Merge branch 'master' of https://github.com/bvanassche/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32
33#include "fio.h"
34#include "smalloc.h"
35#include "verify.h"
36#include "diskutil.h"
37#include "cgroup.h"
38#include "profile.h"
39#include "lib/rand.h"
40#include "lib/memalign.h"
41#include "server.h"
42#include "lib/getrusage.h"
43#include "idletime.h"
44#include "err.h"
45#include "workqueue.h"
46#include "lib/mountcheck.h"
47#include "rate-submit.h"
48#include "helper_thread.h"
49#include "pshared.h"
50
51static struct fio_sem *startup_sem;
52static struct flist_head *cgroup_list;
53static char *cgroup_mnt;
54static int exit_value;
55static volatile int fio_abort;
56static unsigned int nr_process = 0;
57static unsigned int nr_thread = 0;
58
59struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61int groupid = 0;
62unsigned int thread_number = 0;
63unsigned int stat_number = 0;
64int shm_id = 0;
65int temp_stall_ts;
66unsigned long done_secs = 0;
67
68#define JOB_START_TIMEOUT (5 * 1000)
69
70static void sig_int(int sig)
71{
72 if (threads) {
73 if (is_backend)
74 fio_server_got_signal(sig);
75 else {
76 log_info("\nfio: terminating on signal %d\n", sig);
77 log_info_flush();
78 exit_value = 128;
79 }
80
81 fio_terminate_threads(TERMINATE_ALL);
82 }
83}
84
85void sig_show_status(int sig)
86{
87 show_running_run_stats();
88}
89
90static void set_sig_handlers(void)
91{
92 struct sigaction act;
93
94 memset(&act, 0, sizeof(act));
95 act.sa_handler = sig_int;
96 act.sa_flags = SA_RESTART;
97 sigaction(SIGINT, &act, NULL);
98
99 memset(&act, 0, sizeof(act));
100 act.sa_handler = sig_int;
101 act.sa_flags = SA_RESTART;
102 sigaction(SIGTERM, &act, NULL);
103
104/* Windows uses SIGBREAK as a quit signal from other applications */
105#ifdef WIN32
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGBREAK, &act, NULL);
110#endif
111
112 memset(&act, 0, sizeof(act));
113 act.sa_handler = sig_show_status;
114 act.sa_flags = SA_RESTART;
115 sigaction(SIGUSR1, &act, NULL);
116
117 if (is_backend) {
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGPIPE, &act, NULL);
122 }
123}
124
125/*
126 * Check if we are above the minimum rate given.
127 */
128static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129 enum fio_ddir ddir)
130{
131 unsigned long long bytes = 0;
132 unsigned long iops = 0;
133 unsigned long spent;
134 unsigned long rate;
135 unsigned int ratemin = 0;
136 unsigned int rate_iops = 0;
137 unsigned int rate_iops_min = 0;
138
139 assert(ddir_rw(ddir));
140
141 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142 return false;
143
144 /*
145 * allow a 2 second settle period in the beginning
146 */
147 if (mtime_since(&td->start, now) < 2000)
148 return false;
149
150 iops += td->this_io_blocks[ddir];
151 bytes += td->this_io_bytes[ddir];
152 ratemin += td->o.ratemin[ddir];
153 rate_iops += td->o.rate_iops[ddir];
154 rate_iops_min += td->o.rate_iops_min[ddir];
155
156 /*
157 * if rate blocks is set, sample is running
158 */
159 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160 spent = mtime_since(&td->lastrate[ddir], now);
161 if (spent < td->o.ratecycle)
162 return false;
163
164 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165 /*
166 * check bandwidth specified rate
167 */
168 if (bytes < td->rate_bytes[ddir]) {
169 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170 td->o.name, ratemin, bytes);
171 return true;
172 } else {
173 if (spent)
174 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175 else
176 rate = 0;
177
178 if (rate < ratemin ||
179 bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181 td->o.name, ratemin, rate);
182 return true;
183 }
184 }
185 } else {
186 /*
187 * checks iops specified rate
