fix dynamic engine loading for libaio engine etc
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
70pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
71#else
72pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
73#endif
74
75#define JOB_START_TIMEOUT (5 * 1000)
76
77static void sig_int(int sig)
78{
79 if (threads) {
80 if (is_backend)
81 fio_server_got_signal(sig);
82 else {
83 log_info("\nfio: terminating on signal %d\n", sig);
84 log_info_flush();
85 exit_value = 128;
86 }
87
88 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
89 }
90}
91
92void sig_show_status(int sig)
93{
94 show_running_run_stats();
95}
96
97static void set_sig_handlers(void)
98{
99 struct sigaction act;
100
101 memset(&act, 0, sizeof(act));
102 act.sa_handler = sig_int;
103 act.sa_flags = SA_RESTART;
104 sigaction(SIGINT, &act, NULL);
105
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGTERM, &act, NULL);
110
111/* Windows uses SIGBREAK as a quit signal from other applications */
112#ifdef WIN32
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGBREAK, &act, NULL);
117#endif
118
119 memset(&act, 0, sizeof(act));
120 act.sa_handler = sig_show_status;
121 act.sa_flags = SA_RESTART;
122 sigaction(SIGUSR1, &act, NULL);
123
124 if (is_backend) {
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGPIPE, &act, NULL);
129 }
130}
131
132/*
133 * Check if we are above the minimum rate given.
134 */
135static bool __check_min_rate(struct thread_data *td, struct timespec *now,
136 enum fio_ddir ddir)
137{
138 unsigned long long bytes = 0;
139 unsigned long iops = 0;
140 unsigned long spent;
141 unsigned long long rate;
142 unsigned long long ratemin = 0;
143 unsigned int rate_iops = 0;
144 unsigned int rate_iops_min = 0;
145
146 assert(ddir_rw(ddir));
147
148 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
149 return false;
150
151 /*
152 * allow a 2 second settle period in the beginning
153 */
154 if (mtime_since(&td->start, now) < 2000)
155 return false;
156
157 iops += td->this_io_blocks[ddir];
158 bytes += td->this_io_bytes[ddir];
159 ratemin += td->o.ratemin[ddir];
160 rate_iops += td->o.rate_iops[ddir];
161 rate_iops_min += td->o.rate_iops_min[ddir];
162
163 /*
164 * if rate blocks is set, sample is running
165 */
166 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
167 spent = mtime_since(&td->lastrate[ddir], now);
168 if (spent < td->o.ratecycle)
169 return false;
170
171 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
172 /*
173 * check bandwidth specified rate
174 */
175 if (bytes < td->rate_bytes[ddir]) {
176 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
177 td->o.name, ratemin, bytes);
178 return true;
179 } else {
180 if (spent)
181 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
182 else
183 rate = 0;
184
185 if (rate < ratemin ||
186 bytes < td->rate_bytes[ddir]) {
187 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
188 td->o.name, ratemin, rate);
189 return true;
190 }
191 }
192 } else {
193 /*
194 * checks iops specified rate
195 */
196 if (iops < rate_iops) {
197 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
198 td->o.name, rate_iops, iops);
199 return true;
200 } else {
201 if (spent)
202 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
203 else
204 rate = 0;
205
206 if (rate < rate_iops_min ||
207 iops < td->rate_blocks[ddir]) {
208 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
209 td->o.name, rate_iops_min, rate);
210 return true;
211 }
212 }
213 }
214 }
215
216 td->rate_bytes[ddir] = bytes;
217 td->rate_blocks[ddir] = iops;
218 memcpy(&td->lastrate[ddir], now, sizeof(*now));
219 return false;
220}
221
222static bool check_min_rate(struct thread_data *td, struct timespec *now)
223{
224 bool ret = false;
225
226 for_each_rw_ddir(ddir) {
227 if (td->bytes_done[ddir])
228 ret |= __check_min_rate(td, now, ddir);
229 }
230
231 return ret;
232}
233
234/*
235 * When job exits, we can cancel the in-flight IO if we are using async
236 * io. Attempt to do so.
237 */
238static void cleanup_pending_aio(struct thread_data *td)
239{
240 int r;
241
242 /*
243 * get immediately available events, if any
244 */
245 r = io_u_queued_complete(td, 0);
246
247 /*
248 * now cancel remaining active events
249 */
250 if (td->io_ops->cancel) {
251 struct io_u *io_u;
252 int i;
253
254 io_u_qiter(&td->io_u_all, io_u, i) {
255 if (io_u->flags & IO_U_F_FLIGHT) {
256 r = td->io_ops->cancel(td, io_u);
257 if (!r)
258 put_io_u(td, io_u);
259 }
260 }
261 }
262
263 if (td->cur_depth)
264 r = io_u_queued_complete(td, td->cur_depth);
265}
266
267/*
268 * Helper to handle the final sync of a file. Works just like the normal
269 * io path, just does everything sync.
270 */
271static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
272{
273 struct io_u *io_u = __get_io_u(td);
274 enum fio_q_status ret;
275
276 if (!io_u)
277 return true;
278
279 io_u->ddir = DDIR_SYNC;
280 io_u->file = f;
281 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
282
283 if (td_io_prep(td, io_u)) {
284 put_io_u(td, io_u);
285 return true;
286 }
287
288requeue:
289 ret = td_io_queue(td, io_u);
290 switch (ret) {
291 case FIO_Q_QUEUED:
292 td_io_commit(td);
293 if (io_u_queued_complete(td, 1) < 0)
294 return true;
295 break;
296 case FIO_Q_COMPLETED:
297 if (io_u->error) {
298 td_verror(td, io_u->error, "td_io_queue");
299 return true;
300 }
301
302 if (io_u_sync_complete(td, io_u) < 0)
303 return true;
304 break;
305 case FIO_Q_BUSY:
306 td_io_commit(td);
307 goto requeue;
308 }
309
310 return false;
311}
312
313static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
314{
315 int ret, ret2;
316
317 if (fio_file_open(f))
318 return fio_io_sync(td, f);
319
320 if (td_io_open_file(td, f))
321 return 1;
322
323 ret = fio_io_sync(td, f);
324 ret2 = 0;
325 if (fio_file_open(f))
326 ret2 = td_io_close_file(td, f);
327 return (ret || ret2);
328}
329
330static inline void __update_ts_cache(struct thread_data *td)
331{
332 fio_gettime(&td->ts_cache, NULL);
333}
334
335static inline void update_ts_cache(struct thread_data *td)
336{
337 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
338 __update_ts_cache(td);
339}
340
341static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
342{
343 if (in_ramp_time(td))
344 return false;
345 if (!td->o.timeout)
346 return false;
347 if (utime_since(&td->epoch, t) >= td->o.timeout)
348 return true;
349
350 return false;
351}
352
353/*
354 * We need to update the runtime consistently in ms, but keep a running
355 * tally of the current elapsed time in microseconds for sub millisecond
356 * updates.
357 */
358static inline void update_runtime(struct thread_data *td,
359 unsigned long long *elapsed_us,
360 const enum fio_ddir ddir)
361{
362 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
363 return;
364
365 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
366 elapsed_us[ddir] += utime_since_now(&td->start);
367 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
368}
369
370static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
371 int *retptr)
372{
373 int ret = *retptr;
374
375 if (ret < 0 || td->error) {
376 int err = td->error;
377 enum error_type_bit eb;
378
379 if (ret < 0)
380 err = -ret;
381
382 eb = td_error_type(ddir, err);
383 if (!(td->o.continue_on_error & (1 << eb)))
384 return true;
385
386 if (td_non_fatal_error(td, eb, err)) {
387 /*
388 * Continue with the I/Os in case of
389 * a non fatal error.
390 */
391 update_error_count(td, err);
392 td_clear_error(td);
393 *retptr = 0;
394 return false;
395 } else if (td->o.fill_device && err == ENOSPC) {
396 /*
397 * We expect to hit this error if
398 * fill_device option is set.
399 */
400 td_clear_error(td);
401 fio_mark_td_terminate(td);
402 return true;
403 } else {
404 /*
405 * Stop the I/O in case of a fatal
406 * error.
