Merge branch 'patch-1' of https://github.com/hannesweisbach/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
70
71#define JOB_START_TIMEOUT (5 * 1000)
72
73static void sig_int(int sig)
74{
75 if (threads) {
76 if (is_backend)
77 fio_server_got_signal(sig);
78 else {
79 log_info("\nfio: terminating on signal %d\n", sig);
80 log_info_flush();
81 exit_value = 128;
82 }
83
84 fio_terminate_threads(TERMINATE_ALL);
85 }
86}
87
88void sig_show_status(int sig)
89{
90 show_running_run_stats();
91}
92
93static void set_sig_handlers(void)
94{
95 struct sigaction act;
96
97 memset(&act, 0, sizeof(act));
98 act.sa_handler = sig_int;
99 act.sa_flags = SA_RESTART;
100 sigaction(SIGINT, &act, NULL);
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGTERM, &act, NULL);
106
107/* Windows uses SIGBREAK as a quit signal from other applications */
108#ifdef WIN32
109 memset(&act, 0, sizeof(act));
110 act.sa_handler = sig_int;
111 act.sa_flags = SA_RESTART;
112 sigaction(SIGBREAK, &act, NULL);
113#endif
114
115 memset(&act, 0, sizeof(act));
116 act.sa_handler = sig_show_status;
117 act.sa_flags = SA_RESTART;
118 sigaction(SIGUSR1, &act, NULL);
119
120 if (is_backend) {
121 memset(&act, 0, sizeof(act));
122 act.sa_handler = sig_int;
123 act.sa_flags = SA_RESTART;
124 sigaction(SIGPIPE, &act, NULL);
125 }
126}
127
128/*
129 * Check if we are above the minimum rate given.
130 */
131static bool __check_min_rate(struct thread_data *td, struct timespec *now,
132 enum fio_ddir ddir)
133{
134 unsigned long long bytes = 0;
135 unsigned long iops = 0;
136 unsigned long spent;
137 unsigned long rate;
138 unsigned int ratemin = 0;
139 unsigned int rate_iops = 0;
140 unsigned int rate_iops_min = 0;
141
142 assert(ddir_rw(ddir));
143
144 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
145 return false;
146
147 /*
148 * allow a 2 second settle period in the beginning
149 */
150 if (mtime_since(&td->start, now) < 2000)
151 return false;
152
153 iops += td->this_io_blocks[ddir];
154 bytes += td->this_io_bytes[ddir];
155 ratemin += td->o.ratemin[ddir];
156 rate_iops += td->o.rate_iops[ddir];
157 rate_iops_min += td->o.rate_iops_min[ddir];
158
159 /*
160 * if rate blocks is set, sample is running
161 */
162 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
163 spent = mtime_since(&td->lastrate[ddir], now);
164 if (spent < td->o.ratecycle)
165 return false;
166
167 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
168 /*
169 * check bandwidth specified rate
170 */
171 if (bytes < td->rate_bytes[ddir]) {
172 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
173 td->o.name, ratemin, bytes);
174 return true;
175 } else {
176 if (spent)
177 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
178 else
179 rate = 0;
180
181 if (rate < ratemin ||
182 bytes < td->rate_bytes[ddir]) {
183 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
184 td->o.name, ratemin, rate);
185 return true;
186 }
187 }
188 } else {
189 /*
190 * checks iops specified rate
191 */
192 if (iops < rate_iops) {
193 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
194 td->o.name, rate_iops, iops);
195 return true;
196 } else {
197 if (spent)
198 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
199 else
200 rate = 0;
201
202 if (rate < rate_iops_min ||
203 iops < td->rate_blocks[ddir]) {
204 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
205 td->o.name, rate_iops_min, rate);
206 return true;
207 }
208 }
209 }
210 }
211
212 td->rate_bytes[ddir] = bytes;
213 td->rate_blocks[ddir] = iops;
214 memcpy(&td->lastrate[ddir], now, sizeof(*now));
215 return false;
216}
217
218static bool check_min_rate(struct thread_data *td, struct timespec *now)
219{
220 bool ret = false;
221
222 if (td->bytes_done[DDIR_READ])
223 ret |= __check_min_rate(td, now, DDIR_READ);
224 if (td->bytes_done[DDIR_WRITE])
225 ret |= __check_min_rate(td, now, DDIR_WRITE);
226 if (td->bytes_done[DDIR_TRIM])
227 ret |= __check_min_rate(td, now, DDIR_TRIM);
228
229 return ret;
230}
231
232/*
233 * When job exits, we can cancel the in-flight IO if we are using async
234 * io. Attempt to do so.
235 */
236static void cleanup_pending_aio(struct thread_data *td)
237{
238 int r;
239
240 if (td->error)
241 return;
242
243 /*
244 * get immediately available events, if any
245 */
246 r = io_u_queued_complete(td, 0);
247 if (r < 0)
248 return;
249
250 /*
251 * now cancel remaining active events
252 */
253 if (td->io_ops->cancel) {
254 struct io_u *io_u;
255 int i;
256
257 io_u_qiter(&td->io_u_all, io_u, i) {
258 if (io_u->flags & IO_U_F_FLIGHT) {
259 r = td->io_ops->cancel(td, io_u);
260 if (!r)
261 put_io_u(td, io_u);
262 }
263 }
264 }
265
266 if (td->cur_depth)
267 r = io_u_queued_complete(td, td->cur_depth);
268}
269
270/*
271 * Helper to handle the final sync of a file. Works just like the normal
272 * io path, just does everything sync.
273 */
274static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
275{
276 struct io_u *io_u = __get_io_u(td);
277 enum fio_q_status ret;
278
279 if (!io_u)
280 return true;
281
282 io_u->ddir = DDIR_SYNC;
283 io_u->file = f;
284 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
285
286 if (td_io_prep(td, io_u)) {
287 put_io_u(td, io_u);
288 return true;
289 }
290
291requeue:
292 ret = td_io_queue(td, io_u);
293 switch (ret) {
294 case FIO_Q_QUEUED:
295 td_io_commit(td);
296 if (io_u_queued_complete(td, 1) < 0)
297 return true;
298 break;
299 case FIO_Q_COMPLETED:
300 if (io_u->error) {
301 td_verror(td, io_u->error, "td_io_queue");
302 return true;
303 }
304
305 if (io_u_sync_complete(td, io_u) < 0)
306 return true;
307 break;
308 case FIO_Q_BUSY:
309 td_io_commit(td);
310 goto requeue;
311 }
312
313 return false;
314}
315
316static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
317{
318 int ret, ret2;
319
320 if (fio_file_open(f))
321 return fio_io_sync(td, f);
322
323 if (td_io_open_file(td, f))
324 return 1;
325
326 ret = fio_io_sync(td, f);
327 ret2 = 0;
328 if (fio_file_open(f))
329 ret2 = td_io_close_file(td, f);
330 return (ret || ret2);
331}
332
333static inline void __update_ts_cache(struct thread_data *td)
334{
335 fio_gettime(&td->ts_cache, NULL);
336}
337
338static inline void update_ts_cache(struct thread_data *td)
339{
340 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
341 __update_ts_cache(td);
342}
343
344static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
345{
346 if (in_ramp_time(td))
347 return false;
348 if (!td->o.timeout)
349 return false;
350 if (utime_since(&td->epoch, t) >= td->o.timeout)
351 return true;
352
353 return false;
354}
355
356/*
357 * We need to update the runtime consistently in ms, but keep a running
358 * tally of the current elapsed time in microseconds for sub millisecond
359 * updates.
360 */
361static inline void update_runtime(struct thread_data *td,
362 unsigned long long *elapsed_us,
363 const enum fio_ddir ddir)
364{
365 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
366 return;
367
368 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
369 elapsed_us[ddir] += utime_since_now(&td->start);
370 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
371}
372
373static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
374 int *retptr)
375{
376 int ret = *retptr;
377
378 if (ret < 0 || td->error) {
379 int err = td->error;
380 enum error_type_bit eb;
381
382 if (ret < 0)
383 err = -ret;
384
385 eb = td_error_type(ddir, err);
386 if (!(td->o.continue_on_error & (1 << eb)))
387 return true;
388
389 if (td_non_fatal_error(td, eb, err)) {
390 /*
391 * Continue with the I/Os in case of
392 * a non fatal error.
393 */
394 update_error_count(td, err);
395 td_clear_error(td);
396 *retptr = 0;
397 return false;
398 } else if (td->o.fill_device && err == ENOSPC) {
399 /*
400 * We expect to hit this error if
401 * fill_device option is set.
