backend: mark the thread as finishing, when we are out of the IO loop
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define PAGE_ALIGN(buf) \
80 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82#define JOB_START_TIMEOUT (5 * 1000)
83
84static void sig_int(int sig)
85{
86 if (threads) {
87 if (is_backend)
88 fio_server_got_signal(sig);
89 else {
90 log_info("\nfio: terminating on signal %d\n", sig);
91 log_info_flush();
92 exit_value = 128;
93 }
94
95 fio_terminate_threads(TERMINATE_ALL);
96 }
97}
98
99void sig_show_status(int sig)
100{
101 show_running_run_stats();
102}
103
104static void set_sig_handlers(void)
105{
106 struct sigaction act;
107
108 memset(&act, 0, sizeof(act));
109 act.sa_handler = sig_int;
110 act.sa_flags = SA_RESTART;
111 sigaction(SIGINT, &act, NULL);
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGTERM, &act, NULL);
117
118/* Windows uses SIGBREAK as a quit signal from other applications */
119#ifdef WIN32
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_int;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGBREAK, &act, NULL);
124#endif
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_show_status;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGUSR1, &act, NULL);
130
131 if (is_backend) {
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_int;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGPIPE, &act, NULL);
136 }
137}
138
139/*
140 * Check if we are above the minimum rate given.
141 */
142static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143 enum fio_ddir ddir)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149 unsigned int ratemin = 0;
150 unsigned int rate_iops = 0;
151 unsigned int rate_iops_min = 0;
152
153 assert(ddir_rw(ddir));
154
155 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156 return false;
157
158 /*
159 * allow a 2 second settle period in the beginning
160 */
161 if (mtime_since(&td->start, now) < 2000)
162 return false;
163
164 iops += td->this_io_blocks[ddir];
165 bytes += td->this_io_bytes[ddir];
166 ratemin += td->o.ratemin[ddir];
167 rate_iops += td->o.rate_iops[ddir];
168 rate_iops_min += td->o.rate_iops_min[ddir];
169
170 /*
171 * if rate blocks is set, sample is running
172 */
173 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174 spent = mtime_since(&td->lastrate[ddir], now);
175 if (spent < td->o.ratecycle)
176 return false;
177
178 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179 /*
180 * check bandwidth specified rate
181 */
182 if (bytes < td->rate_bytes[ddir]) {
183 log_err("%s: min rate %u not met\n", td->o.name,
184 ratemin);
185 return true;
186 } else {
187 if (spent)
188 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189 else
190 rate = 0;
191
192 if (rate < ratemin ||
193 bytes < td->rate_bytes[ddir]) {
194 log_err("%s: min rate %u not met, got"
195 " %luKB/sec\n", td->o.name,
196 ratemin, rate);
197 return true;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, rate_iops);
207 return true;
208 } else {
209 if (spent)
210 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211 else
212 rate = 0;
213
214 if (rate < rate_iops_min ||
215 iops < td->rate_blocks[ddir]) {
216 log_err("%s: min iops rate %u not met,"
217 " got %lu\n", td->o.name,
218 rate_iops_min, rate);
219 return true;
220 }
221 }
222 }
223 }
224
225 td->rate_bytes[ddir] = bytes;
226 td->rate_blocks[ddir] = iops;
227 memcpy(&td->lastrate[ddir], now, sizeof(*now));
228 return false;
229}
230
231static bool check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 bool ret = false;
234
235 if (td->bytes_done[DDIR_READ])
236 ret |= __check_min_rate(td, now, DDIR_READ);
237 if (td->bytes_done[DDIR_WRITE])
238 ret |= __check_min_rate(td, now, DDIR_WRITE);
239 if (td->bytes_done[DDIR_TRIM])
240 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242 return ret;
243}
244
245/*
246 * When job exits, we can cancel the in-flight IO if we are using async
247 * io. Attempt to do so.
248 */
249static void cleanup_pending_aio(struct thread_data *td)
250{
251 int r;
252
253 /*
254 * get immediately available events, if any
255 */
256 r = io_u_queued_complete(td, 0);
257 if (r < 0)
258 return;
259
260 /*
261 * now cancel remaining active events
262 */
263 if (td->io_ops->cancel) {
264 struct io_u *io_u;
265 int i;
266
267 io_u_qiter(&td->io_u_all, io_u, i) {
268 if (io_u->flags & IO_U_F_FLIGHT) {
269 r = td->io_ops->cancel(td, io_u);
270 if (!r)
271 put_io_u(td, io_u);
272 }
273 }
274 }
275
276 if (td->cur_depth)
277 r = io_u_queued_complete(td, td->cur_depth);
278}
279
280/*
281 * Helper to handle the final sync of a file. Works just like the normal
282 * io path, just does everything sync.
283 */
284static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285{
286 struct io_u *io_u = __get_io_u(td);
287 int ret;
288
289 if (!io_u)
290 return true;
291
292 io_u->ddir = DDIR_SYNC;
293 io_u->file = f;
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 return true;
298 }
299
300requeue:
301 ret = td_io_queue(td, io_u);
302 if (ret < 0) {
303 td_verror(td, io_u->error, "td_io_queue");
304 put_io_u(td, io_u);
305 return true;
306 } else if (ret == FIO_Q_QUEUED) {
307 if (td_io_commit(td))
308 return true;
309 if (io_u_queued_complete(td, 1) < 0)
310 return true;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return true;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return true;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return true;
322 goto requeue;
323 }
324
325 return false;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return false;
358 if (!td->o.timeout)
359 return false;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return true;
362
363 return false;
364}
365
366/*
367 * We need to update the runtime consistently in ms, but keep a running
368 * tally of the current elapsed time in microseconds for sub millisecond
369 * updates.
370 */
371static inline void update_runtime(struct thread_data *td,
372 unsigned long long *elapsed_us,
373 const enum fio_ddir ddir)
374{
375 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376 return;
377
378 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379 elapsed_us[ddir] += utime_since_now(&td->start);
380 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381}
382
383static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384 int *retptr)
385{
386 int ret = *retptr;
387
388 if (ret < 0 || td->error) {
389 int err = td->error;
390 enum error_type_bit eb;
391
392 if (ret < 0)
393 err = -ret;
394
395 eb = td_error_type(ddir, err);
396 if (!(td->o.continue_on_error & (1 << eb)))
397 return true;
398
399 if (td_non_fatal_error(td, eb, err)) {
400 /*
401 * Continue with the I/Os in case of
402 * a non fatal error.
403 */
404 update_error_count(td, err);
405 td_clear_error(td);
406 *retptr = 0;
407 return false;
408 } else if (td->o.fill_device && err == ENOSPC) {
409 /*
410 * We expect to hit this error if
411 * fill_device option is set.
412 */
413 td_clear_error(td);
414 fio_mark_td_terminate(td);
415 return true;
416 } else {
417 /*
418 * Stop the I/O in case of a fatal
419 * error.
