fio: add serialize_overlap option
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 f = io_u->file;
503 if (io_u->offset == f->real_file_size)
504 goto sync_done;
505
506 requeue_io_u(td, &io_u);
507 } else {
508sync_done:
509 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510 __should_check_rate(td, DDIR_WRITE) ||
511 __should_check_rate(td, DDIR_TRIM)))
512 fio_gettime(comp_time, NULL);
513
514 *ret = io_u_sync_complete(td, io_u);
515 if (*ret < 0)
516 break;
517 }
518
519 if (td->flags & TD_F_REGROW_LOGS)
520 regrow_logs(td);
521
522 /*
523 * when doing I/O (not when verifying),
524 * check for any errors that are to be ignored
525 */
526 if (!from_verify)
527 break;
528
529 return 0;
530 case FIO_Q_QUEUED:
531 /*
532 * if the engine doesn't have a commit hook,
533 * the io_u is really queued. if it does have such
534 * a hook, it has to call io_u_queued() itself.
535 */
536 if (td->io_ops->commit == NULL)
537 io_u_queued(td, io_u);
538 if (bytes_issued)
539 *bytes_issued += io_u->xfer_buflen;
540 break;
541 case FIO_Q_BUSY:
542 if (!from_verify)
543 unlog_io_piece(td, io_u);
544 requeue_io_u(td, &io_u);
545 ret2 = td_io_commit(td);
546 if (ret2 < 0)
547 *ret = ret2;
548 break;
549 default:
550 assert(*ret < 0);
551 td_verror(td, -(*ret), "td_io_queue");
552 break;
553 }
554
555 if (break_on_this_error(td, ddir, ret))
556 return 1;
557
558 return 0;
559}
560
561static inline bool io_in_polling(struct thread_data *td)
562{
563 return !td->o.iodepth_batch_complete_min &&
564 !td->o.iodepth_batch_complete_max;
565}
566/*
567 * Unlinks files from thread data fio_file structure
568 */
569static int unlink_all_files(struct thread_data *td)
570{
571 struct fio_file *f;
572 unsigned int i;
573 int ret = 0;
574
575 for_each_file(td, f, i) {
576 if (f->filetype != FIO_TYPE_FILE)
577 continue;
578 ret = td_io_unlink_file(td, f);
579 if (ret)
580 break;
581 }
582
583 if (ret)
584 td_verror(td, ret, "unlink_all_files");
585
586 return ret;
587}
588
589/*
590 * Check if io_u will overlap an in-flight IO in the queue
591 */
592static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
593{
594 bool overlap;
595 struct io_u *check_io_u;
596 unsigned long long x1, x2, y1, y2;
597 int i;
598
599 x1 = io_u->offset;
600 x2 = io_u->offset + io_u->buflen;
601 overlap = false;
602 io_u_qiter(q, check_io_u, i) {
603 if (check_io_u->flags & IO_U_F_FLIGHT) {
604 y1 = check_io_u->offset;
605 y2 = check_io_u->offset + check_io_u->buflen;
606
607 if (x1 < y2 && y1 < x2) {
608 overlap = true;
609 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
610 x1, io_u->buflen,
611 y1, check_io_u->buflen);
612 break;
613 }
614 }
615 }
616
617 return overlap;
618}
619
620/*
621 * The main verify engine. Runs over the writes we previously submitted,
622 * reads the blocks back in, and checks the crc/md5 of the data.
623 */
624static void do_verify(struct thread_data *td, uint64_t verify_bytes)
625{
626 struct fio_file *f;
627 struct io_u *io_u;
628 int ret, min_events;
629 unsigned int i;
630
631 dprint(FD_VERIFY, "starting loop\n");
632
633 /*
634 * sync io first and invalidate cache, to make sure we really
635 * read from disk.
636 */
637 for_each_file(td, f, i) {
638 if (!fio_file_open(f))
639 continue;
640 if (fio_io_sync(td, f))
641 break;
642 if (file_invalidate_cache(td, f))
643 break;
644 }
645
646 check_update_rusage(td);
647
648 if (td->error)
649 return;
650
651 /*
652 * verify_state needs to be reset before verification
653 * proceeds so that expected random seeds match actual
654 * random seeds in headers. The main loop will reset
655 * all random number generators if randrepeat is set.
656 */
657 if (!td->o.rand_repeatable)
658 td_fill_verify_state_seed(td);
659
660 td_set_runstate(td, TD_VERIFYING);
661
662 io_u = NULL;
663 while (!td->terminate) {
664 enum fio_ddir ddir;
665 int full;
666
667 update_ts_cache(td);
668 check_update_rusage(td);
669
670 if (runtime_exceeded(td, &td->ts_cache)) {
671 __update_ts_cache(td);
672 if (runtime_exceeded(td, &td->ts_cache)) {
673 fio_mark_td_terminate(td);
674 break;
675 }
676 }
677
678 if (flow_threshold_exceeded(td))
679 continue;
680
681 if (!td->o.experimental_verify) {
682 io_u = __get_io_u(td);
683 if (!io_u)
684 break;
685
686 if (get_next_verify(td, io_u)) {
687 put_io_u(td, io_u);
688 break;
689 }
690
691 if (td_io_prep(td, io_u)) {
692 put_io_u(td, io_u);
693 break;
694 }
695 } else {
696 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
697 break;
698
699 while ((io_u = get_io_u(td)) != NULL) {
700 if (IS_ERR_OR_NULL(io_u)) {
701 io_u = NULL;
702 ret = FIO_Q_BUSY;
703 goto reap;
704 }
705
706 /*
707 * We are only interested in the places where
708 * we wrote or trimmed IOs. Turn those into
709 * reads for verification purposes.
710 */
711 if (io_u->ddir == DDIR_READ) {
712 /*
713 * Pretend we issued it for rwmix
714 * accounting
715 */
716 td->io_issues[DDIR_READ]++;
717 put_io_u(td, io_u);
718 continue;
719 } else if (io_u->ddir == DDIR_TRIM) {
720 io_u->ddir = DDIR_READ;
721 io_u_set(td, io_u, IO_U_F_TRIMMED);
722 break;
723 } else if (io_u->ddir == DDIR_WRITE) {
724 io_u->ddir = DDIR_READ;
725 break;
726 } else {
727 put_io_u(td, io_u);
728 continue;
729 }
730 }
731
732 if (!io_u)
733 break;
734 }
735
736 if (verify_state_should_stop(td, io_u)) {
737 put_io_u(td, io_u);
738 break;
739 }
740
741 if (td->o.verify_async)
742 io_u->end_io = verify_io_u_async;
743 else
744 io_u->end_io = verify_io_u;
745
746 ddir = io_u->ddir;
747 if (!td->o.disable_slat)
748 fio_gettime(&io_u->start_time, NULL);
749
750 if (td->o.serialize_overlap && td->cur_depth > 0) {
751 if (in_flight_overlap(&td->io_u_all, io_u))
752 ret = FIO_Q_BUSY;
753 else
754 ret = td_io_queue(td, io_u);
755 } else
756 ret = td_io_queue(td, io_u);
757
758 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
759 break;
760
761 /*
762 * if we can queue more, do so. but check if there are
763 * completed io_u's first. Note that we can get BUSY even
764 * without IO queued, if the system is resource starved.