402 */
403 td_clear_error(td);
404 fio_mark_td_terminate(td);
405 return true;
406 } else {
407 /*
408 * Stop the I/O in case of a fatal
409 * error.
410 */
411 update_error_count(td, err);
412 return true;
413 }
414 }
415
416 return false;
417}
418
419static void check_update_rusage(struct thread_data *td)
420{
421 if (td->update_rusage) {
422 td->update_rusage = 0;
423 update_rusage_stat(td);
424 fio_sem_up(td->rusage_sem);
425 }
426}
427
428static int wait_for_completions(struct thread_data *td, struct timespec *time)
429{
430 const int full = queue_full(td);
431 int min_evts = 0;
432 int ret;
433
434 if (td->flags & TD_F_REGROW_LOGS)
435 return io_u_quiesce(td);
436
437 /*
438 * if the queue is full, we MUST reap at least 1 event
439 */
440 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
441 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
442 min_evts = 1;
443
444 if (time && __should_check_rate(td))
445 fio_gettime(time, NULL);
446
447 do {
448 ret = io_u_queued_complete(td, min_evts);
449 if (ret < 0)
450 break;
451 } while (full && (td->cur_depth > td->o.iodepth_low));
452
453 return ret;
454}
455
456int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
457 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
458 struct timespec *comp_time)
459{
460 switch (*ret) {
461 case FIO_Q_COMPLETED:
462 if (io_u->error) {
463 *ret = -io_u->error;
464 clear_io_u(td, io_u);
465 } else if (io_u->resid) {
466 long long bytes = io_u->xfer_buflen - io_u->resid;
467 struct fio_file *f = io_u->file;
468
469 if (bytes_issued)
470 *bytes_issued += bytes;
471
472 if (!from_verify)
473 trim_io_piece(io_u);
474
475 /*
476 * zero read, fail
477 */
478 if (!bytes) {
479 if (!from_verify)
480 unlog_io_piece(td, io_u);
481 td_verror(td, EIO, "full resid");
482 put_io_u(td, io_u);
483 break;
484 }
485
486 io_u->xfer_buflen = io_u->resid;
487 io_u->xfer_buf += bytes;
488 io_u->offset += bytes;
489
490 if (ddir_rw(io_u->ddir))
491 td->ts.short_io_u[io_u->ddir]++;
492
493 if (io_u->offset == f->real_file_size)
494 goto sync_done;
495
496 requeue_io_u(td, &io_u);
497 } else {
498sync_done:
499 if (comp_time && __should_check_rate(td))
500 fio_gettime(comp_time, NULL);
501
502 *ret = io_u_sync_complete(td, io_u);
503 if (*ret < 0)
504 break;
505 }
506
507 if (td->flags & TD_F_REGROW_LOGS)
508 regrow_logs(td);
509
510 /*
511 * when doing I/O (not when verifying),
512 * check for any errors that are to be ignored
513 */
514 if (!from_verify)
515 break;
516
517 return 0;
518 case FIO_Q_QUEUED:
519 /*
520 * if the engine doesn't have a commit hook,
521 * the io_u is really queued. if it does have such
522 * a hook, it has to call io_u_queued() itself.
523 */
524 if (td->io_ops->commit == NULL)
525 io_u_queued(td, io_u);
526 if (bytes_issued)
527 *bytes_issued += io_u->xfer_buflen;
528 break;
529 case FIO_Q_BUSY:
530 if (!from_verify)
531 unlog_io_piece(td, io_u);
532 requeue_io_u(td, &io_u);
533 td_io_commit(td);
534 break;
535 default:
536 assert(*ret < 0);
537 td_verror(td, -(*ret), "td_io_queue");
538 break;
539 }
540
541 if (break_on_this_error(td, ddir, ret))
542 return 1;
543
544 return 0;
545}
546
547static inline bool io_in_polling(struct thread_data *td)
548{
549 return !td->o.iodepth_batch_complete_min &&
550 !td->o.iodepth_batch_complete_max;
551}
552/*
553 * Unlinks files from thread data fio_file structure
554 */
555static int unlink_all_files(struct thread_data *td)
556{
557 struct fio_file *f;
558 unsigned int i;
559 int ret = 0;
560
561 for_each_file(td, f, i) {
562 if (f->filetype != FIO_TYPE_FILE)
563 continue;
564 ret = td_io_unlink_file(td, f);
565 if (ret)
566 break;
567 }
568
569 if (ret)
570 td_verror(td, ret, "unlink_all_files");
571
572 return ret;
573}
574
575/*
576 * Check if io_u will overlap an in-flight IO in the queue
577 */
578bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
579{
580 bool overlap;
581 struct io_u *check_io_u;
582 unsigned long long x1, x2, y1, y2;
583 int i;
584
585 x1 = io_u->offset;
586 x2 = io_u->offset + io_u->buflen;
587 overlap = false;
588 io_u_qiter(q, check_io_u, i) {
589 if (check_io_u->flags & IO_U_F_FLIGHT) {
590 y1 = check_io_u->offset;
591 y2 = check_io_u->offset + check_io_u->buflen;
592
593 if (x1 < y2 && y1 < x2) {
594 overlap = true;
595 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
596 x1, io_u->buflen,
597 y1, check_io_u->buflen);
598 break;
599 }
600 }
601 }
602
603 return overlap;
604}
605
606static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
607{
608 /*
609 * Check for overlap if the user asked us to, and we have
610 * at least one IO in flight besides this one.
611 */
612 if (td->o.serialize_overlap && td->cur_depth > 1 &&
613 in_flight_overlap(&td->io_u_all, io_u))
614 return FIO_Q_BUSY;
615
616 return td_io_queue(td, io_u);
617}
618
619/*
620 * The main verify engine. Runs over the writes we previously submitted,
621 * reads the blocks back in, and checks the crc/md5 of the data.
622 */
623static void do_verify(struct thread_data *td, uint64_t verify_bytes)
624{
625 struct fio_file *f;
626 struct io_u *io_u;
627 int ret, min_events;
628 unsigned int i;
629
630 dprint(FD_VERIFY, "starting loop\n");
631
632 /*
633 * sync io first and invalidate cache, to make sure we really
634 * read from disk.
635 */
636 for_each_file(td, f, i) {
637 if (!fio_file_open(f))
638 continue;
639 if (fio_io_sync(td, f))
640 break;
641 if (file_invalidate_cache(td, f))
642 break;
643 }
644
645 check_update_rusage(td);
646
647 if (td->error)
648 return;
649
650 /*
651 * verify_state needs to be reset before verification
652 * proceeds so that expected random seeds match actual
653 * random seeds in headers. The main loop will reset
654 * all random number generators if randrepeat is set.
655 */
656 if (!td->o.rand_repeatable)
657 td_fill_verify_state_seed(td);
658
659 td_set_runstate(td, TD_VERIFYING);
660
661 io_u = NULL;
662 while (!td->terminate) {
663 enum fio_ddir ddir;
664 int full;
665
666 update_ts_cache(td);
667 check_update_rusage(td);
668
669 if (runtime_exceeded(td, &td->ts_cache)) {
670 __update_ts_cache(td);
671 if (runtime_exceeded(td, &td->ts_cache)) {
672 fio_mark_td_terminate(td);
673 break;
674 }
675 }
676
677 if (flow_threshold_exceeded(td))
678 continue;
679
680 if (!td->o.experimental_verify) {
681 io_u = __get_io_u(td);
682 if (!io_u)
683 break;
684
685 if (get_next_verify(td, io_u)) {
686 put_io_u(td, io_u);
687 break;
688 }
689
690 if (td_io_prep(td, io_u)) {
691 put_io_u(td, io_u);
692 break;
693 }
694 } else {
695 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
696 break;
697
698 while ((io_u = get_io_u(td)) != NULL) {
699 if (IS_ERR_OR_NULL(io_u)) {
700 io_u = NULL;
701 ret = FIO_Q_BUSY;
702 goto reap;
703 }
704
705 /*
706 * We are only interested in the places where
707 * we wrote or trimmed IOs. Turn those into
708 * reads for verification purposes.