420 */
421 update_error_count(td, err);
422 return true;
423 }
424 }
425
426 return false;
427}
428
429static void check_update_rusage(struct thread_data *td)
430{
431 if (td->update_rusage) {
432 td->update_rusage = 0;
433 update_rusage_stat(td);
434 fio_mutex_up(td->rusage_sem);
435 }
436}
437
438static int wait_for_completions(struct thread_data *td, struct timeval *time)
439{
440 const int full = queue_full(td);
441 int min_evts = 0;
442 int ret;
443
444 /*
445 * if the queue is full, we MUST reap at least 1 event
446 */
447 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
448 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
449 min_evts = 1;
450
451 if (time && (__should_check_rate(td, DDIR_READ) ||
452 __should_check_rate(td, DDIR_WRITE) ||
453 __should_check_rate(td, DDIR_TRIM)))
454 fio_gettime(time, NULL);
455
456 do {
457 ret = io_u_queued_complete(td, min_evts);
458 if (ret < 0)
459 break;
460 } while (full && (td->cur_depth > td->o.iodepth_low));
461
462 return ret;
463}
464
465int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
466 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
467 struct timeval *comp_time)
468{
469 int ret2;
470
471 switch (*ret) {
472 case FIO_Q_COMPLETED:
473 if (io_u->error) {
474 *ret = -io_u->error;
475 clear_io_u(td, io_u);
476 } else if (io_u->resid) {
477 int bytes = io_u->xfer_buflen - io_u->resid;
478 struct fio_file *f = io_u->file;
479
480 if (bytes_issued)
481 *bytes_issued += bytes;
482
483 if (!from_verify)
484 trim_io_piece(td, io_u);
485
486 /*
487 * zero read, fail
488 */
489 if (!bytes) {
490 if (!from_verify)
491 unlog_io_piece(td, io_u);
492 td_verror(td, EIO, "full resid");
493 put_io_u(td, io_u);
494 break;
495 }
496
497 io_u->xfer_buflen = io_u->resid;
498 io_u->xfer_buf += bytes;
499 io_u->offset += bytes;
500
501 if (ddir_rw(io_u->ddir))
502 td->ts.short_io_u[io_u->ddir]++;
503
504 f = io_u->file;
505 if (io_u->offset == f->real_file_size)
506 goto sync_done;
507
508 requeue_io_u(td, &io_u);
509 } else {
510sync_done:
511 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
512 __should_check_rate(td, DDIR_WRITE) ||
513 __should_check_rate(td, DDIR_TRIM)))
514 fio_gettime(comp_time, NULL);
515
516 *ret = io_u_sync_complete(td, io_u);
517 if (*ret < 0)
518 break;
519 }
520
521 /*
522 * when doing I/O (not when verifying),
523 * check for any errors that are to be ignored
524 */
525 if (!from_verify)
526 break;
527
528 return 0;
529 case FIO_Q_QUEUED:
530 /*
531 * if the engine doesn't have a commit hook,
532 * the io_u is really queued. if it does have such
533 * a hook, it has to call io_u_queued() itself.
534 */
535 if (td->io_ops->commit == NULL)
536 io_u_queued(td, io_u);
537 if (bytes_issued)
538 *bytes_issued += io_u->xfer_buflen;
539 break;
540 case FIO_Q_BUSY:
541 if (!from_verify)
542 unlog_io_piece(td, io_u);
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 *ret = ret2;
547 break;
548 default:
549 assert(*ret < 0);
550 td_verror(td, -(*ret), "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, ddir, ret))
555 return 1;
556
557 return 0;
558}
559
560static inline bool io_in_polling(struct thread_data *td)
561{
562 return !td->o.iodepth_batch_complete_min &&
563 !td->o.iodepth_batch_complete_max;
564}
565
566/*
567 * The main verify engine. Runs over the writes we previously submitted,
568 * reads the blocks back in, and checks the crc/md5 of the data.
569 */
570static void do_verify(struct thread_data *td, uint64_t verify_bytes)
571{
572 struct fio_file *f;
573 struct io_u *io_u;
574 int ret, min_events;
575 unsigned int i;
576
577 dprint(FD_VERIFY, "starting loop\n");
578
579 /*
580 * sync io first and invalidate cache, to make sure we really
581 * read from disk.
582 */
583 for_each_file(td, f, i) {
584 if (!fio_file_open(f))
585 continue;
586 if (fio_io_sync(td, f))
587 break;
588 if (file_invalidate_cache(td, f))
589 break;
590 }
591
592 check_update_rusage(td);
593
594 if (td->error)
595 return;
596
597 td_set_runstate(td, TD_VERIFYING);
598
599 io_u = NULL;
600 while (!td->terminate) {
601 enum fio_ddir ddir;
602 int full;
603
604 update_tv_cache(td);
605 check_update_rusage(td);
606
607 if (runtime_exceeded(td, &td->tv_cache)) {
608 __update_tv_cache(td);
609 if (runtime_exceeded(td, &td->tv_cache)) {
610 fio_mark_td_terminate(td);
611 break;
612 }
613 }
614
615 if (flow_threshold_exceeded(td))
616 continue;
617
618 if (!td->o.experimental_verify) {
619 io_u = __get_io_u(td);
620 if (!io_u)
621 break;
622
623 if (get_next_verify(td, io_u)) {
624 put_io_u(td, io_u);
625 break;
626 }
627
628 if (td_io_prep(td, io_u)) {
629 put_io_u(td, io_u);
630 break;
631 }
632 } else {
633 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
634 break;
635
636 while ((io_u = get_io_u(td)) != NULL) {
637 if (IS_ERR(io_u)) {
638 io_u = NULL;
639 ret = FIO_Q_BUSY;
640 goto reap;
641 }
642
643 /*
644 * We are only interested in the places where
645 * we wrote or trimmed IOs. Turn those into
646 * reads for verification purposes.
647 */
648 if (io_u->ddir == DDIR_READ) {
649 /*
650 * Pretend we issued it for rwmix
651 * accounting
652 */
653 td->io_issues[DDIR_READ]++;
654 put_io_u(td, io_u);
655 continue;
656 } else if (io_u->ddir == DDIR_TRIM) {
657 io_u->ddir = DDIR_READ;
658 io_u_set(io_u, IO_U_F_TRIMMED);
659 break;
660 } else if (io_u->ddir == DDIR_WRITE) {
661 io_u->ddir = DDIR_READ;
662 break;
663 } else {
664 put_io_u(td, io_u);
665 continue;
666 }
667 }
668
669 if (!io_u)
670 break;
671 }
672
673 if (verify_state_should_stop(td, io_u)) {
674 put_io_u(td, io_u);
675 break;
676 }
677
678 if (td->o.verify_async)
679 io_u->end_io = verify_io_u_async;
680 else
681 io_u->end_io = verify_io_u;
682
683 ddir = io_u->ddir;
684 if (!td->o.disable_slat)
685 fio_gettime(&io_u->start_time, NULL);
686
687 ret = td_io_queue(td, io_u);
688
689 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
690 break;
691
692 /*
693 * if we can queue more, do so. but check if there are
694 * completed io_u's first. Note that we can get BUSY even
695 * without IO queued, if the system is resource starved.
