Merge branch 'master' of git://github.com/DaveGlen/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59
60static pthread_t helper_thread;
61static pthread_mutex_t helper_lock;
62pthread_cond_t helper_cond;
63int helper_do_stat = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct flist_head *cgroup_list;
67static char *cgroup_mnt;
68static int exit_value;
69static volatile int fio_abort;
70static unsigned int nr_process = 0;
71static unsigned int nr_thread = 0;
72
73struct io_log *agg_io_log[DDIR_RWDIR_CNT];
74
75int groupid = 0;
76unsigned int thread_number = 0;
77unsigned int stat_number = 0;
78int shm_id = 0;
79int temp_stall_ts;
80unsigned long done_secs = 0;
81volatile int helper_exit = 0;
82
83#define PAGE_ALIGN(buf) \
84 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
85
86#define JOB_START_TIMEOUT (5 * 1000)
87
88static void sig_int(int sig)
89{
90 if (threads) {
91 if (is_backend)
92 fio_server_got_signal(sig);
93 else {
94 log_info("\nfio: terminating on signal %d\n", sig);
95 log_info_flush();
96 exit_value = 128;
97 }
98
99 fio_terminate_threads(TERMINATE_ALL);
100 }
101}
102
103static void sig_show_status(int sig)
104{
105 show_running_run_stats();
106}
107
108static void set_sig_handlers(void)
109{
110 struct sigaction act;
111
112 memset(&act, 0, sizeof(act));
113 act.sa_handler = sig_int;
114 act.sa_flags = SA_RESTART;
115 sigaction(SIGINT, &act, NULL);
116
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGTERM, &act, NULL);
121
122/* Windows uses SIGBREAK as a quit signal from other applications */
123#ifdef WIN32
124 memset(&act, 0, sizeof(act));
125 act.sa_handler = sig_int;
126 act.sa_flags = SA_RESTART;
127 sigaction(SIGBREAK, &act, NULL);
128#endif
129
130 memset(&act, 0, sizeof(act));
131 act.sa_handler = sig_show_status;
132 act.sa_flags = SA_RESTART;
133 sigaction(SIGUSR1, &act, NULL);
134
135 if (is_backend) {
136 memset(&act, 0, sizeof(act));
137 act.sa_handler = sig_int;
138 act.sa_flags = SA_RESTART;
139 sigaction(SIGPIPE, &act, NULL);
140 }
141}
142
143/*
144 * Check if we are above the minimum rate given.
145 */
146static int __check_min_rate(struct thread_data *td, struct timeval *now,
147 enum fio_ddir ddir)
148{
149 unsigned long long bytes = 0;
150 unsigned long iops = 0;
151 unsigned long spent;
152 unsigned long rate;
153 unsigned int ratemin = 0;
154 unsigned int rate_iops = 0;
155 unsigned int rate_iops_min = 0;
156
157 assert(ddir_rw(ddir));
158
159 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
160 return 0;
161
162 /*
163 * allow a 2 second settle period in the beginning
164 */
165 if (mtime_since(&td->start, now) < 2000)
166 return 0;
167
168 iops += td->this_io_blocks[ddir];
169 bytes += td->this_io_bytes[ddir];
170 ratemin += td->o.ratemin[ddir];
171 rate_iops += td->o.rate_iops[ddir];
172 rate_iops_min += td->o.rate_iops_min[ddir];
173
174 /*
175 * if rate blocks is set, sample is running
176 */
177 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
178 spent = mtime_since(&td->lastrate[ddir], now);
179 if (spent < td->o.ratecycle)
180 return 0;
181
182 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
183 /*
184 * check bandwidth specified rate
185 */
186 if (bytes < td->rate_bytes[ddir]) {
187 log_err("%s: min rate %u not met\n", td->o.name,
188 ratemin);
189 return 1;
190 } else {
191 if (spent)
192 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
193 else
194 rate = 0;
195
196 if (rate < ratemin ||
197 bytes < td->rate_bytes[ddir]) {
198 log_err("%s: min rate %u not met, got"
199 " %luKB/sec\n", td->o.name,
200 ratemin, rate);
201 return 1;
202 }
203 }
204 } else {
205 /*
206 * checks iops specified rate
207 */
208 if (iops < rate_iops) {
209 log_err("%s: min iops rate %u not met\n",
210 td->o.name, rate_iops);
211 return 1;
212 } else {
213 if (spent)
214 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
215 else
216 rate = 0;
217
218 if (rate < rate_iops_min ||
219 iops < td->rate_blocks[ddir]) {
220 log_err("%s: min iops rate %u not met,"
221 " got %lu\n", td->o.name,
222 rate_iops_min, rate);
223 return 1;
224 }
225 }
226 }
227 }
228
229 td->rate_bytes[ddir] = bytes;
230 td->rate_blocks[ddir] = iops;
231 memcpy(&td->lastrate[ddir], now, sizeof(*now));
232 return 0;
233}
234
235static int check_min_rate(struct thread_data *td, struct timeval *now)
236{
237 int ret = 0;
238
239 if (td->bytes_done[DDIR_READ])
240 ret |= __check_min_rate(td, now, DDIR_READ);
241 if (td->bytes_done[DDIR_WRITE])
242 ret |= __check_min_rate(td, now, DDIR_WRITE);
243 if (td->bytes_done[DDIR_TRIM])
244 ret |= __check_min_rate(td, now, DDIR_TRIM);
245
246 return ret;
247}
248
249/*
250 * When job exits, we can cancel the in-flight IO if we are using async
251 * io. Attempt to do so.
252 */
253static void cleanup_pending_aio(struct thread_data *td)
254{
255 int r;
256
257 /*
258 * get immediately available events, if any
259 */
260 r = io_u_queued_complete(td, 0);
261 if (r < 0)
262 return;
263
264 /*
265 * now cancel remaining active events
266 */
267 if (td->io_ops->cancel) {
268 struct io_u *io_u;
269 int i;
270
271 io_u_qiter(&td->io_u_all, io_u, i) {
272 if (io_u->flags & IO_U_F_FLIGHT) {
273 r = td->io_ops->cancel(td, io_u);
274 if (!r)
275 put_io_u(td, io_u);
276 }
277 }
278 }
279
280 if (td->cur_depth)
281 r = io_u_queued_complete(td, td->cur_depth);
282}
283
284/*
285 * Helper to handle the final sync of a file. Works just like the normal
286 * io path, just does everything sync.
287 */
288static int fio_io_sync(struct thread_data *td, struct fio_file *f)
289{
290 struct io_u *io_u = __get_io_u(td);
291 int ret;
292
293 if (!io_u)
294 return 1;
295
296 io_u->ddir = DDIR_SYNC;
297 io_u->file = f;
298
299 if (td_io_prep(td, io_u)) {
300 put_io_u(td, io_u);
301 return 1;
302 }
303
304requeue:
305 ret = td_io_queue(td, io_u);
306 if (ret < 0) {
307 td_verror(td, io_u->error, "td_io_queue");
308 put_io_u(td, io_u);
309 return 1;
310 } else if (ret == FIO_Q_QUEUED) {
311 if (io_u_queued_complete(td, 1) < 0)
312 return 1;
313 } else if (ret == FIO_Q_COMPLETED) {
314 if (io_u->error) {
315 td_verror(td, io_u->error, "td_io_queue");
316 return 1;
317 }
318
319 if (io_u_sync_complete(td, io_u) < 0)
320 return 1;
321 } else if (ret == FIO_Q_BUSY) {
322 if (td_io_commit(td))
323 return 1;
324 goto requeue;
325 }
326
327 return 0;
328}
329
330static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
331{
332 int ret;
333
334 if (fio_file_open(f))
335 return fio_io_sync(td, f);
336
337 if (td_io_open_file(td, f))
338 return 1;
339
340 ret = fio_io_sync(td, f);
341 td_io_close_file(td, f);
342 return ret;
343}
344
345static inline void __update_tv_cache(struct thread_data *td)
346{
347 fio_gettime(&td->tv_cache, NULL);
348}
349
350static inline void update_tv_cache(struct thread_data *td)
351{
352 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
353 __update_tv_cache(td);
354}
355
356static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
357{
358 if (in_ramp_time(td))
359 return 0;
360 if (!td->o.timeout)
361 return 0;
362 if (utime_since(&td->epoch, t) >= td->o.timeout)
363 return 1;
364
365 return 0;
366}
367
368/*
369 * We need to update the runtime consistently in ms, but keep a running
370 * tally of the current elapsed time in microseconds for sub millisecond
371 * updates.