765 */
766reap:
767 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
768 if (full || io_in_polling(td))
769 ret = wait_for_completions(td, NULL);
770
771 if (ret < 0)
772 break;
773 }
774
775 check_update_rusage(td);
776
777 if (!td->error) {
778 min_events = td->cur_depth;
779
780 if (min_events)
781 ret = io_u_queued_complete(td, min_events);
782 } else
783 cleanup_pending_aio(td);
784
785 td_set_runstate(td, TD_RUNNING);
786
787 dprint(FD_VERIFY, "exiting loop\n");
788}
789
790static bool exceeds_number_ios(struct thread_data *td)
791{
792 unsigned long long number_ios;
793
794 if (!td->o.number_ios)
795 return false;
796
797 number_ios = ddir_rw_sum(td->io_blocks);
798 number_ios += td->io_u_queued + td->io_u_in_flight;
799
800 return number_ios >= (td->o.number_ios * td->loops);
801}
802
803static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
804{
805 unsigned long long bytes, limit;
806
807 if (td_rw(td))
808 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
809 else if (td_write(td))
810 bytes = this_bytes[DDIR_WRITE];
811 else if (td_read(td))
812 bytes = this_bytes[DDIR_READ];
813 else
814 bytes = this_bytes[DDIR_TRIM];
815
816 if (td->o.io_size)
817 limit = td->o.io_size;
818 else
819 limit = td->o.size;
820
821 limit *= td->loops;
822 return bytes >= limit || exceeds_number_ios(td);
823}
824
825static bool io_issue_bytes_exceeded(struct thread_data *td)
826{
827 return io_bytes_exceeded(td, td->io_issue_bytes);
828}
829
830static bool io_complete_bytes_exceeded(struct thread_data *td)
831{
832 return io_bytes_exceeded(td, td->this_io_bytes);
833}
834
835/*
836 * used to calculate the next io time for rate control
837 *
838 */
839static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
840{
841 uint64_t secs, remainder, bps, bytes, iops;
842
843 assert(!(td->flags & TD_F_CHILD));
844 bytes = td->rate_io_issue_bytes[ddir];
845 bps = td->rate_bps[ddir];
846
847 if (td->o.rate_process == RATE_PROCESS_POISSON) {
848 uint64_t val;
849 iops = bps / td->o.bs[ddir];
850 val = (int64_t) (1000000 / iops) *
851 -logf(__rand_0_1(&td->poisson_state[ddir]));
852 if (val) {
853 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
854 (unsigned long long) 1000000 / val,
855 ddir);
856 }
857 td->last_usec[ddir] += val;
858 return td->last_usec[ddir];
859 } else if (bps) {
860 secs = bytes / bps;
861 remainder = bytes % bps;
862 return remainder * 1000000 / bps + secs * 1000000;
863 }
864
865 return 0;
866}
867
868/*
869 * Main IO worker function. It retrieves io_u's to process and queues
870 * and reaps them, checking for rate and errors along the way.
871 *
872 * Returns number of bytes written and trimmed.
873 */
874static void do_io(struct thread_data *td, uint64_t *bytes_done)
875{
876 unsigned int i;
877 int ret = 0;
878 uint64_t total_bytes, bytes_issued = 0;
879
880 for (i = 0; i < DDIR_RWDIR_CNT; i++)
881 bytes_done[i] = td->bytes_done[i];
882
883 if (in_ramp_time(td))
884 td_set_runstate(td, TD_RAMP);
885 else
886 td_set_runstate(td, TD_RUNNING);
887
888 lat_target_init(td);
889
890 total_bytes = td->o.size;
891 /*
892 * Allow random overwrite workloads to write up to io_size
893 * before starting verification phase as 'size' doesn't apply.
894 */
895 if (td_write(td) && td_random(td) && td->o.norandommap)
896 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
897 /*
898 * If verify_backlog is enabled, we'll run the verify in this
899 * handler as well. For that case, we may need up to twice the
900 * amount of bytes.
901 */
902 if (td->o.verify != VERIFY_NONE &&
903 (td_write(td) && td->o.verify_backlog))
904 total_bytes += td->o.size;
905
906 /* In trimwrite mode, each byte is trimmed and then written, so
907 * allow total_bytes to be twice as big */
908 if (td_trimwrite(td))
909 total_bytes += td->total_io_size;
910
911 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
912 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
913 td->o.time_based) {
914 struct timespec comp_time;
915 struct io_u *io_u;
916 int full;
917 enum fio_ddir ddir;
918
919 check_update_rusage(td);
920
921 if (td->terminate || td->done)
922 break;
923
924 update_ts_cache(td);
925
926 if (runtime_exceeded(td, &td->ts_cache)) {
927 __update_ts_cache(td);
928 if (runtime_exceeded(td, &td->ts_cache)) {
929 fio_mark_td_terminate(td);
930 break;
931 }
932 }
933
934 if (flow_threshold_exceeded(td))
935 continue;
936
937 /*
938 * Break if we exceeded the bytes. The exception is time
939 * based runs, but we still need to break out of the loop
940 * for those to run verification, if enabled.
941 */
942 if (bytes_issued >= total_bytes &&
943 (!td->o.time_based ||
944 (td->o.time_based && td->o.verify != VERIFY_NONE)))
945 break;
946
947 io_u = get_io_u(td);
948 if (IS_ERR_OR_NULL(io_u)) {
949 int err = PTR_ERR(io_u);
950
951 io_u = NULL;
952 if (err == -EBUSY) {
953 ret = FIO_Q_BUSY;
954 goto reap;
955 }
956 if (td->o.latency_target)
957 goto reap;
958 break;
959 }
960
961 ddir = io_u->ddir;
962
963 /*
964 * Add verification end_io handler if:
965 * - Asked to verify (!td_rw(td))
966 * - Or the io_u is from our verify list (mixed write/ver)
967 */
968 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
969 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
970
971 if (!td->o.verify_pattern_bytes) {
972 io_u->rand_seed = __rand(&td->verify_state);
973 if (sizeof(int) != sizeof(long *))
974 io_u->rand_seed *= __rand(&td->verify_state);
975 }
976
977 if (verify_state_should_stop(td, io_u)) {
978 put_io_u(td, io_u);
979 break;
980 }
981
982 if (td->o.verify_async)
983 io_u->end_io = verify_io_u_async;
984 else
985 io_u->end_io = verify_io_u;
986 td_set_runstate(td, TD_VERIFYING);
987 } else if (in_ramp_time(td))
988 td_set_runstate(td, TD_RAMP);
989 else
990 td_set_runstate(td, TD_RUNNING);
991
992 /*
993 * Always log IO before it's issued, so we know the specific
994 * order of it. The logged unit will track when the IO has
995 * completed.
