Option for changing log files to use Unix epoch instead of being
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define PAGE_ALIGN(buf) \
80 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82#define JOB_START_TIMEOUT (5 * 1000)
83
84static void sig_int(int sig)
85{
86 if (threads) {
87 if (is_backend)
88 fio_server_got_signal(sig);
89 else {
90 log_info("\nfio: terminating on signal %d\n", sig);
91 log_info_flush();
92 exit_value = 128;
93 }
94
95 fio_terminate_threads(TERMINATE_ALL);
96 }
97}
98
99void sig_show_status(int sig)
100{
101 show_running_run_stats();
102}
103
104static void set_sig_handlers(void)
105{
106 struct sigaction act;
107
108 memset(&act, 0, sizeof(act));
109 act.sa_handler = sig_int;
110 act.sa_flags = SA_RESTART;
111 sigaction(SIGINT, &act, NULL);
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGTERM, &act, NULL);
117
118/* Windows uses SIGBREAK as a quit signal from other applications */
119#ifdef WIN32
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_int;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGBREAK, &act, NULL);
124#endif
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_show_status;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGUSR1, &act, NULL);
130
131 if (is_backend) {
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_int;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGPIPE, &act, NULL);
136 }
137}
138
139/*
140 * Check if we are above the minimum rate given.
141 */
142static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143 enum fio_ddir ddir)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149 unsigned int ratemin = 0;
150 unsigned int rate_iops = 0;
151 unsigned int rate_iops_min = 0;
152
153 assert(ddir_rw(ddir));
154
155 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156 return false;
157
158 /*
159 * allow a 2 second settle period in the beginning
160 */
161 if (mtime_since(&td->start, now) < 2000)
162 return false;
163
164 iops += td->this_io_blocks[ddir];
165 bytes += td->this_io_bytes[ddir];
166 ratemin += td->o.ratemin[ddir];
167 rate_iops += td->o.rate_iops[ddir];
168 rate_iops_min += td->o.rate_iops_min[ddir];
169
170 /*
171 * if rate blocks is set, sample is running
172 */
173 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174 spent = mtime_since(&td->lastrate[ddir], now);
175 if (spent < td->o.ratecycle)
176 return false;
177
178 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179 /*
180 * check bandwidth specified rate
181 */
182 if (bytes < td->rate_bytes[ddir]) {
183 log_err("%s: min rate %u not met\n", td->o.name,
184 ratemin);
185 return true;
186 } else {
187 if (spent)
188 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189 else
190 rate = 0;
191
192 if (rate < ratemin ||
193 bytes < td->rate_bytes[ddir]) {
194 log_err("%s: min rate %u not met, got"
195 " %luKB/sec\n", td->o.name,
196 ratemin, rate);
197 return true;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, rate_iops);
207 return true;
208 } else {
209 if (spent)
210 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211 else
212 rate = 0;
213
214 if (rate < rate_iops_min ||
215 iops < td->rate_blocks[ddir]) {
216 log_err("%s: min iops rate %u not met,"
217 " got %lu\n", td->o.name,
218 rate_iops_min, rate);
219 return true;
220 }
221 }
222 }
223 }
224
225 td->rate_bytes[ddir] = bytes;
226 td->rate_blocks[ddir] = iops;
227 memcpy(&td->lastrate[ddir], now, sizeof(*now));
228 return false;
229}
230
231static bool check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 bool ret = false;
234
235 if (td->bytes_done[DDIR_READ])
236 ret |= __check_min_rate(td, now, DDIR_READ);
237 if (td->bytes_done[DDIR_WRITE])
238 ret |= __check_min_rate(td, now, DDIR_WRITE);
239 if (td->bytes_done[DDIR_TRIM])
240 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242 return ret;
243}
244
245/*
246 * When job exits, we can cancel the in-flight IO if we are using async
247 * io. Attempt to do so.
248 */
249static void cleanup_pending_aio(struct thread_data *td)
250{
251 int r;
252
253 /*
254 * get immediately available events, if any
255 */
256 r = io_u_queued_complete(td, 0);
257 if (r < 0)
258 return;
259
260 /*
261 * now cancel remaining active events
262 */
263 if (td->io_ops->cancel) {
264 struct io_u *io_u;
265 int i;
266
267 io_u_qiter(&td->io_u_all, io_u, i) {
268 if (io_u->flags & IO_U_F_FLIGHT) {
269 r = td->io_ops->cancel(td, io_u);
270 if (!r)
271 put_io_u(td, io_u);
272 }
273 }
274 }
275
276 if (td->cur_depth)
277 r = io_u_queued_complete(td, td->cur_depth);
278}
279
280/*
281 * Helper to handle the final sync of a file. Works just like the normal
282 * io path, just does everything sync.
283 */
284static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285{
286 struct io_u *io_u = __get_io_u(td);
287 int ret;
288
289 if (!io_u)
290 return true;
291
292 io_u->ddir = DDIR_SYNC;
293 io_u->file = f;
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 return true;
298 }
299
300requeue:
301 ret = td_io_queue(td, io_u);
302 if (ret < 0) {
303 td_verror(td, io_u->error, "td_io_queue");
304 put_io_u(td, io_u);
305 return true;
306 } else if (ret == FIO_Q_QUEUED) {
307 if (td_io_commit(td))
308 return true;
309 if (io_u_queued_complete(td, 1) < 0)
310 return true;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return true;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return true;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return true;
322 goto requeue;
323 }
324
325 return false;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return false;
358 if (!td->o.timeout)
359 return false;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return true;
362
363 return false;
364}
365
366/*
367 * We need to update the runtime consistently in ms, but keep a running
368 * tally of the current elapsed time in microseconds for sub millisecond
369 * updates.
370 */
371static inline void update_runtime(struct thread_data *td,
372 unsigned long long *elapsed_us,
373 const enum fio_ddir ddir)
374{
375 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376 return;
377
378 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379 elapsed_us[ddir] += utime_since_now(&td->start);
380 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381}
382
383static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384 int *retptr)
385{
386 int ret = *retptr;
387
388 if (ret < 0 || td->error) {
389 int err = td->error;
390 enum error_type_bit eb;
391
392 if (ret < 0)
393 err = -ret;
394
395 eb = td_error_type(ddir, err);
396 if (!(td->o.continue_on_error & (1 << eb)))
397 return true;
398
399 if (td_non_fatal_error(td, eb, err)) {
400 /*
401 * Continue with the I/Os in case of
402 * a non fatal error.
403 */
404 update_error_count(td, err);
405 td_clear_error(td);
406 *retptr = 0;
407 return false;
408 } else if (td->o.fill_device && err == ENOSPC) {
409 /*
410 * We expect to hit this error if
411 * fill_device option is set.
412 */
413 td_clear_error(td);
414 fio_mark_td_terminate(td);
415 return true;
416 } else {
417 /*
418 * Stop the I/O in case of a fatal
419 * error.