696 */
697reap:
698 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
699 if (full || io_in_polling(td))
700 ret = wait_for_completions(td, NULL);
701
702 if (ret < 0)
703 break;
704 }
705
706 check_update_rusage(td);
707
708 if (!td->error) {
709 min_events = td->cur_depth;
710
711 if (min_events)
712 ret = io_u_queued_complete(td, min_events);
713 } else
714 cleanup_pending_aio(td);
715
716 td_set_runstate(td, TD_RUNNING);
717
718 dprint(FD_VERIFY, "exiting loop\n");
719}
720
721static bool exceeds_number_ios(struct thread_data *td)
722{
723 unsigned long long number_ios;
724
725 if (!td->o.number_ios)
726 return false;
727
728 number_ios = ddir_rw_sum(td->io_blocks);
729 number_ios += td->io_u_queued + td->io_u_in_flight;
730
731 return number_ios >= (td->o.number_ios * td->loops);
732}
733
734static bool io_issue_bytes_exceeded(struct thread_data *td)
735{
736 unsigned long long bytes, limit;
737
738 if (td_rw(td))
739 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
740 else if (td_write(td))
741 bytes = td->io_issue_bytes[DDIR_WRITE];
742 else if (td_read(td))
743 bytes = td->io_issue_bytes[DDIR_READ];
744 else
745 bytes = td->io_issue_bytes[DDIR_TRIM];
746
747 if (td->o.io_limit)
748 limit = td->o.io_limit;
749 else
750 limit = td->o.size;
751
752 limit *= td->loops;
753 return bytes >= limit || exceeds_number_ios(td);
754}
755
756static bool io_complete_bytes_exceeded(struct thread_data *td)
757{
758 unsigned long long bytes, limit;
759
760 if (td_rw(td))
761 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
762 else if (td_write(td))
763 bytes = td->this_io_bytes[DDIR_WRITE];
764 else if (td_read(td))
765 bytes = td->this_io_bytes[DDIR_READ];
766 else
767 bytes = td->this_io_bytes[DDIR_TRIM];
768
769 if (td->o.io_limit)
770 limit = td->o.io_limit;
771 else
772 limit = td->o.size;
773
774 limit *= td->loops;
775 return bytes >= limit || exceeds_number_ios(td);
776}
777
778/*
779 * used to calculate the next io time for rate control
780 *
781 */
782static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
783{
784 uint64_t secs, remainder, bps, bytes, iops;
785
786 assert(!(td->flags & TD_F_CHILD));
787 bytes = td->rate_io_issue_bytes[ddir];
788 bps = td->rate_bps[ddir];
789
790 if (td->o.rate_process == RATE_PROCESS_POISSON) {
791 uint64_t val;
792 iops = bps / td->o.bs[ddir];
793 val = (int64_t) (1000000 / iops) *
794 -logf(__rand_0_1(&td->poisson_state));
795 if (val) {
796 dprint(FD_RATE, "poisson rate iops=%llu\n",
797 (unsigned long long) 1000000 / val);
798 }
799 td->last_usec += val;
800 return td->last_usec;
801 } else if (bps) {
802 secs = bytes / bps;
803 remainder = bytes % bps;
804 return remainder * 1000000 / bps + secs * 1000000;
805 }
806
807 return 0;
808}
809
810/*
811 * Main IO worker function. It retrieves io_u's to process and queues
812 * and reaps them, checking for rate and errors along the way.
813 *
814 * Returns number of bytes written and trimmed.
815 */
816static void do_io(struct thread_data *td, uint64_t *bytes_done)
817{
818 unsigned int i;
819 int ret = 0;
820 uint64_t total_bytes, bytes_issued = 0;
821
822 for (i = 0; i < DDIR_RWDIR_CNT; i++)
823 bytes_done[i] = td->bytes_done[i];
824
825 if (in_ramp_time(td))
826 td_set_runstate(td, TD_RAMP);
827 else
828 td_set_runstate(td, TD_RUNNING);
829
830 lat_target_init(td);
831
832 total_bytes = td->o.size;
833 /*
834 * Allow random overwrite workloads to write up to io_limit
835 * before starting verification phase as 'size' doesn't apply.
836 */
837 if (td_write(td) && td_random(td) && td->o.norandommap)
838 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
839 /*
840 * If verify_backlog is enabled, we'll run the verify in this
841 * handler as well. For that case, we may need up to twice the
842 * amount of bytes.
843 */
844 if (td->o.verify != VERIFY_NONE &&
845 (td_write(td) && td->o.verify_backlog))
846 total_bytes += td->o.size;
847
848 /* In trimwrite mode, each byte is trimmed and then written, so
849 * allow total_bytes to be twice as big */
850 if (td_trimwrite(td))
851 total_bytes += td->total_io_size;
852
853 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
854 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
855 td->o.time_based) {
856 struct timeval comp_time;
857 struct io_u *io_u;
858 int full;
859 enum fio_ddir ddir;
860
861 check_update_rusage(td);
862
863 if (td->terminate || td->done)
864 break;
865
866 update_tv_cache(td);
867
868 if (runtime_exceeded(td, &td->tv_cache)) {
869 __update_tv_cache(td);
870 if (runtime_exceeded(td, &td->tv_cache)) {
871 fio_mark_td_terminate(td);
872 break;
873 }
874 }
875
876 if (flow_threshold_exceeded(td))
877 continue;
878
879 /*
880 * Break if we exceeded the bytes. The exception is time
881 * based runs, but we still need to break out of the loop
882 * for those to run verification, if enabled.
883 */
884 if (bytes_issued >= total_bytes &&
885 (!td->o.time_based ||
886 (td->o.time_based && td->o.verify != VERIFY_NONE)))
887 break;
888
889 io_u = get_io_u(td);
890 if (IS_ERR_OR_NULL(io_u)) {
891 int err = PTR_ERR(io_u);
892
893 io_u = NULL;
894 if (err == -EBUSY) {
895 ret = FIO_Q_BUSY;
896 goto reap;
897 }
898 if (td->o.latency_target)
899 goto reap;
900 break;
901 }
902
903 ddir = io_u->ddir;
904
905 /*
906 * Add verification end_io handler if:
907 * - Asked to verify (!td_rw(td))
908 * - Or the io_u is from our verify list (mixed write/ver)
909 */
910 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
911 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
912
913 if (!td->o.verify_pattern_bytes) {
914 io_u->rand_seed = __rand(&td->verify_state);
915 if (sizeof(int) != sizeof(long *))
916 io_u->rand_seed *= __rand(&td->verify_state);
917 }
918
919 if (verify_state_should_stop(td, io_u)) {
920 put_io_u(td, io_u);
921 break;
922 }
923
924 if (td->o.verify_async)
925 io_u->end_io = verify_io_u_async;
926 else
927 io_u->end_io = verify_io_u;
928 td_set_runstate(td, TD_VERIFYING);
929 } else if (in_ramp_time(td))
930 td_set_runstate(td, TD_RAMP);
931 else
932 td_set_runstate(td, TD_RUNNING);
933
934 /*
935 * Always log IO before it's issued, so we know the specific
936 * order of it. The logged unit will track when the IO has
937 * completed.
938 */
939 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
940 td->o.do_verify &&
941 td->o.verify != VERIFY_NONE &&
942 !td->o.experimental_verify)
943 log_io_piece(td, io_u);
944
945 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
946 const unsigned long blen = io_u->xfer_buflen;
947 const enum fio_ddir ddir = acct_ddir(io_u);
948
949 if (td->error)
950 break;
951
952 workqueue_enqueue(&td->io_wq, &io_u->work);
953 ret = FIO_Q_QUEUED;
954
955 if (ddir_rw(ddir)) {
956 td->io_issues[ddir]++;
957 td->io_issue_bytes[ddir] += blen;
958 td->rate_io_issue_bytes[ddir] += blen;
959 }
960
961 if (should_check_rate(td))
962 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
963
964 } else {
965 ret = td_io_queue(td, io_u);
966
967 if (should_check_rate(td))
968 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
969
970 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
971 break;
972
973 /*
974 * See if we need to complete some commands. Note that
975 * we can get BUSY even without IO queued, if the
976 * system is resource starved.