407 */
408 update_error_count(td, err);
409 return true;
410 }
411 }
412
413 return false;
414}
415
416static void check_update_rusage(struct thread_data *td)
417{
418 if (td->update_rusage) {
419 td->update_rusage = 0;
420 update_rusage_stat(td);
421 fio_sem_up(td->rusage_sem);
422 }
423}
424
425static int wait_for_completions(struct thread_data *td, struct timespec *time)
426{
427 const int full = queue_full(td);
428 int min_evts = 0;
429 int ret;
430
431 if (td->flags & TD_F_REGROW_LOGS)
432 return io_u_quiesce(td);
433
434 /*
435 * if the queue is full, we MUST reap at least 1 event
436 */
437 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
438 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
439 min_evts = 1;
440
441 if (time && __should_check_rate(td))
442 fio_gettime(time, NULL);
443
444 do {
445 ret = io_u_queued_complete(td, min_evts);
446 if (ret < 0)
447 break;
448 } while (full && (td->cur_depth > td->o.iodepth_low));
449
450 return ret;
451}
452
453int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
454 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
455 struct timespec *comp_time)
456{
457 switch (*ret) {
458 case FIO_Q_COMPLETED:
459 if (io_u->error) {
460 *ret = -io_u->error;
461 clear_io_u(td, io_u);
462 } else if (io_u->resid) {
463 long long bytes = io_u->xfer_buflen - io_u->resid;
464 struct fio_file *f = io_u->file;
465
466 if (bytes_issued)
467 *bytes_issued += bytes;
468
469 if (!from_verify)
470 trim_io_piece(io_u);
471
472 /*
473 * zero read, fail
474 */
475 if (!bytes) {
476 if (!from_verify)
477 unlog_io_piece(td, io_u);
478 td_verror(td, EIO, "full resid");
479 put_io_u(td, io_u);
480 break;
481 }
482
483 io_u->xfer_buflen = io_u->resid;
484 io_u->xfer_buf += bytes;
485 io_u->offset += bytes;
486
487 if (ddir_rw(io_u->ddir))
488 td->ts.short_io_u[io_u->ddir]++;
489
490 if (io_u->offset == f->real_file_size)
491 goto sync_done;
492
493 requeue_io_u(td, &io_u);
494 } else {
495sync_done:
496 if (comp_time && __should_check_rate(td))
497 fio_gettime(comp_time, NULL);
498
499 *ret = io_u_sync_complete(td, io_u);
500 if (*ret < 0)
501 break;
502 }
503
504 if (td->flags & TD_F_REGROW_LOGS)
505 regrow_logs(td);
506
507 /*
508 * when doing I/O (not when verifying),
509 * check for any errors that are to be ignored
510 */
511 if (!from_verify)
512 break;
513
514 return 0;
515 case FIO_Q_QUEUED:
516 /*
517 * if the engine doesn't have a commit hook,
518 * the io_u is really queued. if it does have such
519 * a hook, it has to call io_u_queued() itself.
520 */
521 if (td->io_ops->commit == NULL)
522 io_u_queued(td, io_u);
523 if (bytes_issued)
524 *bytes_issued += io_u->xfer_buflen;
525 break;
526 case FIO_Q_BUSY:
527 if (!from_verify)
528 unlog_io_piece(td, io_u);
529 requeue_io_u(td, &io_u);
530 td_io_commit(td);
531 break;
532 default:
533 assert(*ret < 0);
534 td_verror(td, -(*ret), "td_io_queue");
535 break;
536 }
537
538 if (break_on_this_error(td, ddir, ret))
539 return 1;
540
541 return 0;
542}
543
544static inline bool io_in_polling(struct thread_data *td)
545{
546 return !td->o.iodepth_batch_complete_min &&
547 !td->o.iodepth_batch_complete_max;
548}
549/*
550 * Unlinks files from thread data fio_file structure
551 */
552static int unlink_all_files(struct thread_data *td)
553{
554 struct fio_file *f;
555 unsigned int i;
556 int ret = 0;
557
558 for_each_file(td, f, i) {
559 if (f->filetype != FIO_TYPE_FILE)
560 continue;
561 ret = td_io_unlink_file(td, f);
562 if (ret)
563 break;
564 }
565
566 if (ret)
567 td_verror(td, ret, "unlink_all_files");
568
569 return ret;
570}
571
572/*
573 * Check if io_u will overlap an in-flight IO in the queue
574 */
575bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
576{
577 bool overlap;
578 struct io_u *check_io_u;
579 unsigned long long x1, x2, y1, y2;
580 int i;
581
582 x1 = io_u->offset;
583 x2 = io_u->offset + io_u->buflen;
584 overlap = false;
585 io_u_qiter(q, check_io_u, i) {
586 if (check_io_u->flags & IO_U_F_FLIGHT) {
587 y1 = check_io_u->offset;
588 y2 = check_io_u->offset + check_io_u->buflen;
589
590 if (x1 < y2 && y1 < x2) {
591 overlap = true;
592 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
593 x1, io_u->buflen,
594 y1, check_io_u->buflen);
595 break;
596 }
597 }
598 }
599
600 return overlap;
601}
602
603static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
604{
605 /*
606 * Check for overlap if the user asked us to, and we have
607 * at least one IO in flight besides this one.
608 */
609 if (td->o.serialize_overlap && td->cur_depth > 1 &&
610 in_flight_overlap(&td->io_u_all, io_u))
611 return FIO_Q_BUSY;
612
613 return td_io_queue(td, io_u);
614}
615
616/*
617 * The main verify engine. Runs over the writes we previously submitted,
618 * reads the blocks back in, and checks the crc/md5 of the data.
619 */
620static void do_verify(struct thread_data *td, uint64_t verify_bytes)
621{
622 struct fio_file *f;
623 struct io_u *io_u;
624 int ret, min_events;
625 unsigned int i;
626
627 dprint(FD_VERIFY, "starting loop\n");
628
629 /*
630 * sync io first and invalidate cache, to make sure we really
631 * read from disk.
632 */
633 for_each_file(td, f, i) {
634 if (!fio_file_open(f))
635 continue;
636 if (fio_io_sync(td, f))
637 break;
638 if (file_invalidate_cache(td, f))
639 break;
640 }
641
642 check_update_rusage(td);
643
644 if (td->error)
645 return;
646
647 /*
648 * verify_state needs to be reset before verification
649 * proceeds so that expected random seeds match actual
650 * random seeds in headers. The main loop will reset
651 * all random number generators if randrepeat is set.
652 */
653 if (!td->o.rand_repeatable)
654 td_fill_verify_state_seed(td);
655
656 td_set_runstate(td, TD_VERIFYING);
657
658 io_u = NULL;
659 while (!td->terminate) {
660 enum fio_ddir ddir;
661 int full;
662
663 update_ts_cache(td);
664 check_update_rusage(td);
665
666 if (runtime_exceeded(td, &td->ts_cache)) {
667 __update_ts_cache(td);
668 if (runtime_exceeded(td, &td->ts_cache)) {
669 fio_mark_td_terminate(td);
670 break;
671 }
672 }
673
674 if (flow_threshold_exceeded(td))
675 continue;
676
677 if (!td->o.experimental_verify) {
678 io_u = __get_io_u(td);
679 if (!io_u)
680 break;
681
682 if (get_next_verify(td, io_u)) {
683 put_io_u(td, io_u);
684 break;
685 }
686
687 if (td_io_prep(td, io_u)) {
688 put_io_u(td, io_u);
689 break;
690 }
691 } else {
692 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
693 break;
694
695 while ((io_u = get_io_u(td)) != NULL) {
696 if (IS_ERR_OR_NULL(io_u)) {
697 io_u = NULL;
698 ret = FIO_Q_BUSY;
699 goto reap;
700 }
701
702 /*
703 * We are only interested in the places where
704 * we wrote or trimmed IOs. Turn those into
705 * reads for verification purposes.
706 */
707 if (io_u->ddir == DDIR_READ) {
708 /*
709 * Pretend we issued it for rwmix
710 * accounting
711 */
712 td->io_issues[DDIR_READ]++;
713 put_io_u(td, io_u);
714 continue;
715 } else if (io_u->ddir == DDIR_TRIM) {
716 io_u->ddir = DDIR_READ;
717 io_u_set(td, io_u, IO_U_F_TRIMMED);
718 break;
719 } else if (io_u->ddir == DDIR_WRITE) {
720 io_u->ddir = DDIR_READ;
721 populate_verify_io_u(td, io_u);
722 break;
723 } else {
724 put_io_u(td, io_u);
725 continue;
726 }
727 }
728
729 if (!io_u)
730 break;
731 }
732
733 if (verify_state_should_stop(td, io_u)) {
734 put_io_u(td, io_u);
735 break;
736 }
737
738 if (td->o.verify_async)
739 io_u->end_io = verify_io_u_async;
740 else
741 io_u->end_io = verify_io_u;
742
743 ddir = io_u->ddir;
744 if (!td->o.disable_slat)
745 fio_gettime(&io_u->start_time, NULL);
746
747 ret = io_u_submit(td, io_u);
748
749 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
750 break;
751
752 /*
753 * if we can queue more, do so. but check if there are
754 * completed io_u's first. Note that we can get BUSY even
755 * without IO queued, if the system is resource starved.