996 */
997 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
998 td->o.do_verify &&
999 td->o.verify != VERIFY_NONE &&
1000 !td->o.experimental_verify)
1001 log_io_piece(td, io_u);
1002
1003 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1004 const unsigned long blen = io_u->xfer_buflen;
1005 const enum fio_ddir ddir = acct_ddir(io_u);
1006
1007 if (td->error)
1008 break;
1009
1010 workqueue_enqueue(&td->io_wq, &io_u->work);
1011 ret = FIO_Q_QUEUED;
1012
1013 if (ddir_rw(ddir)) {
1014 td->io_issues[ddir]++;
1015 td->io_issue_bytes[ddir] += blen;
1016 td->rate_io_issue_bytes[ddir] += blen;
1017 }
1018
1019 if (should_check_rate(td))
1020 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1021
1022 } else {
1023 if (td->o.serialize_overlap && td->cur_depth > 0) {
1024 if (in_flight_overlap(&td->io_u_all, io_u))
1025 ret = FIO_Q_BUSY;
1026 else
1027 ret = td_io_queue(td, io_u);
1028 } else
1029 ret = td_io_queue(td, io_u);
1030
1031 if (should_check_rate(td))
1032 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1033
1034 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1035 break;
1036
1037 /*
1038 * See if we need to complete some commands. Note that
1039 * we can get BUSY even without IO queued, if the
1040 * system is resource starved.
1041 */
1042reap:
1043 full = queue_full(td) ||
1044 (ret == FIO_Q_BUSY && td->cur_depth);
1045 if (full || io_in_polling(td))
1046 ret = wait_for_completions(td, &comp_time);
1047 }
1048 if (ret < 0)
1049 break;
1050 if (!ddir_rw_sum(td->bytes_done) &&
1051 !td_ioengine_flagged(td, FIO_NOIO))
1052 continue;
1053
1054 if (!in_ramp_time(td) && should_check_rate(td)) {
1055 if (check_min_rate(td, &comp_time)) {
1056 if (exitall_on_terminate || td->o.exitall_error)
1057 fio_terminate_threads(td->groupid);
1058 td_verror(td, EIO, "check_min_rate");
1059 break;
1060 }
1061 }
1062 if (!in_ramp_time(td) && td->o.latency_target)
1063 lat_target_check(td);
1064
1065 if (td->o.thinktime) {
1066 unsigned long long b;
1067
1068 b = ddir_rw_sum(td->io_blocks);
1069 if (!(b % td->o.thinktime_blocks)) {
1070 int left;
1071
1072 io_u_quiesce(td);
1073
1074 if (td->o.thinktime_spin)
1075 usec_spin(td->o.thinktime_spin);
1076
1077 left = td->o.thinktime - td->o.thinktime_spin;
1078 if (left)
1079 usec_sleep(td, left);
1080 }
1081 }
1082 }
1083
1084 check_update_rusage(td);
1085
1086 if (td->trim_entries)
1087 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1088
1089 if (td->o.fill_device && td->error == ENOSPC) {
1090 td->error = 0;
1091 fio_mark_td_terminate(td);
1092 }
1093 if (!td->error) {
1094 struct fio_file *f;
1095
1096 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1097 workqueue_flush(&td->io_wq);
1098 i = 0;
1099 } else
1100 i = td->cur_depth;
1101
1102 if (i) {
1103 ret = io_u_queued_complete(td, i);
1104 if (td->o.fill_device && td->error == ENOSPC)
1105 td->error = 0;
1106 }
1107
1108 if (should_fsync(td) && td->o.end_fsync) {
1109 td_set_runstate(td, TD_FSYNCING);
1110
1111 for_each_file(td, f, i) {
1112 if (!fio_file_fsync(td, f))
1113 continue;
1114
1115 log_err("fio: end_fsync failed for file %s\n",
1116 f->file_name);
1117 }
1118 }
1119 } else
1120 cleanup_pending_aio(td);
1121
1122 /*
1123 * stop job if we failed doing any IO
1124 */
1125 if (!ddir_rw_sum(td->this_io_bytes))
1126 td->done = 1;
1127
1128 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1129 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1130}
1131
1132static void free_file_completion_logging(struct thread_data *td)
1133{
1134 struct fio_file *f;
1135 unsigned int i;
1136
1137 for_each_file(td, f, i) {
1138 if (!f->last_write_comp)
1139 break;
1140 sfree(f->last_write_comp);
1141 }
1142}
1143
1144static int init_file_completion_logging(struct thread_data *td,
1145 unsigned int depth)
1146{
1147 struct fio_file *f;
1148 unsigned int i;
1149
1150 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1151 return 0;
1152
1153 for_each_file(td, f, i) {
1154 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1155 if (!f->last_write_comp)
1156 goto cleanup;
1157 }
1158
1159 return 0;
1160
1161cleanup:
1162 free_file_completion_logging(td);
1163 log_err("fio: failed to alloc write comp data\n");
1164 return 1;
1165}
1166
1167static void cleanup_io_u(struct thread_data *td)
1168{
1169 struct io_u *io_u;
1170
1171 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1172
1173 if (td->io_ops->io_u_free)
1174 td->io_ops->io_u_free(td, io_u);
1175
1176 fio_memfree(io_u, sizeof(*io_u));
1177 }
1178
1179 free_io_mem(td);
1180
1181 io_u_rexit(&td->io_u_requeues);
1182 io_u_qexit(&td->io_u_freelist);
1183 io_u_qexit(&td->io_u_all);
1184
1185 free_file_completion_logging(td);
1186}
1187
1188static int init_io_u(struct thread_data *td)
1189{
1190 struct io_u *io_u;
1191 unsigned int max_bs, min_write;
1192 int cl_align, i, max_units;
1193 int data_xfer = 1, err;
1194 char *p;
1195
1196 max_units = td->o.iodepth;
1197 max_bs = td_max_bs(td);
1198 min_write = td->o.min_bs[DDIR_WRITE];
1199 td->orig_buffer_size = (unsigned long long) max_bs
1200 * (unsigned long long) max_units;
1201
1202 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1203 data_xfer = 0;
1204
1205 err = 0;
1206 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1207 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1208 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1209
1210 if (err) {
1211 log_err("fio: failed setting up IO queues\n");
1212 return 1;
1213 }
1214
1215 /*
1216 * if we may later need to do address alignment, then add any
1217 * possible adjustment here so that we don't cause a buffer
1218 * overflow later. this adjustment may be too much if we get
1219 * lucky and the allocator gives us an aligned address.
1220 */
1221 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1222 td_ioengine_flagged(td, FIO_RAWIO))
1223 td->orig_buffer_size += page_mask + td->o.mem_align;
1224
1225 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1226 unsigned long bs;
1227
1228 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1229 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1230 }
1231
1232 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1233 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1234 return 1;
1235 }
1236
1237 if (data_xfer && allocate_io_mem(td))
1238 return 1;
1239
1240 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1241 td_ioengine_flagged(td, FIO_RAWIO))
1242 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1243 else
1244 p = td->orig_buffer;
1245
1246 cl_align = os_cache_line_size();
1247
1248 for (i = 0; i < max_units; i++) {
1249 void *ptr;
1250
1251 if (td->terminate)
1252 return 1;
1253
1254 ptr = fio_memalign(cl_align, sizeof(*io_u));
1255 if (!ptr) {
1256 log_err("fio: unable to allocate aligned memory\n");
1257 break;
1258 }
1259
1260 io_u = ptr;
1261 memset(io_u, 0, sizeof(*io_u));
1262 INIT_FLIST_HEAD(&io_u->verify_list);
1263 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1264
1265 if (data_xfer) {
1266 io_u->buf = p;
1267 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1268
1269 if (td_write(td))
1270 io_u_fill_buffer(td, io_u, min_write, max_bs);
1271 if (td_write(td) && td->o.verify_pattern_bytes) {
1272 /*
1273 * Fill the buffer with the pattern if we are
1274 * going to be doing writes.