977 */
978reap:
979 full = queue_full(td) ||
980 (ret == FIO_Q_BUSY && td->cur_depth);
981 if (full || io_in_polling(td))
982 ret = wait_for_completions(td, &comp_time);
983 }
984 if (ret < 0)
985 break;
986 if (!ddir_rw_sum(td->bytes_done) &&
987 !(td->io_ops->flags & FIO_NOIO))
988 continue;
989
990 if (!in_ramp_time(td) && should_check_rate(td)) {
991 if (check_min_rate(td, &comp_time)) {
992 if (exitall_on_terminate || td->o.exitall_error)
993 fio_terminate_threads(td->groupid);
994 td_verror(td, EIO, "check_min_rate");
995 break;
996 }
997 }
998 if (!in_ramp_time(td) && td->o.latency_target)
999 lat_target_check(td);
1000
1001 if (td->o.thinktime) {
1002 unsigned long long b;
1003
1004 b = ddir_rw_sum(td->io_blocks);
1005 if (!(b % td->o.thinktime_blocks)) {
1006 int left;
1007
1008 io_u_quiesce(td);
1009
1010 if (td->o.thinktime_spin)
1011 usec_spin(td->o.thinktime_spin);
1012
1013 left = td->o.thinktime - td->o.thinktime_spin;
1014 if (left)
1015 usec_sleep(td, left);
1016 }
1017 }
1018 }
1019
1020 check_update_rusage(td);
1021
1022 if (td->trim_entries)
1023 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1024
1025 if (td->o.fill_device && td->error == ENOSPC) {
1026 td->error = 0;
1027 fio_mark_td_terminate(td);
1028 }
1029 if (!td->error) {
1030 struct fio_file *f;
1031
1032 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1033 workqueue_flush(&td->io_wq);
1034 i = 0;
1035 } else
1036 i = td->cur_depth;
1037
1038 if (i) {
1039 ret = io_u_queued_complete(td, i);
1040 if (td->o.fill_device && td->error == ENOSPC)
1041 td->error = 0;
1042 }
1043
1044 if (should_fsync(td) && td->o.end_fsync) {
1045 td_set_runstate(td, TD_FSYNCING);
1046
1047 for_each_file(td, f, i) {
1048 if (!fio_file_fsync(td, f))
1049 continue;
1050
1051 log_err("fio: end_fsync failed for file %s\n",
1052 f->file_name);
1053 }
1054 }
1055 } else
1056 cleanup_pending_aio(td);
1057
1058 /*
1059 * stop job if we failed doing any IO
1060 */
1061 if (!ddir_rw_sum(td->this_io_bytes))
1062 td->done = 1;
1063
1064 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1065 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1066}
1067
1068static void free_file_completion_logging(struct thread_data *td)
1069{
1070 struct fio_file *f;
1071 unsigned int i;
1072
1073 for_each_file(td, f, i) {
1074 if (!f->last_write_comp)
1075 break;
1076 sfree(f->last_write_comp);
1077 }
1078}
1079
1080static int init_file_completion_logging(struct thread_data *td,
1081 unsigned int depth)
1082{
1083 struct fio_file *f;
1084 unsigned int i;
1085
1086 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1087 return 0;
1088
1089 for_each_file(td, f, i) {
1090 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1091 if (!f->last_write_comp)
1092 goto cleanup;
1093 }
1094
1095 return 0;
1096
1097cleanup:
1098 free_file_completion_logging(td);
1099 log_err("fio: failed to alloc write comp data\n");
1100 return 1;
1101}
1102
1103static void cleanup_io_u(struct thread_data *td)
1104{
1105 struct io_u *io_u;
1106
1107 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1108
1109 if (td->io_ops->io_u_free)
1110 td->io_ops->io_u_free(td, io_u);
1111
1112 fio_memfree(io_u, sizeof(*io_u));
1113 }
1114
1115 free_io_mem(td);
1116
1117 io_u_rexit(&td->io_u_requeues);
1118 io_u_qexit(&td->io_u_freelist);
1119 io_u_qexit(&td->io_u_all);
1120
1121 free_file_completion_logging(td);
1122}
1123
1124static int init_io_u(struct thread_data *td)
1125{
1126 struct io_u *io_u;
1127 unsigned int max_bs, min_write;
1128 int cl_align, i, max_units;
1129 int data_xfer = 1, err;
1130 char *p;
1131
1132 max_units = td->o.iodepth;
1133 max_bs = td_max_bs(td);
1134 min_write = td->o.min_bs[DDIR_WRITE];
1135 td->orig_buffer_size = (unsigned long long) max_bs
1136 * (unsigned long long) max_units;
1137
1138 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1139 data_xfer = 0;
1140
1141 err = 0;
1142 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1143 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1144 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1145
1146 if (err) {
1147 log_err("fio: failed setting up IO queues\n");
1148 return 1;
1149 }
1150
1151 /*
1152 * if we may later need to do address alignment, then add any
1153 * possible adjustment here so that we don't cause a buffer
1154 * overflow later. this adjustment may be too much if we get
1155 * lucky and the allocator gives us an aligned address.
1156 */
1157 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1158 (td->io_ops->flags & FIO_RAWIO))
1159 td->orig_buffer_size += page_mask + td->o.mem_align;
1160
1161 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1162 unsigned long bs;
1163
1164 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1165 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1166 }
1167
1168 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1169 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1170 return 1;
1171 }
1172
1173 if (data_xfer && allocate_io_mem(td))
1174 return 1;
1175
1176 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1177 (td->io_ops->flags & FIO_RAWIO))
1178 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1179 else
1180 p = td->orig_buffer;
1181
1182 cl_align = os_cache_line_size();
1183
1184 for (i = 0; i < max_units; i++) {
1185 void *ptr;
1186
1187 if (td->terminate)
1188 return 1;
1189
1190 ptr = fio_memalign(cl_align, sizeof(*io_u));
1191 if (!ptr) {
1192 log_err("fio: unable to allocate aligned memory\n");
1193 break;
1194 }
1195
1196 io_u = ptr;
1197 memset(io_u, 0, sizeof(*io_u));
1198 INIT_FLIST_HEAD(&io_u->verify_list);
1199 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1200
1201 if (data_xfer) {
1202 io_u->buf = p;
1203 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1204
1205 if (td_write(td))
1206 io_u_fill_buffer(td, io_u, min_write, max_bs);
1207 if (td_write(td) && td->o.verify_pattern_bytes) {
1208 /*
1209 * Fill the buffer with the pattern if we are
1210 * going to be doing writes.
1211 */
1212 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1213 }
1214 }
1215
1216 io_u->index = i;
1217 io_u->flags = IO_U_F_FREE;
1218 io_u_qpush(&td->io_u_freelist, io_u);
1219
1220 /*
1221 * io_u never leaves this stack, used for iteration of all
1222 * io_u buffers.
1223 */
1224 io_u_qpush(&td->io_u_all, io_u);
1225
1226 if (td->io_ops->io_u_init) {
1227 int ret = td->io_ops->io_u_init(td, io_u);
1228
1229 if (ret) {
1230 log_err("fio: failed to init engine data: %d\n", ret);
1231 return 1;
1232 }
1233 }
1234
1235 p += max_bs;
1236 }
1237
1238 if (init_file_completion_logging(td, max_units))
1239 return 1;
1240
1241 return 0;
1242}
1243
1244static int switch_ioscheduler(struct thread_data *td)
1245{
1246 char tmp[256], tmp2[128];
1247 FILE *f;
1248 int ret;
1249
1250 if (td->io_ops->flags & FIO_DISKLESSIO)
1251 return 0;
1252
1253 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1254
1255 f = fopen(tmp, "r+");
1256 if (!f) {
1257 if (errno == ENOENT) {
1258 log_err("fio: os or kernel doesn't support IO scheduler"
1259 " switching\n");
1260 return 0;
1261 }
1262 td_verror(td, errno, "fopen iosched");
1263 return 1;
1264 }
1265
1266 /*
1267 * Set io scheduler.
1268 */
1269 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1270 if (ferror(f) || ret != 1) {
1271 td_verror(td, errno, "fwrite");
1272 fclose(f);
1273 return 1;
1274 }
1275
1276 rewind(f);
1277
1278 /*
1279 * Read back and check that the selected scheduler is now the default.
1280 */
1281 memset(tmp, 0, sizeof(tmp));
1282 ret = fread(tmp, sizeof(tmp), 1, f);
1283 if (ferror(f) || ret < 0) {
1284 td_verror(td, errno, "fread");
1285 fclose(f);
1286 return 1;
1287 }
1288 /*
1289 * either a list of io schedulers or "none\n" is expected.