420 */
421 update_error_count(td, err);
422 return true;
423 }
424 }
425
426 return false;
427}
428
429static void check_update_rusage(struct thread_data *td)
430{
431 if (td->update_rusage) {
432 td->update_rusage = 0;
433 update_rusage_stat(td);
434 fio_mutex_up(td->rusage_sem);
435 }
436}
437
438static int wait_for_completions(struct thread_data *td, struct timeval *time)
439{
440 const int full = queue_full(td);
441 int min_evts = 0;
442 int ret;
443
444 if (td->flags & TD_F_REGROW_LOGS) {
445 ret = io_u_quiesce(td);
446 regrow_logs(td);
447 return ret;
448 }
449
450 /*
451 * if the queue is full, we MUST reap at least 1 event
452 */
453 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455 min_evts = 1;
456
457 if (time && (__should_check_rate(td, DDIR_READ) ||
458 __should_check_rate(td, DDIR_WRITE) ||
459 __should_check_rate(td, DDIR_TRIM)))
460 fio_gettime(time, NULL);
461
462 do {
463 ret = io_u_queued_complete(td, min_evts);
464 if (ret < 0)
465 break;
466 } while (full && (td->cur_depth > td->o.iodepth_low));
467
468 return ret;
469}
470
471int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473 struct timeval *comp_time)
474{
475 int ret2;
476
477 switch (*ret) {
478 case FIO_Q_COMPLETED:
479 if (io_u->error) {
480 *ret = -io_u->error;
481 clear_io_u(td, io_u);
482 } else if (io_u->resid) {
483 int bytes = io_u->xfer_buflen - io_u->resid;
484 struct fio_file *f = io_u->file;
485
486 if (bytes_issued)
487 *bytes_issued += bytes;
488
489 if (!from_verify)
490 trim_io_piece(td, io_u);
491
492 /*
493 * zero read, fail
494 */
495 if (!bytes) {
496 if (!from_verify)
497 unlog_io_piece(td, io_u);
498 td_verror(td, EIO, "full resid");
499 put_io_u(td, io_u);
500 break;
501 }
502
503 io_u->xfer_buflen = io_u->resid;
504 io_u->xfer_buf += bytes;
505 io_u->offset += bytes;
506
507 if (ddir_rw(io_u->ddir))
508 td->ts.short_io_u[io_u->ddir]++;
509
510 f = io_u->file;
511 if (io_u->offset == f->real_file_size)
512 goto sync_done;
513
514 requeue_io_u(td, &io_u);
515 } else {
516sync_done:
517 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518 __should_check_rate(td, DDIR_WRITE) ||
519 __should_check_rate(td, DDIR_TRIM)))
520 fio_gettime(comp_time, NULL);
521
522 *ret = io_u_sync_complete(td, io_u);
523 if (*ret < 0)
524 break;
525 }
526
527 if (td->flags & TD_F_REGROW_LOGS)
528 regrow_logs(td);
529
530 /*
531 * when doing I/O (not when verifying),
532 * check for any errors that are to be ignored
533 */
534 if (!from_verify)
535 break;
536
537 return 0;
538 case FIO_Q_QUEUED:
539 /*
540 * if the engine doesn't have a commit hook,
541 * the io_u is really queued. if it does have such
542 * a hook, it has to call io_u_queued() itself.
543 */
544 if (td->io_ops->commit == NULL)
545 io_u_queued(td, io_u);
546 if (bytes_issued)
547 *bytes_issued += io_u->xfer_buflen;
548 break;
549 case FIO_Q_BUSY:
550 if (!from_verify)
551 unlog_io_piece(td, io_u);
552 requeue_io_u(td, &io_u);
553 ret2 = td_io_commit(td);
554 if (ret2 < 0)
555 *ret = ret2;
556 break;
557 default:
558 assert(*ret < 0);
559 td_verror(td, -(*ret), "td_io_queue");
560 break;
561 }
562
563 if (break_on_this_error(td, ddir, ret))
564 return 1;
565
566 return 0;
567}
568
569static inline bool io_in_polling(struct thread_data *td)
570{
571 return !td->o.iodepth_batch_complete_min &&
572 !td->o.iodepth_batch_complete_max;
573}
574/*
575 * Unlinks files from thread data fio_file structure
576 */
577static int unlink_all_files(struct thread_data *td)
578{
579 struct fio_file *f;
580 unsigned int i;
581 int ret = 0;
582
583 for_each_file(td, f, i) {
584 if (f->filetype != FIO_TYPE_FILE)
585 continue;
586 ret = td_io_unlink_file(td, f);
587 if (ret)
588 break;
589 }
590
591 if (ret)
592 td_verror(td, ret, "unlink_all_files");
593
594 return ret;
595}
596
597/*
598 * The main verify engine. Runs over the writes we previously submitted,
599 * reads the blocks back in, and checks the crc/md5 of the data.
600 */
601static void do_verify(struct thread_data *td, uint64_t verify_bytes)
602{
603 struct fio_file *f;
604 struct io_u *io_u;
605 int ret, min_events;
606 unsigned int i;
607
608 dprint(FD_VERIFY, "starting loop\n");
609
610 /*
611 * sync io first and invalidate cache, to make sure we really
612 * read from disk.
613 */
614 for_each_file(td, f, i) {
615 if (!fio_file_open(f))
616 continue;
617 if (fio_io_sync(td, f))
618 break;
619 if (file_invalidate_cache(td, f))
620 break;
621 }
622
623 check_update_rusage(td);
624
625 if (td->error)
626 return;
627
628 /*
629 * verify_state needs to be reset before verification
630 * proceeds so that expected random seeds match actual
631 * random seeds in headers. The main loop will reset
632 * all random number generators if randrepeat is set.
633 */
634 if (!td->o.rand_repeatable)
635 td_fill_verify_state_seed(td);
636
637 td_set_runstate(td, TD_VERIFYING);
638
639 io_u = NULL;
640 while (!td->terminate) {
641 enum fio_ddir ddir;
642 int full;
643
644 update_tv_cache(td);
645 check_update_rusage(td);
646
647 if (runtime_exceeded(td, &td->tv_cache)) {
648 __update_tv_cache(td);
649 if (runtime_exceeded(td, &td->tv_cache)) {
650 fio_mark_td_terminate(td);
651 break;
652 }
653 }
654
655 if (flow_threshold_exceeded(td))
656 continue;
657
658 if (!td->o.experimental_verify) {
659 io_u = __get_io_u(td);
660 if (!io_u)
661 break;
662
663 if (get_next_verify(td, io_u)) {
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (td_io_prep(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672 } else {
673 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
674 break;
675
676 while ((io_u = get_io_u(td)) != NULL) {
677 if (IS_ERR_OR_NULL(io_u)) {
678 io_u = NULL;
679 ret = FIO_Q_BUSY;
680 goto reap;
681 }
682
683 /*
684 * We are only interested in the places where
685 * we wrote or trimmed IOs. Turn those into
686 * reads for verification purposes.
687 */
688 if (io_u->ddir == DDIR_READ) {
689 /*
690 * Pretend we issued it for rwmix
691 * accounting
692 */
693 td->io_issues[DDIR_READ]++;
694 put_io_u(td, io_u);
695 continue;
696 } else if (io_u->ddir == DDIR_TRIM) {
697 io_u->ddir = DDIR_READ;
698 io_u_set(td, io_u, IO_U_F_TRIMMED);
699 break;
700 } else if (io_u->ddir == DDIR_WRITE) {
701 io_u->ddir = DDIR_READ;
702 break;
703 } else {
704 put_io_u(td, io_u);
705 continue;
706 }
707 }
708
709 if (!io_u)
710 break;
711 }
712
713 if (verify_state_should_stop(td, io_u)) {
714 put_io_u(td, io_u);
715 break;
716 }
717
718 if (td->o.verify_async)
719 io_u->end_io = verify_io_u_async;
720 else
721 io_u->end_io = verify_io_u;
722
723 ddir = io_u->ddir;
724 if (!td->o.disable_slat)
725 fio_gettime(&io_u->start_time, NULL);
726
727 ret = td_io_queue(td, io_u);
728
729 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
730 break;
731
732 /*
733 * if we can queue more, do so. but check if there are
734 * completed io_u's first. Note that we can get BUSY even
735 * without IO queued, if the system is resource starved.