709 */
710 if (io_u->ddir == DDIR_READ) {
711 /*
712 * Pretend we issued it for rwmix
713 * accounting
714 */
715 td->io_issues[DDIR_READ]++;
716 put_io_u(td, io_u);
717 continue;
718 } else if (io_u->ddir == DDIR_TRIM) {
719 io_u->ddir = DDIR_READ;
720 io_u_set(td, io_u, IO_U_F_TRIMMED);
721 break;
722 } else if (io_u->ddir == DDIR_WRITE) {
723 io_u->ddir = DDIR_READ;
724 populate_verify_io_u(td, io_u);
725 break;
726 } else {
727 put_io_u(td, io_u);
728 continue;
729 }
730 }
731
732 if (!io_u)
733 break;
734 }
735
736 if (verify_state_should_stop(td, io_u)) {
737 put_io_u(td, io_u);
738 break;
739 }
740
741 if (td->o.verify_async)
742 io_u->end_io = verify_io_u_async;
743 else
744 io_u->end_io = verify_io_u;
745
746 ddir = io_u->ddir;
747 if (!td->o.disable_slat)
748 fio_gettime(&io_u->start_time, NULL);
749
750 ret = io_u_submit(td, io_u);
751
752 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
753 break;
754
755 /*
756 * if we can queue more, do so. but check if there are
757 * completed io_u's first. Note that we can get BUSY even
758 * without IO queued, if the system is resource starved.
759 */
760reap:
761 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
762 if (full || io_in_polling(td))
763 ret = wait_for_completions(td, NULL);
764
765 if (ret < 0)
766 break;
767 }
768
769 check_update_rusage(td);
770
771 if (!td->error) {
772 min_events = td->cur_depth;
773
774 if (min_events)
775 ret = io_u_queued_complete(td, min_events);
776 } else
777 cleanup_pending_aio(td);
778
779 td_set_runstate(td, TD_RUNNING);
780
781 dprint(FD_VERIFY, "exiting loop\n");
782}
783
784static bool exceeds_number_ios(struct thread_data *td)
785{
786 unsigned long long number_ios;
787
788 if (!td->o.number_ios)
789 return false;
790
791 number_ios = ddir_rw_sum(td->io_blocks);
792 number_ios += td->io_u_queued + td->io_u_in_flight;
793
794 return number_ios >= (td->o.number_ios * td->loops);
795}
796
797static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
798{
799 unsigned long long bytes, limit;
800
801 if (td_rw(td))
802 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
803 else if (td_write(td))
804 bytes = this_bytes[DDIR_WRITE];
805 else if (td_read(td))
806 bytes = this_bytes[DDIR_READ];
807 else
808 bytes = this_bytes[DDIR_TRIM];
809
810 if (td->o.io_size)
811 limit = td->o.io_size;
812 else
813 limit = td->o.size;
814
815 limit *= td->loops;
816 return bytes >= limit || exceeds_number_ios(td);
817}
818
819static bool io_issue_bytes_exceeded(struct thread_data *td)
820{
821 return io_bytes_exceeded(td, td->io_issue_bytes);
822}
823
824static bool io_complete_bytes_exceeded(struct thread_data *td)
825{
826 return io_bytes_exceeded(td, td->this_io_bytes);
827}
828
829/*
830 * used to calculate the next io time for rate control
831 *
832 */
833static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
834{
835 uint64_t bps = td->rate_bps[ddir];
836
837 assert(!(td->flags & TD_F_CHILD));
838
839 if (td->o.rate_process == RATE_PROCESS_POISSON) {
840 uint64_t val, iops;
841
842 iops = bps / td->o.bs[ddir];
843 val = (int64_t) (1000000 / iops) *
844 -logf(__rand_0_1(&td->poisson_state[ddir]));
845 if (val) {
846 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
847 (unsigned long long) 1000000 / val,
848 ddir);
849 }
850 td->last_usec[ddir] += val;
851 return td->last_usec[ddir];
852 } else if (bps) {
853 uint64_t bytes = td->rate_io_issue_bytes[ddir];
854 uint64_t secs = bytes / bps;
855 uint64_t remainder = bytes % bps;
856
857 return remainder * 1000000 / bps + secs * 1000000;
858 }
859
860 return 0;
861}
862
863static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
864{
865 unsigned long long b;
866 uint64_t total;
867 int left;
868
869 b = ddir_rw_sum(td->io_blocks);
870 if (b % td->o.thinktime_blocks)
871 return;
872
873 io_u_quiesce(td);
874
875 total = 0;
876 if (td->o.thinktime_spin)
877 total = usec_spin(td->o.thinktime_spin);
878
879 left = td->o.thinktime - total;
880 if (left)
881 total += usec_sleep(td, left);
882
883 /*
884 * If we're ignoring thinktime for the rate, add the number of bytes
885 * we would have done while sleeping, minus one block to ensure we
886 * start issuing immediately after the sleep.
887 */
888 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
889 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
890 uint64_t bs = td->o.min_bs[ddir];
891 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
892 uint64_t over;
893
894 if (usperop <= total)
895 over = bs;
896 else
897 over = (usperop - total) / usperop * -bs;
898
899 td->rate_io_issue_bytes[ddir] += (missed - over);
900 /* adjust for rate_process=poisson */
901 td->last_usec[ddir] += total;
902 }
903}
904
905/*
906 * Main IO worker function. It retrieves io_u's to process and queues
907 * and reaps them, checking for rate and errors along the way.
908 *
909 * Returns number of bytes written and trimmed.
910 */
911static void do_io(struct thread_data *td, uint64_t *bytes_done)
912{
913 unsigned int i;
914 int ret = 0;
915 uint64_t total_bytes, bytes_issued = 0;
916
917 for (i = 0; i < DDIR_RWDIR_CNT; i++)
918 bytes_done[i] = td->bytes_done[i];
919
920 if (in_ramp_time(td))
921 td_set_runstate(td, TD_RAMP);
922 else
923 td_set_runstate(td, TD_RUNNING);
924
925 lat_target_init(td);
926
927 total_bytes = td->o.size;
928 /*
929 * Allow random overwrite workloads to write up to io_size
930 * before starting verification phase as 'size' doesn't apply.
931 */
932 if (td_write(td) && td_random(td) && td->o.norandommap)
933 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
934 /*
935 * If verify_backlog is enabled, we'll run the verify in this
936 * handler as well. For that case, we may need up to twice the
937 * amount of bytes.
938 */
939 if (td->o.verify != VERIFY_NONE &&
940 (td_write(td) && td->o.verify_backlog))
941 total_bytes += td->o.size;
942
943 /* In trimwrite mode, each byte is trimmed and then written, so
944 * allow total_bytes to be twice as big */
945 if (td_trimwrite(td))
946 total_bytes += td->total_io_size;
947
948 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
949 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
950 td->o.time_based) {
951 struct timespec comp_time;
952 struct io_u *io_u;
953 int full;
954 enum fio_ddir ddir;
955
956 check_update_rusage(td);
957
958 if (td->terminate || td->done)
959 break;
960
961 update_ts_cache(td);
962
963 if (runtime_exceeded(td, &td->ts_cache)) {
964 __update_ts_cache(td);
965 if (runtime_exceeded(td, &td->ts_cache)) {
966 fio_mark_td_terminate(td);
967 break;
968 }
969 }
970
971 if (flow_threshold_exceeded(td))
972 continue;
973
974 /*
975 * Break if we exceeded the bytes. The exception is time
976 * based runs, but we still need to break out of the loop
977 * for those to run verification, if enabled.
978 * Jobs read from iolog do not use this stop condition.
979 */
980 if (bytes_issued >= total_bytes &&
981 !td->o.read_iolog_file &&
982 (!td->o.time_based ||
983 (td->o.time_based && td->o.verify != VERIFY_NONE)))
984 break;
985
986 io_u = get_io_u(td);
987 if (IS_ERR_OR_NULL(io_u)) {
988 int err = PTR_ERR(io_u);
989
990 io_u = NULL;
991 ddir = DDIR_INVAL;
992 if (err == -EBUSY) {
993 ret = FIO_Q_BUSY;
994 goto reap;
995 }
996 if (td->o.latency_target)
997 goto reap;
998 break;
999 }
1000
1001 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1002 populate_verify_io_u(td, io_u);
1003
1004 ddir = io_u->ddir;
1005
1006 /*
1007 * Add verification end_io handler if:
1008 * - Asked to verify (!td_rw(td))
1009 * - Or the io_u is from our verify list (mixed write/ver)
1010 */
1011 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1012 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1013
1014 if (!td->o.verify_pattern_bytes) {
1015 io_u->rand_seed = __rand(&td->verify_state);
1016 if (sizeof(int) != sizeof(long *))
1017 io_u->rand_seed *= __rand(&td->verify_state);
1018 }
1019
1020 if (verify_state_should_stop(td, io_u)) {
1021 put_io_u(td, io_u);
1022 break;
1023 }
1024
1025 if (td->o.verify_async)
1026 io_u->end_io = verify_io_u_async;
1027 else
1028 io_u->end_io = verify_io_u;
1029 td_set_runstate(td, TD_VERIFYING);
1030 } else if (in_ramp_time(td))
1031 td_set_runstate(td, TD_RAMP);
1032 else
1033 td_set_runstate(td, TD_RUNNING);
1034
1035 /*
1036 * Always log IO before it's issued, so we know the specific
1037 * order of it. The logged unit will track when the IO has
1038 * completed.