1275 */
1276 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1277 }
1278 }
1279
1280 io_u->index = i;
1281 io_u->flags = IO_U_F_FREE;
1282 io_u_qpush(&td->io_u_freelist, io_u);
1283
1284 /*
1285 * io_u never leaves this stack, used for iteration of all
1286 * io_u buffers.
1287 */
1288 io_u_qpush(&td->io_u_all, io_u);
1289
1290 if (td->io_ops->io_u_init) {
1291 int ret = td->io_ops->io_u_init(td, io_u);
1292
1293 if (ret) {
1294 log_err("fio: failed to init engine data: %d\n", ret);
1295 return 1;
1296 }
1297 }
1298
1299 p += max_bs;
1300 }
1301
1302 if (init_file_completion_logging(td, max_units))
1303 return 1;
1304
1305 return 0;
1306}
1307
1308/*
1309 * This function is Linux specific.
1310 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1311 */
1312static int switch_ioscheduler(struct thread_data *td)
1313{
1314#ifdef FIO_HAVE_IOSCHED_SWITCH
1315 char tmp[256], tmp2[128];
1316 FILE *f;
1317 int ret;
1318
1319 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1320 return 0;
1321
1322 assert(td->files && td->files[0]);
1323 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1324
1325 f = fopen(tmp, "r+");
1326 if (!f) {
1327 if (errno == ENOENT) {
1328 log_err("fio: os or kernel doesn't support IO scheduler"
1329 " switching\n");
1330 return 0;
1331 }
1332 td_verror(td, errno, "fopen iosched");
1333 return 1;
1334 }
1335
1336 /*
1337 * Set io scheduler.
1338 */
1339 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1340 if (ferror(f) || ret != 1) {
1341 td_verror(td, errno, "fwrite");
1342 fclose(f);
1343 return 1;
1344 }
1345
1346 rewind(f);
1347
1348 /*
1349 * Read back and check that the selected scheduler is now the default.
1350 */
1351 memset(tmp, 0, sizeof(tmp));
1352 ret = fread(tmp, sizeof(tmp), 1, f);
1353 if (ferror(f) || ret < 0) {
1354 td_verror(td, errno, "fread");
1355 fclose(f);
1356 return 1;
1357 }
1358 /*
1359 * either a list of io schedulers or "none\n" is expected.
1360 */
1361 tmp[strlen(tmp) - 1] = '\0';
1362
1363 /*
1364 * Write to "none" entry doesn't fail, so check the result here.
1365 */
1366 if (!strcmp(tmp, "none")) {
1367 log_err("fio: io scheduler is not tunable\n");
1368 fclose(f);
1369 return 0;
1370 }
1371
1372 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1373 if (!strstr(tmp, tmp2)) {
1374 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1375 td_verror(td, EINVAL, "iosched_switch");
1376 fclose(f);
1377 return 1;
1378 }
1379
1380 fclose(f);
1381 return 0;
1382#else
1383 return 0;
1384#endif
1385}
1386
1387static bool keep_running(struct thread_data *td)
1388{
1389 unsigned long long limit;
1390
1391 if (td->done)
1392 return false;
1393 if (td->o.time_based)
1394 return true;
1395 if (td->o.loops) {
1396 td->o.loops--;
1397 return true;
1398 }
1399 if (exceeds_number_ios(td))
1400 return false;
1401
1402 if (td->o.io_size)
1403 limit = td->o.io_size;
1404 else
1405 limit = td->o.size;
1406
1407 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1408 uint64_t diff;
1409
1410 /*
1411 * If the difference is less than the maximum IO size, we
1412 * are done.
1413 */
1414 diff = limit - ddir_rw_sum(td->io_bytes);
1415 if (diff < td_max_bs(td))
1416 return false;
1417
1418 if (fio_files_done(td) && !td->o.io_size)
1419 return false;
1420
1421 return true;
1422 }
1423
1424 return false;
1425}
1426
1427static int exec_string(struct thread_options *o, const char *string, const char *mode)
1428{
1429 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1430 int ret;
1431 char *str;
1432
1433 str = malloc(newlen);
1434 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1435
1436 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1437 ret = system(str);
1438 if (ret == -1)
1439 log_err("fio: exec of cmd <%s> failed\n", str);
1440
1441 free(str);
1442 return ret;
1443}
1444
1445/*
1446 * Dry run to compute correct state of numberio for verification.
1447 */
1448static uint64_t do_dry_run(struct thread_data *td)
1449{
1450 td_set_runstate(td, TD_RUNNING);
1451
1452 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1453 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1454 struct io_u *io_u;
1455 int ret;
1456
1457 if (td->terminate || td->done)
1458 break;
1459
1460 io_u = get_io_u(td);
1461 if (IS_ERR_OR_NULL(io_u))
1462 break;
1463
1464 io_u_set(td, io_u, IO_U_F_FLIGHT);
1465 io_u->error = 0;
1466 io_u->resid = 0;
1467 if (ddir_rw(acct_ddir(io_u)))
1468 td->io_issues[acct_ddir(io_u)]++;
1469 if (ddir_rw(io_u->ddir)) {
1470 io_u_mark_depth(td, 1);
1471 td->ts.total_io_u[io_u->ddir]++;
1472 }
1473
1474 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1475 td->o.do_verify &&
1476 td->o.verify != VERIFY_NONE &&
1477 !td->o.experimental_verify)
1478 log_io_piece(td, io_u);
1479
1480 ret = io_u_sync_complete(td, io_u);
1481 (void) ret;
1482 }
1483
1484 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1485}
1486
1487struct fork_data {
1488 struct thread_data *td;
1489 struct sk_out *sk_out;
1490};
1491
1492/*
1493 * Entry point for the thread based jobs. The process based jobs end up
1494 * here as well, after a little setup.