1290 */
1291 tmp[strlen(tmp) - 1] = '\0';
1292
1293
1294 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1295 if (!strstr(tmp, tmp2)) {
1296 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1297 td_verror(td, EINVAL, "iosched_switch");
1298 fclose(f);
1299 return 1;
1300 }
1301
1302 fclose(f);
1303 return 0;
1304}
1305
1306static bool keep_running(struct thread_data *td)
1307{
1308 unsigned long long limit;
1309
1310 if (td->done)
1311 return false;
1312 if (td->o.time_based)
1313 return true;
1314 if (td->o.loops) {
1315 td->o.loops--;
1316 return true;
1317 }
1318 if (exceeds_number_ios(td))
1319 return false;
1320
1321 if (td->o.io_limit)
1322 limit = td->o.io_limit;
1323 else
1324 limit = td->o.size;
1325
1326 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1327 uint64_t diff;
1328
1329 /*
1330 * If the difference is less than the minimum IO size, we
1331 * are done.
1332 */
1333 diff = limit - ddir_rw_sum(td->io_bytes);
1334 if (diff < td_max_bs(td))
1335 return false;
1336
1337 if (fio_files_done(td) && !td->o.io_limit)
1338 return false;
1339
1340 return true;
1341 }
1342
1343 return false;
1344}
1345
1346static int exec_string(struct thread_options *o, const char *string, const char *mode)
1347{
1348 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1349 int ret;
1350 char *str;
1351
1352 str = malloc(newlen);
1353 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1354
1355 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1356 ret = system(str);
1357 if (ret == -1)
1358 log_err("fio: exec of cmd <%s> failed\n", str);
1359
1360 free(str);
1361 return ret;
1362}
1363
1364/*
1365 * Dry run to compute correct state of numberio for verification.
1366 */
1367static uint64_t do_dry_run(struct thread_data *td)
1368{
1369 td_set_runstate(td, TD_RUNNING);
1370
1371 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1372 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1373 struct io_u *io_u;
1374 int ret;
1375
1376 if (td->terminate || td->done)
1377 break;
1378
1379 io_u = get_io_u(td);
1380 if (!io_u)
1381 break;
1382
1383 io_u_set(io_u, IO_U_F_FLIGHT);
1384 io_u->error = 0;
1385 io_u->resid = 0;
1386 if (ddir_rw(acct_ddir(io_u)))
1387 td->io_issues[acct_ddir(io_u)]++;
1388 if (ddir_rw(io_u->ddir)) {
1389 io_u_mark_depth(td, 1);
1390 td->ts.total_io_u[io_u->ddir]++;
1391 }
1392
1393 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1394 td->o.do_verify &&
1395 td->o.verify != VERIFY_NONE &&
1396 !td->o.experimental_verify)
1397 log_io_piece(td, io_u);
1398
1399 ret = io_u_sync_complete(td, io_u);
1400 (void) ret;
1401 }
1402
1403 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1404}
1405
1406struct fork_data {
1407 struct thread_data *td;
1408 struct sk_out *sk_out;
1409};
1410
1411/*
1412 * Entry point for the thread based jobs. The process based jobs end up
1413 * here as well, after a little setup.
1414 */
1415static void *thread_main(void *data)
1416{
1417 struct fork_data *fd = data;
1418 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1419 struct thread_data *td = fd->td;
1420 struct thread_options *o = &td->o;
1421 struct sk_out *sk_out = fd->sk_out;
1422 pthread_condattr_t attr;
1423 int clear_state;
1424 int ret;
1425
1426 sk_out_assign(sk_out);
1427 free(fd);
1428
1429 if (!o->use_thread) {
1430 setsid();
1431 td->pid = getpid();
1432 } else
1433 td->pid = gettid();
1434
1435 fio_local_clock_init(o->use_thread);
1436
1437 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1438
1439 if (is_backend)
1440 fio_server_send_start(td);
1441
1442 INIT_FLIST_HEAD(&td->io_log_list);
1443 INIT_FLIST_HEAD(&td->io_hist_list);
1444 INIT_FLIST_HEAD(&td->verify_list);
1445 INIT_FLIST_HEAD(&td->trim_list);
1446 INIT_FLIST_HEAD(&td->next_rand_list);
1447 pthread_mutex_init(&td->io_u_lock, NULL);
1448 td->io_hist_tree = RB_ROOT;
1449
1450 pthread_condattr_init(&attr);
1451 pthread_cond_init(&td->verify_cond, &attr);
1452 pthread_cond_init(&td->free_cond, &attr);
1453
1454 td_set_runstate(td, TD_INITIALIZED);
1455 dprint(FD_MUTEX, "up startup_mutex\n");
1456 fio_mutex_up(startup_mutex);
1457 dprint(FD_MUTEX, "wait on td->mutex\n");
1458 fio_mutex_down(td->mutex);
1459 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1460
1461 /*
1462 * A new gid requires privilege, so we need to do this before setting
1463 * the uid.
1464 */
1465 if (o->gid != -1U && setgid(o->gid)) {
1466 td_verror(td, errno, "setgid");
1467 goto err;
1468 }
1469 if (o->uid != -1U && setuid(o->uid)) {
1470 td_verror(td, errno, "setuid");
1471 goto err;
1472 }
1473
1474 /*
1475 * If we have a gettimeofday() thread, make sure we exclude that
1476 * thread from this job
1477 */
1478 if (o->gtod_cpu)
1479 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1480
1481 /*
1482 * Set affinity first, in case it has an impact on the memory
1483 * allocations.
1484 */
1485 if (fio_option_is_set(o, cpumask)) {
1486 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1487 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1488 if (!ret) {
1489 log_err("fio: no CPUs set\n");
1490 log_err("fio: Try increasing number of available CPUs\n");
1491 td_verror(td, EINVAL, "cpus_split");
1492 goto err;
1493 }
1494 }
1495 ret = fio_setaffinity(td->pid, o->cpumask);
1496 if (ret == -1) {
1497 td_verror(td, errno, "cpu_set_affinity");
1498 goto err;
1499 }
1500 }
1501
1502#ifdef CONFIG_LIBNUMA
1503 /* numa node setup */
1504 if (fio_option_is_set(o, numa_cpunodes) ||
1505 fio_option_is_set(o, numa_memnodes)) {
1506 struct bitmask *mask;
1507
1508 if (numa_available() < 0) {
1509 td_verror(td, errno, "Does not support NUMA API\n");
1510 goto err;
1511 }
1512
1513 if (fio_option_is_set(o, numa_cpunodes)) {
1514 mask = numa_parse_nodestring(o->numa_cpunodes);
1515 ret = numa_run_on_node_mask(mask);
1516 numa_free_nodemask(mask);
1517 if (ret == -1) {
1518 td_verror(td, errno, \
1519 "numa_run_on_node_mask failed\n");
1520 goto err;
1521 }
1522 }
1523
1524 if (fio_option_is_set(o, numa_memnodes)) {
1525 mask = NULL;
1526 if (o->numa_memnodes)
1527 mask = numa_parse_nodestring(o->numa_memnodes);
1528
1529 switch (o->numa_mem_mode) {
1530 case MPOL_INTERLEAVE:
1531 numa_set_interleave_mask(mask);
1532 break;
1533 case MPOL_BIND:
1534 numa_set_membind(mask);
1535 break;
1536 case MPOL_LOCAL:
1537 numa_set_localalloc();
1538 break;
1539 case MPOL_PREFERRED:
1540 numa_set_preferred(o->numa_mem_prefer_node);
1541 break;
1542 case MPOL_DEFAULT:
1543 default:
1544 break;
1545 }
1546
1547 if (mask)
1548 numa_free_nodemask(mask);
1549
1550 }
1551 }
1552#endif
1553
1554 if (fio_pin_memory(td))
1555 goto err;
1556
1557 /*
1558 * May alter parameters that init_io_u() will use, so we need to
1559 * do this first.