188 */
189 if (iops < rate_iops) {
190 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191 td->o.name, rate_iops, iops);
192 return true;
193 } else {
194 if (spent)
195 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196 else
197 rate = 0;
198
199 if (rate < rate_iops_min ||
200 iops < td->rate_blocks[ddir]) {
201 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202 td->o.name, rate_iops_min, rate);
203 return true;
204 }
205 }
206 }
207 }
208
209 td->rate_bytes[ddir] = bytes;
210 td->rate_blocks[ddir] = iops;
211 memcpy(&td->lastrate[ddir], now, sizeof(*now));
212 return false;
213}
214
215static bool check_min_rate(struct thread_data *td, struct timespec *now)
216{
217 bool ret = false;
218
219 if (td->bytes_done[DDIR_READ])
220 ret |= __check_min_rate(td, now, DDIR_READ);
221 if (td->bytes_done[DDIR_WRITE])
222 ret |= __check_min_rate(td, now, DDIR_WRITE);
223 if (td->bytes_done[DDIR_TRIM])
224 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226 return ret;
227}
228
229/*
230 * When job exits, we can cancel the in-flight IO if we are using async
231 * io. Attempt to do so.
232 */
233static void cleanup_pending_aio(struct thread_data *td)
234{
235 int r;
236
237 /*
238 * get immediately available events, if any
239 */
240 r = io_u_queued_complete(td, 0);
241 if (r < 0)
242 return;
243
244 /*
245 * now cancel remaining active events
246 */
247 if (td->io_ops->cancel) {
248 struct io_u *io_u;
249 int i;
250
251 io_u_qiter(&td->io_u_all, io_u, i) {
252 if (io_u->flags & IO_U_F_FLIGHT) {
253 r = td->io_ops->cancel(td, io_u);
254 if (!r)
255 put_io_u(td, io_u);
256 }
257 }
258 }
259
260 if (td->cur_depth)
261 r = io_u_queued_complete(td, td->cur_depth);
262}
263
264/*
265 * Helper to handle the final sync of a file. Works just like the normal
266 * io path, just does everything sync.
267 */
268static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269{
270 struct io_u *io_u = __get_io_u(td);
271 int ret;
272
273 if (!io_u)
274 return true;
275
276 io_u->ddir = DDIR_SYNC;
277 io_u->file = f;
278
279 if (td_io_prep(td, io_u)) {
280 put_io_u(td, io_u);
281 return true;
282 }
283
284requeue:
285 ret = td_io_queue(td, io_u);
286 if (ret < 0) {
287 td_verror(td, io_u->error, "td_io_queue");
288 put_io_u(td, io_u);
289 return true;
290 } else if (ret == FIO_Q_QUEUED) {
291 if (td_io_commit(td))
292 return true;
293 if (io_u_queued_complete(td, 1) < 0)
294 return true;
295 } else if (ret == FIO_Q_COMPLETED) {
296 if (io_u->error) {
297 td_verror(td, io_u->error, "td_io_queue");
298 return true;
299 }
300
301 if (io_u_sync_complete(td, io_u) < 0)
302 return true;
303 } else if (ret == FIO_Q_BUSY) {
304 if (td_io_commit(td))
305 return true;
306 goto requeue;
307 }
308
309 return false;
310}
311
312static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
313{
314 int ret;
315
316 if (fio_file_open(f))
317 return fio_io_sync(td, f);
318
319 if (td_io_open_file(td, f))
320 return 1;
321
322 ret = fio_io_sync(td, f);
323 td_io_close_file(td, f);
324 return ret;
325}
326
327static inline void __update_ts_cache(struct thread_data *td)
328{
329 fio_gettime(&td->ts_cache, NULL);
330}
331
332static inline void update_ts_cache(struct thread_data *td)
333{
334 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
335 __update_ts_cache(td);
336}
337
338static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
339{
340 if (in_ramp_time(td))
341 return false;
342 if (!td->o.timeout)
343 return false;
344 if (utime_since(&td->epoch, t) >= td->o.timeout)
345 return true;
346
347 return false;
348}
349
350/*
351 * We need to update the runtime consistently in ms, but keep a running
352 * tally of the current elapsed time in microseconds for sub millisecond
353 * updates.