372 */
373static inline void update_runtime(struct thread_data *td,
374 unsigned long long *elapsed_us,
375 const enum fio_ddir ddir)
376{
377 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
378 return;
379
380 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
381 elapsed_us[ddir] += utime_since_now(&td->start);
382 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
383}
384
385static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
386 int *retptr)
387{
388 int ret = *retptr;
389
390 if (ret < 0 || td->error) {
391 int err = td->error;
392 enum error_type_bit eb;
393
394 if (ret < 0)
395 err = -ret;
396
397 eb = td_error_type(ddir, err);
398 if (!(td->o.continue_on_error & (1 << eb)))
399 return 1;
400
401 if (td_non_fatal_error(td, eb, err)) {
402 /*
403 * Continue with the I/Os in case of
404 * a non fatal error.
405 */
406 update_error_count(td, err);
407 td_clear_error(td);
408 *retptr = 0;
409 return 0;
410 } else if (td->o.fill_device && err == ENOSPC) {
411 /*
412 * We expect to hit this error if
413 * fill_device option is set.
414 */
415 td_clear_error(td);
416 fio_mark_td_terminate(td);
417 return 1;
418 } else {
419 /*
420 * Stop the I/O in case of a fatal
421 * error.
422 */
423 update_error_count(td, err);
424 return 1;
425 }
426 }
427
428 return 0;
429}
430
431static void check_update_rusage(struct thread_data *td)
432{
433 if (td->update_rusage) {
434 td->update_rusage = 0;
435 update_rusage_stat(td);
436 fio_mutex_up(td->rusage_sem);
437 }
438}
439
440static int wait_for_completions(struct thread_data *td, struct timeval *time)
441{
442 const int full = queue_full(td);
443 int min_evts = 0;
444 int ret;
445
446 /*
447 * if the queue is full, we MUST reap at least 1 event
448 */
449 min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
450 if ((full && !min_evts) || !td->o.iodepth_batch_complete)
451 min_evts = 1;
452
453 if (time && (__should_check_rate(td, DDIR_READ) ||
454 __should_check_rate(td, DDIR_WRITE) ||
455 __should_check_rate(td, DDIR_TRIM)))
456 fio_gettime(time, NULL);
457
458 do {
459 ret = io_u_queued_complete(td, min_evts);
460 if (ret < 0)
461 break;
462 } while (full && (td->cur_depth > td->o.iodepth_low));
463
464 return ret;
465}
466
467int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
468 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
469 struct timeval *comp_time)
470{
471 int ret2;
472
473 switch (*ret) {
474 case FIO_Q_COMPLETED:
475 if (io_u->error) {
476 *ret = -io_u->error;
477 clear_io_u(td, io_u);
478 } else if (io_u->resid) {
479 int bytes = io_u->xfer_buflen - io_u->resid;
480 struct fio_file *f = io_u->file;
481
482 if (bytes_issued)
483 *bytes_issued += bytes;
484
485 if (!from_verify)
486 trim_io_piece(td, io_u);
487
488 /*
489 * zero read, fail
490 */
491 if (!bytes) {
492 if (!from_verify)
493 unlog_io_piece(td, io_u);
494 td_verror(td, EIO, "full resid");
495 put_io_u(td, io_u);
496 break;
497 }
498
499 io_u->xfer_buflen = io_u->resid;
500 io_u->xfer_buf += bytes;
501 io_u->offset += bytes;
502
503 if (ddir_rw(io_u->ddir))
504 td->ts.short_io_u[io_u->ddir]++;
505
506 f = io_u->file;
507 if (io_u->offset == f->real_file_size)
508 goto sync_done;
509
510 requeue_io_u(td, &io_u);
511 } else {
512sync_done:
513 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
514 __should_check_rate(td, DDIR_WRITE) ||
515 __should_check_rate(td, DDIR_TRIM)))
516 fio_gettime(comp_time, NULL);
517
518 *ret = io_u_sync_complete(td, io_u);
519 if (*ret < 0)
520 break;
521 }
522 return 0;
523 case FIO_Q_QUEUED:
524 /*
525 * if the engine doesn't have a commit hook,
526 * the io_u is really queued. if it does have such
527 * a hook, it has to call io_u_queued() itself.
528 */
529 if (td->io_ops->commit == NULL)
530 io_u_queued(td, io_u);
531 if (bytes_issued)
532 *bytes_issued += io_u->xfer_buflen;
533 break;
534 case FIO_Q_BUSY:
535 if (!from_verify)
536 unlog_io_piece(td, io_u);
537 requeue_io_u(td, &io_u);
538 ret2 = td_io_commit(td);
539 if (ret2 < 0)
540 *ret = ret2;
541 break;
542 default:
543 assert(ret < 0);
544 td_verror(td, -(*ret), "td_io_queue");
545 break;
546 }
547
548 if (break_on_this_error(td, ddir, ret))
549 return 1;
550
551 return 0;
552}
553
554/*
555 * The main verify engine. Runs over the writes we previously submitted,
556 * reads the blocks back in, and checks the crc/md5 of the data.
557 */
558static void do_verify(struct thread_data *td, uint64_t verify_bytes)
559{
560 struct fio_file *f;
561 struct io_u *io_u;
562 int ret, min_events;
563 unsigned int i;
564
565 dprint(FD_VERIFY, "starting loop\n");
566
567 /*
568 * sync io first and invalidate cache, to make sure we really
569 * read from disk.
570 */
571 for_each_file(td, f, i) {
572 if (!fio_file_open(f))
573 continue;
574 if (fio_io_sync(td, f))
575 break;
576 if (file_invalidate_cache(td, f))
577 break;
578 }
579
580 check_update_rusage(td);
581
582 if (td->error)
583 return;
584
585 td_set_runstate(td, TD_VERIFYING);
586
587 io_u = NULL;
588 while (!td->terminate) {
589 enum fio_ddir ddir;
590 int full;
591
592 update_tv_cache(td);
593 check_update_rusage(td);
594
595 if (runtime_exceeded(td, &td->tv_cache)) {
596 __update_tv_cache(td);
597 if (runtime_exceeded(td, &td->tv_cache)) {
598 fio_mark_td_terminate(td);
599 break;
600 }
601 }
602
603 if (flow_threshold_exceeded(td))
604 continue;
605
606 if (!td->o.experimental_verify) {
607 io_u = __get_io_u(td);
608 if (!io_u)
609 break;
610
611 if (get_next_verify(td, io_u)) {
612 put_io_u(td, io_u);
613 break;
614 }
615
616 if (td_io_prep(td, io_u)) {
617 put_io_u(td, io_u);
618 break;
619 }
620 } else {
621 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
622 break;
623
624 while ((io_u = get_io_u(td)) != NULL) {
625 if (IS_ERR(io_u)) {
626 io_u = NULL;
627 ret = FIO_Q_BUSY;
628 goto reap;
629 }
630
631 /*
632 * We are only interested in the places where
633 * we wrote or trimmed IOs. Turn those into
634 * reads for verification purposes.