756 */
757reap:
758 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
759 if (full || io_in_polling(td))
760 ret = wait_for_completions(td, NULL);
761
762 if (ret < 0)
763 break;
764 }
765
766 check_update_rusage(td);
767
768 if (!td->error) {
769 min_events = td->cur_depth;
770
771 if (min_events)
772 ret = io_u_queued_complete(td, min_events);
773 } else
774 cleanup_pending_aio(td);
775
776 td_set_runstate(td, TD_RUNNING);
777
778 dprint(FD_VERIFY, "exiting loop\n");
779}
780
781static bool exceeds_number_ios(struct thread_data *td)
782{
783 unsigned long long number_ios;
784
785 if (!td->o.number_ios)
786 return false;
787
788 number_ios = ddir_rw_sum(td->io_blocks);
789 number_ios += td->io_u_queued + td->io_u_in_flight;
790
791 return number_ios >= (td->o.number_ios * td->loops);
792}
793
794static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
795{
796 unsigned long long bytes, limit;
797
798 if (td_rw(td))
799 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
800 else if (td_write(td))
801 bytes = this_bytes[DDIR_WRITE];
802 else if (td_read(td))
803 bytes = this_bytes[DDIR_READ];
804 else
805 bytes = this_bytes[DDIR_TRIM];
806
807 if (td->o.io_size)
808 limit = td->o.io_size;
809 else
810 limit = td->o.size;
811
812 limit *= td->loops;
813 return bytes >= limit || exceeds_number_ios(td);
814}
815
816static bool io_issue_bytes_exceeded(struct thread_data *td)
817{
818 return io_bytes_exceeded(td, td->io_issue_bytes);
819}
820
821static bool io_complete_bytes_exceeded(struct thread_data *td)
822{
823 return io_bytes_exceeded(td, td->this_io_bytes);
824}
825
826/*
827 * used to calculate the next io time for rate control
828 *
829 */
830static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
831{
832 uint64_t bps = td->rate_bps[ddir];
833
834 assert(!(td->flags & TD_F_CHILD));
835
836 if (td->o.rate_process == RATE_PROCESS_POISSON) {
837 uint64_t val, iops;
838
839 iops = bps / td->o.bs[ddir];
840 val = (int64_t) (1000000 / iops) *
841 -logf(__rand_0_1(&td->poisson_state[ddir]));
842 if (val) {
843 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
844 (unsigned long long) 1000000 / val,
845 ddir);
846 }
847 td->last_usec[ddir] += val;
848 return td->last_usec[ddir];
849 } else if (bps) {
850 uint64_t bytes = td->rate_io_issue_bytes[ddir];
851 uint64_t secs = bytes / bps;
852 uint64_t remainder = bytes % bps;
853
854 return remainder * 1000000 / bps + secs * 1000000;
855 }
856
857 return 0;
858}
859
860static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
861{
862 unsigned long long b;
863 uint64_t total;
864 int left;
865
866 b = ddir_rw_sum(td->io_blocks);
867 if (b % td->o.thinktime_blocks)
868 return;
869
870 io_u_quiesce(td);
871
872 total = 0;
873 if (td->o.thinktime_spin)
874 total = usec_spin(td->o.thinktime_spin);
875
876 left = td->o.thinktime - total;
877 if (left)
878 total += usec_sleep(td, left);
879
880 /*
881 * If we're ignoring thinktime for the rate, add the number of bytes
882 * we would have done while sleeping, minus one block to ensure we
883 * start issuing immediately after the sleep.
884 */
885 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
886 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
887 uint64_t bs = td->o.min_bs[ddir];
888 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
889 uint64_t over;
890
891 if (usperop <= total)
892 over = bs;
893 else
894 over = (usperop - total) / usperop * -bs;
895
896 td->rate_io_issue_bytes[ddir] += (missed - over);
897 /* adjust for rate_process=poisson */
898 td->last_usec[ddir] += total;
899 }
900}
901
902/*
903 * Main IO worker function. It retrieves io_u's to process and queues
904 * and reaps them, checking for rate and errors along the way.
905 *
906 * Returns number of bytes written and trimmed.
907 */
908static void do_io(struct thread_data *td, uint64_t *bytes_done)
909{
910 unsigned int i;
911 int ret = 0;
912 uint64_t total_bytes, bytes_issued = 0;
913
914 for (i = 0; i < DDIR_RWDIR_CNT; i++)
915 bytes_done[i] = td->bytes_done[i];
916
917 if (in_ramp_time(td))
918 td_set_runstate(td, TD_RAMP);
919 else
920 td_set_runstate(td, TD_RUNNING);
921
922 lat_target_init(td);
923
924 total_bytes = td->o.size;
925 /*
926 * Allow random overwrite workloads to write up to io_size
927 * before starting verification phase as 'size' doesn't apply.
928 */
929 if (td_write(td) && td_random(td) && td->o.norandommap)
930 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
931 /*
932 * If verify_backlog is enabled, we'll run the verify in this
933 * handler as well. For that case, we may need up to twice the
934 * amount of bytes.
935 */
936 if (td->o.verify != VERIFY_NONE &&
937 (td_write(td) && td->o.verify_backlog))
938 total_bytes += td->o.size;
939
940 /* In trimwrite mode, each byte is trimmed and then written, so
941 * allow total_bytes to be twice as big */
942 if (td_trimwrite(td))
943 total_bytes += td->total_io_size;
944
945 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
946 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
947 td->o.time_based) {
948 struct timespec comp_time;
949 struct io_u *io_u;
950 int full;
951 enum fio_ddir ddir;
952
953 check_update_rusage(td);
954
955 if (td->terminate || td->done)
956 break;
957
958 update_ts_cache(td);
959
960 if (runtime_exceeded(td, &td->ts_cache)) {
961 __update_ts_cache(td);
962 if (runtime_exceeded(td, &td->ts_cache)) {
963 fio_mark_td_terminate(td);
964 break;
965 }
966 }
967
968 if (flow_threshold_exceeded(td))
969 continue;
970
971 /*
972 * Break if we exceeded the bytes. The exception is time
973 * based runs, but we still need to break out of the loop
974 * for those to run verification, if enabled.
975 * Jobs read from iolog do not use this stop condition.
976 */
977 if (bytes_issued >= total_bytes &&
978 !td->o.read_iolog_file &&
979 (!td->o.time_based ||
980 (td->o.time_based && td->o.verify != VERIFY_NONE)))
981 break;
982
983 io_u = get_io_u(td);
984 if (IS_ERR_OR_NULL(io_u)) {
985 int err = PTR_ERR(io_u);
986
987 io_u = NULL;
988 ddir = DDIR_INVAL;
989 if (err == -EBUSY) {
990 ret = FIO_Q_BUSY;
991 goto reap;
992 }
993 if (td->o.latency_target)
994 goto reap;
995 break;
996 }
997
998 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
999 populate_verify_io_u(td, io_u);
1000
1001 ddir = io_u->ddir;
1002
1003 /*
1004 * Add verification end_io handler if:
1005 * - Asked to verify (!td_rw(td))
1006 * - Or the io_u is from our verify list (mixed write/ver)
1007 */
1008 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1009 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1010
1011 if (verify_state_should_stop(td, io_u)) {
1012 put_io_u(td, io_u);
1013 break;
1014 }
1015
1016 if (td->o.verify_async)
1017 io_u->end_io = verify_io_u_async;
1018 else
1019 io_u->end_io = verify_io_u;
1020 td_set_runstate(td, TD_VERIFYING);
1021 } else if (in_ramp_time(td))
1022 td_set_runstate(td, TD_RAMP);
1023 else
1024 td_set_runstate(td, TD_RUNNING);
1025
1026 /*
1027 * Always log IO before it's issued, so we know the specific
1028 * order of it. The logged unit will track when the IO has
1029 * completed.