1495 */
1496static void *thread_main(void *data)
1497{
1498 struct fork_data *fd = data;
1499 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1500 struct thread_data *td = fd->td;
1501 struct thread_options *o = &td->o;
1502 struct sk_out *sk_out = fd->sk_out;
1503 uint64_t bytes_done[DDIR_RWDIR_CNT];
1504 int deadlock_loop_cnt;
1505 int clear_state;
1506 int ret;
1507
1508 sk_out_assign(sk_out);
1509 free(fd);
1510
1511 if (!o->use_thread) {
1512 setsid();
1513 td->pid = getpid();
1514 } else
1515 td->pid = gettid();
1516
1517 fio_local_clock_init(o->use_thread);
1518
1519 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1520
1521 if (is_backend)
1522 fio_server_send_start(td);
1523
1524 INIT_FLIST_HEAD(&td->io_log_list);
1525 INIT_FLIST_HEAD(&td->io_hist_list);
1526 INIT_FLIST_HEAD(&td->verify_list);
1527 INIT_FLIST_HEAD(&td->trim_list);
1528 INIT_FLIST_HEAD(&td->next_rand_list);
1529 td->io_hist_tree = RB_ROOT;
1530
1531 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1532 if (ret) {
1533 td_verror(td, ret, "mutex_cond_init_pshared");
1534 goto err;
1535 }
1536 ret = cond_init_pshared(&td->verify_cond);
1537 if (ret) {
1538 td_verror(td, ret, "mutex_cond_pshared");
1539 goto err;
1540 }
1541
1542 td_set_runstate(td, TD_INITIALIZED);
1543 dprint(FD_MUTEX, "up startup_mutex\n");
1544 fio_mutex_up(startup_mutex);
1545 dprint(FD_MUTEX, "wait on td->mutex\n");
1546 fio_mutex_down(td->mutex);
1547 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1548
1549 /*
1550 * A new gid requires privilege, so we need to do this before setting
1551 * the uid.
1552 */
1553 if (o->gid != -1U && setgid(o->gid)) {
1554 td_verror(td, errno, "setgid");
1555 goto err;
1556 }
1557 if (o->uid != -1U && setuid(o->uid)) {
1558 td_verror(td, errno, "setuid");
1559 goto err;
1560 }
1561
1562 /*
1563 * Do this early, we don't want the compress threads to be limited
1564 * to the same CPUs as the IO workers. So do this before we set
1565 * any potential CPU affinity
1566 */
1567 if (iolog_compress_init(td, sk_out))
1568 goto err;
1569
1570 /*
1571 * If we have a gettimeofday() thread, make sure we exclude that
1572 * thread from this job
1573 */
1574 if (o->gtod_cpu)
1575 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1576
1577 /*
1578 * Set affinity first, in case it has an impact on the memory
1579 * allocations.
1580 */
1581 if (fio_option_is_set(o, cpumask)) {
1582 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1583 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1584 if (!ret) {
1585 log_err("fio: no CPUs set\n");
1586 log_err("fio: Try increasing number of available CPUs\n");
1587 td_verror(td, EINVAL, "cpus_split");
1588 goto err;
1589 }
1590 }
1591 ret = fio_setaffinity(td->pid, o->cpumask);
1592 if (ret == -1) {
1593 td_verror(td, errno, "cpu_set_affinity");
1594 goto err;
1595 }
1596 }
1597
1598#ifdef CONFIG_LIBNUMA
1599 /* numa node setup */
1600 if (fio_option_is_set(o, numa_cpunodes) ||
1601 fio_option_is_set(o, numa_memnodes)) {
1602 struct bitmask *mask;
1603
1604 if (numa_available() < 0) {
1605 td_verror(td, errno, "Does not support NUMA API\n");
1606 goto err;
1607 }
1608
1609 if (fio_option_is_set(o, numa_cpunodes)) {
1610 mask = numa_parse_nodestring(o->numa_cpunodes);
1611 ret = numa_run_on_node_mask(mask);
1612 numa_free_nodemask(mask);
1613 if (ret == -1) {
1614 td_verror(td, errno, \
1615 "numa_run_on_node_mask failed\n");
1616 goto err;
1617 }
1618 }
1619
1620 if (fio_option_is_set(o, numa_memnodes)) {
1621 mask = NULL;
1622 if (o->numa_memnodes)
1623 mask = numa_parse_nodestring(o->numa_memnodes);
1624
1625 switch (o->numa_mem_mode) {
1626 case MPOL_INTERLEAVE:
1627 numa_set_interleave_mask(mask);
1628 break;
1629 case MPOL_BIND:
1630 numa_set_membind(mask);
1631 break;
1632 case MPOL_LOCAL:
1633 numa_set_localalloc();
1634 break;
1635 case MPOL_PREFERRED:
1636 numa_set_preferred(o->numa_mem_prefer_node);
1637 break;
1638 case MPOL_DEFAULT:
1639 default:
1640 break;
1641 }
1642
1643 if (mask)
1644 numa_free_nodemask(mask);
1645
1646 }
1647 }
1648#endif
1649
1650 if (fio_pin_memory(td))
1651 goto err;
1652
1653 /*
1654 * May alter parameters that init_io_u() will use, so we need to
1655 * do this first.
1656 */
1657 if (init_iolog(td))
1658 goto err;
1659
1660 if (init_io_u(td))
1661 goto err;
1662
1663 if (o->verify_async && verify_async_init(td))
1664 goto err;
1665
1666 if (fio_option_is_set(o, ioprio) ||
1667 fio_option_is_set(o, ioprio_class)) {
1668 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1669 if (ret == -1) {
1670 td_verror(td, errno, "ioprio_set");
1671 goto err;
1672 }
1673 }
1674
1675 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1676 goto err;
1677
1678 errno = 0;
1679 if (nice(o->nice) == -1 && errno != 0) {
1680 td_verror(td, errno, "nice");
1681 goto err;
1682 }
1683
1684 if (o->ioscheduler && switch_ioscheduler(td))
1685 goto err;
1686
1687 if (!o->create_serialize && setup_files(td))
1688 goto err;
1689
1690 if (td_io_init(td))
1691 goto err;
1692
1693 if (init_random_map(td))
1694 goto err;
1695
1696 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1697 goto err;
1698
1699 if (o->pre_read) {
1700 if (pre_read_files(td) < 0)
1701 goto err;
1702 }
1703
1704 fio_verify_init(td);
1705
1706 if (rate_submit_init(td, sk_out))
1707 goto err;
1708
1709 set_epoch_time(td, o->log_unix_epoch);
1710 fio_getrusage(&td->ru_start);
1711 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1712 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1713 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1714
1715 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1716 o->ratemin[DDIR_TRIM]) {
1717 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1718 sizeof(td->bw_sample_time));
1719 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1720 sizeof(td->bw_sample_time));
1721 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1722 sizeof(td->bw_sample_time));
1723 }
1724
1725 memset(bytes_done, 0, sizeof(bytes_done));
1726 clear_state = 0;
1727
1728 while (keep_running(td)) {
1729 uint64_t verify_bytes;
1730
1731 fio_gettime(&td->start, NULL);
1732 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1733
1734 if (clear_state) {
1735 clear_io_state(td, 0);
1736
1737 if (o->unlink_each_loop && unlink_all_files(td))
1738 break;
1739 }
1740
1741 prune_io_piece_log(td);
1742
1743 if (td->o.verify_only && td_write(td))
1744 verify_bytes = do_dry_run(td);
1745 else {
1746 do_io(td, bytes_done);
1747
1748 if (!ddir_rw_sum(bytes_done)) {
1749 fio_mark_td_terminate(td);
1750 verify_bytes = 0;
1751 } else {
1752 verify_bytes = bytes_done[DDIR_WRITE] +
1753 bytes_done[DDIR_TRIM];
1754 }
1755 }
1756
1757 /*
1758 * If we took too long to shut down, the main thread could
1759 * already consider us reaped/exited. If that happens, break
1760 * out and clean up.