736 */
737reap:
738 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
739 if (full || io_in_polling(td))
740 ret = wait_for_completions(td, NULL);
741
742 if (ret < 0)
743 break;
744 }
745
746 check_update_rusage(td);
747
748 if (!td->error) {
749 min_events = td->cur_depth;
750
751 if (min_events)
752 ret = io_u_queued_complete(td, min_events);
753 } else
754 cleanup_pending_aio(td);
755
756 td_set_runstate(td, TD_RUNNING);
757
758 dprint(FD_VERIFY, "exiting loop\n");
759}
760
761static bool exceeds_number_ios(struct thread_data *td)
762{
763 unsigned long long number_ios;
764
765 if (!td->o.number_ios)
766 return false;
767
768 number_ios = ddir_rw_sum(td->io_blocks);
769 number_ios += td->io_u_queued + td->io_u_in_flight;
770
771 return number_ios >= (td->o.number_ios * td->loops);
772}
773
774static bool io_issue_bytes_exceeded(struct thread_data *td)
775{
776 unsigned long long bytes, limit;
777
778 if (td_rw(td))
779 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
780 else if (td_write(td))
781 bytes = td->io_issue_bytes[DDIR_WRITE];
782 else if (td_read(td))
783 bytes = td->io_issue_bytes[DDIR_READ];
784 else
785 bytes = td->io_issue_bytes[DDIR_TRIM];
786
787 if (td->o.io_limit)
788 limit = td->o.io_limit;
789 else
790 limit = td->o.size;
791
792 limit *= td->loops;
793 return bytes >= limit || exceeds_number_ios(td);
794}
795
796static bool io_complete_bytes_exceeded(struct thread_data *td)
797{
798 unsigned long long bytes, limit;
799
800 if (td_rw(td))
801 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
802 else if (td_write(td))
803 bytes = td->this_io_bytes[DDIR_WRITE];
804 else if (td_read(td))
805 bytes = td->this_io_bytes[DDIR_READ];
806 else
807 bytes = td->this_io_bytes[DDIR_TRIM];
808
809 if (td->o.io_limit)
810 limit = td->o.io_limit;
811 else
812 limit = td->o.size;
813
814 limit *= td->loops;
815 return bytes >= limit || exceeds_number_ios(td);
816}
817
818/*
819 * used to calculate the next io time for rate control
820 *
821 */
822static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
823{
824 uint64_t secs, remainder, bps, bytes, iops;
825
826 assert(!(td->flags & TD_F_CHILD));
827 bytes = td->rate_io_issue_bytes[ddir];
828 bps = td->rate_bps[ddir];
829
830 if (td->o.rate_process == RATE_PROCESS_POISSON) {
831 uint64_t val;
832 iops = bps / td->o.bs[ddir];
833 val = (int64_t) (1000000 / iops) *
834 -logf(__rand_0_1(&td->poisson_state));
835 if (val) {
836 dprint(FD_RATE, "poisson rate iops=%llu\n",
837 (unsigned long long) 1000000 / val);
838 }
839 td->last_usec += val;
840 return td->last_usec;
841 } else if (bps) {
842 secs = bytes / bps;
843 remainder = bytes % bps;
844 return remainder * 1000000 / bps + secs * 1000000;
845 }
846
847 return 0;
848}
849
850/*
851 * Main IO worker function. It retrieves io_u's to process and queues
852 * and reaps them, checking for rate and errors along the way.
853 *
854 * Returns number of bytes written and trimmed.
855 */
856static void do_io(struct thread_data *td, uint64_t *bytes_done)
857{
858 unsigned int i;
859 int ret = 0;
860 uint64_t total_bytes, bytes_issued = 0;
861
862 for (i = 0; i < DDIR_RWDIR_CNT; i++)
863 bytes_done[i] = td->bytes_done[i];
864
865 if (in_ramp_time(td))
866 td_set_runstate(td, TD_RAMP);
867 else
868 td_set_runstate(td, TD_RUNNING);
869
870 lat_target_init(td);
871
872 total_bytes = td->o.size;
873 /*
874 * Allow random overwrite workloads to write up to io_limit
875 * before starting verification phase as 'size' doesn't apply.
876 */
877 if (td_write(td) && td_random(td) && td->o.norandommap)
878 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
879 /*
880 * If verify_backlog is enabled, we'll run the verify in this
881 * handler as well. For that case, we may need up to twice the
882 * amount of bytes.
883 */
884 if (td->o.verify != VERIFY_NONE &&
885 (td_write(td) && td->o.verify_backlog))
886 total_bytes += td->o.size;
887
888 /* In trimwrite mode, each byte is trimmed and then written, so
889 * allow total_bytes to be twice as big */
890 if (td_trimwrite(td))
891 total_bytes += td->total_io_size;
892
893 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
894 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
895 td->o.time_based) {
896 struct timeval comp_time;
897 struct io_u *io_u;
898 int full;
899 enum fio_ddir ddir;
900
901 check_update_rusage(td);
902
903 if (td->terminate || td->done)
904 break;
905
906 update_tv_cache(td);
907
908 if (runtime_exceeded(td, &td->tv_cache)) {
909 __update_tv_cache(td);
910 if (runtime_exceeded(td, &td->tv_cache)) {
911 fio_mark_td_terminate(td);
912 break;
913 }
914 }
915
916 if (flow_threshold_exceeded(td))
917 continue;
918
919 /*
920 * Break if we exceeded the bytes. The exception is time
921 * based runs, but we still need to break out of the loop
922 * for those to run verification, if enabled.
923 */
924 if (bytes_issued >= total_bytes &&
925 (!td->o.time_based ||
926 (td->o.time_based && td->o.verify != VERIFY_NONE)))
927 break;
928
929 io_u = get_io_u(td);
930 if (IS_ERR_OR_NULL(io_u)) {
931 int err = PTR_ERR(io_u);
932
933 io_u = NULL;
934 if (err == -EBUSY) {
935 ret = FIO_Q_BUSY;
936 goto reap;
937 }
938 if (td->o.latency_target)
939 goto reap;
940 break;
941 }
942
943 ddir = io_u->ddir;
944
945 /*
946 * Add verification end_io handler if:
947 * - Asked to verify (!td_rw(td))
948 * - Or the io_u is from our verify list (mixed write/ver)
949 */
950 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
951 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
952
953 if (!td->o.verify_pattern_bytes) {
954 io_u->rand_seed = __rand(&td->verify_state);
955 if (sizeof(int) != sizeof(long *))
956 io_u->rand_seed *= __rand(&td->verify_state);
957 }
958
959 if (verify_state_should_stop(td, io_u)) {
960 put_io_u(td, io_u);
961 break;
962 }
963
964 if (td->o.verify_async)
965 io_u->end_io = verify_io_u_async;
966 else
967 io_u->end_io = verify_io_u;
968 td_set_runstate(td, TD_VERIFYING);
969 } else if (in_ramp_time(td))
970 td_set_runstate(td, TD_RAMP);
971 else
972 td_set_runstate(td, TD_RUNNING);
973
974 /*
975 * Always log IO before it's issued, so we know the specific
976 * order of it. The logged unit will track when the IO has
977 * completed.
978 */
979 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
980 td->o.do_verify &&
981 td->o.verify != VERIFY_NONE &&
982 !td->o.experimental_verify)
983 log_io_piece(td, io_u);
984
985 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
986 const unsigned long blen = io_u->xfer_buflen;
987 const enum fio_ddir ddir = acct_ddir(io_u);
988
989 if (td->error)
990 break;
991
992 workqueue_enqueue(&td->io_wq, &io_u->work);
993 ret = FIO_Q_QUEUED;
994
995 if (ddir_rw(ddir)) {
996 td->io_issues[ddir]++;
997 td->io_issue_bytes[ddir] += blen;
998 td->rate_io_issue_bytes[ddir] += blen;
999 }
1000
1001 if (should_check_rate(td))
1002 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1003
1004 } else {
1005 ret = td_io_queue(td, io_u);
1006
1007 if (should_check_rate(td))
1008 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1009
1010 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1011 break;
1012
1013 /*
1014 * See if we need to complete some commands. Note that
1015 * we can get BUSY even without IO queued, if the
1016 * system is resource starved.