1039 */
1040 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1041 td->o.do_verify &&
1042 td->o.verify != VERIFY_NONE &&
1043 !td->o.experimental_verify)
1044 log_io_piece(td, io_u);
1045
1046 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1047 const unsigned long long blen = io_u->xfer_buflen;
1048 const enum fio_ddir __ddir = acct_ddir(io_u);
1049
1050 if (td->error)
1051 break;
1052
1053 workqueue_enqueue(&td->io_wq, &io_u->work);
1054 ret = FIO_Q_QUEUED;
1055
1056 if (ddir_rw(__ddir)) {
1057 td->io_issues[__ddir]++;
1058 td->io_issue_bytes[__ddir] += blen;
1059 td->rate_io_issue_bytes[__ddir] += blen;
1060 }
1061
1062 if (should_check_rate(td))
1063 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1064
1065 } else {
1066 ret = io_u_submit(td, io_u);
1067
1068 if (should_check_rate(td))
1069 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1070
1071 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1072 break;
1073
1074 /*
1075 * See if we need to complete some commands. Note that
1076 * we can get BUSY even without IO queued, if the
1077 * system is resource starved.
1078 */
1079reap:
1080 full = queue_full(td) ||
1081 (ret == FIO_Q_BUSY && td->cur_depth);
1082 if (full || io_in_polling(td))
1083 ret = wait_for_completions(td, &comp_time);
1084 }
1085 if (ret < 0)
1086 break;
1087 if (!ddir_rw_sum(td->bytes_done) &&
1088 !td_ioengine_flagged(td, FIO_NOIO))
1089 continue;
1090
1091 if (!in_ramp_time(td) && should_check_rate(td)) {
1092 if (check_min_rate(td, &comp_time)) {
1093 if (exitall_on_terminate || td->o.exitall_error)
1094 fio_terminate_threads(td->groupid);
1095 td_verror(td, EIO, "check_min_rate");
1096 break;
1097 }
1098 }
1099 if (!in_ramp_time(td) && td->o.latency_target)
1100 lat_target_check(td);
1101
1102 if (ddir_rw(ddir) && td->o.thinktime)
1103 handle_thinktime(td, ddir);
1104 }
1105
1106 check_update_rusage(td);
1107
1108 if (td->trim_entries)
1109 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1110
1111 if (td->o.fill_device && td->error == ENOSPC) {
1112 td->error = 0;
1113 fio_mark_td_terminate(td);
1114 }
1115 if (!td->error) {
1116 struct fio_file *f;
1117
1118 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1119 workqueue_flush(&td->io_wq);
1120 i = 0;
1121 } else
1122 i = td->cur_depth;
1123
1124 if (i) {
1125 ret = io_u_queued_complete(td, i);
1126 if (td->o.fill_device && td->error == ENOSPC)
1127 td->error = 0;
1128 }
1129
1130 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1131 td_set_runstate(td, TD_FSYNCING);
1132
1133 for_each_file(td, f, i) {
1134 if (!fio_file_fsync(td, f))
1135 continue;
1136
1137 log_err("fio: end_fsync failed for file %s\n",
1138 f->file_name);
1139 }
1140 }
1141 } else
1142 cleanup_pending_aio(td);
1143
1144 /*
1145 * stop job if we failed doing any IO
1146 */
1147 if (!ddir_rw_sum(td->this_io_bytes))
1148 td->done = 1;
1149
1150 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1151 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1152}
1153
1154static void free_file_completion_logging(struct thread_data *td)
1155{
1156 struct fio_file *f;
1157 unsigned int i;
1158
1159 for_each_file(td, f, i) {
1160 if (!f->last_write_comp)
1161 break;
1162 sfree(f->last_write_comp);
1163 }
1164}
1165
1166static int init_file_completion_logging(struct thread_data *td,
1167 unsigned int depth)
1168{
1169 struct fio_file *f;
1170 unsigned int i;
1171
1172 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1173 return 0;
1174
1175 for_each_file(td, f, i) {
1176 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1177 if (!f->last_write_comp)
1178 goto cleanup;
1179 }
1180
1181 return 0;
1182
1183cleanup:
1184 free_file_completion_logging(td);
1185 log_err("fio: failed to alloc write comp data\n");
1186 return 1;
1187}
1188
1189static void cleanup_io_u(struct thread_data *td)
1190{
1191 struct io_u *io_u;
1192
1193 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1194
1195 if (td->io_ops->io_u_free)
1196 td->io_ops->io_u_free(td, io_u);
1197
1198 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1199 }
1200
1201 free_io_mem(td);
1202
1203 io_u_rexit(&td->io_u_requeues);
1204 io_u_qexit(&td->io_u_freelist, false);
1205 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1206
1207 free_file_completion_logging(td);
1208}
1209
1210static int init_io_u(struct thread_data *td)
1211{
1212 struct io_u *io_u;
1213 int cl_align, i, max_units;
1214 int err;
1215
1216 max_units = td->o.iodepth;
1217
1218 err = 0;
1219 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1220 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1221 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1222
1223 if (err) {
1224 log_err("fio: failed setting up IO queues\n");
1225 return 1;
1226 }
1227
1228 cl_align = os_cache_line_size();
1229
1230 for (i = 0; i < max_units; i++) {
1231 void *ptr;
1232
1233 if (td->terminate)
1234 return 1;
1235
1236 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1237 if (!ptr) {
1238 log_err("fio: unable to allocate aligned memory\n");
1239 return 1;
1240 }
1241
1242 io_u = ptr;
1243 memset(io_u, 0, sizeof(*io_u));
1244 INIT_FLIST_HEAD(&io_u->verify_list);
1245 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1246
1247 io_u->index = i;
1248 io_u->flags = IO_U_F_FREE;
1249 io_u_qpush(&td->io_u_freelist, io_u);
1250
1251 /*
1252 * io_u never leaves this stack, used for iteration of all
1253 * io_u buffers.
1254 */
1255 io_u_qpush(&td->io_u_all, io_u);
1256
1257 if (td->io_ops->io_u_init) {
1258 int ret = td->io_ops->io_u_init(td, io_u);
1259
1260 if (ret) {
1261 log_err("fio: failed to init engine data: %d\n", ret);
1262 return 1;
1263 }
1264 }
1265 }
1266
1267 init_io_u_buffers(td);
1268
1269 if (init_file_completion_logging(td, max_units))
1270 return 1;
1271
1272 return 0;
1273}
1274
1275int init_io_u_buffers(struct thread_data *td)
1276{
1277 struct io_u *io_u;
1278 unsigned long long max_bs, min_write;
1279 int i, max_units;
1280 int data_xfer = 1;
1281 char *p;
1282
1283 max_units = td->o.iodepth;
1284 max_bs = td_max_bs(td);
1285 min_write = td->o.min_bs[DDIR_WRITE];
1286 td->orig_buffer_size = (unsigned long long) max_bs
1287 * (unsigned long long) max_units;
1288
1289 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1290 data_xfer = 0;
1291
1292 /*
1293 * if we may later need to do address alignment, then add any
1294 * possible adjustment here so that we don't cause a buffer
1295 * overflow later. this adjustment may be too much if we get
1296 * lucky and the allocator gives us an aligned address.
1297 */
1298 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1299 td_ioengine_flagged(td, FIO_RAWIO))
1300 td->orig_buffer_size += page_mask + td->o.mem_align;
1301
1302 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1303 unsigned long long bs;
1304
1305 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1306 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1307 }
1308
1309 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1310 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1311 return 1;
1312 }
1313
1314 if (data_xfer && allocate_io_mem(td))
1315 return 1;
1316
1317 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1318 td_ioengine_flagged(td, FIO_RAWIO))
1319 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1320 else
1321 p = td->orig_buffer;
1322
1323 for (i = 0; i < max_units; i++) {
1324 io_u = td->io_u_all.io_us[i];
1325 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1326
1327 if (data_xfer) {
1328 io_u->buf = p;
1329 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1330
1331 if (td_write(td))
1332 io_u_fill_buffer(td, io_u, min_write, max_bs);
1333 if (td_write(td) && td->o.verify_pattern_bytes) {
1334 /*
1335 * Fill the buffer with the pattern if we are
1336 * going to be doing writes.