354 */
355static inline void update_runtime(struct thread_data *td,
356 unsigned long long *elapsed_us,
357 const enum fio_ddir ddir)
358{
359 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
360 return;
361
362 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
363 elapsed_us[ddir] += utime_since_now(&td->start);
364 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
365}
366
367static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
368 int *retptr)
369{
370 int ret = *retptr;
371
372 if (ret < 0 || td->error) {
373 int err = td->error;
374 enum error_type_bit eb;
375
376 if (ret < 0)
377 err = -ret;
378
379 eb = td_error_type(ddir, err);
380 if (!(td->o.continue_on_error & (1 << eb)))
381 return true;
382
383 if (td_non_fatal_error(td, eb, err)) {
384 /*
385 * Continue with the I/Os in case of
386 * a non fatal error.
387 */
388 update_error_count(td, err);
389 td_clear_error(td);
390 *retptr = 0;
391 return false;
392 } else if (td->o.fill_device && err == ENOSPC) {
393 /*
394 * We expect to hit this error if
395 * fill_device option is set.
396 */
397 td_clear_error(td);
398 fio_mark_td_terminate(td);
399 return true;
400 } else {
401 /*
402 * Stop the I/O in case of a fatal
403 * error.
404 */
405 update_error_count(td, err);
406 return true;
407 }
408 }
409
410 return false;
411}
412
413static void check_update_rusage(struct thread_data *td)
414{
415 if (td->update_rusage) {
416 td->update_rusage = 0;
417 update_rusage_stat(td);
418 fio_sem_up(td->rusage_sem);
419 }
420}
421
422static int wait_for_completions(struct thread_data *td, struct timespec *time)
423{
424 const int full = queue_full(td);
425 int min_evts = 0;
426 int ret;
427
428 if (td->flags & TD_F_REGROW_LOGS)
429 return io_u_quiesce(td);
430
431 /*
432 * if the queue is full, we MUST reap at least 1 event
433 */
434 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
435 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
436 min_evts = 1;
437
438 if (time && (__should_check_rate(td, DDIR_READ) ||
439 __should_check_rate(td, DDIR_WRITE) ||
440 __should_check_rate(td, DDIR_TRIM)))
441 fio_gettime(time, NULL);
442
443 do {
444 ret = io_u_queued_complete(td, min_evts);
445 if (ret < 0)
446 break;
447 } while (full && (td->cur_depth > td->o.iodepth_low));
448
449 return ret;
450}
451
452int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
453 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
454 struct timespec *comp_time)
455{
456 int ret2;
457
458 switch (*ret) {
459 case FIO_Q_COMPLETED:
460 if (io_u->error) {
461 *ret = -io_u->error;
462 clear_io_u(td, io_u);
463 } else if (io_u->resid) {
464 int bytes = io_u->xfer_buflen - io_u->resid;
465 struct fio_file *f = io_u->file;
466
467 if (bytes_issued)
468 *bytes_issued += bytes;
469
470 if (!from_verify)
471 trim_io_piece(td, io_u);
472
473 /*
474 * zero read, fail
475 */
476 if (!bytes) {
477 if (!from_verify)
478 unlog_io_piece(td, io_u);
479 td_verror(td, EIO, "full resid");
480 put_io_u(td, io_u);
481 break;
482 }
483
484 io_u->xfer_buflen = io_u->resid;
485 io_u->xfer_buf += bytes;
486 io_u->offset += bytes;
487
488 if (ddir_rw(io_u->ddir))
489 td->ts.short_io_u[io_u->ddir]++;
490
491 if (io_u->offset == f->real_file_size)
492 goto sync_done;
493
494 requeue_io_u(td, &io_u);
495 } else {
496sync_done:
497 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
498 __should_check_rate(td, DDIR_WRITE) ||
499 __should_check_rate(td, DDIR_TRIM)))
500 fio_gettime(comp_time, NULL);
501
502 *ret = io_u_sync_complete(td, io_u);
503 if (*ret < 0)
504 break;
505 }
506
507 if (td->flags & TD_F_REGROW_LOGS)
508 regrow_logs(td);
509
510 /*
511 * when doing I/O (not when verifying),
512 * check for any errors that are to be ignored
513 */
514 if (!from_verify)
515 break;
516
517 return 0;
518 case FIO_Q_QUEUED:
519 /*
520 * if the engine doesn't have a commit hook,
521 * the io_u is really queued. if it does have such
522 * a hook, it has to call io_u_queued() itself.