1017 */
1018reap:
1019 full = queue_full(td) ||
1020 (ret == FIO_Q_BUSY && td->cur_depth);
1021 if (full || io_in_polling(td))
1022 ret = wait_for_completions(td, &comp_time);
1023 }
1024 if (ret < 0)
1025 break;
1026 if (!ddir_rw_sum(td->bytes_done) &&
1027 !td_ioengine_flagged(td, FIO_NOIO))
1028 continue;
1029
1030 if (!in_ramp_time(td) && should_check_rate(td)) {
1031 if (check_min_rate(td, &comp_time)) {
1032 if (exitall_on_terminate || td->o.exitall_error)
1033 fio_terminate_threads(td->groupid);
1034 td_verror(td, EIO, "check_min_rate");
1035 break;
1036 }
1037 }
1038 if (!in_ramp_time(td) && td->o.latency_target)
1039 lat_target_check(td);
1040
1041 if (td->o.thinktime) {
1042 unsigned long long b;
1043
1044 b = ddir_rw_sum(td->io_blocks);
1045 if (!(b % td->o.thinktime_blocks)) {
1046 int left;
1047
1048 io_u_quiesce(td);
1049
1050 if (td->o.thinktime_spin)
1051 usec_spin(td->o.thinktime_spin);
1052
1053 left = td->o.thinktime - td->o.thinktime_spin;
1054 if (left)
1055 usec_sleep(td, left);
1056 }
1057 }
1058 }
1059
1060 check_update_rusage(td);
1061
1062 if (td->trim_entries)
1063 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1064
1065 if (td->o.fill_device && td->error == ENOSPC) {
1066 td->error = 0;
1067 fio_mark_td_terminate(td);
1068 }
1069 if (!td->error) {
1070 struct fio_file *f;
1071
1072 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1073 workqueue_flush(&td->io_wq);
1074 i = 0;
1075 } else
1076 i = td->cur_depth;
1077
1078 if (i) {
1079 ret = io_u_queued_complete(td, i);
1080 if (td->o.fill_device && td->error == ENOSPC)
1081 td->error = 0;
1082 }
1083
1084 if (should_fsync(td) && td->o.end_fsync) {
1085 td_set_runstate(td, TD_FSYNCING);
1086
1087 for_each_file(td, f, i) {
1088 if (!fio_file_fsync(td, f))
1089 continue;
1090
1091 log_err("fio: end_fsync failed for file %s\n",
1092 f->file_name);
1093 }
1094 }
1095 } else
1096 cleanup_pending_aio(td);
1097
1098 /*
1099 * stop job if we failed doing any IO
1100 */
1101 if (!ddir_rw_sum(td->this_io_bytes))
1102 td->done = 1;
1103
1104 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1105 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1106}
1107
1108static void free_file_completion_logging(struct thread_data *td)
1109{
1110 struct fio_file *f;
1111 unsigned int i;
1112
1113 for_each_file(td, f, i) {
1114 if (!f->last_write_comp)
1115 break;
1116 sfree(f->last_write_comp);
1117 }
1118}
1119
1120static int init_file_completion_logging(struct thread_data *td,
1121 unsigned int depth)
1122{
1123 struct fio_file *f;
1124 unsigned int i;
1125
1126 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1127 return 0;
1128
1129 for_each_file(td, f, i) {
1130 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1131 if (!f->last_write_comp)
1132 goto cleanup;
1133 }
1134
1135 return 0;
1136
1137cleanup:
1138 free_file_completion_logging(td);
1139 log_err("fio: failed to alloc write comp data\n");
1140 return 1;
1141}
1142
1143static void cleanup_io_u(struct thread_data *td)
1144{
1145 struct io_u *io_u;
1146
1147 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1148
1149 if (td->io_ops->io_u_free)
1150 td->io_ops->io_u_free(td, io_u);
1151
1152 fio_memfree(io_u, sizeof(*io_u));
1153 }
1154
1155 free_io_mem(td);
1156
1157 io_u_rexit(&td->io_u_requeues);
1158 io_u_qexit(&td->io_u_freelist);
1159 io_u_qexit(&td->io_u_all);
1160
1161 free_file_completion_logging(td);
1162}
1163
1164static int init_io_u(struct thread_data *td)
1165{
1166 struct io_u *io_u;
1167 unsigned int max_bs, min_write;
1168 int cl_align, i, max_units;
1169 int data_xfer = 1, err;
1170 char *p;
1171
1172 max_units = td->o.iodepth;
1173 max_bs = td_max_bs(td);
1174 min_write = td->o.min_bs[DDIR_WRITE];
1175 td->orig_buffer_size = (unsigned long long) max_bs
1176 * (unsigned long long) max_units;
1177
1178 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1179 data_xfer = 0;
1180
1181 err = 0;
1182 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1183 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1184 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1185
1186 if (err) {
1187 log_err("fio: failed setting up IO queues\n");
1188 return 1;
1189 }
1190
1191 /*
1192 * if we may later need to do address alignment, then add any
1193 * possible adjustment here so that we don't cause a buffer
1194 * overflow later. this adjustment may be too much if we get
1195 * lucky and the allocator gives us an aligned address.
1196 */
1197 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198 td_ioengine_flagged(td, FIO_RAWIO))
1199 td->orig_buffer_size += page_mask + td->o.mem_align;
1200
1201 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1202 unsigned long bs;
1203
1204 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1205 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1206 }
1207
1208 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1209 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1210 return 1;
1211 }
1212
1213 if (data_xfer && allocate_io_mem(td))
1214 return 1;
1215
1216 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1217 td_ioengine_flagged(td, FIO_RAWIO))
1218 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1219 else
1220 p = td->orig_buffer;
1221
1222 cl_align = os_cache_line_size();
1223
1224 for (i = 0; i < max_units; i++) {
1225 void *ptr;
1226
1227 if (td->terminate)
1228 return 1;
1229
1230 ptr = fio_memalign(cl_align, sizeof(*io_u));
1231 if (!ptr) {
1232 log_err("fio: unable to allocate aligned memory\n");
1233 break;
1234 }
1235
1236 io_u = ptr;
1237 memset(io_u, 0, sizeof(*io_u));
1238 INIT_FLIST_HEAD(&io_u->verify_list);
1239 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1240
1241 if (data_xfer) {
1242 io_u->buf = p;
1243 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1244
1245 if (td_write(td))
1246 io_u_fill_buffer(td, io_u, min_write, max_bs);
1247 if (td_write(td) && td->o.verify_pattern_bytes) {
1248 /*
1249 * Fill the buffer with the pattern if we are
1250 * going to be doing writes.
1251 */
1252 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1253 }
1254 }
1255
1256 io_u->index = i;
1257 io_u->flags = IO_U_F_FREE;
1258 io_u_qpush(&td->io_u_freelist, io_u);
1259
1260 /*
1261 * io_u never leaves this stack, used for iteration of all
1262 * io_u buffers.
1263 */
1264 io_u_qpush(&td->io_u_all, io_u);
1265
1266 if (td->io_ops->io_u_init) {
1267 int ret = td->io_ops->io_u_init(td, io_u);
1268
1269 if (ret) {
1270 log_err("fio: failed to init engine data: %d\n", ret);
1271 return 1;
1272 }
1273 }
1274
1275 p += max_bs;
1276 }
1277
1278 if (init_file_completion_logging(td, max_units))
1279 return 1;
1280
1281 return 0;
1282}
1283
1284static int switch_ioscheduler(struct thread_data *td)
1285{
1286#ifdef FIO_HAVE_IOSCHED_SWITCH
1287 char tmp[256], tmp2[128];
1288 FILE *f;
1289 int ret;
1290
1291 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1292 return 0;
1293
1294 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1295
1296 f = fopen(tmp, "r+");
1297 if (!f) {
1298 if (errno == ENOENT) {
1299 log_err("fio: os or kernel doesn't support IO scheduler"
1300 " switching\n");
1301 return 0;
1302 }
1303 td_verror(td, errno, "fopen iosched");
1304 return 1;
1305 }
1306
1307 /*
1308 * Set io scheduler.