1030 */
1031 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1032 td->o.do_verify &&
1033 td->o.verify != VERIFY_NONE &&
1034 !td->o.experimental_verify)
1035 log_io_piece(td, io_u);
1036
1037 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1038 const unsigned long long blen = io_u->xfer_buflen;
1039 const enum fio_ddir __ddir = acct_ddir(io_u);
1040
1041 if (td->error)
1042 break;
1043
1044 workqueue_enqueue(&td->io_wq, &io_u->work);
1045 ret = FIO_Q_QUEUED;
1046
1047 if (ddir_rw(__ddir)) {
1048 td->io_issues[__ddir]++;
1049 td->io_issue_bytes[__ddir] += blen;
1050 td->rate_io_issue_bytes[__ddir] += blen;
1051 }
1052
1053 if (should_check_rate(td))
1054 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1055
1056 } else {
1057 ret = io_u_submit(td, io_u);
1058
1059 if (should_check_rate(td))
1060 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1061
1062 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1063 break;
1064
1065 /*
1066 * See if we need to complete some commands. Note that
1067 * we can get BUSY even without IO queued, if the
1068 * system is resource starved.
1069 */
1070reap:
1071 full = queue_full(td) ||
1072 (ret == FIO_Q_BUSY && td->cur_depth);
1073 if (full || io_in_polling(td))
1074 ret = wait_for_completions(td, &comp_time);
1075 }
1076 if (ret < 0)
1077 break;
1078 if (!ddir_rw_sum(td->bytes_done) &&
1079 !td_ioengine_flagged(td, FIO_NOIO))
1080 continue;
1081
1082 if (!in_ramp_time(td) && should_check_rate(td)) {
1083 if (check_min_rate(td, &comp_time)) {
1084 if (exitall_on_terminate || td->o.exitall_error)
1085 fio_terminate_threads(td->groupid, td->o.exit_what);
1086 td_verror(td, EIO, "check_min_rate");
1087 break;
1088 }
1089 }
1090 if (!in_ramp_time(td) && td->o.latency_target)
1091 lat_target_check(td);
1092
1093 if (ddir_rw(ddir) && td->o.thinktime)
1094 handle_thinktime(td, ddir);
1095 }
1096
1097 check_update_rusage(td);
1098
1099 if (td->trim_entries)
1100 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1101
1102 if (td->o.fill_device && td->error == ENOSPC) {
1103 td->error = 0;
1104 fio_mark_td_terminate(td);
1105 }
1106 if (!td->error) {
1107 struct fio_file *f;
1108
1109 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1110 workqueue_flush(&td->io_wq);
1111 i = 0;
1112 } else
1113 i = td->cur_depth;
1114
1115 if (i) {
1116 ret = io_u_queued_complete(td, i);
1117 if (td->o.fill_device && td->error == ENOSPC)
1118 td->error = 0;
1119 }
1120
1121 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1122 td_set_runstate(td, TD_FSYNCING);
1123
1124 for_each_file(td, f, i) {
1125 if (!fio_file_fsync(td, f))
1126 continue;
1127
1128 log_err("fio: end_fsync failed for file %s\n",
1129 f->file_name);
1130 }
1131 }
1132 } else
1133 cleanup_pending_aio(td);
1134
1135 /*
1136 * stop job if we failed doing any IO
1137 */
1138 if (!ddir_rw_sum(td->this_io_bytes))
1139 td->done = 1;
1140
1141 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1142 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1143}
1144
1145static void free_file_completion_logging(struct thread_data *td)
1146{
1147 struct fio_file *f;
1148 unsigned int i;
1149
1150 for_each_file(td, f, i) {
1151 if (!f->last_write_comp)
1152 break;
1153 sfree(f->last_write_comp);
1154 }
1155}
1156
1157static int init_file_completion_logging(struct thread_data *td,
1158 unsigned int depth)
1159{
1160 struct fio_file *f;
1161 unsigned int i;
1162
1163 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1164 return 0;
1165
1166 for_each_file(td, f, i) {
1167 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1168 if (!f->last_write_comp)
1169 goto cleanup;
1170 }
1171
1172 return 0;
1173
1174cleanup:
1175 free_file_completion_logging(td);
1176 log_err("fio: failed to alloc write comp data\n");
1177 return 1;
1178}
1179
1180static void cleanup_io_u(struct thread_data *td)
1181{
1182 struct io_u *io_u;
1183
1184 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1185
1186 if (td->io_ops->io_u_free)
1187 td->io_ops->io_u_free(td, io_u);
1188
1189 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1190 }
1191
1192 free_io_mem(td);
1193
1194 io_u_rexit(&td->io_u_requeues);
1195 io_u_qexit(&td->io_u_freelist, false);
1196 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1197
1198 free_file_completion_logging(td);
1199}
1200
1201static int init_io_u(struct thread_data *td)
1202{
1203 struct io_u *io_u;
1204 int cl_align, i, max_units;
1205 int err;
1206
1207 max_units = td->o.iodepth;
1208
1209 err = 0;
1210 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1211 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1212 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1213
1214 if (err) {
1215 log_err("fio: failed setting up IO queues\n");
1216 return 1;
1217 }
1218
1219 cl_align = os_cache_line_size();
1220
1221 for (i = 0; i < max_units; i++) {
1222 void *ptr;
1223
1224 if (td->terminate)
1225 return 1;
1226
1227 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1228 if (!ptr) {
1229 log_err("fio: unable to allocate aligned memory\n");
1230 return 1;
1231 }
1232
1233 io_u = ptr;
1234 memset(io_u, 0, sizeof(*io_u));
1235 INIT_FLIST_HEAD(&io_u->verify_list);
1236 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1237
1238 io_u->index = i;
1239 io_u->flags = IO_U_F_FREE;
1240 io_u_qpush(&td->io_u_freelist, io_u);
1241
1242 /*
1243 * io_u never leaves this stack, used for iteration of all
1244 * io_u buffers.
1245 */
1246 io_u_qpush(&td->io_u_all, io_u);
1247
1248 if (td->io_ops->io_u_init) {
1249 int ret = td->io_ops->io_u_init(td, io_u);
1250
1251 if (ret) {
1252 log_err("fio: failed to init engine data: %d\n", ret);
1253 return 1;
1254 }
1255 }
1256 }
1257
1258 init_io_u_buffers(td);
1259
1260 if (init_file_completion_logging(td, max_units))
1261 return 1;
1262
1263 return 0;
1264}
1265
1266int init_io_u_buffers(struct thread_data *td)
1267{
1268 struct io_u *io_u;
1269 unsigned long long max_bs, min_write;
1270 int i, max_units;
1271 int data_xfer = 1;
1272 char *p;
1273
1274 max_units = td->o.iodepth;
1275 max_bs = td_max_bs(td);
1276 min_write = td->o.min_bs[DDIR_WRITE];
1277 td->orig_buffer_size = (unsigned long long) max_bs
1278 * (unsigned long long) max_units;
1279
1280 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1281 data_xfer = 0;
1282
1283 /*
1284 * if we may later need to do address alignment, then add any
1285 * possible adjustment here so that we don't cause a buffer
1286 * overflow later. this adjustment may be too much if we get
1287 * lucky and the allocator gives us an aligned address.
1288 */
1289 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1290 td_ioengine_flagged(td, FIO_RAWIO))
1291 td->orig_buffer_size += page_mask + td->o.mem_align;
1292
1293 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1294 unsigned long long bs;
1295
1296 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1297 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1298 }
1299
1300 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1301 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1302 return 1;
1303 }
1304
1305 if (data_xfer && allocate_io_mem(td))
1306 return 1;
1307
1308 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1309 td_ioengine_flagged(td, FIO_RAWIO))
1310 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1311 else
1312 p = td->orig_buffer;
1313
1314 for (i = 0; i < max_units; i++) {
1315 io_u = td->io_u_all.io_us[i];
1316 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1317
1318 if (data_xfer) {
1319 io_u->buf = p;
1320 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1321
1322 if (td_write(td))
1323 io_u_fill_buffer(td, io_u, min_write, max_bs);
1324 if (td_write(td) && td->o.verify_pattern_bytes) {
1325 /*
1326 * Fill the buffer with the pattern if we are
1327 * going to be doing writes.
1328 */
1329 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1330 }
1331 }
1332 p += max_bs;
1333 }
1334
1335 return 0;
1336}
1337
1338/*
1339 * This function is Linux specific.
1340 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1341 */
1342static int switch_ioscheduler(struct thread_data *td)
1343{
1344#ifdef FIO_HAVE_IOSCHED_SWITCH
1345 char tmp[256], tmp2[128], *p;
1346 FILE *f;
1347 int ret;
1348
1349 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1350 return 0;
1351
1352 assert(td->files && td->files[0]);
1353 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1354
1355 f = fopen(tmp, "r+");
1356 if (!f) {
1357 if (errno == ENOENT) {
1358 log_err("fio: os or kernel doesn't support IO scheduler"
1359 " switching\n");
1360 return 0;
1361 }
1362 td_verror(td, errno, "fopen iosched");
1363 return 1;
1364 }
1365
1366 /*
1367 * Set io scheduler.