635 */
636 if (io_u->ddir == DDIR_READ) {
637 /*
638 * Pretend we issued it for rwmix
639 * accounting
640 */
641 td->io_issues[DDIR_READ]++;
642 put_io_u(td, io_u);
643 continue;
644 } else if (io_u->ddir == DDIR_TRIM) {
645 io_u->ddir = DDIR_READ;
646 io_u_set(io_u, IO_U_F_TRIMMED);
647 break;
648 } else if (io_u->ddir == DDIR_WRITE) {
649 io_u->ddir = DDIR_READ;
650 break;
651 } else {
652 put_io_u(td, io_u);
653 continue;
654 }
655 }
656
657 if (!io_u)
658 break;
659 }
660
661 if (verify_state_should_stop(td, io_u)) {
662 put_io_u(td, io_u);
663 break;
664 }
665
666 if (td->o.verify_async)
667 io_u->end_io = verify_io_u_async;
668 else
669 io_u->end_io = verify_io_u;
670
671 ddir = io_u->ddir;
672 if (!td->o.disable_slat)
673 fio_gettime(&io_u->start_time, NULL);
674
675 ret = td_io_queue(td, io_u);
676
677 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
678 break;
679
680 /*
681 * if we can queue more, do so. but check if there are
682 * completed io_u's first. Note that we can get BUSY even
683 * without IO queued, if the system is resource starved.
684 */
685reap:
686 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
687 if (full || !td->o.iodepth_batch_complete)
688 ret = wait_for_completions(td, NULL);
689
690 if (ret < 0)
691 break;
692 }
693
694 check_update_rusage(td);
695
696 if (!td->error) {
697 min_events = td->cur_depth;
698
699 if (min_events)
700 ret = io_u_queued_complete(td, min_events);
701 } else
702 cleanup_pending_aio(td);
703
704 td_set_runstate(td, TD_RUNNING);
705
706 dprint(FD_VERIFY, "exiting loop\n");
707}
708
709static unsigned int exceeds_number_ios(struct thread_data *td)
710{
711 unsigned long long number_ios;
712
713 if (!td->o.number_ios)
714 return 0;
715
716 number_ios = ddir_rw_sum(td->io_blocks);
717 number_ios += td->io_u_queued + td->io_u_in_flight;
718
719 return number_ios >= (td->o.number_ios * td->loops);
720}
721
722static int io_issue_bytes_exceeded(struct thread_data *td)
723{
724 unsigned long long bytes, limit;
725
726 if (td_rw(td))
727 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
728 else if (td_write(td))
729 bytes = td->io_issue_bytes[DDIR_WRITE];
730 else if (td_read(td))
731 bytes = td->io_issue_bytes[DDIR_READ];
732 else
733 bytes = td->io_issue_bytes[DDIR_TRIM];
734
735 if (td->o.io_limit)
736 limit = td->o.io_limit;
737 else
738 limit = td->o.size;
739
740 limit *= td->loops;
741 return bytes >= limit || exceeds_number_ios(td);
742}
743
744static int io_complete_bytes_exceeded(struct thread_data *td)
745{
746 unsigned long long bytes, limit;
747
748 if (td_rw(td))
749 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
750 else if (td_write(td))
751 bytes = td->this_io_bytes[DDIR_WRITE];
752 else if (td_read(td))
753 bytes = td->this_io_bytes[DDIR_READ];
754 else
755 bytes = td->this_io_bytes[DDIR_TRIM];
756
757 if (td->o.io_limit)
758 limit = td->o.io_limit;
759 else
760 limit = td->o.size;
761
762 limit *= td->loops;
763 return bytes >= limit || exceeds_number_ios(td);
764}
765
766/*
767 * used to calculate the next io time for rate control
768 *
769 */
770static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
771{
772 uint64_t secs, remainder, bps, bytes;
773
774 assert(!(td->flags & TD_F_CHILD));
775 bytes = td->rate_io_issue_bytes[ddir];
776 bps = td->rate_bps[ddir];
777 if (bps) {
778 secs = bytes / bps;
779 remainder = bytes % bps;
780 return remainder * 1000000 / bps + secs * 1000000;
781 } else
782 return 0;
783}
784
785/*
786 * Main IO worker function. It retrieves io_u's to process and queues
787 * and reaps them, checking for rate and errors along the way.
788 *
789 * Returns number of bytes written and trimmed.
790 */
791static uint64_t do_io(struct thread_data *td)
792{
793 unsigned int i;
794 int ret = 0;
795 uint64_t total_bytes, bytes_issued = 0;
796
797 if (in_ramp_time(td))
798 td_set_runstate(td, TD_RAMP);
799 else
800 td_set_runstate(td, TD_RUNNING);
801
802 lat_target_init(td);
803
804 total_bytes = td->o.size;
805 /*
806 * Allow random overwrite workloads to write up to io_limit
807 * before starting verification phase as 'size' doesn't apply.
808 */
809 if (td_write(td) && td_random(td) && td->o.norandommap)
810 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
811 /*
812 * If verify_backlog is enabled, we'll run the verify in this
813 * handler as well. For that case, we may need up to twice the
814 * amount of bytes.
815 */
816 if (td->o.verify != VERIFY_NONE &&
817 (td_write(td) && td->o.verify_backlog))
818 total_bytes += td->o.size;
819
820 /* In trimwrite mode, each byte is trimmed and then written, so
821 * allow total_bytes to be twice as big */
822 if (td_trimwrite(td))
823 total_bytes += td->total_io_size;
824
825 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
826 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
827 td->o.time_based) {
828 struct timeval comp_time;
829 struct io_u *io_u;
830 int full;
831 enum fio_ddir ddir;
832
833 check_update_rusage(td);
834
835 if (td->terminate || td->done)
836 break;
837
838 update_tv_cache(td);
839
840 if (runtime_exceeded(td, &td->tv_cache)) {
841 __update_tv_cache(td);
842 if (runtime_exceeded(td, &td->tv_cache)) {
843 fio_mark_td_terminate(td);
844 break;
845 }
846 }
847
848 if (flow_threshold_exceeded(td))
849 continue;
850
851 if (bytes_issued >= total_bytes)
852 break;
853
854 io_u = get_io_u(td);
855 if (IS_ERR_OR_NULL(io_u)) {
856 int err = PTR_ERR(io_u);
857
858 io_u = NULL;
859 if (err == -EBUSY) {
860 ret = FIO_Q_BUSY;
861 goto reap;
862 }
863 if (td->o.latency_target)
864 goto reap;
865 break;
866 }
867
868 ddir = io_u->ddir;
869
870 /*
871 * Add verification end_io handler if:
872 * - Asked to verify (!td_rw(td))
873 * - Or the io_u is from our verify list (mixed write/ver)
874 */
875 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
876 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
877
878 if (!td->o.verify_pattern_bytes) {
879 io_u->rand_seed = __rand(&td->verify_state);
880 if (sizeof(int) != sizeof(long *))
881 io_u->rand_seed *= __rand(&td->verify_state);
882 }
883
884 if (verify_state_should_stop(td, io_u)) {
885 put_io_u(td, io_u);
886 break;
887 }
888
889 if (td->o.verify_async)
890 io_u->end_io = verify_io_u_async;
891 else
892 io_u->end_io = verify_io_u;
893 td_set_runstate(td, TD_VERIFYING);
894 } else if (in_ramp_time(td))
895 td_set_runstate(td, TD_RAMP);
896 else
897 td_set_runstate(td, TD_RUNNING);
898
899 /*
900 * Always log IO before it's issued, so we know the specific
901 * order of it. The logged unit will track when the IO has
902 * completed.
903 */
904 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
905 td->o.do_verify &&
906 td->o.verify != VERIFY_NONE &&
907 !td->o.experimental_verify)
908 log_io_piece(td, io_u);
909
910 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
911 if (td->error)
912 break;
913 ret = workqueue_enqueue(&td->io_wq, io_u);
914
915 if (should_check_rate(td))
916 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
917
918 } else {
919 ret = td_io_queue(td, io_u);
920
921 if (should_check_rate(td))
922 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
923
924 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
925 break;
926
927 /*
928 * See if we need to complete some commands. Note that
929 * we can get BUSY even without IO queued, if the
930 * system is resource starved.