1309 */
1310 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1311 if (ferror(f) || ret != 1) {
1312 td_verror(td, errno, "fwrite");
1313 fclose(f);
1314 return 1;
1315 }
1316
1317 rewind(f);
1318
1319 /*
1320 * Read back and check that the selected scheduler is now the default.
1321 */
1322 memset(tmp, 0, sizeof(tmp));
1323 ret = fread(tmp, sizeof(tmp), 1, f);
1324 if (ferror(f) || ret < 0) {
1325 td_verror(td, errno, "fread");
1326 fclose(f);
1327 return 1;
1328 }
1329 /*
1330 * either a list of io schedulers or "none\n" is expected.
1331 */
1332 tmp[strlen(tmp) - 1] = '\0';
1333
1334 /*
1335 * Write to "none" entry doesn't fail, so check the result here.
1336 */
1337 if (!strcmp(tmp, "none")) {
1338 log_err("fio: io scheduler is not tunable\n");
1339 fclose(f);
1340 return 0;
1341 }
1342
1343 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1344 if (!strstr(tmp, tmp2)) {
1345 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1346 td_verror(td, EINVAL, "iosched_switch");
1347 fclose(f);
1348 return 1;
1349 }
1350
1351 fclose(f);
1352 return 0;
1353#else
1354 return 0;
1355#endif
1356}
1357
1358static bool keep_running(struct thread_data *td)
1359{
1360 unsigned long long limit;
1361
1362 if (td->done)
1363 return false;
1364 if (td->o.time_based)
1365 return true;
1366 if (td->o.loops) {
1367 td->o.loops--;
1368 return true;
1369 }
1370 if (exceeds_number_ios(td))
1371 return false;
1372
1373 if (td->o.io_limit)
1374 limit = td->o.io_limit;
1375 else
1376 limit = td->o.size;
1377
1378 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1379 uint64_t diff;
1380
1381 /*
1382 * If the difference is less than the minimum IO size, we
1383 * are done.
1384 */
1385 diff = limit - ddir_rw_sum(td->io_bytes);
1386 if (diff < td_max_bs(td))
1387 return false;
1388
1389 if (fio_files_done(td) && !td->o.io_limit)
1390 return false;
1391
1392 return true;
1393 }
1394
1395 return false;
1396}
1397
1398static int exec_string(struct thread_options *o, const char *string, const char *mode)
1399{
1400 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1401 int ret;
1402 char *str;
1403
1404 str = malloc(newlen);
1405 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1406
1407 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1408 ret = system(str);
1409 if (ret == -1)
1410 log_err("fio: exec of cmd <%s> failed\n", str);
1411
1412 free(str);
1413 return ret;
1414}
1415
1416/*
1417 * Dry run to compute correct state of numberio for verification.
1418 */
1419static uint64_t do_dry_run(struct thread_data *td)
1420{
1421 td_set_runstate(td, TD_RUNNING);
1422
1423 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1424 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1425 struct io_u *io_u;
1426 int ret;
1427
1428 if (td->terminate || td->done)
1429 break;
1430
1431 io_u = get_io_u(td);
1432 if (IS_ERR_OR_NULL(io_u))
1433 break;
1434
1435 io_u_set(td, io_u, IO_U_F_FLIGHT);
1436 io_u->error = 0;
1437 io_u->resid = 0;
1438 if (ddir_rw(acct_ddir(io_u)))
1439 td->io_issues[acct_ddir(io_u)]++;
1440 if (ddir_rw(io_u->ddir)) {
1441 io_u_mark_depth(td, 1);
1442 td->ts.total_io_u[io_u->ddir]++;
1443 }
1444
1445 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1446 td->o.do_verify &&
1447 td->o.verify != VERIFY_NONE &&
1448 !td->o.experimental_verify)
1449 log_io_piece(td, io_u);
1450
1451 ret = io_u_sync_complete(td, io_u);
1452 (void) ret;
1453 }
1454
1455 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1456}
1457
1458struct fork_data {
1459 struct thread_data *td;
1460 struct sk_out *sk_out;
1461};
1462
1463/*
1464 * Entry point for the thread based jobs. The process based jobs end up
1465 * here as well, after a little setup.
1466 */
1467static void *thread_main(void *data)
1468{
1469 struct fork_data *fd = data;
1470 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1471 struct thread_data *td = fd->td;
1472 struct thread_options *o = &td->o;
1473 struct sk_out *sk_out = fd->sk_out;
1474 int clear_state;
1475 int ret;
1476
1477 sk_out_assign(sk_out);
1478 free(fd);
1479
1480 if (!o->use_thread) {
1481 setsid();
1482 td->pid = getpid();
1483 } else
1484 td->pid = gettid();
1485
1486 fio_local_clock_init(o->use_thread);
1487
1488 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1489
1490 if (is_backend)
1491 fio_server_send_start(td);
1492
1493 INIT_FLIST_HEAD(&td->io_log_list);
1494 INIT_FLIST_HEAD(&td->io_hist_list);
1495 INIT_FLIST_HEAD(&td->verify_list);
1496 INIT_FLIST_HEAD(&td->trim_list);
1497 INIT_FLIST_HEAD(&td->next_rand_list);
1498 td->io_hist_tree = RB_ROOT;
1499
1500 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1501 if (ret) {
1502 td_verror(td, ret, "mutex_cond_init_pshared");
1503 goto err;
1504 }
1505 ret = cond_init_pshared(&td->verify_cond);
1506 if (ret) {
1507 td_verror(td, ret, "mutex_cond_pshared");
1508 goto err;
1509 }
1510
1511 td_set_runstate(td, TD_INITIALIZED);
1512 dprint(FD_MUTEX, "up startup_mutex\n");
1513 fio_mutex_up(startup_mutex);
1514 dprint(FD_MUTEX, "wait on td->mutex\n");
1515 fio_mutex_down(td->mutex);
1516 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1517
1518 /*
1519 * A new gid requires privilege, so we need to do this before setting
1520 * the uid.
1521 */
1522 if (o->gid != -1U && setgid(o->gid)) {
1523 td_verror(td, errno, "setgid");
1524 goto err;
1525 }
1526 if (o->uid != -1U && setuid(o->uid)) {
1527 td_verror(td, errno, "setuid");
1528 goto err;
1529 }
1530
1531 /*
1532 * Do this early, we don't want the compress threads to be limited
1533 * to the same CPUs as the IO workers. So do this before we set
1534 * any potential CPU affinity
1535 */
1536 if (iolog_compress_init(td, sk_out))
1537 goto err;
1538
1539 /*
1540 * If we have a gettimeofday() thread, make sure we exclude that
1541 * thread from this job
1542 */
1543 if (o->gtod_cpu)
1544 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1545
1546 /*
1547 * Set affinity first, in case it has an impact on the memory
1548 * allocations.