1337 */
1338 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1339 }
1340 }
1341 p += max_bs;
1342 }
1343
1344 return 0;
1345}
1346
1347/*
1348 * This function is Linux specific.
1349 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1350 */
1351static int switch_ioscheduler(struct thread_data *td)
1352{
1353#ifdef FIO_HAVE_IOSCHED_SWITCH
1354 char tmp[256], tmp2[128], *p;
1355 FILE *f;
1356 int ret;
1357
1358 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1359 return 0;
1360
1361 assert(td->files && td->files[0]);
1362 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1363
1364 f = fopen(tmp, "r+");
1365 if (!f) {
1366 if (errno == ENOENT) {
1367 log_err("fio: os or kernel doesn't support IO scheduler"
1368 " switching\n");
1369 return 0;
1370 }
1371 td_verror(td, errno, "fopen iosched");
1372 return 1;
1373 }
1374
1375 /*
1376 * Set io scheduler.
1377 */
1378 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1379 if (ferror(f) || ret != 1) {
1380 td_verror(td, errno, "fwrite");
1381 fclose(f);
1382 return 1;
1383 }
1384
1385 rewind(f);
1386
1387 /*
1388 * Read back and check that the selected scheduler is now the default.
1389 */
1390 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1391 if (ferror(f) || ret < 0) {
1392 td_verror(td, errno, "fread");
1393 fclose(f);
1394 return 1;
1395 }
1396 tmp[ret] = '\0';
1397 /*
1398 * either a list of io schedulers or "none\n" is expected. Strip the
1399 * trailing newline.
1400 */
1401 p = tmp;
1402 strsep(&p, "\n");
1403
1404 /*
1405 * Write to "none" entry doesn't fail, so check the result here.
1406 */
1407 if (!strcmp(tmp, "none")) {
1408 log_err("fio: io scheduler is not tunable\n");
1409 fclose(f);
1410 return 0;
1411 }
1412
1413 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1414 if (!strstr(tmp, tmp2)) {
1415 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1416 td_verror(td, EINVAL, "iosched_switch");
1417 fclose(f);
1418 return 1;
1419 }
1420
1421 fclose(f);
1422 return 0;
1423#else
1424 return 0;
1425#endif
1426}
1427
1428static bool keep_running(struct thread_data *td)
1429{
1430 unsigned long long limit;
1431
1432 if (td->done)
1433 return false;
1434 if (td->terminate)
1435 return false;
1436 if (td->o.time_based)
1437 return true;
1438 if (td->o.loops) {
1439 td->o.loops--;
1440 return true;
1441 }
1442 if (exceeds_number_ios(td))
1443 return false;
1444
1445 if (td->o.io_size)
1446 limit = td->o.io_size;
1447 else
1448 limit = td->o.size;
1449
1450 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1451 uint64_t diff;
1452
1453 /*
1454 * If the difference is less than the maximum IO size, we
1455 * are done.
1456 */
1457 diff = limit - ddir_rw_sum(td->io_bytes);
1458 if (diff < td_max_bs(td))
1459 return false;
1460
1461 if (fio_files_done(td) && !td->o.io_size)
1462 return false;
1463
1464 return true;
1465 }
1466
1467 return false;
1468}
1469
1470static int exec_string(struct thread_options *o, const char *string, const char *mode)
1471{
1472 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 13 + 1;
1473 int ret;
1474 char *str;
1475
1476 str = malloc(newlen);
1477 sprintf(str, "%s > %s.%s.txt 2>&1", string, o->name, mode);
1478
1479 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1480 ret = system(str);
1481 if (ret == -1)
1482 log_err("fio: exec of cmd <%s> failed\n", str);
1483
1484 free(str);
1485 return ret;
1486}
1487
1488/*
1489 * Dry run to compute correct state of numberio for verification.
1490 */
1491static uint64_t do_dry_run(struct thread_data *td)
1492{
1493 td_set_runstate(td, TD_RUNNING);
1494
1495 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1496 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1497 struct io_u *io_u;
1498 int ret;
1499
1500 if (td->terminate || td->done)
1501 break;
1502
1503 io_u = get_io_u(td);
1504 if (IS_ERR_OR_NULL(io_u))
1505 break;
1506
1507 io_u_set(td, io_u, IO_U_F_FLIGHT);
1508 io_u->error = 0;
1509 io_u->resid = 0;
1510 if (ddir_rw(acct_ddir(io_u)))
1511 td->io_issues[acct_ddir(io_u)]++;
1512 if (ddir_rw(io_u->ddir)) {
1513 io_u_mark_depth(td, 1);
1514 td->ts.total_io_u[io_u->ddir]++;
1515 }
1516
1517 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1518 td->o.do_verify &&
1519 td->o.verify != VERIFY_NONE &&
1520 !td->o.experimental_verify)
1521 log_io_piece(td, io_u);
1522
1523 ret = io_u_sync_complete(td, io_u);
1524 (void) ret;
1525 }
1526
1527 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1528}
1529
1530struct fork_data {
1531 struct thread_data *td;
1532 struct sk_out *sk_out;
1533};
1534
1535/*
1536 * Entry point for the thread based jobs. The process based jobs end up
1537 * here as well, after a little setup.
1538 */
1539static void *thread_main(void *data)
1540{
1541 struct fork_data *fd = data;
1542 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1543 struct thread_data *td = fd->td;
1544 struct thread_options *o = &td->o;
1545 struct sk_out *sk_out = fd->sk_out;
1546 uint64_t bytes_done[DDIR_RWDIR_CNT];
1547 int deadlock_loop_cnt;
1548 bool clear_state;
1549 int ret;
1550
1551 sk_out_assign(sk_out);
1552 free(fd);
1553
1554 if (!o->use_thread) {
1555 setsid();
1556 td->pid = getpid();
1557 } else
1558 td->pid = gettid();
1559
1560 fio_local_clock_init();
1561
1562 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1563
1564 if (is_backend)
1565 fio_server_send_start(td);
1566
1567 INIT_FLIST_HEAD(&td->io_log_list);
1568 INIT_FLIST_HEAD(&td->io_hist_list);
1569 INIT_FLIST_HEAD(&td->verify_list);
1570 INIT_FLIST_HEAD(&td->trim_list);
1571 td->io_hist_tree = RB_ROOT;
1572
1573 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1574 if (ret) {
1575 td_verror(td, ret, "mutex_cond_init_pshared");
1576 goto err;
1577 }
1578 ret = cond_init_pshared(&td->verify_cond);
1579 if (ret) {
1580 td_verror(td, ret, "mutex_cond_pshared");
1581 goto err;
1582 }
1583
1584 td_set_runstate(td, TD_INITIALIZED);
1585 dprint(FD_MUTEX, "up startup_sem\n");
1586 fio_sem_up(startup_sem);
1587 dprint(FD_MUTEX, "wait on td->sem\n");
1588 fio_sem_down(td->sem);
1589 dprint(FD_MUTEX, "done waiting on td->sem\n");
1590
1591 /*
1592 * A new gid requires privilege, so we need to do this before setting
1593 * the uid.
1594 */
1595 if (o->gid != -1U && setgid(o->gid)) {
1596 td_verror(td, errno, "setgid");
1597 goto err;
1598 }
1599 if (o->uid != -1U && setuid(o->uid)) {
1600 td_verror(td, errno, "setuid");
1601 goto err;
1602 }
1603
1604 td_zone_gen_index(td);
1605
1606 /*
1607 * Do this early, we don't want the compress threads to be limited
1608 * to the same CPUs as the IO workers. So do this before we set
1609 * any potential CPU affinity
1610 */
1611 if (iolog_compress_init(td, sk_out))
1612 goto err;
1613
1614 /*
1615 * If we have a gettimeofday() thread, make sure we exclude that
1616 * thread from this job
1617 */
1618 if (o->gtod_cpu)
1619 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1620
1621 /*
1622 * Set affinity first, in case it has an impact on the memory
1623 * allocations.