931 */
932reap:
933 full = queue_full(td) ||
934 (ret == FIO_Q_BUSY && td->cur_depth);
935 if (full || !td->o.iodepth_batch_complete)
936 ret = wait_for_completions(td, &comp_time);
937 }
938 if (ret < 0)
939 break;
940 if (!ddir_rw_sum(td->bytes_done) &&
941 !(td->io_ops->flags & FIO_NOIO))
942 continue;
943
944 if (!in_ramp_time(td) && should_check_rate(td)) {
945 if (check_min_rate(td, &comp_time)) {
946 if (exitall_on_terminate)
947 fio_terminate_threads(td->groupid);
948 td_verror(td, EIO, "check_min_rate");
949 break;
950 }
951 }
952 if (!in_ramp_time(td) && td->o.latency_target)
953 lat_target_check(td);
954
955 if (td->o.thinktime) {
956 unsigned long long b;
957
958 b = ddir_rw_sum(td->io_blocks);
959 if (!(b % td->o.thinktime_blocks)) {
960 int left;
961
962 io_u_quiesce(td);
963
964 if (td->o.thinktime_spin)
965 usec_spin(td->o.thinktime_spin);
966
967 left = td->o.thinktime - td->o.thinktime_spin;
968 if (left)
969 usec_sleep(td, left);
970 }
971 }
972 }
973
974 check_update_rusage(td);
975
976 if (td->trim_entries)
977 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
978
979 if (td->o.fill_device && td->error == ENOSPC) {
980 td->error = 0;
981 fio_mark_td_terminate(td);
982 }
983 if (!td->error) {
984 struct fio_file *f;
985
986 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
987 workqueue_flush(&td->io_wq);
988 i = 0;
989 } else
990 i = td->cur_depth;
991
992 if (i) {
993 ret = io_u_queued_complete(td, i);
994 if (td->o.fill_device && td->error == ENOSPC)
995 td->error = 0;
996 }
997
998 if (should_fsync(td) && td->o.end_fsync) {
999 td_set_runstate(td, TD_FSYNCING);
1000
1001 for_each_file(td, f, i) {
1002 if (!fio_file_fsync(td, f))
1003 continue;
1004
1005 log_err("fio: end_fsync failed for file %s\n",
1006 f->file_name);
1007 }
1008 }
1009 } else
1010 cleanup_pending_aio(td);
1011
1012 /*
1013 * stop job if we failed doing any IO
1014 */
1015 if (!ddir_rw_sum(td->this_io_bytes))
1016 td->done = 1;
1017
1018 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1019}
1020
1021static void cleanup_io_u(struct thread_data *td)
1022{
1023 struct io_u *io_u;
1024
1025 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1026
1027 if (td->io_ops->io_u_free)
1028 td->io_ops->io_u_free(td, io_u);
1029
1030 fio_memfree(io_u, sizeof(*io_u));
1031 }
1032
1033 free_io_mem(td);
1034
1035 io_u_rexit(&td->io_u_requeues);
1036 io_u_qexit(&td->io_u_freelist);
1037 io_u_qexit(&td->io_u_all);
1038
1039 if (td->last_write_comp)
1040 sfree(td->last_write_comp);
1041}
1042
1043static int init_io_u(struct thread_data *td)
1044{
1045 struct io_u *io_u;
1046 unsigned int max_bs, min_write;
1047 int cl_align, i, max_units;
1048 int data_xfer = 1, err;
1049 char *p;
1050
1051 max_units = td->o.iodepth;
1052 max_bs = td_max_bs(td);
1053 min_write = td->o.min_bs[DDIR_WRITE];
1054 td->orig_buffer_size = (unsigned long long) max_bs
1055 * (unsigned long long) max_units;
1056
1057 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1058 data_xfer = 0;
1059
1060 err = 0;
1061 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1062 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1063 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1064
1065 if (err) {
1066 log_err("fio: failed setting up IO queues\n");
1067 return 1;
1068 }
1069
1070 /*
1071 * if we may later need to do address alignment, then add any
1072 * possible adjustment here so that we don't cause a buffer
1073 * overflow later. this adjustment may be too much if we get
1074 * lucky and the allocator gives us an aligned address.
1075 */
1076 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1077 (td->io_ops->flags & FIO_RAWIO))
1078 td->orig_buffer_size += page_mask + td->o.mem_align;
1079
1080 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1081 unsigned long bs;
1082
1083 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1084 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1085 }
1086
1087 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1088 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1089 return 1;
1090 }
1091
1092 if (data_xfer && allocate_io_mem(td))
1093 return 1;
1094
1095 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1096 (td->io_ops->flags & FIO_RAWIO))
1097 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1098 else
1099 p = td->orig_buffer;
1100
1101 cl_align = os_cache_line_size();
1102
1103 for (i = 0; i < max_units; i++) {
1104 void *ptr;
1105
1106 if (td->terminate)
1107 return 1;
1108
1109 ptr = fio_memalign(cl_align, sizeof(*io_u));
1110 if (!ptr) {
1111 log_err("fio: unable to allocate aligned memory\n");
1112 break;
1113 }
1114
1115 io_u = ptr;
1116 memset(io_u, 0, sizeof(*io_u));
1117 INIT_FLIST_HEAD(&io_u->verify_list);
1118 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1119
1120 if (data_xfer) {
1121 io_u->buf = p;
1122 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1123
1124 if (td_write(td))
1125 io_u_fill_buffer(td, io_u, min_write, max_bs);
1126 if (td_write(td) && td->o.verify_pattern_bytes) {
1127 /*
1128 * Fill the buffer with the pattern if we are
1129 * going to be doing writes.
1130 */
1131 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1132 }
1133 }
1134
1135 io_u->index = i;
1136 io_u->flags = IO_U_F_FREE;
1137 io_u_qpush(&td->io_u_freelist, io_u);
1138
1139 /*
1140 * io_u never leaves this stack, used for iteration of all
1141 * io_u buffers.
1142 */
1143 io_u_qpush(&td->io_u_all, io_u);
1144
1145 if (td->io_ops->io_u_init) {
1146 int ret = td->io_ops->io_u_init(td, io_u);
1147
1148 if (ret) {
1149 log_err("fio: failed to init engine data: %d\n", ret);
1150 return 1;
1151 }
1152 }
1153
1154 p += max_bs;
1155 }
1156
1157 if (td->o.verify != VERIFY_NONE) {
1158 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1159 if (!td->last_write_comp) {
1160 log_err("fio: failed to alloc write comp data\n");
1161 return 1;
1162 }
1163 }
1164
1165 return 0;
1166}
1167
1168static int switch_ioscheduler(struct thread_data *td)
1169{
1170 char tmp[256], tmp2[128];
1171 FILE *f;
1172 int ret;
1173
1174 if (td->io_ops->flags & FIO_DISKLESSIO)
1175 return 0;
1176
1177 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1178
1179 f = fopen(tmp, "r+");
1180 if (!f) {
1181 if (errno == ENOENT) {
1182 log_err("fio: os or kernel doesn't support IO scheduler"
1183 " switching\n");
1184 return 0;
1185 }
1186 td_verror(td, errno, "fopen iosched");
1187 return 1;
1188 }
1189
1190 /*
1191 * Set io scheduler.
1192 */
1193 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1194 if (ferror(f) || ret != 1) {
1195 td_verror(td, errno, "fwrite");
1196 fclose(f);
1197 return 1;
1198 }
1199
1200 rewind(f);
1201
1202 /*
1203 * Read back and check that the selected scheduler is now the default.