1549 */
1550 if (fio_option_is_set(o, cpumask)) {
1551 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1552 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1553 if (!ret) {
1554 log_err("fio: no CPUs set\n");
1555 log_err("fio: Try increasing number of available CPUs\n");
1556 td_verror(td, EINVAL, "cpus_split");
1557 goto err;
1558 }
1559 }
1560 ret = fio_setaffinity(td->pid, o->cpumask);
1561 if (ret == -1) {
1562 td_verror(td, errno, "cpu_set_affinity");
1563 goto err;
1564 }
1565 }
1566
1567#ifdef CONFIG_LIBNUMA
1568 /* numa node setup */
1569 if (fio_option_is_set(o, numa_cpunodes) ||
1570 fio_option_is_set(o, numa_memnodes)) {
1571 struct bitmask *mask;
1572
1573 if (numa_available() < 0) {
1574 td_verror(td, errno, "Does not support NUMA API\n");
1575 goto err;
1576 }
1577
1578 if (fio_option_is_set(o, numa_cpunodes)) {
1579 mask = numa_parse_nodestring(o->numa_cpunodes);
1580 ret = numa_run_on_node_mask(mask);
1581 numa_free_nodemask(mask);
1582 if (ret == -1) {
1583 td_verror(td, errno, \
1584 "numa_run_on_node_mask failed\n");
1585 goto err;
1586 }
1587 }
1588
1589 if (fio_option_is_set(o, numa_memnodes)) {
1590 mask = NULL;
1591 if (o->numa_memnodes)
1592 mask = numa_parse_nodestring(o->numa_memnodes);
1593
1594 switch (o->numa_mem_mode) {
1595 case MPOL_INTERLEAVE:
1596 numa_set_interleave_mask(mask);
1597 break;
1598 case MPOL_BIND:
1599 numa_set_membind(mask);
1600 break;
1601 case MPOL_LOCAL:
1602 numa_set_localalloc();
1603 break;
1604 case MPOL_PREFERRED:
1605 numa_set_preferred(o->numa_mem_prefer_node);
1606 break;
1607 case MPOL_DEFAULT:
1608 default:
1609 break;
1610 }
1611
1612 if (mask)
1613 numa_free_nodemask(mask);
1614
1615 }
1616 }
1617#endif
1618
1619 if (fio_pin_memory(td))
1620 goto err;
1621
1622 /*
1623 * May alter parameters that init_io_u() will use, so we need to
1624 * do this first.
1625 */
1626 if (init_iolog(td))
1627 goto err;
1628
1629 if (init_io_u(td))
1630 goto err;
1631
1632 if (o->verify_async && verify_async_init(td))
1633 goto err;
1634
1635 if (fio_option_is_set(o, ioprio) ||
1636 fio_option_is_set(o, ioprio_class)) {
1637 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1638 if (ret == -1) {
1639 td_verror(td, errno, "ioprio_set");
1640 goto err;
1641 }
1642 }
1643
1644 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1645 goto err;
1646
1647 errno = 0;
1648 if (nice(o->nice) == -1 && errno != 0) {
1649 td_verror(td, errno, "nice");
1650 goto err;
1651 }
1652
1653 if (o->ioscheduler && switch_ioscheduler(td))
1654 goto err;
1655
1656 if (!o->create_serialize && setup_files(td))
1657 goto err;
1658
1659 if (td_io_init(td))
1660 goto err;
1661
1662 if (init_random_map(td))
1663 goto err;
1664
1665 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1666 goto err;
1667
1668 if (o->pre_read) {
1669 if (pre_read_files(td) < 0)
1670 goto err;
1671 }
1672
1673 fio_verify_init(td);
1674
1675 if (rate_submit_init(td, sk_out))
1676 goto err;
1677
1678 set_epoch_time(td, o->log_unix_epoch);
1679 fio_getrusage(&td->ru_start);
1680 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1681 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1682
1683 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1684 o->ratemin[DDIR_TRIM]) {
1685 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1686 sizeof(td->bw_sample_time));
1687 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1688 sizeof(td->bw_sample_time));
1689 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1690 sizeof(td->bw_sample_time));
1691 }
1692
1693 clear_state = 0;
1694 while (keep_running(td)) {
1695 uint64_t verify_bytes;
1696
1697 fio_gettime(&td->start, NULL);
1698 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1699
1700 if (clear_state) {
1701 clear_io_state(td, 0);
1702
1703 if (o->unlink_each_loop && unlink_all_files(td))
1704 break;
1705 }
1706
1707 prune_io_piece_log(td);
1708
1709 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1710 verify_bytes = do_dry_run(td);
1711 else {
1712 uint64_t bytes_done[DDIR_RWDIR_CNT];
1713
1714 do_io(td, bytes_done);
1715
1716 if (!ddir_rw_sum(bytes_done)) {
1717 fio_mark_td_terminate(td);
1718 verify_bytes = 0;
1719 } else {
1720 verify_bytes = bytes_done[DDIR_WRITE] +
1721 bytes_done[DDIR_TRIM];
1722 }
1723 }
1724
1725 clear_state = 1;
1726
1727 /*
1728 * Make sure we've successfully updated the rusage stats
1729 * before waiting on the stat mutex. Otherwise we could have
1730 * the stat thread holding stat mutex and waiting for
1731 * the rusage_sem, which would never get upped because
1732 * this thread is waiting for the stat mutex.
1733 */
1734 check_update_rusage(td);
1735
1736 fio_mutex_down(stat_mutex);
1737 if (td_read(td) && td->io_bytes[DDIR_READ])
1738 update_runtime(td, elapsed_us, DDIR_READ);
1739 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1740 update_runtime(td, elapsed_us, DDIR_WRITE);
1741 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1742 update_runtime(td, elapsed_us, DDIR_TRIM);
1743 fio_gettime(&td->start, NULL);
1744 fio_mutex_up(stat_mutex);
1745
1746 if (td->error || td->terminate)
1747 break;
1748
1749 if (!o->do_verify ||
1750 o->verify == VERIFY_NONE ||
1751 td_ioengine_flagged(td, FIO_UNIDIR))
1752 continue;
1753
1754 clear_io_state(td, 0);
1755
1756 fio_gettime(&td->start, NULL);
1757
1758 do_verify(td, verify_bytes);
1759
1760 /*
1761 * See comment further up for why this is done here.
1762 */
1763 check_update_rusage(td);
1764
1765 fio_mutex_down(stat_mutex);
1766 update_runtime(td, elapsed_us, DDIR_READ);
1767 fio_gettime(&td->start, NULL);
1768 fio_mutex_up(stat_mutex);
1769
1770 if (td->error || td->terminate)
1771 break;
1772 }
1773
1774 td_set_runstate(td, TD_FINISHING);
1775
1776 update_rusage_stat(td);
1777 td->ts.total_run_time = mtime_since_now(&td->epoch);
1778 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1779 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1780 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1781
1782 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1783 (td->o.verify != VERIFY_NONE && td_write(td)))
1784 verify_save_state(td->thread_number);
1785
1786 fio_unpin_memory(td);
1787
1788 td_writeout_logs(td, true);
1789
1790 iolog_compress_exit(td);
1791 rate_submit_exit(td);
1792
1793 if (o->exec_postrun)
1794 exec_string(o, o->exec_postrun, (const char *)"postrun");
1795
1796 if (exitall_on_terminate || (o->exitall_error && td->error))
1797 fio_terminate_threads(td->groupid);
1798
1799err:
1800 if (td->error)
1801 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1802 td->verror);
1803
1804 if (o->verify_async)
1805 verify_async_exit(td);
1806
1807 close_and_free_files(td);
1808 cleanup_io_u(td);
1809 close_ioengine(td);
1810 cgroup_shutdown(td, &cgroup_mnt);
1811 verify_free_state(td);
1812
1813 if (td->zone_state_index) {
1814 int i;
1815
1816 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1817 free(td->zone_state_index[i]);
1818 free(td->zone_state_index);
1819 td->zone_state_index = NULL;
1820 }
1821
1822 if (fio_option_is_set(o, cpumask)) {
1823 ret = fio_cpuset_exit(&o->cpumask);
1824 if (ret)
1825 td_verror(td, ret, "fio_cpuset_exit");
1826 }
1827
1828 /*
1829 * do this very late, it will log file closing as well
1830 */
1831 if (o->write_iolog_file)
1832 write_iolog_close(td);
1833
1834 fio_mutex_remove(td->mutex);
1835 td->mutex = NULL;
1836
1837 td_set_runstate(td, TD_EXITED);
1838
1839 /*
1840 * Do this last after setting our runstate to exited, so we
1841 * know that the stat thread is signaled.
1842 */
1843 check_update_rusage(td);
1844
1845 sk_out_drop();
1846 return (void *) (uintptr_t) td->error;
1847}
1848
1849static void dump_td_info(struct thread_data *td)
1850{
1851 log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1852 "appears to be stuck. Doing forceful exit of this job.\n",
1853 td->o.name, td->runstate,
1854 (unsigned long) time_since_now(&td->terminate_time));
1855}
1856
1857/*
1858 * Run over the job map and reap the threads that have exited, if any.