1560 */
1561 if (init_iolog(td))
1562 goto err;
1563
1564 if (init_io_u(td))
1565 goto err;
1566
1567 if (o->verify_async && verify_async_init(td))
1568 goto err;
1569
1570 if (fio_option_is_set(o, ioprio) ||
1571 fio_option_is_set(o, ioprio_class)) {
1572 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1573 if (ret == -1) {
1574 td_verror(td, errno, "ioprio_set");
1575 goto err;
1576 }
1577 }
1578
1579 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1580 goto err;
1581
1582 errno = 0;
1583 if (nice(o->nice) == -1 && errno != 0) {
1584 td_verror(td, errno, "nice");
1585 goto err;
1586 }
1587
1588 if (o->ioscheduler && switch_ioscheduler(td))
1589 goto err;
1590
1591 if (!o->create_serialize && setup_files(td))
1592 goto err;
1593
1594 if (td_io_init(td))
1595 goto err;
1596
1597 if (init_random_map(td))
1598 goto err;
1599
1600 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1601 goto err;
1602
1603 if (o->pre_read) {
1604 if (pre_read_files(td) < 0)
1605 goto err;
1606 }
1607
1608 if (iolog_compress_init(td, sk_out))
1609 goto err;
1610
1611 fio_verify_init(td);
1612
1613 if (rate_submit_init(td, sk_out))
1614 goto err;
1615
1616 fio_gettime(&td->epoch, NULL);
1617 fio_getrusage(&td->ru_start);
1618 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1619 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1620
1621 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1622 o->ratemin[DDIR_TRIM]) {
1623 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1624 sizeof(td->bw_sample_time));
1625 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1626 sizeof(td->bw_sample_time));
1627 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1628 sizeof(td->bw_sample_time));
1629 }
1630
1631 clear_state = 0;
1632 while (keep_running(td)) {
1633 uint64_t verify_bytes;
1634
1635 fio_gettime(&td->start, NULL);
1636 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1637
1638 if (clear_state)
1639 clear_io_state(td, 0);
1640
1641 prune_io_piece_log(td);
1642
1643 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1644 verify_bytes = do_dry_run(td);
1645 else {
1646 uint64_t bytes_done[DDIR_RWDIR_CNT];
1647
1648 do_io(td, bytes_done);
1649
1650 if (!ddir_rw_sum(bytes_done)) {
1651 fio_mark_td_terminate(td);
1652 verify_bytes = 0;
1653 } else {
1654 verify_bytes = bytes_done[DDIR_WRITE] +
1655 bytes_done[DDIR_TRIM];
1656 }
1657 }
1658
1659 clear_state = 1;
1660
1661 /*
1662 * Make sure we've successfully updated the rusage stats
1663 * before waiting on the stat mutex. Otherwise we could have
1664 * the stat thread holding stat mutex and waiting for
1665 * the rusage_sem, which would never get upped because
1666 * this thread is waiting for the stat mutex.
1667 */
1668 check_update_rusage(td);
1669
1670 fio_mutex_down(stat_mutex);
1671 if (td_read(td) && td->io_bytes[DDIR_READ])
1672 update_runtime(td, elapsed_us, DDIR_READ);
1673 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1674 update_runtime(td, elapsed_us, DDIR_WRITE);
1675 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1676 update_runtime(td, elapsed_us, DDIR_TRIM);
1677 fio_gettime(&td->start, NULL);
1678 fio_mutex_up(stat_mutex);
1679
1680 if (td->error || td->terminate)
1681 break;
1682
1683 if (!o->do_verify ||
1684 o->verify == VERIFY_NONE ||
1685 (td->io_ops->flags & FIO_UNIDIR))
1686 continue;
1687
1688 clear_io_state(td, 0);
1689
1690 fio_gettime(&td->start, NULL);
1691
1692 do_verify(td, verify_bytes);
1693
1694 /*
1695 * See comment further up for why this is done here.
1696 */
1697 check_update_rusage(td);
1698
1699 fio_mutex_down(stat_mutex);
1700 update_runtime(td, elapsed_us, DDIR_READ);
1701 fio_gettime(&td->start, NULL);
1702 fio_mutex_up(stat_mutex);
1703
1704 if (td->error || td->terminate)
1705 break;
1706 }
1707
1708 td_set_runstate(td, TD_FINISHING);
1709
1710 update_rusage_stat(td);
1711 td->ts.total_run_time = mtime_since_now(&td->epoch);
1712 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1713 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1714 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1715
1716 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1717 (td->o.verify != VERIFY_NONE && td_write(td)))
1718 verify_save_state(td->thread_number);
1719
1720 fio_unpin_memory(td);
1721
1722 td_writeout_logs(td, true);
1723
1724 iolog_compress_exit(td);
1725 rate_submit_exit(td);
1726
1727 if (o->exec_postrun)
1728 exec_string(o, o->exec_postrun, (const char *)"postrun");
1729
1730 if (exitall_on_terminate || (o->exitall_error && td->error))
1731 fio_terminate_threads(td->groupid);
1732
1733err:
1734 if (td->error)
1735 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1736 td->verror);
1737
1738 if (o->verify_async)
1739 verify_async_exit(td);
1740
1741 close_and_free_files(td);
1742 cleanup_io_u(td);
1743 close_ioengine(td);
1744 cgroup_shutdown(td, &cgroup_mnt);
1745 verify_free_state(td);
1746
1747 if (td->zone_state_index) {
1748 int i;
1749
1750 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1751 free(td->zone_state_index[i]);
1752 free(td->zone_state_index);
1753 td->zone_state_index = NULL;
1754 }
1755
1756 if (fio_option_is_set(o, cpumask)) {
1757 ret = fio_cpuset_exit(&o->cpumask);
1758 if (ret)
1759 td_verror(td, ret, "fio_cpuset_exit");
1760 }
1761
1762 /*
1763 * do this very late, it will log file closing as well
1764 */
1765 if (o->write_iolog_file)
1766 write_iolog_close(td);
1767
1768 fio_mutex_remove(td->mutex);
1769 td->mutex = NULL;
1770
1771 td_set_runstate(td, TD_EXITED);
1772
1773 /*
1774 * Do this last after setting our runstate to exited, so we
1775 * know that the stat thread is signaled.
1776 */
1777 check_update_rusage(td);
1778
1779 sk_out_drop();
1780 return (void *) (uintptr_t) td->error;
1781}
1782
1783
1784/*
1785 * We cannot pass the td data into a forked process, so attach the td and
1786 * pass it to the thread worker.
1787 */
1788static int fork_main(struct sk_out *sk_out, int shmid, int offset)
1789{
1790 struct fork_data *fd;
1791 void *data, *ret;
1792
1793#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1794 data = shmat(shmid, NULL, 0);
1795 if (data == (void *) -1) {
1796 int __err = errno;
1797
1798 perror("shmat");
1799 return __err;
1800 }
1801#else
1802 /*
1803 * HP-UX inherits shm mappings?
1804 */
1805 data = threads;
1806#endif
1807
1808 fd = calloc(1, sizeof(*fd));
1809 fd->td = data + offset * sizeof(struct thread_data);
1810 fd->sk_out = sk_out;
1811 ret = thread_main(fd);
1812 shmdt(data);
1813 return (int) (uintptr_t) ret;
1814}
1815
1816static void dump_td_info(struct thread_data *td)
1817{
1818 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1819 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1820 (unsigned long) time_since_now(&td->terminate_time));
1821}
1822
1823/*
1824 * Run over the job map and reap the threads that have exited, if any.