1204 */
1205 memset(tmp, 0, sizeof(tmp));
1206 ret = fread(tmp, sizeof(tmp), 1, f);
1207 if (ferror(f) || ret < 0) {
1208 td_verror(td, errno, "fread");
1209 fclose(f);
1210 return 1;
1211 }
1212 /*
1213 * either a list of io schedulers or "none\n" is expected.
1214 */
1215 tmp[strlen(tmp) - 1] = '\0';
1216
1217
1218 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1219 if (!strstr(tmp, tmp2)) {
1220 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1221 td_verror(td, EINVAL, "iosched_switch");
1222 fclose(f);
1223 return 1;
1224 }
1225
1226 fclose(f);
1227 return 0;
1228}
1229
1230static int keep_running(struct thread_data *td)
1231{
1232 unsigned long long limit;
1233
1234 if (td->done)
1235 return 0;
1236 if (td->o.time_based)
1237 return 1;
1238 if (td->o.loops) {
1239 td->o.loops--;
1240 return 1;
1241 }
1242 if (exceeds_number_ios(td))
1243 return 0;
1244
1245 if (td->o.io_limit)
1246 limit = td->o.io_limit;
1247 else
1248 limit = td->o.size;
1249
1250 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1251 uint64_t diff;
1252
1253 /*
1254 * If the difference is less than the minimum IO size, we
1255 * are done.
1256 */
1257 diff = limit - ddir_rw_sum(td->io_bytes);
1258 if (diff < td_max_bs(td))
1259 return 0;
1260
1261 if (fio_files_done(td))
1262 return 0;
1263
1264 return 1;
1265 }
1266
1267 return 0;
1268}
1269
1270static int exec_string(struct thread_options *o, const char *string, const char *mode)
1271{
1272 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1273 int ret;
1274 char *str;
1275
1276 str = malloc(newlen);
1277 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1278
1279 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1280 ret = system(str);
1281 if (ret == -1)
1282 log_err("fio: exec of cmd <%s> failed\n", str);
1283
1284 free(str);
1285 return ret;
1286}
1287
1288/*
1289 * Dry run to compute correct state of numberio for verification.
1290 */
1291static uint64_t do_dry_run(struct thread_data *td)
1292{
1293 td_set_runstate(td, TD_RUNNING);
1294
1295 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1296 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1297 struct io_u *io_u;
1298 int ret;
1299
1300 if (td->terminate || td->done)
1301 break;
1302
1303 io_u = get_io_u(td);
1304 if (!io_u)
1305 break;
1306
1307 io_u_set(io_u, IO_U_F_FLIGHT);
1308 io_u->error = 0;
1309 io_u->resid = 0;
1310 if (ddir_rw(acct_ddir(io_u)))
1311 td->io_issues[acct_ddir(io_u)]++;
1312 if (ddir_rw(io_u->ddir)) {
1313 io_u_mark_depth(td, 1);
1314 td->ts.total_io_u[io_u->ddir]++;
1315 }
1316
1317 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1318 td->o.do_verify &&
1319 td->o.verify != VERIFY_NONE &&
1320 !td->o.experimental_verify)
1321 log_io_piece(td, io_u);
1322
1323 ret = io_u_sync_complete(td, io_u);
1324 (void) ret;
1325 }
1326
1327 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1328}
1329
1330static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1331{
1332 const enum fio_ddir ddir = io_u->ddir;
1333 int ret;
1334
1335 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1336
1337 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1338
1339 td->cur_depth++;
1340
1341 ret = td_io_queue(td, io_u);
1342
1343 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1344
1345 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1346
1347 if (ret == FIO_Q_QUEUED)
1348 ret = io_u_queued_complete(td, 1);
1349
1350 td->cur_depth--;
1351}
1352
1353/*
1354 * Entry point for the thread based jobs. The process based jobs end up
1355 * here as well, after a little setup.
1356 */
1357static void *thread_main(void *data)
1358{
1359 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1360 struct thread_data *td = data;
1361 struct thread_options *o = &td->o;
1362 pthread_condattr_t attr;
1363 int clear_state;
1364 int ret;
1365
1366 if (!o->use_thread) {
1367 setsid();
1368 td->pid = getpid();
1369 } else
1370 td->pid = gettid();
1371
1372 fio_local_clock_init(o->use_thread);
1373
1374 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1375
1376 if (is_backend)
1377 fio_server_send_start(td);
1378
1379 INIT_FLIST_HEAD(&td->io_log_list);
1380 INIT_FLIST_HEAD(&td->io_hist_list);
1381 INIT_FLIST_HEAD(&td->verify_list);
1382 INIT_FLIST_HEAD(&td->trim_list);
1383 INIT_FLIST_HEAD(&td->next_rand_list);
1384 pthread_mutex_init(&td->io_u_lock, NULL);
1385 td->io_hist_tree = RB_ROOT;
1386
1387 pthread_condattr_init(&attr);
1388 pthread_cond_init(&td->verify_cond, &attr);
1389 pthread_cond_init(&td->free_cond, &attr);
1390
1391 td_set_runstate(td, TD_INITIALIZED);
1392 dprint(FD_MUTEX, "up startup_mutex\n");
1393 fio_mutex_up(startup_mutex);
1394 dprint(FD_MUTEX, "wait on td->mutex\n");
1395 fio_mutex_down(td->mutex);
1396 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1397
1398 /*
1399 * A new gid requires privilege, so we need to do this before setting
1400 * the uid.
1401 */
1402 if (o->gid != -1U && setgid(o->gid)) {
1403 td_verror(td, errno, "setgid");
1404 goto err;
1405 }
1406 if (o->uid != -1U && setuid(o->uid)) {
1407 td_verror(td, errno, "setuid");
1408 goto err;
1409 }
1410
1411 /*
1412 * If we have a gettimeofday() thread, make sure we exclude that
1413 * thread from this job
1414 */
1415 if (o->gtod_cpu)
1416 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1417
1418 /*
1419 * Set affinity first, in case it has an impact on the memory
1420 * allocations.
1421 */
1422 if (fio_option_is_set(o, cpumask)) {
1423 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1424 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1425 if (!ret) {
1426 log_err("fio: no CPUs set\n");
1427 log_err("fio: Try increasing number of available CPUs\n");
1428 td_verror(td, EINVAL, "cpus_split");
1429 goto err;
1430 }
1431 }
1432 ret = fio_setaffinity(td->pid, o->cpumask);
1433 if (ret == -1) {
1434 td_verror(td, errno, "cpu_set_affinity");
1435 goto err;
1436 }
1437 }
1438
1439#ifdef CONFIG_LIBNUMA
1440 /* numa node setup */
1441 if (fio_option_is_set(o, numa_cpunodes) ||
1442 fio_option_is_set(o, numa_memnodes)) {
1443 struct bitmask *mask;
1444
1445 if (numa_available() < 0) {
1446 td_verror(td, errno, "Does not support NUMA API\n");
1447 goto err;
1448 }
1449
1450 if (fio_option_is_set(o, numa_cpunodes)) {
1451 mask = numa_parse_nodestring(o->numa_cpunodes);
1452 ret = numa_run_on_node_mask(mask);
1453 numa_free_nodemask(mask);
1454 if (ret == -1) {
1455 td_verror(td, errno, \
1456 "numa_run_on_node_mask failed\n");
1457 goto err;
1458 }
1459 }
1460
1461 if (fio_option_is_set(o, numa_memnodes)) {
1462 mask = NULL;
1463 if (o->numa_memnodes)
1464 mask = numa_parse_nodestring(o->numa_memnodes);
1465
1466 switch (o->numa_mem_mode) {
1467 case MPOL_INTERLEAVE:
1468 numa_set_interleave_mask(mask);
1469 break;
1470 case MPOL_BIND:
1471 numa_set_membind(mask);
1472 break;
1473 case MPOL_LOCAL:
1474 numa_set_localalloc();
1475 break;
1476 case MPOL_PREFERRED:
1477 numa_set_preferred(o->numa_mem_prefer_node);
1478 break;
1479 case MPOL_DEFAULT:
1480 default:
1481 break;
1482 }
1483
1484 if (mask)
1485 numa_free_nodemask(mask);
1486
1487 }
1488 }
1489#endif
1490
1491 if (fio_pin_memory(td))
1492 goto err;
1493
1494 /*
1495 * May alter parameters that init_io_u() will use, so we need to
1496 * do this first.