1859 */
1860static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1861 unsigned int *m_rate)
1862{
1863 struct thread_data *td;
1864 unsigned int cputhreads, realthreads, pending;
1865 int i, status, ret;
1866
1867 /*
1868 * reap exited threads (TD_EXITED -> TD_REAPED)
1869 */
1870 realthreads = pending = cputhreads = 0;
1871 for_each_td(td, i) {
1872 int flags = 0;
1873
1874 /*
1875 * ->io_ops is NULL for a thread that has closed its
1876 * io engine
1877 */
1878 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1879 cputhreads++;
1880 else
1881 realthreads++;
1882
1883 if (!td->pid) {
1884 pending++;
1885 continue;
1886 }
1887 if (td->runstate == TD_REAPED)
1888 continue;
1889 if (td->o.use_thread) {
1890 if (td->runstate == TD_EXITED) {
1891 td_set_runstate(td, TD_REAPED);
1892 goto reaped;
1893 }
1894 continue;
1895 }
1896
1897 flags = WNOHANG;
1898 if (td->runstate == TD_EXITED)
1899 flags = 0;
1900
1901 /*
1902 * check if someone quit or got killed in an unusual way
1903 */
1904 ret = waitpid(td->pid, &status, flags);
1905 if (ret < 0) {
1906 if (errno == ECHILD) {
1907 log_err("fio: pid=%d disappeared %d\n",
1908 (int) td->pid, td->runstate);
1909 td->sig = ECHILD;
1910 td_set_runstate(td, TD_REAPED);
1911 goto reaped;
1912 }
1913 perror("waitpid");
1914 } else if (ret == td->pid) {
1915 if (WIFSIGNALED(status)) {
1916 int sig = WTERMSIG(status);
1917
1918 if (sig != SIGTERM && sig != SIGUSR2)
1919 log_err("fio: pid=%d, got signal=%d\n",
1920 (int) td->pid, sig);
1921 td->sig = sig;
1922 td_set_runstate(td, TD_REAPED);
1923 goto reaped;
1924 }
1925 if (WIFEXITED(status)) {
1926 if (WEXITSTATUS(status) && !td->error)
1927 td->error = WEXITSTATUS(status);
1928
1929 td_set_runstate(td, TD_REAPED);
1930 goto reaped;
1931 }
1932 }
1933
1934 /*
1935 * If the job is stuck, do a forceful timeout of it and
1936 * move on.
1937 */
1938 if (td->terminate &&
1939 td->runstate < TD_FSYNCING &&
1940 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1941 dump_td_info(td);
1942 td_set_runstate(td, TD_REAPED);
1943 goto reaped;
1944 }
1945
1946 /*
1947 * thread is not dead, continue
1948 */
1949 pending++;
1950 continue;
1951reaped:
1952 (*nr_running)--;
1953 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1954 (*t_rate) -= ddir_rw_sum(td->o.rate);
1955 if (!td->pid)
1956 pending--;
1957
1958 if (td->error)
1959 exit_value++;
1960
1961 done_secs += mtime_since_now(&td->epoch) / 1000;
1962 profile_td_exit(td);
1963 }
1964
1965 if (*nr_running == cputhreads && !pending && realthreads)
1966 fio_terminate_threads(TERMINATE_ALL);
1967}
1968
1969static bool __check_trigger_file(void)
1970{
1971 struct stat sb;
1972
1973 if (!trigger_file)
1974 return false;
1975
1976 if (stat(trigger_file, &sb))
1977 return false;
1978
1979 if (unlink(trigger_file) < 0)
1980 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1981 strerror(errno));
1982
1983 return true;
1984}
1985
1986static bool trigger_timedout(void)
1987{
1988 if (trigger_timeout)
1989 return time_since_genesis() >= trigger_timeout;
1990
1991 return false;
1992}
1993
1994void exec_trigger(const char *cmd)
1995{
1996 int ret;
1997
1998 if (!cmd)
1999 return;
2000
2001 ret = system(cmd);
2002 if (ret == -1)
2003 log_err("fio: failed executing %s trigger\n", cmd);
2004}
2005
2006void check_trigger_file(void)
2007{
2008 if (__check_trigger_file() || trigger_timedout()) {
2009 if (nr_clients)
2010 fio_clients_send_trigger(trigger_remote_cmd);
2011 else {
2012 verify_save_state(IO_LIST_ALL);
2013 fio_terminate_threads(TERMINATE_ALL);
2014 exec_trigger(trigger_cmd);
2015 }
2016 }
2017}
2018
2019static int fio_verify_load_state(struct thread_data *td)
2020{
2021 int ret;
2022
2023 if (!td->o.verify_state)
2024 return 0;
2025
2026 if (is_backend) {
2027 void *data;
2028
2029 ret = fio_server_get_verify_state(td->o.name,
2030 td->thread_number - 1, &data);
2031 if (!ret)
2032 verify_assign_state(td, data);
2033 } else
2034 ret = verify_load_state(td, "local");
2035
2036 return ret;
2037}
2038
2039static void do_usleep(unsigned int usecs)
2040{
2041 check_for_running_stats();
2042 check_trigger_file();
2043 usleep(usecs);
2044}
2045
2046static bool check_mount_writes(struct thread_data *td)
2047{
2048 struct fio_file *f;
2049 unsigned int i;
2050
2051 if (!td_write(td) || td->o.allow_mounted_write)
2052 return false;
2053
2054 for_each_file(td, f, i) {
2055 if (f->filetype != FIO_TYPE_BD)
2056 continue;
2057 if (device_is_mounted(f->file_name))
2058 goto mounted;
2059 }
2060
2061 return false;
2062mounted:
2063 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2064 return true;
2065}
2066
2067static bool waitee_running(struct thread_data *me)
2068{
2069 const char *waitee = me->o.wait_for;
2070 const char *self = me->o.name;
2071 struct thread_data *td;
2072 int i;
2073
2074 if (!waitee)
2075 return false;
2076
2077 for_each_td(td, i) {
2078 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2079 continue;
2080
2081 if (td->runstate < TD_EXITED) {
2082 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2083 self, td->o.name,
2084 runstate_to_name(td->runstate));
2085 return true;
2086 }
2087 }
2088
2089 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2090 return false;
2091}
2092
2093/*
2094 * Main function for kicking off and reaping jobs, as needed.