1761 */
1762 if (td->runstate >= TD_EXITED)
1763 break;
1764
1765 clear_state = 1;
1766
1767 /*
1768 * Make sure we've successfully updated the rusage stats
1769 * before waiting on the stat mutex. Otherwise we could have
1770 * the stat thread holding stat mutex and waiting for
1771 * the rusage_sem, which would never get upped because
1772 * this thread is waiting for the stat mutex.
1773 */
1774 deadlock_loop_cnt = 0;
1775 do {
1776 check_update_rusage(td);
1777 if (!fio_mutex_down_trylock(stat_mutex))
1778 break;
1779 usleep(1000);
1780 if (deadlock_loop_cnt++ > 5000) {
1781 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1782 td->error = EDEADLK;
1783 goto err;
1784 }
1785 } while (1);
1786
1787 if (td_read(td) && td->io_bytes[DDIR_READ])
1788 update_runtime(td, elapsed_us, DDIR_READ);
1789 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1790 update_runtime(td, elapsed_us, DDIR_WRITE);
1791 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1792 update_runtime(td, elapsed_us, DDIR_TRIM);
1793 fio_gettime(&td->start, NULL);
1794 fio_mutex_up(stat_mutex);
1795
1796 if (td->error || td->terminate)
1797 break;
1798
1799 if (!o->do_verify ||
1800 o->verify == VERIFY_NONE ||
1801 td_ioengine_flagged(td, FIO_UNIDIR))
1802 continue;
1803
1804 clear_io_state(td, 0);
1805
1806 fio_gettime(&td->start, NULL);
1807
1808 do_verify(td, verify_bytes);
1809
1810 /*
1811 * See comment further up for why this is done here.
1812 */
1813 check_update_rusage(td);
1814
1815 fio_mutex_down(stat_mutex);
1816 update_runtime(td, elapsed_us, DDIR_READ);
1817 fio_gettime(&td->start, NULL);
1818 fio_mutex_up(stat_mutex);
1819
1820 if (td->error || td->terminate)
1821 break;
1822 }
1823
1824 /*
1825 * If td ended up with no I/O when it should have had,
1826 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1827 * (Are we not missing other flags that can be ignored ?)
1828 */
1829 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1830 !(td_ioengine_flagged(td, FIO_NOIO) ||
1831 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1832 log_err("%s: No I/O performed by %s, "
1833 "perhaps try --debug=io option for details?\n",
1834 td->o.name, td->io_ops->name);
1835
1836 td_set_runstate(td, TD_FINISHING);
1837
1838 update_rusage_stat(td);
1839 td->ts.total_run_time = mtime_since_now(&td->epoch);
1840 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1841 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1842 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1843
1844 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1845 (td->o.verify != VERIFY_NONE && td_write(td)))
1846 verify_save_state(td->thread_number);
1847
1848 fio_unpin_memory(td);
1849
1850 td_writeout_logs(td, true);
1851
1852 iolog_compress_exit(td);
1853 rate_submit_exit(td);
1854
1855 if (o->exec_postrun)
1856 exec_string(o, o->exec_postrun, (const char *)"postrun");
1857
1858 if (exitall_on_terminate || (o->exitall_error && td->error))
1859 fio_terminate_threads(td->groupid);
1860
1861err:
1862 if (td->error)
1863 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1864 td->verror);
1865
1866 if (o->verify_async)
1867 verify_async_exit(td);
1868
1869 close_and_free_files(td);
1870 cleanup_io_u(td);
1871 close_ioengine(td);
1872 cgroup_shutdown(td, &cgroup_mnt);
1873 verify_free_state(td);
1874
1875 if (td->zone_state_index) {
1876 int i;
1877
1878 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1879 free(td->zone_state_index[i]);
1880 free(td->zone_state_index);
1881 td->zone_state_index = NULL;
1882 }
1883
1884 if (fio_option_is_set(o, cpumask)) {
1885 ret = fio_cpuset_exit(&o->cpumask);
1886 if (ret)
1887 td_verror(td, ret, "fio_cpuset_exit");
1888 }
1889
1890 /*
1891 * do this very late, it will log file closing as well
1892 */
1893 if (o->write_iolog_file)
1894 write_iolog_close(td);
1895
1896 td_set_runstate(td, TD_EXITED);
1897
1898 /*
1899 * Do this last after setting our runstate to exited, so we
1900 * know that the stat thread is signaled.
1901 */
1902 check_update_rusage(td);
1903
1904 sk_out_drop();
1905 return (void *) (uintptr_t) td->error;
1906}
1907
1908/*
1909 * Run over the job map and reap the threads that have exited, if any.
1910 */
1911static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1912 uint64_t *m_rate)
1913{
1914 struct thread_data *td;
1915 unsigned int cputhreads, realthreads, pending;
1916 int i, status, ret;
1917
1918 /*
1919 * reap exited threads (TD_EXITED -> TD_REAPED)
1920 */
1921 realthreads = pending = cputhreads = 0;
1922 for_each_td(td, i) {
1923 int flags = 0;
1924
1925 /*
1926 * ->io_ops is NULL for a thread that has closed its
1927 * io engine
1928 */
1929 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1930 cputhreads++;
1931 else
1932 realthreads++;
1933
1934 if (!td->pid) {
1935 pending++;
1936 continue;
1937 }
1938 if (td->runstate == TD_REAPED)
1939 continue;
1940 if (td->o.use_thread) {
1941 if (td->runstate == TD_EXITED) {
1942 td_set_runstate(td, TD_REAPED);
1943 goto reaped;
1944 }
1945 continue;
1946 }
1947
1948 flags = WNOHANG;
1949 if (td->runstate == TD_EXITED)
1950 flags = 0;
1951
1952 /*
1953 * check if someone quit or got killed in an unusual way
1954 */
1955 ret = waitpid(td->pid, &status, flags);
1956 if (ret < 0) {
1957 if (errno == ECHILD) {
1958 log_err("fio: pid=%d disappeared %d\n",
1959 (int) td->pid, td->runstate);
1960 td->sig = ECHILD;
1961 td_set_runstate(td, TD_REAPED);
1962 goto reaped;
1963 }
1964 perror("waitpid");
1965 } else if (ret == td->pid) {
1966 if (WIFSIGNALED(status)) {
1967 int sig = WTERMSIG(status);
1968
1969 if (sig != SIGTERM && sig != SIGUSR2)
1970 log_err("fio: pid=%d, got signal=%d\n",
1971 (int) td->pid, sig);
1972 td->sig = sig;
1973 td_set_runstate(td, TD_REAPED);
1974 goto reaped;
1975 }
1976 if (WIFEXITED(status)) {
1977 if (WEXITSTATUS(status) && !td->error)
1978 td->error = WEXITSTATUS(status);
1979
1980 td_set_runstate(td, TD_REAPED);
1981 goto reaped;
1982 }
1983 }
1984
1985 /*
1986 * If the job is stuck, do a forceful timeout of it and
1987 * move on.