1825 */
1826static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1827 unsigned int *m_rate)
1828{
1829 struct thread_data *td;
1830 unsigned int cputhreads, realthreads, pending;
1831 int i, status, ret;
1832
1833 /*
1834 * reap exited threads (TD_EXITED -> TD_REAPED)
1835 */
1836 realthreads = pending = cputhreads = 0;
1837 for_each_td(td, i) {
1838 int flags = 0;
1839
1840 /*
1841 * ->io_ops is NULL for a thread that has closed its
1842 * io engine
1843 */
1844 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1845 cputhreads++;
1846 else
1847 realthreads++;
1848
1849 if (!td->pid) {
1850 pending++;
1851 continue;
1852 }
1853 if (td->runstate == TD_REAPED)
1854 continue;
1855 if (td->o.use_thread) {
1856 if (td->runstate == TD_EXITED) {
1857 td_set_runstate(td, TD_REAPED);
1858 goto reaped;
1859 }
1860 continue;
1861 }
1862
1863 flags = WNOHANG;
1864 if (td->runstate == TD_EXITED)
1865 flags = 0;
1866
1867 /*
1868 * check if someone quit or got killed in an unusual way
1869 */
1870 ret = waitpid(td->pid, &status, flags);
1871 if (ret < 0) {
1872 if (errno == ECHILD) {
1873 log_err("fio: pid=%d disappeared %d\n",
1874 (int) td->pid, td->runstate);
1875 td->sig = ECHILD;
1876 td_set_runstate(td, TD_REAPED);
1877 goto reaped;
1878 }
1879 perror("waitpid");
1880 } else if (ret == td->pid) {
1881 if (WIFSIGNALED(status)) {
1882 int sig = WTERMSIG(status);
1883
1884 if (sig != SIGTERM && sig != SIGUSR2)
1885 log_err("fio: pid=%d, got signal=%d\n",
1886 (int) td->pid, sig);
1887 td->sig = sig;
1888 td_set_runstate(td, TD_REAPED);
1889 goto reaped;
1890 }
1891 if (WIFEXITED(status)) {
1892 if (WEXITSTATUS(status) && !td->error)
1893 td->error = WEXITSTATUS(status);
1894
1895 td_set_runstate(td, TD_REAPED);
1896 goto reaped;
1897 }
1898 }
1899
1900 /*
1901 * If the job is stuck, do a forceful timeout of it and
1902 * move on.
1903 */
1904 if (td->terminate &&
1905 td->runstate < TD_FSYNCING &&
1906 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1907 dump_td_info(td);
1908 td_set_runstate(td, TD_REAPED);
1909 goto reaped;
1910 }
1911
1912 /*
1913 * thread is not dead, continue
1914 */
1915 pending++;
1916 continue;
1917reaped:
1918 (*nr_running)--;
1919 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1920 (*t_rate) -= ddir_rw_sum(td->o.rate);
1921 if (!td->pid)
1922 pending--;
1923
1924 if (td->error)
1925 exit_value++;
1926
1927 done_secs += mtime_since_now(&td->epoch) / 1000;
1928 profile_td_exit(td);
1929 }
1930
1931 if (*nr_running == cputhreads && !pending && realthreads)
1932 fio_terminate_threads(TERMINATE_ALL);
1933}
1934
1935static bool __check_trigger_file(void)
1936{
1937 struct stat sb;
1938
1939 if (!trigger_file)
1940 return false;
1941
1942 if (stat(trigger_file, &sb))
1943 return false;
1944
1945 if (unlink(trigger_file) < 0)
1946 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1947 strerror(errno));
1948
1949 return true;
1950}
1951
1952static bool trigger_timedout(void)
1953{
1954 if (trigger_timeout)
1955 return time_since_genesis() >= trigger_timeout;
1956
1957 return false;
1958}
1959
1960void exec_trigger(const char *cmd)
1961{
1962 int ret;
1963
1964 if (!cmd)
1965 return;
1966
1967 ret = system(cmd);
1968 if (ret == -1)
1969 log_err("fio: failed executing %s trigger\n", cmd);
1970}
1971
1972void check_trigger_file(void)
1973{
1974 if (__check_trigger_file() || trigger_timedout()) {
1975 if (nr_clients)
1976 fio_clients_send_trigger(trigger_remote_cmd);
1977 else {
1978 verify_save_state(IO_LIST_ALL);
1979 fio_terminate_threads(TERMINATE_ALL);
1980 exec_trigger(trigger_cmd);
1981 }
1982 }
1983}
1984
1985static int fio_verify_load_state(struct thread_data *td)
1986{
1987 int ret;
1988
1989 if (!td->o.verify_state)
1990 return 0;
1991
1992 if (is_backend) {
1993 void *data;
1994
1995 ret = fio_server_get_verify_state(td->o.name,
1996 td->thread_number - 1, &data);
1997 if (!ret)
1998 verify_assign_state(td, data);
1999 } else
2000 ret = verify_load_state(td, "local");
2001
2002 return ret;
2003}
2004
2005static void do_usleep(unsigned int usecs)
2006{
2007 check_for_running_stats();
2008 check_trigger_file();
2009 usleep(usecs);
2010}
2011
2012static bool check_mount_writes(struct thread_data *td)
2013{
2014 struct fio_file *f;
2015 unsigned int i;
2016
2017 if (!td_write(td) || td->o.allow_mounted_write)
2018 return false;
2019
2020 for_each_file(td, f, i) {
2021 if (f->filetype != FIO_TYPE_BD)
2022 continue;
2023 if (device_is_mounted(f->file_name))
2024 goto mounted;
2025 }
2026
2027 return false;
2028mounted:
2029 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2030 return true;
2031}
2032
2033static bool waitee_running(struct thread_data *me)
2034{
2035 const char *waitee = me->o.wait_for;
2036 const char *self = me->o.name;
2037 struct thread_data *td;
2038 int i;
2039
2040 if (!waitee)
2041 return false;
2042
2043 for_each_td(td, i) {
2044 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2045 continue;
2046
2047 if (td->runstate < TD_EXITED) {
2048 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2049 self, td->o.name,
2050 runstate_to_name(td->runstate));
2051 return true;
2052 }
2053 }
2054
2055 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2056 return false;
2057}
2058
2059/*
2060 * Main function for kicking off and reaping jobs, as needed.