2095 */
2096static void run_threads(struct sk_out *sk_out)
2097{
2098 struct thread_data *td;
2099 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2100 uint64_t spent;
2101
2102 if (fio_gtod_offload && fio_start_gtod_thread())
2103 return;
2104
2105 fio_idle_prof_init();
2106
2107 set_sig_handlers();
2108
2109 nr_thread = nr_process = 0;
2110 for_each_td(td, i) {
2111 if (check_mount_writes(td))
2112 return;
2113 if (td->o.use_thread)
2114 nr_thread++;
2115 else
2116 nr_process++;
2117 }
2118
2119 if (output_format & FIO_OUTPUT_NORMAL) {
2120 log_info("Starting ");
2121 if (nr_thread)
2122 log_info("%d thread%s", nr_thread,
2123 nr_thread > 1 ? "s" : "");
2124 if (nr_process) {
2125 if (nr_thread)
2126 log_info(" and ");
2127 log_info("%d process%s", nr_process,
2128 nr_process > 1 ? "es" : "");
2129 }
2130 log_info("\n");
2131 log_info_flush();
2132 }
2133
2134 todo = thread_number;
2135 nr_running = 0;
2136 nr_started = 0;
2137 m_rate = t_rate = 0;
2138
2139 for_each_td(td, i) {
2140 print_status_init(td->thread_number - 1);
2141
2142 if (!td->o.create_serialize)
2143 continue;
2144
2145 if (fio_verify_load_state(td))
2146 goto reap;
2147
2148 /*
2149 * do file setup here so it happens sequentially,
2150 * we don't want X number of threads getting their
2151 * client data interspersed on disk
2152 */
2153 if (setup_files(td)) {
2154reap:
2155 exit_value++;
2156 if (td->error)
2157 log_err("fio: pid=%d, err=%d/%s\n",
2158 (int) td->pid, td->error, td->verror);
2159 td_set_runstate(td, TD_REAPED);
2160 todo--;
2161 } else {
2162 struct fio_file *f;
2163 unsigned int j;
2164
2165 /*
2166 * for sharing to work, each job must always open
2167 * its own files. so close them, if we opened them
2168 * for creation
2169 */
2170 for_each_file(td, f, j) {
2171 if (fio_file_open(f))
2172 td_io_close_file(td, f);
2173 }
2174 }
2175 }
2176
2177 /* start idle threads before io threads start to run */
2178 fio_idle_prof_start();
2179
2180 set_genesis_time();
2181
2182 while (todo) {
2183 struct thread_data *map[REAL_MAX_JOBS];
2184 struct timeval this_start;
2185 int this_jobs = 0, left;
2186 struct fork_data *fd;
2187
2188 /*
2189 * create threads (TD_NOT_CREATED -> TD_CREATED)
2190 */
2191 for_each_td(td, i) {
2192 if (td->runstate != TD_NOT_CREATED)
2193 continue;
2194
2195 /*
2196 * never got a chance to start, killed by other
2197 * thread for some reason
2198 */
2199 if (td->terminate) {
2200 todo--;
2201 continue;
2202 }
2203
2204 if (td->o.start_delay) {
2205 spent = utime_since_genesis();
2206
2207 if (td->o.start_delay > spent)
2208 continue;
2209 }
2210
2211 if (td->o.stonewall && (nr_started || nr_running)) {
2212 dprint(FD_PROCESS, "%s: stonewall wait\n",
2213 td->o.name);
2214 break;
2215 }
2216
2217 if (waitee_running(td)) {
2218 dprint(FD_PROCESS, "%s: waiting for %s\n",
2219 td->o.name, td->o.wait_for);
2220 continue;
2221 }
2222
2223 init_disk_util(td);
2224
2225 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2226 td->update_rusage = 0;
2227
2228 /*
2229 * Set state to created. Thread will transition
2230 * to TD_INITIALIZED when it's done setting up.
2231 */
2232 td_set_runstate(td, TD_CREATED);
2233 map[this_jobs++] = td;
2234 nr_started++;
2235
2236 fd = calloc(1, sizeof(*fd));
2237 fd->td = td;
2238 fd->sk_out = sk_out;
2239
2240 if (td->o.use_thread) {
2241 int ret;
2242
2243 dprint(FD_PROCESS, "will pthread_create\n");
2244 ret = pthread_create(&td->thread, NULL,
2245 thread_main, fd);
2246 if (ret) {
2247 log_err("pthread_create: %s\n",
2248 strerror(ret));
2249 free(fd);
2250 nr_started--;
2251 break;
2252 }
2253 ret = pthread_detach(td->thread);
2254 if (ret)
2255 log_err("pthread_detach: %s",
2256 strerror(ret));
2257 } else {
2258 pid_t pid;
2259 dprint(FD_PROCESS, "will fork\n");
2260 pid = fork();
2261 if (!pid) {
2262 int ret;
2263
2264 ret = (int)(uintptr_t)thread_main(fd);
2265 _exit(ret);
2266 } else if (i == fio_debug_jobno)
2267 *fio_debug_jobp = pid;
2268 }
2269 dprint(FD_MUTEX, "wait on startup_mutex\n");
2270 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2271 log_err("fio: job startup hung? exiting.\n");
2272 fio_terminate_threads(TERMINATE_ALL);
2273 fio_abort = 1;
2274 nr_started--;
2275 break;
2276 }
2277 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2278 }
2279
2280 /*
2281 * Wait for the started threads to transition to
2282 * TD_INITIALIZED.
2283 */
2284 fio_gettime(&this_start, NULL);
2285 left = this_jobs;
2286 while (left && !fio_abort) {
2287 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2288 break;
2289
2290 do_usleep(100000);
2291
2292 for (i = 0; i < this_jobs; i++) {
2293 td = map[i];
2294 if (!td)
2295 continue;
2296 if (td->runstate == TD_INITIALIZED) {
2297 map[i] = NULL;
2298 left--;
2299 } else if (td->runstate >= TD_EXITED) {
2300 map[i] = NULL;
2301 left--;
2302 todo--;
2303 nr_running++; /* work-around... */
2304 }
2305 }
2306 }
2307
2308 if (left) {
2309 log_err("fio: %d job%s failed to start\n", left,
2310 left > 1 ? "s" : "");
2311 for (i = 0; i < this_jobs; i++) {
2312 td = map[i];
2313 if (!td)
2314 continue;
2315 kill(td->pid, SIGTERM);
2316 }
2317 break;
2318 }
2319
2320 /*
2321 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2322 */
2323 for_each_td(td, i) {
2324 if (td->runstate != TD_INITIALIZED)
2325 continue;
2326
2327 if (in_ramp_time(td))
2328 td_set_runstate(td, TD_RAMP);
2329 else
2330 td_set_runstate(td, TD_RUNNING);
2331 nr_running++;
2332 nr_started--;
2333 m_rate += ddir_rw_sum(td->o.ratemin);
2334 t_rate += ddir_rw_sum(td->o.rate);
2335 todo--;
2336 fio_mutex_up(td->mutex);
2337 }
2338
2339 reap_threads(&nr_running, &t_rate, &m_rate);
2340
2341 if (todo)
2342 do_usleep(100000);
2343 }
2344
2345 while (nr_running) {
2346 reap_threads(&nr_running, &t_rate, &m_rate);
2347 do_usleep(10000);
2348 }
2349
2350 fio_idle_prof_stop();
2351
2352 update_io_ticks();
2353}
2354
2355static void free_disk_util(void)
2356{
2357 disk_util_prune_entries();
2358 helper_thread_destroy();
2359}
2360
2361int fio_backend(struct sk_out *sk_out)
2362{
2363 struct thread_data *td;
2364 int i;
2365
2366 if (exec_profile) {
2367 if (load_profile(exec_profile))
2368 return 1;
2369 free(exec_profile);
2370 exec_profile = NULL;
2371 }
2372 if (!thread_number)
2373 return 0;
2374
2375 if (write_bw_log) {
2376 struct log_params p = {
2377 .log_type = IO_LOG_TYPE_BW,
2378 };
2379
2380 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2381 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2382 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2383 }
2384
2385 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2386 if (startup_mutex == NULL)
2387 return 1;
2388
2389 set_genesis_time();
2390 stat_init();
2391 helper_thread_create(startup_mutex, sk_out);
2392
2393 cgroup_list = smalloc(sizeof(*cgroup_list));
2394 INIT_FLIST_HEAD(cgroup_list);
2395
2396 run_threads(sk_out);
2397
2398 helper_thread_exit();
2399
2400 if (!fio_abort) {
2401 __show_run_stats();
2402 if (write_bw_log) {
2403 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2404 struct io_log *log = agg_io_log[i];
2405
2406 flush_log(log, false);
2407 free_log(log);
2408 }
2409 }
2410 }
2411
2412 for_each_td(td, i) {
2413 fio_options_free(td);
2414 if (td->rusage_sem) {
2415 fio_mutex_remove(td->rusage_sem);
2416 td->rusage_sem = NULL;
2417 }
2418 }
2419
2420 free_disk_util();
2421 cgroup_kill(cgroup_list);
2422 sfree(cgroup_list);
2423 sfree(cgroup_mnt);
2424
2425 fio_mutex_remove(startup_mutex);
2426 stat_exit();
2427 return exit_value;
2428}