1988 */
1989 if (td->terminate &&
1990 td->runstate < TD_FSYNCING &&
1991 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1992 log_err("fio: job '%s' (state=%d) hasn't exited in "
1993 "%lu seconds, it appears to be stuck. Doing "
1994 "forceful exit of this job.\n",
1995 td->o.name, td->runstate,
1996 (unsigned long) time_since_now(&td->terminate_time));
1997 td_set_runstate(td, TD_REAPED);
1998 goto reaped;
1999 }
2000
2001 /*
2002 * thread is not dead, continue
2003 */
2004 pending++;
2005 continue;
2006reaped:
2007 (*nr_running)--;
2008 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2009 (*t_rate) -= ddir_rw_sum(td->o.rate);
2010 if (!td->pid)
2011 pending--;
2012
2013 if (td->error)
2014 exit_value++;
2015
2016 done_secs += mtime_since_now(&td->epoch) / 1000;
2017 profile_td_exit(td);
2018 }
2019
2020 if (*nr_running == cputhreads && !pending && realthreads)
2021 fio_terminate_threads(TERMINATE_ALL);
2022}
2023
2024static bool __check_trigger_file(void)
2025{
2026 struct stat sb;
2027
2028 if (!trigger_file)
2029 return false;
2030
2031 if (stat(trigger_file, &sb))
2032 return false;
2033
2034 if (unlink(trigger_file) < 0)
2035 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2036 strerror(errno));
2037
2038 return true;
2039}
2040
2041static bool trigger_timedout(void)
2042{
2043 if (trigger_timeout)
2044 return time_since_genesis() >= trigger_timeout;
2045
2046 return false;
2047}
2048
2049void exec_trigger(const char *cmd)
2050{
2051 int ret;
2052
2053 if (!cmd)
2054 return;
2055
2056 ret = system(cmd);
2057 if (ret == -1)
2058 log_err("fio: failed executing %s trigger\n", cmd);
2059}
2060
2061void check_trigger_file(void)
2062{
2063 if (__check_trigger_file() || trigger_timedout()) {
2064 if (nr_clients)
2065 fio_clients_send_trigger(trigger_remote_cmd);
2066 else {
2067 verify_save_state(IO_LIST_ALL);
2068 fio_terminate_threads(TERMINATE_ALL);
2069 exec_trigger(trigger_cmd);
2070 }
2071 }
2072}
2073
2074static int fio_verify_load_state(struct thread_data *td)
2075{
2076 int ret;
2077
2078 if (!td->o.verify_state)
2079 return 0;
2080
2081 if (is_backend) {
2082 void *data;
2083
2084 ret = fio_server_get_verify_state(td->o.name,
2085 td->thread_number - 1, &data);
2086 if (!ret)
2087 verify_assign_state(td, data);
2088 } else
2089 ret = verify_load_state(td, "local");
2090
2091 return ret;
2092}
2093
2094static void do_usleep(unsigned int usecs)
2095{
2096 check_for_running_stats();
2097 check_trigger_file();
2098 usleep(usecs);
2099}
2100
2101static bool check_mount_writes(struct thread_data *td)
2102{
2103 struct fio_file *f;
2104 unsigned int i;
2105
2106 if (!td_write(td) || td->o.allow_mounted_write)
2107 return false;
2108
2109 /*
2110 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2111 * are mkfs'd and mounted.
2112 */
2113 for_each_file(td, f, i) {
2114#ifdef FIO_HAVE_CHARDEV_SIZE
2115 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2116#else
2117 if (f->filetype != FIO_TYPE_BLOCK)
2118#endif
2119 continue;
2120 if (device_is_mounted(f->file_name))
2121 goto mounted;
2122 }
2123
2124 return false;
2125mounted:
2126 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2127 return true;
2128}
2129
2130static bool waitee_running(struct thread_data *me)
2131{
2132 const char *waitee = me->o.wait_for;
2133 const char *self = me->o.name;
2134 struct thread_data *td;
2135 int i;
2136
2137 if (!waitee)
2138 return false;
2139
2140 for_each_td(td, i) {
2141 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2142 continue;
2143
2144 if (td->runstate < TD_EXITED) {
2145 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2146 self, td->o.name,
2147 runstate_to_name(td->runstate));
2148 return true;
2149 }
2150 }
2151
2152 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2153 return false;
2154}
2155
2156/*
2157 * Main function for kicking off and reaping jobs, as needed.
2158 */
2159static void run_threads(struct sk_out *sk_out)
2160{
2161 struct thread_data *td;
2162 unsigned int i, todo, nr_running, nr_started;
2163 uint64_t m_rate, t_rate;
2164 uint64_t spent;
2165
2166 if (fio_gtod_offload && fio_start_gtod_thread())
2167 return;
2168
2169 fio_idle_prof_init();
2170
2171 set_sig_handlers();
2172
2173 nr_thread = nr_process = 0;
2174 for_each_td(td, i) {
2175 if (check_mount_writes(td))
2176 return;
2177 if (td->o.use_thread)
2178 nr_thread++;
2179 else
2180 nr_process++;
2181 }
2182
2183 if (output_format & FIO_OUTPUT_NORMAL) {
2184 log_info("Starting ");
2185 if (nr_thread)
2186 log_info("%d thread%s", nr_thread,
2187 nr_thread > 1 ? "s" : "");
2188 if (nr_process) {
2189 if (nr_thread)
2190 log_info(" and ");
2191 log_info("%d process%s", nr_process,
2192 nr_process > 1 ? "es" : "");
2193 }
2194 log_info("\n");
2195 log_info_flush();
2196 }
2197
2198 todo = thread_number;
2199 nr_running = 0;
2200 nr_started = 0;
2201 m_rate = t_rate = 0;
2202
2203 for_each_td(td, i) {
2204 print_status_init(td->thread_number - 1);
2205
2206 if (!td->o.create_serialize)
2207 continue;
2208
2209 if (fio_verify_load_state(td))
2210 goto reap;
2211
2212 /*
2213 * do file setup here so it happens sequentially,
2214 * we don't want X number of threads getting their
2215 * client data interspersed on disk
2216 */
2217 if (setup_files(td)) {
2218reap:
2219 exit_value++;
2220 if (td->error)
2221 log_err("fio: pid=%d, err=%d/%s\n",
2222 (int) td->pid, td->error, td->verror);
2223 td_set_runstate(td, TD_REAPED);
2224 todo--;
2225 } else {
2226 struct fio_file *f;
2227 unsigned int j;
2228
2229 /*
2230 * for sharing to work, each job must always open
2231 * its own files. so close them, if we opened them
2232 * for creation
2233 */
2234 for_each_file(td, f, j) {
2235 if (fio_file_open(f))
2236 td_io_close_file(td, f);
2237 }
2238 }
2239 }
2240
2241 /* start idle threads before io threads start to run */
2242 fio_idle_prof_start();
2243
2244 set_genesis_time();
2245
2246 while (todo) {
2247 struct thread_data *map[REAL_MAX_JOBS];
2248 struct timespec this_start;
2249 int this_jobs = 0, left;
2250 struct fork_data *fd;
2251
2252 /*
2253 * create threads (TD_NOT_CREATED -> TD_CREATED)
2254 */
2255 for_each_td(td, i) {
2256 if (td->runstate != TD_NOT_CREATED)
2257 continue;
2258
2259 /*
2260 * never got a chance to start, killed by other
2261 * thread for some reason
2262 */
2263 if (td->terminate) {
2264 todo--;
2265 continue;
2266 }
2267
2268 if (td->o.start_delay) {
2269 spent = utime_since_genesis();
2270
2271 if (td->o.start_delay > spent)
2272 continue;
2273 }
2274
2275 if (td->o.stonewall && (nr_started || nr_running)) {
2276 dprint(FD_PROCESS, "%s: stonewall wait\n",
2277 td->o.name);
2278 break;
2279 }
2280
2281 if (waitee_running(td)) {
2282 dprint(FD_PROCESS, "%s: waiting for %s\n",
2283 td->o.name, td->o.wait_for);
2284 continue;
2285 }
2286
2287 init_disk_util(td);
2288
2289 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2290 td->update_rusage = 0;
2291
2292 /*
2293 * Set state to created. Thread will transition
2294 * to TD_INITIALIZED when it's done setting up.