1624 */
1625 if (fio_option_is_set(o, cpumask)) {
1626 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1627 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1628 if (!ret) {
1629 log_err("fio: no CPUs set\n");
1630 log_err("fio: Try increasing number of available CPUs\n");
1631 td_verror(td, EINVAL, "cpus_split");
1632 goto err;
1633 }
1634 }
1635 ret = fio_setaffinity(td->pid, o->cpumask);
1636 if (ret == -1) {
1637 td_verror(td, errno, "cpu_set_affinity");
1638 goto err;
1639 }
1640 }
1641
1642#ifdef CONFIG_LIBNUMA
1643 /* numa node setup */
1644 if (fio_option_is_set(o, numa_cpunodes) ||
1645 fio_option_is_set(o, numa_memnodes)) {
1646 struct bitmask *mask;
1647
1648 if (numa_available() < 0) {
1649 td_verror(td, errno, "Does not support NUMA API\n");
1650 goto err;
1651 }
1652
1653 if (fio_option_is_set(o, numa_cpunodes)) {
1654 mask = numa_parse_nodestring(o->numa_cpunodes);
1655 ret = numa_run_on_node_mask(mask);
1656 numa_free_nodemask(mask);
1657 if (ret == -1) {
1658 td_verror(td, errno, \
1659 "numa_run_on_node_mask failed\n");
1660 goto err;
1661 }
1662 }
1663
1664 if (fio_option_is_set(o, numa_memnodes)) {
1665 mask = NULL;
1666 if (o->numa_memnodes)
1667 mask = numa_parse_nodestring(o->numa_memnodes);
1668
1669 switch (o->numa_mem_mode) {
1670 case MPOL_INTERLEAVE:
1671 numa_set_interleave_mask(mask);
1672 break;
1673 case MPOL_BIND:
1674 numa_set_membind(mask);
1675 break;
1676 case MPOL_LOCAL:
1677 numa_set_localalloc();
1678 break;
1679 case MPOL_PREFERRED:
1680 numa_set_preferred(o->numa_mem_prefer_node);
1681 break;
1682 case MPOL_DEFAULT:
1683 default:
1684 break;
1685 }
1686
1687 if (mask)
1688 numa_free_nodemask(mask);
1689
1690 }
1691 }
1692#endif
1693
1694 if (fio_pin_memory(td))
1695 goto err;
1696
1697 /*
1698 * May alter parameters that init_io_u() will use, so we need to
1699 * do this first.
1700 */
1701 if (!init_iolog(td))
1702 goto err;
1703
1704 if (td_io_init(td))
1705 goto err;
1706
1707 if (init_io_u(td))
1708 goto err;
1709
1710 if (td->io_ops->post_init && td->io_ops->post_init(td))
1711 goto err;
1712
1713 if (o->verify_async && verify_async_init(td))
1714 goto err;
1715
1716 if (fio_option_is_set(o, ioprio) ||
1717 fio_option_is_set(o, ioprio_class)) {
1718 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1719 if (ret == -1) {
1720 td_verror(td, errno, "ioprio_set");
1721 goto err;
1722 }
1723 }
1724
1725 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1726 goto err;
1727
1728 errno = 0;
1729 if (nice(o->nice) == -1 && errno != 0) {
1730 td_verror(td, errno, "nice");
1731 goto err;
1732 }
1733
1734 if (o->ioscheduler && switch_ioscheduler(td))
1735 goto err;
1736
1737 if (!o->create_serialize && setup_files(td))
1738 goto err;
1739
1740 if (!init_random_map(td))
1741 goto err;
1742
1743 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1744 goto err;
1745
1746 if (o->pre_read && !pre_read_files(td))
1747 goto err;
1748
1749 fio_verify_init(td);
1750
1751 if (rate_submit_init(td, sk_out))
1752 goto err;
1753
1754 set_epoch_time(td, o->log_unix_epoch);
1755 fio_getrusage(&td->ru_start);
1756 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1757 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1758 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1759
1760 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1761 o->ratemin[DDIR_TRIM]) {
1762 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1763 sizeof(td->bw_sample_time));
1764 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1765 sizeof(td->bw_sample_time));
1766 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1767 sizeof(td->bw_sample_time));
1768 }
1769
1770 memset(bytes_done, 0, sizeof(bytes_done));
1771 clear_state = false;
1772
1773 while (keep_running(td)) {
1774 uint64_t verify_bytes;
1775
1776 fio_gettime(&td->start, NULL);
1777 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1778
1779 if (clear_state) {
1780 clear_io_state(td, 0);
1781
1782 if (o->unlink_each_loop && unlink_all_files(td))
1783 break;
1784 }
1785
1786 prune_io_piece_log(td);
1787
1788 if (td->o.verify_only && td_write(td))
1789 verify_bytes = do_dry_run(td);
1790 else {
1791 do_io(td, bytes_done);
1792
1793 if (!ddir_rw_sum(bytes_done)) {
1794 fio_mark_td_terminate(td);
1795 verify_bytes = 0;
1796 } else {
1797 verify_bytes = bytes_done[DDIR_WRITE] +
1798 bytes_done[DDIR_TRIM];
1799 }
1800 }
1801
1802 /*
1803 * If we took too long to shut down, the main thread could
1804 * already consider us reaped/exited. If that happens, break
1805 * out and clean up.
1806 */
1807 if (td->runstate >= TD_EXITED)
1808 break;
1809
1810 clear_state = true;
1811
1812 /*
1813 * Make sure we've successfully updated the rusage stats
1814 * before waiting on the stat mutex. Otherwise we could have
1815 * the stat thread holding stat mutex and waiting for
1816 * the rusage_sem, which would never get upped because
1817 * this thread is waiting for the stat mutex.
1818 */
1819 deadlock_loop_cnt = 0;
1820 do {
1821 check_update_rusage(td);
1822 if (!fio_sem_down_trylock(stat_sem))
1823 break;
1824 usleep(1000);
1825 if (deadlock_loop_cnt++ > 5000) {
1826 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1827 td->error = EDEADLK;
1828 goto err;
1829 }
1830 } while (1);
1831
1832 if (td_read(td) && td->io_bytes[DDIR_READ])
1833 update_runtime(td, elapsed_us, DDIR_READ);
1834 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1835 update_runtime(td, elapsed_us, DDIR_WRITE);
1836 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1837 update_runtime(td, elapsed_us, DDIR_TRIM);
1838 fio_gettime(&td->start, NULL);
1839 fio_sem_up(stat_sem);
1840
1841 if (td->error || td->terminate)
1842 break;
1843
1844 if (!o->do_verify ||
1845 o->verify == VERIFY_NONE ||
1846 td_ioengine_flagged(td, FIO_UNIDIR))
1847 continue;
1848
1849 clear_io_state(td, 0);
1850
1851 fio_gettime(&td->start, NULL);
1852
1853 do_verify(td, verify_bytes);
1854
1855 /*
1856 * See comment further up for why this is done here.
1857 */
1858 check_update_rusage(td);
1859
1860 fio_sem_down(stat_sem);
1861 update_runtime(td, elapsed_us, DDIR_READ);
1862 fio_gettime(&td->start, NULL);
1863 fio_sem_up(stat_sem);
1864
1865 if (td->error || td->terminate)
1866 break;
1867 }
1868
1869 /*
1870 * Acquire this lock if we were doing overlap checking in
1871 * offload mode so that we don't clean up this job while
1872 * another thread is checking its io_u's for overlap
1873 */
1874 if (td_offload_overlap(td))
1875 pthread_mutex_lock(&overlap_check);
1876 td_set_runstate(td, TD_FINISHING);
1877 if (td_offload_overlap(td))
1878 pthread_mutex_unlock(&overlap_check);
1879
1880 update_rusage_stat(td);
1881 td->ts.total_run_time = mtime_since_now(&td->epoch);
1882 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1883 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1884 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1885
1886 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1887 (td->o.verify != VERIFY_NONE && td_write(td)))
1888 verify_save_state(td->thread_number);
1889
1890 fio_unpin_memory(td);
1891
1892 td_writeout_logs(td, true);
1893
1894 iolog_compress_exit(td);
1895 rate_submit_exit(td);
1896
1897 if (o->exec_postrun)
1898 exec_string(o, o->exec_postrun, (const char *)"postrun");
1899
1900 if (exitall_on_terminate || (o->exitall_error && td->error))
1901 fio_terminate_threads(td->groupid);
1902
1903err:
1904 if (td->error)
1905 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1906 td->verror);
1907
1908 if (o->verify_async)
1909 verify_async_exit(td);
1910
1911 close_and_free_files(td);
1912 cleanup_io_u(td);
1913 close_ioengine(td);
1914 cgroup_shutdown(td, cgroup_mnt);
1915 verify_free_state(td);
1916 td_zone_free_index(td);
1917
1918 if (fio_option_is_set(o, cpumask)) {
1919 ret = fio_cpuset_exit(&o->cpumask);
1920 if (ret)
1921 td_verror(td, ret, "fio_cpuset_exit");
1922 }
1923
1924 /*
1925 * do this very late, it will log file closing as well
1926 */
1927 if (o->write_iolog_file)
1928 write_iolog_close(td);
1929 if (td->io_log_rfile)
1930 fclose(td->io_log_rfile);
1931
1932 td_set_runstate(td, TD_EXITED);
1933
1934 /*
1935 * Do this last after setting our runstate to exited, so we
1936 * know that the stat thread is signaled.