1497 */
1498 if (init_iolog(td))
1499 goto err;
1500
1501 if (init_io_u(td))
1502 goto err;
1503
1504 if (o->verify_async && verify_async_init(td))
1505 goto err;
1506
1507 if (fio_option_is_set(o, ioprio) ||
1508 fio_option_is_set(o, ioprio_class)) {
1509 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1510 if (ret == -1) {
1511 td_verror(td, errno, "ioprio_set");
1512 goto err;
1513 }
1514 }
1515
1516 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1517 goto err;
1518
1519 errno = 0;
1520 if (nice(o->nice) == -1 && errno != 0) {
1521 td_verror(td, errno, "nice");
1522 goto err;
1523 }
1524
1525 if (o->ioscheduler && switch_ioscheduler(td))
1526 goto err;
1527
1528 if (!o->create_serialize && setup_files(td))
1529 goto err;
1530
1531 if (td_io_init(td))
1532 goto err;
1533
1534 if (init_random_map(td))
1535 goto err;
1536
1537 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1538 goto err;
1539
1540 if (o->pre_read) {
1541 if (pre_read_files(td) < 0)
1542 goto err;
1543 }
1544
1545 if (td->flags & TD_F_COMPRESS_LOG)
1546 tp_init(&td->tp_data);
1547
1548 fio_verify_init(td);
1549
1550 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1551 workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1552 goto err;
1553
1554 fio_gettime(&td->epoch, NULL);
1555 fio_getrusage(&td->ru_start);
1556 clear_state = 0;
1557 while (keep_running(td)) {
1558 uint64_t verify_bytes;
1559
1560 fio_gettime(&td->start, NULL);
1561 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1562 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1563 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1564
1565 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1566 o->ratemin[DDIR_TRIM]) {
1567 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1568 sizeof(td->bw_sample_time));
1569 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1570 sizeof(td->bw_sample_time));
1571 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1572 sizeof(td->bw_sample_time));
1573 }
1574
1575 if (clear_state)
1576 clear_io_state(td);
1577
1578 prune_io_piece_log(td);
1579
1580 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1581 verify_bytes = do_dry_run(td);
1582 else
1583 verify_bytes = do_io(td);
1584
1585 clear_state = 1;
1586
1587 /*
1588 * Make sure we've successfully updated the rusage stats
1589 * before waiting on the stat mutex. Otherwise we could have
1590 * the stat thread holding stat mutex and waiting for
1591 * the rusage_sem, which would never get upped because
1592 * this thread is waiting for the stat mutex.
1593 */
1594 check_update_rusage(td);
1595
1596 fio_mutex_down(stat_mutex);
1597 if (td_read(td) && td->io_bytes[DDIR_READ])
1598 update_runtime(td, elapsed_us, DDIR_READ);
1599 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1600 update_runtime(td, elapsed_us, DDIR_WRITE);
1601 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1602 update_runtime(td, elapsed_us, DDIR_TRIM);
1603 fio_gettime(&td->start, NULL);
1604 fio_mutex_up(stat_mutex);
1605
1606 if (td->error || td->terminate)
1607 break;
1608
1609 if (!o->do_verify ||
1610 o->verify == VERIFY_NONE ||
1611 (td->io_ops->flags & FIO_UNIDIR))
1612 continue;
1613
1614 clear_io_state(td);
1615
1616 fio_gettime(&td->start, NULL);
1617
1618 do_verify(td, verify_bytes);
1619
1620 /*
1621 * See comment further up for why this is done here.
1622 */
1623 check_update_rusage(td);
1624
1625 fio_mutex_down(stat_mutex);
1626 update_runtime(td, elapsed_us, DDIR_READ);
1627 fio_gettime(&td->start, NULL);
1628 fio_mutex_up(stat_mutex);
1629
1630 if (td->error || td->terminate)
1631 break;
1632 }
1633
1634 update_rusage_stat(td);
1635 td->ts.total_run_time = mtime_since_now(&td->epoch);
1636 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1637 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1638 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1639
1640 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1641 (td->o.verify != VERIFY_NONE && td_write(td))) {
1642 struct all_io_list *state;
1643 size_t sz;
1644
1645 state = get_all_io_list(td->thread_number, &sz);
1646 if (state) {
1647 __verify_save_state(state, "local");
1648 free(state);
1649 }
1650 }
1651
1652 fio_unpin_memory(td);
1653
1654 fio_writeout_logs(td);
1655
1656 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1657 workqueue_exit(&td->io_wq);
1658
1659 if (td->flags & TD_F_COMPRESS_LOG)
1660 tp_exit(&td->tp_data);
1661
1662 if (o->exec_postrun)
1663 exec_string(o, o->exec_postrun, (const char *)"postrun");
1664
1665 if (exitall_on_terminate)
1666 fio_terminate_threads(td->groupid);
1667
1668err:
1669 if (td->error)
1670 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1671 td->verror);
1672
1673 if (o->verify_async)
1674 verify_async_exit(td);
1675
1676 close_and_free_files(td);
1677 cleanup_io_u(td);
1678 close_ioengine(td);
1679 cgroup_shutdown(td, &cgroup_mnt);
1680 verify_free_state(td);
1681
1682 if (fio_option_is_set(o, cpumask)) {
1683 ret = fio_cpuset_exit(&o->cpumask);
1684 if (ret)
1685 td_verror(td, ret, "fio_cpuset_exit");
1686 }
1687
1688 /*
1689 * do this very late, it will log file closing as well
1690 */
1691 if (o->write_iolog_file)
1692 write_iolog_close(td);
1693
1694 fio_mutex_remove(td->mutex);
1695 td->mutex = NULL;
1696
1697 td_set_runstate(td, TD_EXITED);
1698
1699 /*
1700 * Do this last after setting our runstate to exited, so we
1701 * know that the stat thread is signaled.
1702 */
1703 check_update_rusage(td);
1704
1705 return (void *) (uintptr_t) td->error;
1706}
1707
1708
1709/*
1710 * We cannot pass the td data into a forked process, so attach the td and
1711 * pass it to the thread worker.
1712 */
1713static int fork_main(int shmid, int offset)
1714{
1715 struct thread_data *td;
1716 void *data, *ret;
1717
1718#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1719 data = shmat(shmid, NULL, 0);
1720 if (data == (void *) -1) {
1721 int __err = errno;
1722
1723 perror("shmat");
1724 return __err;
1725 }
1726#else
1727 /*
1728 * HP-UX inherits shm mappings?
1729 */
1730 data = threads;
1731#endif
1732
1733 td = data + offset * sizeof(struct thread_data);
1734 ret = thread_main(td);
1735 shmdt(data);
1736 return (int) (uintptr_t) ret;
1737}
1738
1739static void dump_td_info(struct thread_data *td)
1740{
1741 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1742 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1743 (unsigned long) time_since_now(&td->terminate_time));
1744}
1745
1746/*
1747 * Run over the job map and reap the threads that have exited, if any.
