455 for (i = 0; i < this_jobs; i++) {
2456 td = map[i];
2457 if (!td)
2458 continue;
2459 if (td->runstate == TD_INITIALIZED) {
2460 map[i] = NULL;
2461 left--;
2462 } else if (td->runstate >= TD_EXITED) {
2463 map[i] = NULL;
2464 left--;
2465 todo--;
2466 nr_running++; /* work-around... */
2467 }
2468 }
2469 }
2470
2471 if (left) {
2472 log_err("fio: %d job%s failed to start\n", left,
2473 left > 1 ? "s" : "");
2474 for (i = 0; i < this_jobs; i++) {
2475 td = map[i];
2476 if (!td)
2477 continue;
2478 kill(td->pid, SIGTERM);
2479 }
2480 break;
2481 }
2482
2483 /*
2484 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2485 */
2486 for_each_td(td, i) {
2487 if (td->runstate != TD_INITIALIZED)
2488 continue;
2489
2490 if (in_ramp_time(td))
2491 td_set_runstate(td, TD_RAMP);
2492 else
2493 td_set_runstate(td, TD_RUNNING);
2494 nr_running++;
2495 nr_started--;
2496 m_rate += ddir_rw_sum(td->o.ratemin);
2497 t_rate += ddir_rw_sum(td->o.rate);
2498 todo--;
2499 fio_sem_up(td->sem);
2500 }
2501
2502 reap_threads(&nr_running, &t_rate, &m_rate);
2503
2504 if (todo)
2505 do_usleep(100000);
2506 }
2507
2508 while (nr_running) {
2509 reap_threads(&nr_running, &t_rate, &m_rate);
2510 do_usleep(10000);
2511 }
2512
2513 fio_idle_prof_stop();
2514
2515 update_io_ticks();
2516}
2517
2518static void free_disk_util(void)
2519{
2520 disk_util_prune_entries();
2521 helper_thread_destroy();
2522}
2523
2524int fio_backend(struct sk_out *sk_out)
2525{
2526 struct thread_data *td;
2527 int i;
2528
2529 if (exec_profile) {
2530 if (load_profile(exec_profile))
2531 return 1;
2532 free(exec_profile);
2533 exec_profile = NULL;
2534 }
2535 if (!thread_number)
2536 return 0;
2537
2538 if (write_bw_log) {
2539 struct log_params p = {
2540 .log_type = IO_LOG_TYPE_BW,
2541 };
2542
2543 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2544 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2545 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2546 }
2547
2548 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2549 if (!sk_out)
2550 is_local_backend = true;
2551 if (startup_sem == NULL)
2552 return 1;
2553
2554 set_genesis_time();
2555 stat_init();
2556 if (helper_thread_create(startup_sem, sk_out))
2557 log_err("fio: failed to create helper thread\n");
2558
2559 cgroup_list = smalloc(sizeof(*cgroup_list));
2560 if (cgroup_list)
2561 INIT_FLIST_HEAD(cgroup_list);
2562
2563 run_threads(sk_out);
2564
2565 helper_thread_exit();
2566
2567 if (!fio_abort) {
2568 __show_run_stats();
2569 if (write_bw_log) {
2570 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2571 struct io_log *log = agg_io_log[i];
2572
2573 flush_log(log, false);
2574 free_log(log);
2575 }
2576 }
2577 }
2578
2579 for_each_td(td, i) {
2580 steadystate_free(td);
2581 fio_options_free(td);
2582 fio_dump_options_free(td);
2583 if (td->rusage_sem) {
2584 fio_sem_remove(td->rusage_sem);
2585 td->rusage_sem = NULL;
2586 }
2587 fio_sem_remove(td->sem);
2588 td->sem = NULL;
2589 }
2590
2591 free_disk_util();
2592 if (cgroup_list) {
2593 cgroup_kill(cgroup_list);
2594 sfree(cgroup_list);
2595 }
2596
2597 fio_sem_remove(startup_sem);
2598 stat_exit();
2599 return exit_value;
2600}