1368 */
1369 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1370 if (ferror(f) || ret != 1) {
1371 td_verror(td, errno, "fwrite");
1372 fclose(f);
1373 return 1;
1374 }
1375
1376 rewind(f);
1377
1378 /*
1379 * Read back and check that the selected scheduler is now the default.
1380 */
1381 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1382 if (ferror(f) || ret < 0) {
1383 td_verror(td, errno, "fread");
1384 fclose(f);
1385 return 1;
1386 }
1387 tmp[ret] = '\0';
1388 /*
1389 * either a list of io schedulers or "none\n" is expected. Strip the
1390 * trailing newline.
1391 */
1392 p = tmp;
1393 strsep(&p, "\n");
1394
1395 /*
1396 * Write to "none" entry doesn't fail, so check the result here.
1397 */
1398 if (!strcmp(tmp, "none")) {
1399 log_err("fio: io scheduler is not tunable\n");
1400 fclose(f);
1401 return 0;
1402 }
1403
1404 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1405 if (!strstr(tmp, tmp2)) {
1406 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1407 td_verror(td, EINVAL, "iosched_switch");
1408 fclose(f);
1409 return 1;
1410 }
1411
1412 fclose(f);
1413 return 0;
1414#else
1415 return 0;
1416#endif
1417}
1418
1419static bool keep_running(struct thread_data *td)
1420{
1421 unsigned long long limit;
1422
1423 if (td->done)
1424 return false;
1425 if (td->terminate)
1426 return false;
1427 if (td->o.time_based)
1428 return true;
1429 if (td->o.loops) {
1430 td->o.loops--;
1431 return true;
1432 }
1433 if (exceeds_number_ios(td))
1434 return false;
1435
1436 if (td->o.io_size)
1437 limit = td->o.io_size;
1438 else
1439 limit = td->o.size;
1440
1441 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1442 uint64_t diff;
1443
1444 /*
1445 * If the difference is less than the maximum IO size, we
1446 * are done.
1447 */
1448 diff = limit - ddir_rw_sum(td->io_bytes);
1449 if (diff < td_max_bs(td))
1450 return false;
1451
1452 if (fio_files_done(td) && !td->o.io_size)
1453 return false;
1454
1455 return true;
1456 }
1457
1458 return false;
1459}
1460
1461static int exec_string(struct thread_options *o, const char *string,
1462 const char *mode)
1463{
1464 int ret;
1465 char *str;
1466
1467 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1468 return -1;
1469
1470 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1471 o->name, mode);
1472 ret = system(str);
1473 if (ret == -1)
1474 log_err("fio: exec of cmd <%s> failed\n", str);
1475
1476 free(str);
1477 return ret;
1478}
1479
1480/*
1481 * Dry run to compute correct state of numberio for verification.
1482 */
1483static uint64_t do_dry_run(struct thread_data *td)
1484{
1485 td_set_runstate(td, TD_RUNNING);
1486
1487 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1488 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1489 struct io_u *io_u;
1490 int ret;
1491
1492 if (td->terminate || td->done)
1493 break;
1494
1495 io_u = get_io_u(td);
1496 if (IS_ERR_OR_NULL(io_u))
1497 break;
1498
1499 io_u_set(td, io_u, IO_U_F_FLIGHT);
1500 io_u->error = 0;
1501 io_u->resid = 0;
1502 if (ddir_rw(acct_ddir(io_u)))
1503 td->io_issues[acct_ddir(io_u)]++;
1504 if (ddir_rw(io_u->ddir)) {
1505 io_u_mark_depth(td, 1);
1506 td->ts.total_io_u[io_u->ddir]++;
1507 }
1508
1509 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1510 td->o.do_verify &&
1511 td->o.verify != VERIFY_NONE &&
1512 !td->o.experimental_verify)
1513 log_io_piece(td, io_u);
1514
1515 ret = io_u_sync_complete(td, io_u);
1516 (void) ret;
1517 }
1518
1519 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1520}
1521
1522struct fork_data {
1523 struct thread_data *td;
1524 struct sk_out *sk_out;
1525};
1526
1527/*
1528 * Entry point for the thread based jobs. The process based jobs end up
1529 * here as well, after a little setup.
1530 */
1531static void *thread_main(void *data)
1532{
1533 struct fork_data *fd = data;
1534 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1535 struct thread_data *td = fd->td;
1536 struct thread_options *o = &td->o;
1537 struct sk_out *sk_out = fd->sk_out;
1538 uint64_t bytes_done[DDIR_RWDIR_CNT];
1539 int deadlock_loop_cnt;
1540 bool clear_state;
1541 int res, ret;
1542
1543 sk_out_assign(sk_out);
1544 free(fd);
1545
1546 if (!o->use_thread) {
1547 setsid();
1548 td->pid = getpid();
1549 } else
1550 td->pid = gettid();
1551
1552 fio_local_clock_init();
1553
1554 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1555
1556 if (is_backend)
1557 fio_server_send_start(td);
1558
1559 INIT_FLIST_HEAD(&td->io_log_list);
1560 INIT_FLIST_HEAD(&td->io_hist_list);
1561 INIT_FLIST_HEAD(&td->verify_list);
1562 INIT_FLIST_HEAD(&td->trim_list);
1563 td->io_hist_tree = RB_ROOT;
1564
1565 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1566 if (ret) {
1567 td_verror(td, ret, "mutex_cond_init_pshared");
1568 goto err;
1569 }
1570 ret = cond_init_pshared(&td->verify_cond);
1571 if (ret) {
1572 td_verror(td, ret, "mutex_cond_pshared");
1573 goto err;
1574 }
1575
1576 td_set_runstate(td, TD_INITIALIZED);
1577 dprint(FD_MUTEX, "up startup_sem\n");
1578 fio_sem_up(startup_sem);
1579 dprint(FD_MUTEX, "wait on td->sem\n");
1580 fio_sem_down(td->sem);
1581 dprint(FD_MUTEX, "done waiting on td->sem\n");
1582
1583 /*
1584 * A new gid requires privilege, so we need to do this before setting
1585 * the uid.
1586 */
1587 if (o->gid != -1U && setgid(o->gid)) {
1588 td_verror(td, errno, "setgid");
1589 goto err;
1590 }
1591 if (o->uid != -1U && setuid(o->uid)) {
1592 td_verror(td, errno, "setuid");
1593 goto err;
1594 }
1595
1596 td_zone_gen_index(td);
1597
1598 /*
1599 * Do this early, we don't want the compress threads to be limited
1600 * to the same CPUs as the IO workers. So do this before we set
1601 * any potential CPU affinity
1602 */
1603 if (iolog_compress_init(td, sk_out))
1604 goto err;
1605
1606 /*
1607 * If we have a gettimeofday() thread, make sure we exclude that
1608 * thread from this job
1609 */
1610 if (o->gtod_cpu)
1611 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1612
1613 /*
1614 * Set affinity first, in case it has an impact on the memory
1615 * allocations.
1616 */
1617 if (fio_option_is_set(o, cpumask)) {
1618 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1619 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1620 if (!ret) {
1621 log_err("fio: no CPUs set\n");
1622 log_err("fio: Try increasing number of available CPUs\n");
1623 td_verror(td, EINVAL, "cpus_split");
1624 goto err;
1625 }
1626 }
1627 ret = fio_setaffinity(td->pid, o->cpumask);
1628 if (ret == -1) {
1629 td_verror(td, errno, "cpu_set_affinity");
1630 goto err;
1631 }
1632 }
1633
1634#ifdef CONFIG_LIBNUMA
1635 /* numa node setup */
1636 if (fio_option_is_set(o, numa_cpunodes) ||
1637 fio_option_is_set(o, numa_memnodes)) {
1638 struct bitmask *mask;
1639
1640 if (numa_available() < 0) {
1641 td_verror(td, errno, "Does not support NUMA API\n");
1642 goto err;
1643 }
1644
1645 if (fio_option_is_set(o, numa_cpunodes)) {
1646 mask = numa_parse_nodestring(o->numa_cpunodes);
1647 ret = numa_run_on_node_mask(mask);
1648 numa_free_nodemask(mask);
1649 if (ret == -1) {
1650 td_verror(td, errno, \
1651 "numa_run_on_node_mask failed\n");
1652 goto err;
1653 }
1654 }
1655
1656 if (fio_option_is_set(o, numa_memnodes)) {
1657 mask = NULL;
1658 if (o->numa_memnodes)
1659 mask = numa_parse_nodestring(o->numa_memnodes);
1660
1661 switch (o->numa_mem_mode) {
1662 case MPOL_INTERLEAVE:
1663 numa_set_interleave_mask(mask);
1664 break;
1665 case MPOL_BIND:
1666 numa_set_membind(mask);
1667 break;
1668 case MPOL_LOCAL:
1669 numa_set_localalloc();
1670 break;
1671 case MPOL_PREFERRED:
1672 numa_set_preferred(o->numa_mem_prefer_node);
1673 break;
1674 case MPOL_DEFAULT:
1675 default:
1676 break;
1677 }
1678
1679 if (mask)
1680 numa_free_nodemask(mask);
1681
1682 }
1683 }
1684#endif
1685
1686 if (fio_pin_memory(td))
1687 goto err;
1688
1689 /*
1690 * May alter parameters that init_io_u() will use, so we need to
1691 * do this first.