1748 */
1749static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1750 unsigned int *m_rate)
1751{
1752 struct thread_data *td;
1753 unsigned int cputhreads, realthreads, pending;
1754 int i, status, ret;
1755
1756 /*
1757 * reap exited threads (TD_EXITED -> TD_REAPED)
1758 */
1759 realthreads = pending = cputhreads = 0;
1760 for_each_td(td, i) {
1761 int flags = 0;
1762
1763 /*
1764 * ->io_ops is NULL for a thread that has closed its
1765 * io engine
1766 */
1767 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1768 cputhreads++;
1769 else
1770 realthreads++;
1771
1772 if (!td->pid) {
1773 pending++;
1774 continue;
1775 }
1776 if (td->runstate == TD_REAPED)
1777 continue;
1778 if (td->o.use_thread) {
1779 if (td->runstate == TD_EXITED) {
1780 td_set_runstate(td, TD_REAPED);
1781 goto reaped;
1782 }
1783 continue;
1784 }
1785
1786 flags = WNOHANG;
1787 if (td->runstate == TD_EXITED)
1788 flags = 0;
1789
1790 /*
1791 * check if someone quit or got killed in an unusual way
1792 */
1793 ret = waitpid(td->pid, &status, flags);
1794 if (ret < 0) {
1795 if (errno == ECHILD) {
1796 log_err("fio: pid=%d disappeared %d\n",
1797 (int) td->pid, td->runstate);
1798 td->sig = ECHILD;
1799 td_set_runstate(td, TD_REAPED);
1800 goto reaped;
1801 }
1802 perror("waitpid");
1803 } else if (ret == td->pid) {
1804 if (WIFSIGNALED(status)) {
1805 int sig = WTERMSIG(status);
1806
1807 if (sig != SIGTERM && sig != SIGUSR2)
1808 log_err("fio: pid=%d, got signal=%d\n",
1809 (int) td->pid, sig);
1810 td->sig = sig;
1811 td_set_runstate(td, TD_REAPED);
1812 goto reaped;
1813 }
1814 if (WIFEXITED(status)) {
1815 if (WEXITSTATUS(status) && !td->error)
1816 td->error = WEXITSTATUS(status);
1817
1818 td_set_runstate(td, TD_REAPED);
1819 goto reaped;
1820 }
1821 }
1822
1823 /*
1824 * If the job is stuck, do a forceful timeout of it and
1825 * move on.
1826 */
1827 if (td->terminate &&
1828 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1829 dump_td_info(td);
1830 td_set_runstate(td, TD_REAPED);
1831 goto reaped;
1832 }
1833
1834 /*
1835 * thread is not dead, continue
1836 */
1837 pending++;
1838 continue;
1839reaped:
1840 (*nr_running)--;
1841 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1842 (*t_rate) -= ddir_rw_sum(td->o.rate);
1843 if (!td->pid)
1844 pending--;
1845
1846 if (td->error)
1847 exit_value++;
1848
1849 done_secs += mtime_since_now(&td->epoch) / 1000;
1850 profile_td_exit(td);
1851 }
1852
1853 if (*nr_running == cputhreads && !pending && realthreads)
1854 fio_terminate_threads(TERMINATE_ALL);
1855}
1856
1857static int __check_trigger_file(void)
1858{
1859 struct stat sb;
1860
1861 if (!trigger_file)
1862 return 0;
1863
1864 if (stat(trigger_file, &sb))
1865 return 0;
1866
1867 if (unlink(trigger_file) < 0)
1868 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1869 strerror(errno));
1870
1871 return 1;
1872}
1873
1874static int trigger_timedout(void)
1875{
1876 if (trigger_timeout)
1877 return time_since_genesis() >= trigger_timeout;
1878
1879 return 0;
1880}
1881
1882void exec_trigger(const char *cmd)
1883{
1884 int ret;
1885
1886 if (!cmd)
1887 return;
1888
1889 ret = system(cmd);
1890 if (ret == -1)
1891 log_err("fio: failed executing %s trigger\n", cmd);
1892}
1893
1894void check_trigger_file(void)
1895{
1896 if (__check_trigger_file() || trigger_timedout()) {
1897 if (nr_clients)
1898 fio_clients_send_trigger(trigger_remote_cmd);
1899 else {
1900 verify_save_state();
1901 fio_terminate_threads(TERMINATE_ALL);
1902 exec_trigger(trigger_cmd);
1903 }
1904 }
1905}
1906
1907static int fio_verify_load_state(struct thread_data *td)
1908{
1909 int ret;
1910
1911 if (!td->o.verify_state)
1912 return 0;
1913
1914 if (is_backend) {
1915 void *data;
1916 int ver;
1917
1918 ret = fio_server_get_verify_state(td->o.name,
1919 td->thread_number - 1, &data, &ver);
1920 if (!ret)
1921 verify_convert_assign_state(td, data, ver);
1922 } else
1923 ret = verify_load_state(td, "local");
1924
1925 return ret;
1926}
1927
1928static void do_usleep(unsigned int usecs)
1929{
1930 check_for_running_stats();
1931 check_trigger_file();
1932 usleep(usecs);
1933}
1934
1935static int check_mount_writes(struct thread_data *td)
1936{
1937 struct fio_file *f;
1938 unsigned int i;
1939
1940 if (!td_write(td) || td->o.allow_mounted_write)
1941 return 0;
1942
1943 for_each_file(td, f, i) {
1944 if (f->filetype != FIO_TYPE_BD)
1945 continue;
1946 if (device_is_mounted(f->file_name))
1947 goto mounted;
1948 }
1949
1950 return 0;
1951mounted:
1952 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1953 return 1;
1954}
1955
1956/*
1957 * Main function for kicking off and reaping jobs, as needed.
1958 */
1959static void run_threads(void)
1960{
1961 struct thread_data *td;
1962 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1963 uint64_t spent;
1964
1965 if (fio_gtod_offload && fio_start_gtod_thread())
1966 return;
1967
1968 fio_idle_prof_init();
1969
1970 set_sig_handlers();
1971
1972 nr_thread = nr_process = 0;
1973 for_each_td(td, i) {
1974 if (check_mount_writes(td))
1975 return;
1976 if (td->o.use_thread)
1977 nr_thread++;
1978 else
1979 nr_process++;
1980 }
1981
1982 if (output_format == FIO_OUTPUT_NORMAL) {
1983 log_info("Starting ");
1984 if (nr_thread)
1985 log_info("%d thread%s", nr_thread,
1986 nr_thread > 1 ? "s" : "");
1987 if (nr_process) {
1988 if (nr_thread)
1989 log_info(" and ");
1990 log_info("%d process%s", nr_process,
1991 nr_process > 1 ? "es" : "");
1992 }
1993 log_info("\n");
1994 log_info_flush();
1995 }
1996
1997 todo = thread_number;
1998 nr_running = 0;
1999 nr_started = 0;
2000 m_rate = t_rate = 0;
2001
2002 for_each_td(td, i) {
2003 print_status_init(td->thread_number - 1);
2004
2005 if (!td->o.create_serialize)
2006 continue;
2007
2008 if (fio_verify_load_state(td))
2009 goto reap;
2010
2011 /*
2012 * do file setup here so it happens sequentially,
2013 * we don't want X number of threads getting their
2014 * client data interspersed on disk
2015 */
2016 if (setup_files(td)) {
2017reap:
2018 exit_value++;
2019 if (td->error)
2020 log_err("fio: pid=%d, err=%d/%s\n",
2021 (int) td->pid, td->error, td->verror);
2022 td_set_runstate(td, TD_REAPED);
2023 todo--;
2024 } else {
2025 struct fio_file *f;
2026 unsigned int j;
2027
2028 /*
2029 * for sharing to work, each job must always open
2030 * its own files. so close them, if we opened them
2031 * for creation
2032 */
2033 for_each_file(td, f, j) {
2034 if (fio_file_open(f))
2035 td_io_close_file(td, f);
2036 }
2037 }
2038 }
2039
2040 /* start idle threads before io threads start to run */
2041 fio_idle_prof_start();
2042
2043 set_genesis_time();
2044
2045 while (todo) {
2046 struct thread_data *map[REAL_MAX_JOBS];
2047 struct timeval this_start;
2048 int this_jobs = 0, left;
2049
2050 /*
2051 * create threads (TD_NOT_CREATED -> TD_CREATED)
2052 */
2053 for_each_td(td, i) {
2054 if (td->runstate != TD_NOT_CREATED)
2055 continue;
2056
2057 /*
2058 * never got a chance to start, killed by other
2059 * thread for some reason
2060 */
2061 if (td->terminate) {
2062 todo--;
2063 continue;
2064 }
2065
2066 if (td->o.start_delay) {
2067 spent = utime_since_genesis();
2068
2069 if (td->o.start_delay > spent)
2070 continue;
2071 }
2072
2073 if (td->o.stonewall && (nr_started || nr_running)) {
2074 dprint(FD_PROCESS, "%s: stonewall wait\n",
2075 td->o.name);
2076 break;
2077 }
2078
2079 init_disk_util(td);
2080
2081 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2082 td->update_rusage = 0;
2083
2084 /*
2085 * Set state to created. Thread will transition
2086 * to TD_INITIALIZED when it's done setting up.