2295 */
2296 td_set_runstate(td, TD_CREATED);
2297 map[this_jobs++] = td;
2298 nr_started++;
2299
2300 fd = calloc(1, sizeof(*fd));
2301 fd->td = td;
2302 fd->sk_out = sk_out;
2303
2304 if (td->o.use_thread) {
2305 int ret;
2306
2307 dprint(FD_PROCESS, "will pthread_create\n");
2308 ret = pthread_create(&td->thread, NULL,
2309 thread_main, fd);
2310 if (ret) {
2311 log_err("pthread_create: %s\n",
2312 strerror(ret));
2313 free(fd);
2314 nr_started--;
2315 break;
2316 }
2317 ret = pthread_detach(td->thread);
2318 if (ret)
2319 log_err("pthread_detach: %s",
2320 strerror(ret));
2321 } else {
2322 pid_t pid;
2323 dprint(FD_PROCESS, "will fork\n");
2324 pid = fork();
2325 if (!pid) {
2326 int ret;
2327
2328 ret = (int)(uintptr_t)thread_main(fd);
2329 _exit(ret);
2330 } else if (i == fio_debug_jobno)
2331 *fio_debug_jobp = pid;
2332 }
2333 dprint(FD_MUTEX, "wait on startup_mutex\n");
2334 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2335 log_err("fio: job startup hung? exiting.\n");
2336 fio_terminate_threads(TERMINATE_ALL);
2337 fio_abort = 1;
2338 nr_started--;
2339 break;
2340 }
2341 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2342 }
2343
2344 /*
2345 * Wait for the started threads to transition to
2346 * TD_INITIALIZED.
2347 */
2348 fio_gettime(&this_start, NULL);
2349 left = this_jobs;
2350 while (left && !fio_abort) {
2351 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2352 break;
2353
2354 do_usleep(100000);
2355
2356 for (i = 0; i < this_jobs; i++) {
2357 td = map[i];
2358 if (!td)
2359 continue;
2360 if (td->runstate == TD_INITIALIZED) {
2361 map[i] = NULL;
2362 left--;
2363 } else if (td->runstate >= TD_EXITED) {
2364 map[i] = NULL;
2365 left--;
2366 todo--;
2367 nr_running++; /* work-around... */
2368 }
2369 }
2370 }
2371
2372 if (left) {
2373 log_err("fio: %d job%s failed to start\n", left,
2374 left > 1 ? "s" : "");
2375 for (i = 0; i < this_jobs; i++) {
2376 td = map[i];
2377 if (!td)
2378 continue;
2379 kill(td->pid, SIGTERM);
2380 }
2381 break;
2382 }
2383
2384 /*
2385 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2386 */
2387 for_each_td(td, i) {
2388 if (td->runstate != TD_INITIALIZED)
2389 continue;
2390
2391 if (in_ramp_time(td))
2392 td_set_runstate(td, TD_RAMP);
2393 else
2394 td_set_runstate(td, TD_RUNNING);
2395 nr_running++;
2396 nr_started--;
2397 m_rate += ddir_rw_sum(td->o.ratemin);
2398 t_rate += ddir_rw_sum(td->o.rate);
2399 todo--;
2400 fio_mutex_up(td->mutex);
2401 }
2402
2403 reap_threads(&nr_running, &t_rate, &m_rate);
2404
2405 if (todo)
2406 do_usleep(100000);
2407 }
2408
2409 while (nr_running) {
2410 reap_threads(&nr_running, &t_rate, &m_rate);
2411 do_usleep(10000);
2412 }
2413
2414 fio_idle_prof_stop();
2415
2416 update_io_ticks();
2417}
2418
2419static void free_disk_util(void)
2420{
2421 disk_util_prune_entries();
2422 helper_thread_destroy();
2423}
2424
2425int fio_backend(struct sk_out *sk_out)
2426{
2427 struct thread_data *td;
2428 int i;
2429
2430 if (exec_profile) {
2431 if (load_profile(exec_profile))
2432 return 1;
2433 free(exec_profile);
2434 exec_profile = NULL;
2435 }
2436 if (!thread_number)
2437 return 0;
2438
2439 if (write_bw_log) {
2440 struct log_params p = {
2441 .log_type = IO_LOG_TYPE_BW,
2442 };
2443
2444 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2445 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2446 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2447 }
2448
2449 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2450 if (startup_mutex == NULL)
2451 return 1;
2452
2453 set_genesis_time();
2454 stat_init();
2455 helper_thread_create(startup_mutex, sk_out);
2456
2457 cgroup_list = smalloc(sizeof(*cgroup_list));
2458 INIT_FLIST_HEAD(cgroup_list);
2459
2460 run_threads(sk_out);
2461
2462 helper_thread_exit();
2463
2464 if (!fio_abort) {
2465 __show_run_stats();
2466 if (write_bw_log) {
2467 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2468 struct io_log *log = agg_io_log[i];
2469
2470 flush_log(log, false);
2471 free_log(log);
2472 }
2473 }
2474 }
2475
2476 for_each_td(td, i) {
2477 if (td->ss.dur) {
2478 if (td->ss.iops_data != NULL) {
2479 free(td->ss.iops_data);
2480 free(td->ss.bw_data);
2481 }
2482 }
2483 fio_options_free(td);
2484 if (td->rusage_sem) {
2485 fio_mutex_remove(td->rusage_sem);
2486 td->rusage_sem = NULL;
2487 }
2488 fio_mutex_remove(td->mutex);
2489 td->mutex = NULL;
2490 }
2491
2492 free_disk_util();
2493 cgroup_kill(cgroup_list);
2494 sfree(cgroup_list);
2495 sfree(cgroup_mnt);
2496
2497 fio_mutex_remove(startup_mutex);
2498 stat_exit();
2499 return exit_value;
2500}