1937 */
1938 check_update_rusage(td);
1939
1940 sk_out_drop();
1941 return (void *) (uintptr_t) td->error;
1942}
1943
1944/*
1945 * Run over the job map and reap the threads that have exited, if any.
1946 */
1947static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1948 uint64_t *m_rate)
1949{
1950 struct thread_data *td;
1951 unsigned int cputhreads, realthreads, pending;
1952 int i, status, ret;
1953
1954 /*
1955 * reap exited threads (TD_EXITED -> TD_REAPED)
1956 */
1957 realthreads = pending = cputhreads = 0;
1958 for_each_td(td, i) {
1959 int flags = 0;
1960
1961 if (!strcmp(td->o.ioengine, "cpuio"))
1962 cputhreads++;
1963 else
1964 realthreads++;
1965
1966 if (!td->pid) {
1967 pending++;
1968 continue;
1969 }
1970 if (td->runstate == TD_REAPED)
1971 continue;
1972 if (td->o.use_thread) {
1973 if (td->runstate == TD_EXITED) {
1974 td_set_runstate(td, TD_REAPED);
1975 goto reaped;
1976 }
1977 continue;
1978 }
1979
1980 flags = WNOHANG;
1981 if (td->runstate == TD_EXITED)
1982 flags = 0;
1983
1984 /*
1985 * check if someone quit or got killed in an unusual way
1986 */
1987 ret = waitpid(td->pid, &status, flags);
1988 if (ret < 0) {
1989 if (errno == ECHILD) {
1990 log_err("fio: pid=%d disappeared %d\n",
1991 (int) td->pid, td->runstate);
1992 td->sig = ECHILD;
1993 td_set_runstate(td, TD_REAPED);
1994 goto reaped;
1995 }
1996 perror("waitpid");
1997 } else if (ret == td->pid) {
1998 if (WIFSIGNALED(status)) {
1999 int sig = WTERMSIG(status);
2000
2001 if (sig != SIGTERM && sig != SIGUSR2)
2002 log_err("fio: pid=%d, got signal=%d\n",
2003 (int) td->pid, sig);
2004 td->sig = sig;
2005 td_set_runstate(td, TD_REAPED);
2006 goto reaped;
2007 }
2008 if (WIFEXITED(status)) {
2009 if (WEXITSTATUS(status) && !td->error)
2010 td->error = WEXITSTATUS(status);
2011
2012 td_set_runstate(td, TD_REAPED);
2013 goto reaped;
2014 }
2015 }
2016
2017 /*
2018 * If the job is stuck, do a forceful timeout of it and
2019 * move on.
2020 */
2021 if (td->terminate &&
2022 td->runstate < TD_FSYNCING &&
2023 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2024 log_err("fio: job '%s' (state=%d) hasn't exited in "
2025 "%lu seconds, it appears to be stuck. Doing "
2026 "forceful exit of this job.\n",
2027 td->o.name, td->runstate,
2028 (unsigned long) time_since_now(&td->terminate_time));
2029 td_set_runstate(td, TD_REAPED);
2030 goto reaped;
2031 }
2032
2033 /*
2034 * thread is not dead, continue
2035 */
2036 pending++;
2037 continue;
2038reaped:
2039 (*nr_running)--;
2040 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2041 (*t_rate) -= ddir_rw_sum(td->o.rate);
2042 if (!td->pid)
2043 pending--;
2044
2045 if (td->error)
2046 exit_value++;
2047
2048 done_secs += mtime_since_now(&td->epoch) / 1000;
2049 profile_td_exit(td);
2050 }
2051
2052 if (*nr_running == cputhreads && !pending && realthreads)
2053 fio_terminate_threads(TERMINATE_ALL);
2054}
2055
2056static bool __check_trigger_file(void)
2057{
2058 struct stat sb;
2059
2060 if (!trigger_file)
2061 return false;
2062
2063 if (stat(trigger_file, &sb))
2064 return false;
2065
2066 if (unlink(trigger_file) < 0)
2067 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2068 strerror(errno));
2069
2070 return true;
2071}
2072
2073static bool trigger_timedout(void)
2074{
2075 if (trigger_timeout)
2076 if (time_since_genesis() >= trigger_timeout) {
2077 trigger_timeout = 0;
2078 return true;
2079 }
2080
2081 return false;
2082}
2083
2084void exec_trigger(const char *cmd)
2085{
2086 int ret;
2087
2088 if (!cmd || cmd[0] == '\0')
2089 return;
2090
2091 ret = system(cmd);
2092 if (ret == -1)
2093 log_err("fio: failed executing %s trigger\n", cmd);
2094}
2095
2096void check_trigger_file(void)
2097{
2098 if (__check_trigger_file() || trigger_timedout()) {
2099 if (nr_clients)
2100 fio_clients_send_trigger(trigger_remote_cmd);
2101 else {
2102 verify_save_state(IO_LIST_ALL);
2103 fio_terminate_threads(TERMINATE_ALL);
2104 exec_trigger(trigger_cmd);
2105 }
2106 }
2107}
2108
2109static int fio_verify_load_state(struct thread_data *td)
2110{
2111 int ret;
2112
2113 if (!td->o.verify_state)
2114 return 0;
2115
2116 if (is_backend) {
2117 void *data;
2118
2119 ret = fio_server_get_verify_state(td->o.name,
2120 td->thread_number - 1, &data);
2121 if (!ret)
2122 verify_assign_state(td, data);
2123 } else
2124 ret = verify_load_state(td, "local");
2125
2126 return ret;
2127}
2128
2129static void do_usleep(unsigned int usecs)
2130{
2131 check_for_running_stats();
2132 check_trigger_file();
2133 usleep(usecs);
2134}
2135
2136static bool check_mount_writes(struct thread_data *td)
2137{
2138 struct fio_file *f;
2139 unsigned int i;
2140
2141 if (!td_write(td) || td->o.allow_mounted_write)
2142 return false;
2143
2144 /*
2145 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2146 * are mkfs'd and mounted.
2147 */
2148 for_each_file(td, f, i) {
2149#ifdef FIO_HAVE_CHARDEV_SIZE
2150 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2151#else
2152 if (f->filetype != FIO_TYPE_BLOCK)
2153#endif
2154 continue;
2155 if (device_is_mounted(f->file_name))
2156 goto mounted;
2157 }
2158
2159 return false;
2160mounted:
2161 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2162 return true;
2163}
2164
2165static bool waitee_running(struct thread_data *me)
2166{
2167 const char *waitee = me->o.wait_for;
2168 const char *self = me->o.name;
2169 struct thread_data *td;
2170 int i;
2171
2172 if (!waitee)
2173 return false;
2174
2175 for_each_td(td, i) {
2176 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2177 continue;
2178
2179 if (td->runstate < TD_EXITED) {
2180 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2181 self, td->o.name,
2182 runstate_to_name(td->runstate));
2183 return true;
2184 }
2185 }
2186
2187 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2188 return false;
2189}
2190
2191/*
2192 * Main function for kicking off and reaping jobs, as needed.