2087 */
2088 td_set_runstate(td, TD_CREATED);
2089 map[this_jobs++] = td;
2090 nr_started++;
2091
2092 if (td->o.use_thread) {
2093 int ret;
2094
2095 dprint(FD_PROCESS, "will pthread_create\n");
2096 ret = pthread_create(&td->thread, NULL,
2097 thread_main, td);
2098 if (ret) {
2099 log_err("pthread_create: %s\n",
2100 strerror(ret));
2101 nr_started--;
2102 break;
2103 }
2104 ret = pthread_detach(td->thread);
2105 if (ret)
2106 log_err("pthread_detach: %s",
2107 strerror(ret));
2108 } else {
2109 pid_t pid;
2110 dprint(FD_PROCESS, "will fork\n");
2111 pid = fork();
2112 if (!pid) {
2113 int ret = fork_main(shm_id, i);
2114
2115 _exit(ret);
2116 } else if (i == fio_debug_jobno)
2117 *fio_debug_jobp = pid;
2118 }
2119 dprint(FD_MUTEX, "wait on startup_mutex\n");
2120 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2121 log_err("fio: job startup hung? exiting.\n");
2122 fio_terminate_threads(TERMINATE_ALL);
2123 fio_abort = 1;
2124 nr_started--;
2125 break;
2126 }
2127 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2128 }
2129
2130 /*
2131 * Wait for the started threads to transition to
2132 * TD_INITIALIZED.
2133 */
2134 fio_gettime(&this_start, NULL);
2135 left = this_jobs;
2136 while (left && !fio_abort) {
2137 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2138 break;
2139
2140 do_usleep(100000);
2141
2142 for (i = 0; i < this_jobs; i++) {
2143 td = map[i];
2144 if (!td)
2145 continue;
2146 if (td->runstate == TD_INITIALIZED) {
2147 map[i] = NULL;
2148 left--;
2149 } else if (td->runstate >= TD_EXITED) {
2150 map[i] = NULL;
2151 left--;
2152 todo--;
2153 nr_running++; /* work-around... */
2154 }
2155 }
2156 }
2157
2158 if (left) {
2159 log_err("fio: %d job%s failed to start\n", left,
2160 left > 1 ? "s" : "");
2161 for (i = 0; i < this_jobs; i++) {
2162 td = map[i];
2163 if (!td)
2164 continue;
2165 kill(td->pid, SIGTERM);
2166 }
2167 break;
2168 }
2169
2170 /*
2171 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2172 */
2173 for_each_td(td, i) {
2174 if (td->runstate != TD_INITIALIZED)
2175 continue;
2176
2177 if (in_ramp_time(td))
2178 td_set_runstate(td, TD_RAMP);
2179 else
2180 td_set_runstate(td, TD_RUNNING);
2181 nr_running++;
2182 nr_started--;
2183 m_rate += ddir_rw_sum(td->o.ratemin);
2184 t_rate += ddir_rw_sum(td->o.rate);
2185 todo--;
2186 fio_mutex_up(td->mutex);
2187 }
2188
2189 reap_threads(&nr_running, &t_rate, &m_rate);
2190
2191 if (todo)
2192 do_usleep(100000);
2193 }
2194
2195 while (nr_running) {
2196 reap_threads(&nr_running, &t_rate, &m_rate);
2197 do_usleep(10000);
2198 }
2199
2200 fio_idle_prof_stop();
2201
2202 update_io_ticks();
2203}
2204
2205static void wait_for_helper_thread_exit(void)
2206{
2207 void *ret;
2208
2209 helper_exit = 1;
2210 pthread_cond_signal(&helper_cond);
2211 pthread_join(helper_thread, &ret);
2212}
2213
2214static void free_disk_util(void)
2215{
2216 disk_util_prune_entries();
2217
2218 pthread_cond_destroy(&helper_cond);
2219}
2220
2221static void *helper_thread_main(void *data)
2222{
2223 int ret = 0;
2224
2225 fio_mutex_up(startup_mutex);
2226
2227 while (!ret) {
2228 uint64_t sec = DISK_UTIL_MSEC / 1000;
2229 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2230 struct timespec ts;
2231 struct timeval tv;
2232
2233 gettimeofday(&tv, NULL);
2234 ts.tv_sec = tv.tv_sec + sec;
2235 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2236
2237 if (ts.tv_nsec >= 1000000000ULL) {
2238 ts.tv_nsec -= 1000000000ULL;
2239 ts.tv_sec++;
2240 }
2241
2242 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2243
2244 ret = update_io_ticks();
2245
2246 if (helper_do_stat) {
2247 helper_do_stat = 0;
2248 __show_running_run_stats();
2249 }
2250
2251 if (!is_backend)
2252 print_thread_status();
2253 }
2254
2255 return NULL;
2256}
2257
2258static int create_helper_thread(void)
2259{
2260 int ret;
2261
2262 setup_disk_util();
2263
2264 pthread_cond_init(&helper_cond, NULL);
2265 pthread_mutex_init(&helper_lock, NULL);
2266
2267 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2268 if (ret) {
2269 log_err("Can't create helper thread: %s\n", strerror(ret));
2270 return 1;
2271 }
2272
2273 dprint(FD_MUTEX, "wait on startup_mutex\n");
2274 fio_mutex_down(startup_mutex);
2275 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2276 return 0;
2277}
2278
2279int fio_backend(void)
2280{
2281 struct thread_data *td;
2282 int i;
2283
2284 if (exec_profile) {
2285 if (load_profile(exec_profile))
2286 return 1;
2287 free(exec_profile);
2288 exec_profile = NULL;
2289 }
2290 if (!thread_number)
2291 return 0;
2292
2293 if (write_bw_log) {
2294 struct log_params p = {
2295 .log_type = IO_LOG_TYPE_BW,
2296 };
2297
2298 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2299 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2300 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2301 }
2302
2303 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2304 if (startup_mutex == NULL)
2305 return 1;
2306
2307 set_genesis_time();
2308 stat_init();
2309 create_helper_thread();
2310
2311 cgroup_list = smalloc(sizeof(*cgroup_list));
2312 INIT_FLIST_HEAD(cgroup_list);
2313
2314 run_threads();
2315
2316 wait_for_helper_thread_exit();
2317
2318 if (!fio_abort) {
2319 __show_run_stats();
2320 if (write_bw_log) {
2321 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2322 struct io_log *log = agg_io_log[i];
2323
2324 flush_log(log, 0);
2325 free_log(log);
2326 }
2327 }
2328 }
2329
2330 for_each_td(td, i) {
2331 fio_options_free(td);
2332 if (td->rusage_sem) {
2333 fio_mutex_remove(td->rusage_sem);
2334 td->rusage_sem = NULL;
2335 }
2336 }
2337
2338 free_disk_util();
2339 cgroup_kill(cgroup_list);
2340 sfree(cgroup_list);
2341 sfree(cgroup_mnt);
2342
2343 fio_mutex_remove(startup_mutex);
2344 stat_exit();
2345 return exit_value;
2346}