1692 */
1693 if (!init_iolog(td))
1694 goto err;
1695
1696 if (td_io_init(td))
1697 goto err;
1698
1699 if (init_io_u(td))
1700 goto err;
1701
1702 if (td->io_ops->post_init && td->io_ops->post_init(td))
1703 goto err;
1704
1705 if (o->verify_async && verify_async_init(td))
1706 goto err;
1707
1708 if (fio_option_is_set(o, ioprio) ||
1709 fio_option_is_set(o, ioprio_class)) {
1710 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1711 if (ret == -1) {
1712 td_verror(td, errno, "ioprio_set");
1713 goto err;
1714 }
1715 }
1716
1717 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1718 goto err;
1719
1720 errno = 0;
1721 if (nice(o->nice) == -1 && errno != 0) {
1722 td_verror(td, errno, "nice");
1723 goto err;
1724 }
1725
1726 if (o->ioscheduler && switch_ioscheduler(td))
1727 goto err;
1728
1729 if (!o->create_serialize && setup_files(td))
1730 goto err;
1731
1732 if (!init_random_map(td))
1733 goto err;
1734
1735 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1736 goto err;
1737
1738 if (o->pre_read && !pre_read_files(td))
1739 goto err;
1740
1741 fio_verify_init(td);
1742
1743 if (rate_submit_init(td, sk_out))
1744 goto err;
1745
1746 set_epoch_time(td, o->log_unix_epoch);
1747 fio_getrusage(&td->ru_start);
1748 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1749 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1750 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1751
1752 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1753 o->ratemin[DDIR_TRIM]) {
1754 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1755 sizeof(td->bw_sample_time));
1756 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1757 sizeof(td->bw_sample_time));
1758 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1759 sizeof(td->bw_sample_time));
1760 }
1761
1762 memset(bytes_done, 0, sizeof(bytes_done));
1763 clear_state = false;
1764
1765 while (keep_running(td)) {
1766 uint64_t verify_bytes;
1767
1768 fio_gettime(&td->start, NULL);
1769 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1770
1771 if (clear_state) {
1772 clear_io_state(td, 0);
1773
1774 if (o->unlink_each_loop && unlink_all_files(td))
1775 break;
1776 }
1777
1778 prune_io_piece_log(td);
1779
1780 if (td->o.verify_only && td_write(td))
1781 verify_bytes = do_dry_run(td);
1782 else {
1783 do_io(td, bytes_done);
1784
1785 if (!ddir_rw_sum(bytes_done)) {
1786 fio_mark_td_terminate(td);
1787 verify_bytes = 0;
1788 } else {
1789 verify_bytes = bytes_done[DDIR_WRITE] +
1790 bytes_done[DDIR_TRIM];
1791 }
1792 }
1793
1794 /*
1795 * If we took too long to shut down, the main thread could
1796 * already consider us reaped/exited. If that happens, break
1797 * out and clean up.
1798 */
1799 if (td->runstate >= TD_EXITED)
1800 break;
1801
1802 clear_state = true;
1803
1804 /*
1805 * Make sure we've successfully updated the rusage stats
1806 * before waiting on the stat mutex. Otherwise we could have
1807 * the stat thread holding stat mutex and waiting for
1808 * the rusage_sem, which would never get upped because
1809 * this thread is waiting for the stat mutex.
1810 */
1811 deadlock_loop_cnt = 0;
1812 do {
1813 check_update_rusage(td);
1814 if (!fio_sem_down_trylock(stat_sem))
1815 break;
1816 usleep(1000);
1817 if (deadlock_loop_cnt++ > 5000) {
1818 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1819 td->error = EDEADLK;
1820 goto err;
1821 }
1822 } while (1);
1823
1824 if (td_read(td) && td->io_bytes[DDIR_READ])
1825 update_runtime(td, elapsed_us, DDIR_READ);
1826 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1827 update_runtime(td, elapsed_us, DDIR_WRITE);
1828 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1829 update_runtime(td, elapsed_us, DDIR_TRIM);
1830 fio_gettime(&td->start, NULL);
1831 fio_sem_up(stat_sem);
1832
1833 if (td->error || td->terminate)
1834 break;
1835
1836 if (!o->do_verify ||
1837 o->verify == VERIFY_NONE ||
1838 td_ioengine_flagged(td, FIO_UNIDIR))
1839 continue;
1840
1841 clear_io_state(td, 0);
1842
1843 fio_gettime(&td->start, NULL);
1844
1845 do_verify(td, verify_bytes);
1846
1847 /*
1848 * See comment further up for why this is done here.
1849 */
1850 check_update_rusage(td);
1851
1852 fio_sem_down(stat_sem);
1853 update_runtime(td, elapsed_us, DDIR_READ);
1854 fio_gettime(&td->start, NULL);
1855 fio_sem_up(stat_sem);
1856
1857 if (td->error || td->terminate)
1858 break;
1859 }
1860
1861 /*
1862 * Acquire this lock if we were doing overlap checking in
1863 * offload mode so that we don't clean up this job while
1864 * another thread is checking its io_u's for overlap
1865 */
1866 if (td_offload_overlap(td)) {
1867 int res = pthread_mutex_lock(&overlap_check);
1868 assert(res == 0);
1869 }
1870 td_set_runstate(td, TD_FINISHING);
1871 if (td_offload_overlap(td)) {
1872 res = pthread_mutex_unlock(&overlap_check);
1873 assert(res == 0);
1874 }
1875
1876 update_rusage_stat(td);
1877 td->ts.total_run_time = mtime_since_now(&td->epoch);
1878 for_each_rw_ddir(ddir) {
1879 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1880 }
1881
1882 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1883 (td->o.verify != VERIFY_NONE && td_write(td)))
1884 verify_save_state(td->thread_number);
1885
1886 fio_unpin_memory(td);
1887
1888 td_writeout_logs(td, true);
1889
1890 iolog_compress_exit(td);
1891 rate_submit_exit(td);
1892
1893 if (o->exec_postrun)
1894 exec_string(o, o->exec_postrun, "postrun");
1895
1896 if (exitall_on_terminate || (o->exitall_error && td->error))
1897 fio_terminate_threads(td->groupid, td->o.exit_what);
1898
1899err:
1900 if (td->error)
1901 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1902 td->verror);
1903
1904 if (o->verify_async)
1905 verify_async_exit(td);
1906
1907 close_and_free_files(td);
1908 cleanup_io_u(td);
1909 close_ioengine(td);
1910 cgroup_shutdown(td, cgroup_mnt);
1911 verify_free_state(td);
1912 td_zone_free_index(td);
1913
1914 if (fio_option_is_set(o, cpumask)) {
1915 ret = fio_cpuset_exit(&o->cpumask);
1916 if (ret)
1917 td_verror(td, ret, "fio_cpuset_exit");
1918 }
1919
1920 /*
1921 * do this very late, it will log file closing as well
1922 */
1923 if (o->write_iolog_file)
1924 write_iolog_close(td);
1925 if (td->io_log_rfile)
1926 fclose(td->io_log_rfile);
1927
1928 td_set_runstate(td, TD_EXITED);
1929
1930 /*
1931 * Do this last after setting our runstate to exited, so we
1932 * know that the stat thread is signaled.