2193 */
2194static void run_threads(struct sk_out *sk_out)
2195{
2196 struct thread_data *td;
2197 unsigned int i, todo, nr_running, nr_started;
2198 uint64_t m_rate, t_rate;
2199 uint64_t spent;
2200
2201 if (fio_gtod_offload && fio_start_gtod_thread())
2202 return;
2203
2204 fio_idle_prof_init();
2205
2206 set_sig_handlers();
2207
2208 nr_thread = nr_process = 0;
2209 for_each_td(td, i) {
2210 if (check_mount_writes(td))
2211 return;
2212 if (td->o.use_thread)
2213 nr_thread++;
2214 else
2215 nr_process++;
2216 }
2217
2218 if (output_format & FIO_OUTPUT_NORMAL) {
2219 struct buf_output out;
2220
2221 buf_output_init(&out);
2222 __log_buf(&out, "Starting ");
2223 if (nr_thread)
2224 __log_buf(&out, "%d thread%s", nr_thread,
2225 nr_thread > 1 ? "s" : "");
2226 if (nr_process) {
2227 if (nr_thread)
2228 __log_buf(&out, " and ");
2229 __log_buf(&out, "%d process%s", nr_process,
2230 nr_process > 1 ? "es" : "");
2231 }
2232 __log_buf(&out, "\n");
2233 log_info_buf(out.buf, out.buflen);
2234 buf_output_free(&out);
2235 }
2236
2237 todo = thread_number;
2238 nr_running = 0;
2239 nr_started = 0;
2240 m_rate = t_rate = 0;
2241
2242 for_each_td(td, i) {
2243 print_status_init(td->thread_number - 1);
2244
2245 if (!td->o.create_serialize)
2246 continue;
2247
2248 if (fio_verify_load_state(td))
2249 goto reap;
2250
2251 /*
2252 * do file setup here so it happens sequentially,
2253 * we don't want X number of threads getting their
2254 * client data interspersed on disk
2255 */
2256 if (setup_files(td)) {
2257reap:
2258 exit_value++;
2259 if (td->error)
2260 log_err("fio: pid=%d, err=%d/%s\n",
2261 (int) td->pid, td->error, td->verror);
2262 td_set_runstate(td, TD_REAPED);
2263 todo--;
2264 } else {
2265 struct fio_file *f;
2266 unsigned int j;
2267
2268 /*
2269 * for sharing to work, each job must always open
2270 * its own files. so close them, if we opened them
2271 * for creation
2272 */
2273 for_each_file(td, f, j) {
2274 if (fio_file_open(f))
2275 td_io_close_file(td, f);
2276 }
2277 }
2278 }
2279
2280 /* start idle threads before io threads start to run */
2281 fio_idle_prof_start();
2282
2283 set_genesis_time();
2284
2285 while (todo) {
2286 struct thread_data *map[REAL_MAX_JOBS];
2287 struct timespec this_start;
2288 int this_jobs = 0, left;
2289 struct fork_data *fd;
2290
2291 /*
2292 * create threads (TD_NOT_CREATED -> TD_CREATED)
2293 */
2294 for_each_td(td, i) {
2295 if (td->runstate != TD_NOT_CREATED)
2296 continue;
2297
2298 /*
2299 * never got a chance to start, killed by other
2300 * thread for some reason
2301 */
2302 if (td->terminate) {
2303 todo--;
2304 continue;
2305 }
2306
2307 if (td->o.start_delay) {
2308 spent = utime_since_genesis();
2309
2310 if (td->o.start_delay > spent)
2311 continue;
2312 }
2313
2314 if (td->o.stonewall && (nr_started || nr_running)) {
2315 dprint(FD_PROCESS, "%s: stonewall wait\n",
2316 td->o.name);
2317 break;
2318 }
2319
2320 if (waitee_running(td)) {
2321 dprint(FD_PROCESS, "%s: waiting for %s\n",
2322 td->o.name, td->o.wait_for);
2323 continue;
2324 }
2325
2326 init_disk_util(td);
2327
2328 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2329 td->update_rusage = 0;
2330
2331 /*
2332 * Set state to created. Thread will transition
2333 * to TD_INITIALIZED when it's done setting up.
2334 */
2335 td_set_runstate(td, TD_CREATED);
2336 map[this_jobs++] = td;
2337 nr_started++;
2338
2339 fd = calloc(1, sizeof(*fd));
2340 fd->td = td;
2341 fd->sk_out = sk_out;
2342
2343 if (td->o.use_thread) {
2344 int ret;
2345
2346 dprint(FD_PROCESS, "will pthread_create\n");
2347 ret = pthread_create(&td->thread, NULL,
2348 thread_main, fd);
2349 if (ret) {
2350 log_err("pthread_create: %s\n",
2351 strerror(ret));
2352 free(fd);
2353 nr_started--;
2354 break;
2355 }
2356 fd = NULL;
2357 ret = pthread_detach(td->thread);
2358 if (ret)
2359 log_err("pthread_detach: %s",
2360 strerror(ret));
2361 } else {
2362 pid_t pid;
2363 dprint(FD_PROCESS, "will fork\n");
2364 pid = fork();
2365 if (!pid) {
2366 int ret;
2367
2368 ret = (int)(uintptr_t)thread_main(fd);
2369 _exit(ret);
2370 } else if (i == fio_debug_jobno)
2371 *fio_debug_jobp = pid;
2372 }
2373 dprint(FD_MUTEX, "wait on startup_sem\n");
2374 if (fio_sem_down_timeout(startup_sem, 10000)) {
2375 log_err("fio: job startup hung? exiting.\n");
2376 fio_terminate_threads(TERMINATE_ALL);
2377 fio_abort = true;
2378 nr_started--;
2379 free(fd);
2380 break;
2381 }
2382 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2383 }
2384
2385 /*
2386 * Wait for the started threads to transition to
2387 * TD_INITIALIZED.
2388 */
2389 fio_gettime(&this_start, NULL);
2390 left = this_jobs;
2391 while (left && !fio_abort) {
2392 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2393 break;
2394
2395 do_usleep(100000);
2396
2397 for (i = 0; i < this_jobs; i++) {
2398 td = map[i];
2399 if (!td)
2400 continue;
2401 if (td->runstate == TD_INITIALIZED) {
2402 map[i] = NULL;
2403 left--;
2404 } else if (td->runstate >= TD_EXITED) {
2405 map[i] = NULL;
2406 left--;
2407 todo--;
2408 nr_running++; /* work-around... */
2409 }
2410 }
2411 }
2412
2413 if (left) {
2414 log_err("fio: %d job%s failed to start\n", left,
2415 left > 1 ? "s" : "");
2416 for (i = 0; i < this_jobs; i++) {
2417 td = map[i];
2418 if (!td)
2419 continue;
2420 kill(td->pid, SIGTERM);
2421 }
2422 break;
2423 }
2424
2425 /*
2426 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2427 */
2428 for_each_td(td, i) {
2429 if (td->runstate != TD_INITIALIZED)
2430 continue;
2431
2432 if (in_ramp_time(td))
2433 td_set_runstate(td, TD_RAMP);
2434 else
2435 td_set_runstate(td, TD_RUNNING);
2436 nr_running++;
2437 nr_started--;
2438 m_rate += ddir_rw_sum(td->o.ratemin);
2439 t_rate += ddir_rw_sum(td->o.rate);
2440 todo--;
2441 fio_sem_up(td->sem);
2442 }
2443
2444 reap_threads(&nr_running, &t_rate, &m_rate);
2445
2446 if (todo)
2447 do_usleep(100000);
2448 }
2449
2450 while (nr_running) {
2451 reap_threads(&nr_running, &t_rate, &m_rate);
2452 do_usleep(10000);
2453 }
2454
2455 fio_idle_prof_stop();
2456
2457 update_io_ticks();
2458}
2459
2460static void free_disk_util(void)
2461{
2462 disk_util_prune_entries();
2463 helper_thread_destroy();
2464}
2465
2466int fio_backend(struct sk_out *sk_out)
2467{
2468 struct thread_data *td;
2469 int i;
2470
2471 if (exec_profile) {
2472 if (load_profile(exec_profile))
2473 return 1;
2474 free(exec_profile);
2475 exec_profile = NULL;
2476 }
2477 if (!thread_number)
2478 return 0;
2479
2480 if (write_bw_log) {
2481 struct log_params p = {
2482 .log_type = IO_LOG_TYPE_BW,
2483 };
2484
2485 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2486 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2487 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2488 }
2489
2490 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2491 if (!sk_out)
2492 is_local_backend = true;
2493 if (startup_sem == NULL)
2494 return 1;
2495
2496 set_genesis_time();
2497 stat_init();
2498 helper_thread_create(startup_sem, sk_out);
2499
2500 cgroup_list = smalloc(sizeof(*cgroup_list));
2501 if (cgroup_list)
2502 INIT_FLIST_HEAD(cgroup_list);
2503
2504 run_threads(sk_out);
2505
2506 helper_thread_exit();
2507
2508 if (!fio_abort) {
2509 __show_run_stats();
2510 if (write_bw_log) {
2511 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2512 struct io_log *log = agg_io_log[i];
2513
2514 flush_log(log, false);
2515 free_log(log);
2516 }
2517 }
2518 }
2519
2520 for_each_td(td, i) {
2521 steadystate_free(td);
2522 fio_options_free(td);
2523 if (td->rusage_sem) {
2524 fio_sem_remove(td->rusage_sem);
2525 td->rusage_sem = NULL;
2526 }
2527 fio_sem_remove(td->sem);
2528 td->sem = NULL;
2529 }
2530
2531 free_disk_util();
2532 if (cgroup_list) {
2533 cgroup_kill(cgroup_list);
2534 sfree(cgroup_list);
2535 }
2536
2537 fio_sem_remove(startup_sem);
2538 stat_exit();
2539 return exit_value;
2540}