2061 */
2062static void run_threads(struct sk_out *sk_out)
2063{
2064 struct thread_data *td;
2065 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2066 uint64_t spent;
2067
2068 if (fio_gtod_offload && fio_start_gtod_thread())
2069 return;
2070
2071 fio_idle_prof_init();
2072
2073 set_sig_handlers();
2074
2075 nr_thread = nr_process = 0;
2076 for_each_td(td, i) {
2077 if (check_mount_writes(td))
2078 return;
2079 if (td->o.use_thread)
2080 nr_thread++;
2081 else
2082 nr_process++;
2083 }
2084
2085 if (output_format & FIO_OUTPUT_NORMAL) {
2086 log_info("Starting ");
2087 if (nr_thread)
2088 log_info("%d thread%s", nr_thread,
2089 nr_thread > 1 ? "s" : "");
2090 if (nr_process) {
2091 if (nr_thread)
2092 log_info(" and ");
2093 log_info("%d process%s", nr_process,
2094 nr_process > 1 ? "es" : "");
2095 }
2096 log_info("\n");
2097 log_info_flush();
2098 }
2099
2100 todo = thread_number;
2101 nr_running = 0;
2102 nr_started = 0;
2103 m_rate = t_rate = 0;
2104
2105 for_each_td(td, i) {
2106 print_status_init(td->thread_number - 1);
2107
2108 if (!td->o.create_serialize)
2109 continue;
2110
2111 if (fio_verify_load_state(td))
2112 goto reap;
2113
2114 /*
2115 * do file setup here so it happens sequentially,
2116 * we don't want X number of threads getting their
2117 * client data interspersed on disk
2118 */
2119 if (setup_files(td)) {
2120reap:
2121 exit_value++;
2122 if (td->error)
2123 log_err("fio: pid=%d, err=%d/%s\n",
2124 (int) td->pid, td->error, td->verror);
2125 td_set_runstate(td, TD_REAPED);
2126 todo--;
2127 } else {
2128 struct fio_file *f;
2129 unsigned int j;
2130
2131 /*
2132 * for sharing to work, each job must always open
2133 * its own files. so close them, if we opened them
2134 * for creation
2135 */
2136 for_each_file(td, f, j) {
2137 if (fio_file_open(f))
2138 td_io_close_file(td, f);
2139 }
2140 }
2141 }
2142
2143 /* start idle threads before io threads start to run */
2144 fio_idle_prof_start();
2145
2146 set_genesis_time();
2147
2148 while (todo) {
2149 struct thread_data *map[REAL_MAX_JOBS];
2150 struct timeval this_start;
2151 int this_jobs = 0, left;
2152
2153 /*
2154 * create threads (TD_NOT_CREATED -> TD_CREATED)
2155 */
2156 for_each_td(td, i) {
2157 if (td->runstate != TD_NOT_CREATED)
2158 continue;
2159
2160 /*
2161 * never got a chance to start, killed by other
2162 * thread for some reason
2163 */
2164 if (td->terminate) {
2165 todo--;
2166 continue;
2167 }
2168
2169 if (td->o.start_delay) {
2170 spent = utime_since_genesis();
2171
2172 if (td->o.start_delay > spent)
2173 continue;
2174 }
2175
2176 if (td->o.stonewall && (nr_started || nr_running)) {
2177 dprint(FD_PROCESS, "%s: stonewall wait\n",
2178 td->o.name);
2179 break;
2180 }
2181
2182 if (waitee_running(td)) {
2183 dprint(FD_PROCESS, "%s: waiting for %s\n",
2184 td->o.name, td->o.wait_for);
2185 continue;
2186 }
2187
2188 init_disk_util(td);
2189
2190 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2191 td->update_rusage = 0;
2192
2193 /*
2194 * Set state to created. Thread will transition
2195 * to TD_INITIALIZED when it's done setting up.
2196 */
2197 td_set_runstate(td, TD_CREATED);
2198 map[this_jobs++] = td;
2199 nr_started++;
2200
2201 if (td->o.use_thread) {
2202 struct fork_data *fd;
2203 int ret;
2204
2205 fd = calloc(1, sizeof(*fd));
2206 fd->td = td;
2207 fd->sk_out = sk_out;
2208
2209 dprint(FD_PROCESS, "will pthread_create\n");
2210 ret = pthread_create(&td->thread, NULL,
2211 thread_main, fd);
2212 if (ret) {
2213 log_err("pthread_create: %s\n",
2214 strerror(ret));
2215 free(fd);
2216 nr_started--;
2217 break;
2218 }
2219 ret = pthread_detach(td->thread);
2220 if (ret)
2221 log_err("pthread_detach: %s",
2222 strerror(ret));
2223 } else {
2224 pid_t pid;
2225 dprint(FD_PROCESS, "will fork\n");
2226 pid = fork();
2227 if (!pid) {
2228 int ret = fork_main(sk_out, shm_id, i);
2229
2230 _exit(ret);
2231 } else if (i == fio_debug_jobno)
2232 *fio_debug_jobp = pid;
2233 }
2234 dprint(FD_MUTEX, "wait on startup_mutex\n");
2235 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2236 log_err("fio: job startup hung? exiting.\n");
2237 fio_terminate_threads(TERMINATE_ALL);
2238 fio_abort = 1;
2239 nr_started--;
2240 break;
2241 }
2242 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2243 }
2244
2245 /*
2246 * Wait for the started threads to transition to
2247 * TD_INITIALIZED.
2248 */
2249 fio_gettime(&this_start, NULL);
2250 left = this_jobs;
2251 while (left && !fio_abort) {
2252 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2253 break;
2254
2255 do_usleep(100000);
2256
2257 for (i = 0; i < this_jobs; i++) {
2258 td = map[i];
2259 if (!td)
2260 continue;
2261 if (td->runstate == TD_INITIALIZED) {
2262 map[i] = NULL;
2263 left--;
2264 } else if (td->runstate >= TD_EXITED) {
2265 map[i] = NULL;
2266 left--;
2267 todo--;
2268 nr_running++; /* work-around... */
2269 }
2270 }
2271 }
2272
2273 if (left) {
2274 log_err("fio: %d job%s failed to start\n", left,
2275 left > 1 ? "s" : "");
2276 for (i = 0; i < this_jobs; i++) {
2277 td = map[i];
2278 if (!td)
2279 continue;
2280 kill(td->pid, SIGTERM);
2281 }
2282 break;
2283 }
2284
2285 /*
2286 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2287 */
2288 for_each_td(td, i) {
2289 if (td->runstate != TD_INITIALIZED)
2290 continue;
2291
2292 if (in_ramp_time(td))
2293 td_set_runstate(td, TD_RAMP);
2294 else
2295 td_set_runstate(td, TD_RUNNING);
2296 nr_running++;
2297 nr_started--;
2298 m_rate += ddir_rw_sum(td->o.ratemin);
2299 t_rate += ddir_rw_sum(td->o.rate);
2300 todo--;
2301 fio_mutex_up(td->mutex);
2302 }
2303
2304 reap_threads(&nr_running, &t_rate, &m_rate);
2305
2306 if (todo)
2307 do_usleep(100000);
2308 }
2309
2310 while (nr_running) {
2311 reap_threads(&nr_running, &t_rate, &m_rate);
2312 do_usleep(10000);
2313 }
2314
2315 fio_idle_prof_stop();
2316
2317 update_io_ticks();
2318}
2319
2320static void free_disk_util(void)
2321{
2322 disk_util_prune_entries();
2323 helper_thread_destroy();
2324}
2325
2326int fio_backend(struct sk_out *sk_out)
2327{
2328 struct thread_data *td;
2329 int i;
2330
2331 if (exec_profile) {
2332 if (load_profile(exec_profile))
2333 return 1;
2334 free(exec_profile);
2335 exec_profile = NULL;
2336 }
2337 if (!thread_number)
2338 return 0;
2339
2340 if (write_bw_log) {
2341 struct log_params p = {
2342 .log_type = IO_LOG_TYPE_BW,
2343 };
2344
2345 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2346 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2347 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2348 }
2349
2350 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2351 if (startup_mutex == NULL)
2352 return 1;
2353
2354 set_genesis_time();
2355 stat_init();
2356 helper_thread_create(startup_mutex, sk_out);
2357
2358 cgroup_list = smalloc(sizeof(*cgroup_list));
2359 INIT_FLIST_HEAD(cgroup_list);
2360
2361 run_threads(sk_out);
2362
2363 helper_thread_exit();
2364
2365 if (!fio_abort) {
2366 __show_run_stats();
2367 if (write_bw_log) {
2368 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2369 struct io_log *log = agg_io_log[i];
2370
2371 flush_log(log, 0);
2372 free_log(log);
2373 }
2374 }
2375 }
2376
2377 for_each_td(td, i) {
2378 fio_options_free(td);
2379 if (td->rusage_sem) {
2380 fio_mutex_remove(td->rusage_sem);
2381 td->rusage_sem = NULL;
2382 }
2383 }
2384
2385 free_disk_util();
2386 cgroup_kill(cgroup_list);
2387 sfree(cgroup_list);
2388 sfree(cgroup_mnt);
2389
2390 fio_mutex_remove(startup_mutex);
2391 stat_exit();
2392 return exit_value;
2393}