1933 */
1934 check_update_rusage(td);
1935
1936 sk_out_drop();
1937 return (void *) (uintptr_t) td->error;
1938}
1939
1940/*
1941 * Run over the job map and reap the threads that have exited, if any.
1942 */
1943static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1944 uint64_t *m_rate)
1945{
1946 struct thread_data *td;
1947 unsigned int cputhreads, realthreads, pending;
1948 int i, status, ret;
1949
1950 /*
1951 * reap exited threads (TD_EXITED -> TD_REAPED)
1952 */
1953 realthreads = pending = cputhreads = 0;
1954 for_each_td(td, i) {
1955 int flags = 0;
1956
1957 if (!strcmp(td->o.ioengine, "cpuio"))
1958 cputhreads++;
1959 else
1960 realthreads++;
1961
1962 if (!td->pid) {
1963 pending++;
1964 continue;
1965 }
1966 if (td->runstate == TD_REAPED)
1967 continue;
1968 if (td->o.use_thread) {
1969 if (td->runstate == TD_EXITED) {
1970 td_set_runstate(td, TD_REAPED);
1971 goto reaped;
1972 }
1973 continue;
1974 }
1975
1976 flags = WNOHANG;
1977 if (td->runstate == TD_EXITED)
1978 flags = 0;
1979
1980 /*
1981 * check if someone quit or got killed in an unusual way
1982 */
1983 ret = waitpid(td->pid, &status, flags);
1984 if (ret < 0) {
1985 if (errno == ECHILD) {
1986 log_err("fio: pid=%d disappeared %d\n",
1987 (int) td->pid, td->runstate);
1988 td->sig = ECHILD;
1989 td_set_runstate(td, TD_REAPED);
1990 goto reaped;
1991 }
1992 perror("waitpid");
1993 } else if (ret == td->pid) {
1994 if (WIFSIGNALED(status)) {
1995 int sig = WTERMSIG(status);
1996
1997 if (sig != SIGTERM && sig != SIGUSR2)
1998 log_err("fio: pid=%d, got signal=%d\n",
1999 (int) td->pid, sig);
2000 td->sig = sig;
2001 td_set_runstate(td, TD_REAPED);
2002 goto reaped;
2003 }
2004 if (WIFEXITED(status)) {
2005 if (WEXITSTATUS(status) && !td->error)
2006 td->error = WEXITSTATUS(status);
2007
2008 td_set_runstate(td, TD_REAPED);
2009 goto reaped;
2010 }
2011 }
2012
2013 /*
2014 * If the job is stuck, do a forceful timeout of it and
2015 * move on.
2016 */
2017 if (td->terminate &&
2018 td->runstate < TD_FSYNCING &&
2019 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2020 log_err("fio: job '%s' (state=%d) hasn't exited in "
2021 "%lu seconds, it appears to be stuck. Doing "
2022 "forceful exit of this job.\n",
2023 td->o.name, td->runstate,
2024 (unsigned long) time_since_now(&td->terminate_time));
2025 td_set_runstate(td, TD_REAPED);
2026 goto reaped;
2027 }
2028
2029 /*
2030 * thread is not dead, continue
2031 */
2032 pending++;
2033 continue;
2034reaped:
2035 (*nr_running)--;
2036 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2037 (*t_rate) -= ddir_rw_sum(td->o.rate);
2038 if (!td->pid)
2039 pending--;
2040
2041 if (td->error)
2042 exit_value++;
2043
2044 done_secs += mtime_since_now(&td->epoch) / 1000;
2045 profile_td_exit(td);
2046 flow_exit_job(td);
2047 }
2048
2049 if (*nr_running == cputhreads && !pending && realthreads)
2050 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2051}
2052
2053static bool __check_trigger_file(void)
2054{
2055 struct stat sb;
2056
2057 if (!trigger_file)
2058 return false;
2059
2060 if (stat(trigger_file, &sb))
2061 return false;
2062
2063 if (unlink(trigger_file) < 0)
2064 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2065 strerror(errno));
2066
2067 return true;
2068}
2069
2070static bool trigger_timedout(void)
2071{
2072 if (trigger_timeout)
2073 if (time_since_genesis() >= trigger_timeout) {
2074 trigger_timeout = 0;
2075 return true;
2076 }
2077
2078 return false;
2079}
2080
2081void exec_trigger(const char *cmd)
2082{
2083 int ret;
2084
2085 if (!cmd || cmd[0] == '\0')
2086 return;
2087
2088 ret = system(cmd);
2089 if (ret == -1)
2090 log_err("fio: failed executing %s trigger\n", cmd);
2091}
2092
2093void check_trigger_file(void)
2094{
2095 if (__check_trigger_file() || trigger_timedout()) {
2096 if (nr_clients)
2097 fio_clients_send_trigger(trigger_remote_cmd);
2098 else {
2099 verify_save_state(IO_LIST_ALL);
2100 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2101 exec_trigger(trigger_cmd);
2102 }
2103 }
2104}
2105
2106static int fio_verify_load_state(struct thread_data *td)
2107{
2108 int ret;
2109
2110 if (!td->o.verify_state)
2111 return 0;
2112
2113 if (is_backend) {
2114 void *data;
2115
2116 ret = fio_server_get_verify_state(td->o.name,
2117 td->thread_number - 1, &data);
2118 if (!ret)
2119 verify_assign_state(td, data);
2120 } else {
2121 char prefix[PATH_MAX];
2122
2123 if (aux_path)
2124 sprintf(prefix, "%s%clocal", aux_path,
2125 FIO_OS_PATH_SEPARATOR);
2126 else
2127 strcpy(prefix, "local");
2128 ret = verify_load_state(td, prefix);
2129 }
2130
2131 return ret;
2132}
2133
2134static void do_usleep(unsigned int usecs)
2135{
2136 check_for_running_stats();
2137 check_trigger_file();
2138 usleep(usecs);
2139}
2140
2141static bool check_mount_writes(struct thread_data *td)
2142{
2143 struct fio_file *f;
2144 unsigned int i;
2145
2146 if (!td_write(td) || td->o.allow_mounted_write)
2147 return false;
2148
2149 /*
2150 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2151 * are mkfs'd and mounted.
2152 */
2153 for_each_file(td, f, i) {
2154#ifdef FIO_HAVE_CHARDEV_SIZE
2155 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2156#else
2157 if (f->filetype != FIO_TYPE_BLOCK)
2158#endif
2159 continue;
2160 if (device_is_mounted(f->file_name))
2161 goto mounted;
2162 }
2163
2164 return false;
2165mounted:
2166 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2167 return true;
2168}
2169
2170static bool waitee_running(struct thread_data *me)
2171{
2172 const char *waitee = me->o.wait_for;
2173 const char *self = me->o.name;
2174 struct thread_data *td;
2175 int i;
2176
2177 if (!waitee)
2178 return false;
2179
2180 for_each_td(td, i) {
2181 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2182 continue;
2183
2184 if (td->runstate < TD_EXITED) {
2185 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2186 self, td->o.name,
2187 runstate_to_name(td->runstate));
2188 return true;
2189 }
2190 }
2191
2192 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2193 return false;
2194}
2195
2196/*
2197 * Main function for kicking off and reaping jobs, as needed.
2198 */
2199static void run_threads(struct sk_out *sk_out)
2200{
2201 struct thread_data *td;
2202 unsigned int i, todo, nr_running, nr_started;
2203 uint64_t m_rate, t_rate;
2204 uint64_t spent;
2205
2206 if (fio_gtod_offload && fio_start_gtod_thread())
2207 return;
2208
2209 fio_idle_prof_init();
2210
2211 set_sig_handlers();
2212
2213 nr_thread = nr_process = 0;
2214 for_each_td(td, i) {
2215 if (check_mount_writes(td))
2216 return;
2217 if (td->o.use_thread)
2218 nr_thread++;
2219 else
2220 nr_process++;
2221 }
2222
2223 if (output_format & FIO_OUTPUT_NORMAL) {
2224 struct buf_output out;
2225
2226 buf_output_init(&out);
2227 __log_buf(&out, "Starting ");
2228 if (nr_thread)
2229 __log_buf(&out, "%d thread%s", nr_thread,
2230 nr_thread > 1 ? "s" : "");
2231 if (nr_process) {
2232 if (nr_thread)
2233 __log_buf(&out, " and ");
2234 __log_buf(&out, "%d process%s", nr_process,
2235 nr_process > 1 ? "es" : "");
2236 }
2237 __log_buf(&out, "\n");
2238 log_info_buf(out.buf, out.buflen);
2239 buf_output_free(&out);
2240 }
2241
2242 todo = thread_number;
2243 nr_running = 0;
2244 nr_started = 0;
2245 m_rate = t_rate = 0;
2246
2247 for_each_td(td, i) {
2248 print_status_init(td->thread_number - 1);
2249
2250 if (!td->o.create_serialize)
2251 continue;
2252
2253 if (fio_verify_load_state(td))
2254 goto reap;
2255
2256 /*
2257 * do file setup here so it happens sequentially,
2258 * we don't want X number of threads getting their
2259 * client data interspersed on disk
2260 */
2261 if (setup_files(td)) {
2262reap:
2263 exit_value++;
2264 if (td->error)
2265 log_err("fio: pid=%d, err=%d/%s\n",
2266 (int) td->pid, td->error, td->verror);
2267 td_set_runstate(td, TD_REAPED);
2268 todo--;
2269 } else {
2270 struct fio_file *f;
2271 unsigned int j;
2272
2273 /*
2274 * for sharing to work, each job must always open
2275 * its own files. so close them, if we opened them
2276 * for creation
2277 */
2278 for_each_file(td, f, j) {
2279 if (fio_file_open(f))
2280 td_io_close_file(td, f);
2281 }
2282 }
2283 }
2284
2285 /* start idle threads before io threads start to run */
2286 fio_idle_prof_start();
2287
2288 set_genesis_time();
2289
2290 while (todo) {
2291 struct thread_data *map[REAL_MAX_JOBS];
2292 struct timespec this_start;
2293 int this_jobs = 0, left;
2294 struct fork_data *fd;
2295
2296 /*
2297 * create threads (TD_NOT_CREATED -> TD_CREATED)
2298 */
2299 for_each_td(td, i) {
2300 if (td->runstate != TD_NOT_CREATED)
2301 continue;
2302
2303 /*
2304 * never got a chance to start, killed by other
2305 * thread for some reason
2306 */
2307 if (td->terminate) {
2308 todo--;
2309 continue;
2310 }
2311
2312 if (td->o.start_delay) {
2313 spent = utime_since_genesis();
2314
2315 if (td->o.start_delay > spent)
2316 continue;
2317 }
2318
2319 if (td->o.stonewall && (nr_started || nr_running)) {
2320 dprint(FD_PROCESS, "%s: stonewall wait\n",
2321 td->o.name);
2322 break;
2323 }
2324
2325 if (waitee_running(td)) {
2326 dprint(FD_PROCESS, "%s: waiting for %s\n",
2327 td->o.name, td->o.wait_for);
2328 continue;
2329 }
2330
2331 init_disk_util(td);
2332
2333 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2334 td->update_rusage = 0;
2335
2336 /*
2337 * Set state to created. Thread will transition
2338 * to TD_INITIALIZED when it's done setting up.
2339 */
2340 td_set_runstate(td, TD_CREATED);
2341 map[this_jobs++] = td;
2342 nr_started++;
2343
2344 fd = calloc(1, sizeof(*fd));
2345 fd->td = td;
2346 fd->sk_out = sk_out;
2347
2348 if (td->o.use_thread) {
2349 int ret;
2350
2351 dprint(FD_PROCESS, "will pthread_create\n");
2352 ret = pthread_create(&td->thread, NULL,
2353 thread_main, fd);
2354 if (ret) {
2355 log_err("pthread_create: %s\n",
2356 strerror(ret));
2357 free(fd);
2358 nr_started--;
2359 break;
2360 }
2361 fd = NULL;
2362 ret = pthread_detach(td->thread);
2363 if (ret)
2364 log_err("pthread_detach: %s",
2365 strerror(ret));
2366 } else {
2367 pid_t pid;
2368 dprint(FD_PROCESS, "will fork\n");
2369 pid = fork();
2370 if (!pid) {
2371 int ret;
2372
2373 ret = (int)(uintptr_t)thread_main(fd);
2374 _exit(ret);
2375 } else if (i == fio_debug_jobno)
2376 *fio_debug_jobp = pid;
2377 }
2378 dprint(FD_MUTEX, "wait on startup_sem\n");
2379 if (fio_sem_down_timeout(startup_sem, 10000)) {
2380 log_err("fio: job startup hung? exiting.\n");
2381 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2382 fio_abort = true;
2383 nr_started--;
2384 free(fd);
2385 break;
2386 }
2387 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2388 }
2389
2390 /*
2391 * Wait for the started threads to transition to
2392 * TD_INITIALIZED.
2393 */
2394 fio_gettime(&this_start, NULL);
2395 left = this_jobs;
2396 while (left && !fio_abort) {
2397 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2398 break;
2399
2400 do_usleep(100000);
2401
2402 for (i = 0; i < this_jobs; i++) {
2403 td = map[i];
2404 if (!td)
2405 continue;
2406 if (td->runstate == TD_INITIALIZED) {
2407 map[i] = NULL;
2408 left--;
2409 } else if (td->runstate >= TD_EXITED) {
2410 map[i] = NULL;
2411 left--;
2412 todo--;
2413 nr_running++; /* work-around... */
2414 }
2415 }
2416 }
2417
2418 if (left) {
2419 log_err("fio: %d job%s failed to start\n", left,
2420 left > 1 ? "s" : "");
2421 for (i = 0; i < this_jobs; i++) {
2422 td = map[i];
2423 if (!td)
2424 continue;
2425 kill(td->pid, SIGTERM);
2426 }
2427 break;
2428 }
2429
2430 /*
2431 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2432 */
2433 for_each_td(td, i) {
2434 if (td->runstate != TD_INITIALIZED)
2435 continue;
2436
2437 if (in_ramp_time(td))
2438 td_set_runstate(td, TD_RAMP);
2439 else
2440 td_set_runstate(td, TD_RUNNING);
2441 nr_running++;
2442 nr_started--;
2443 m_rate += ddir_rw_sum(td->o.ratemin);
2444 t_rate += ddir_rw_sum(td->o.rate);
2445 todo--;
2446 fio_sem_up(td->sem);
2447 }
2448
2449 reap_threads(&nr_running, &t_rate, &m_rate);
2450
2451 if (todo)
2452 do_usleep(100000);
2453 }
2454
2455 while (nr_running) {
2456 reap_threads(&nr_running, &t_rate, &m_rate);
2457 do_usleep(10000);
2458 }
2459
2460 fio_idle_prof_stop();
2461
2462 update_io_ticks();
2463}
2464
2465static void free_disk_util(void)
2466{
2467 disk_util_prune_entries();
2468 helper_thread_destroy();
2469}
2470
2471int fio_backend(struct sk_out *sk_out)
2472{
2473 struct thread_data *td;
2474 int i;
2475
2476 if (exec_profile) {
2477 if (load_profile(exec_profile))
2478 return 1;
2479 free(exec_profile);
2480 exec_profile = NULL;
2481 }
2482 if (!thread_number)
2483 return 0;
2484
2485 if (write_bw_log) {
2486 struct log_params p = {
2487 .log_type = IO_LOG_TYPE_BW,
2488 };
2489
2490 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2491 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2492 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2493 }
2494
2495 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2496 if (!sk_out)
2497 is_local_backend = true;
2498 if (startup_sem == NULL)
2499 return 1;
2500
2501 set_genesis_time();
2502 stat_init();
2503 if (helper_thread_create(startup_sem, sk_out))
2504 log_err("fio: failed to create helper thread\n");
2505
2506 cgroup_list = smalloc(sizeof(*cgroup_list));
2507 if (cgroup_list)
2508 INIT_FLIST_HEAD(cgroup_list);
2509
2510 run_threads(sk_out);
2511
2512 helper_thread_exit();
2513
2514 if (!fio_abort) {
2515 __show_run_stats();
2516 if (write_bw_log) {
2517 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2518 struct io_log *log = agg_io_log[i];
2519
2520 flush_log(log, false);
2521 free_log(log);
2522 }
2523 }
2524 }
2525
2526 for_each_td(td, i) {
2527 steadystate_free(td);
2528 fio_options_free(td);
2529 if (td->rusage_sem) {
2530 fio_sem_remove(td->rusage_sem);
2531 td->rusage_sem = NULL;
2532 }
2533 fio_sem_remove(td->sem);
2534 td->sem = NULL;
2535 }
2536
2537 free_disk_util();
2538 if (cgroup_list) {
2539 cgroup_kill(cgroup_list);
2540 sfree(cgroup_list);
2541 }
2542
2543 fio_sem_remove(startup_sem);
2544 stat_exit();
2545 return exit_value;
2546}