523 */
524 if (td->io_ops->commit == NULL)
525 io_u_queued(td, io_u);
526 if (bytes_issued)
527 *bytes_issued += io_u->xfer_buflen;
528 break;
529 case FIO_Q_BUSY:
530 if (!from_verify)
531 unlog_io_piece(td, io_u);
532 requeue_io_u(td, &io_u);
533 ret2 = td_io_commit(td);
534 if (ret2 < 0)
535 *ret = ret2;
536 break;
537 default:
538 assert(*ret < 0);
539 td_verror(td, -(*ret), "td_io_queue");
540 break;
541 }
542
543 if (break_on_this_error(td, ddir, ret))
544 return 1;
545
546 return 0;
547}
548
549static inline bool io_in_polling(struct thread_data *td)
550{
551 return !td->o.iodepth_batch_complete_min &&
552 !td->o.iodepth_batch_complete_max;
553}
554/*
555 * Unlinks files from thread data fio_file structure
556 */
557static int unlink_all_files(struct thread_data *td)
558{
559 struct fio_file *f;
560 unsigned int i;
561 int ret = 0;
562
563 for_each_file(td, f, i) {
564 if (f->filetype != FIO_TYPE_FILE)
565 continue;
566 ret = td_io_unlink_file(td, f);
567 if (ret)
568 break;
569 }
570
571 if (ret)
572 td_verror(td, ret, "unlink_all_files");
573
574 return ret;
575}
576
577/*
578 * Check if io_u will overlap an in-flight IO in the queue
579 */
580static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
581{
582 bool overlap;
583 struct io_u *check_io_u;
584 unsigned long long x1, x2, y1, y2;
585 int i;
586
587 x1 = io_u->offset;
588 x2 = io_u->offset + io_u->buflen;
589 overlap = false;
590 io_u_qiter(q, check_io_u, i) {
591 if (check_io_u->flags & IO_U_F_FLIGHT) {
592 y1 = check_io_u->offset;
593 y2 = check_io_u->offset + check_io_u->buflen;
594
595 if (x1 < y2 && y1 < x2) {
596 overlap = true;
597 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
598 x1, io_u->buflen,
599 y1, check_io_u->buflen);
600 break;
601 }
602 }
603 }
604
605 return overlap;
606}
607
608static int io_u_submit(struct thread_data *td, struct io_u *io_u)
609{
610 /*
611 * Check for overlap if the user asked us to, and we have
612 * at least one IO in flight besides this one.
613 */
614 if (td->o.serialize_overlap && td->cur_depth > 1 &&
615 in_flight_overlap(&td->io_u_all, io_u))
616 return FIO_Q_BUSY;
617
618 return td_io_queue(td, io_u);
619}
620
621/*
622 * The main verify engine. Runs over the writes we previously submitted,
623 * reads the blocks back in, and checks the crc/md5 of the data.
624 */
625static void do_verify(struct thread_data *td, uint64_t verify_bytes)
626{
627 struct fio_file *f;
628 struct io_u *io_u;
629 int ret, min_events;
630 unsigned int i;
631
632 dprint(FD_VERIFY, "starting loop\n");
633
634 /*
635 * sync io first and invalidate cache, to make sure we really
636 * read from disk.
637 */
638 for_each_file(td, f, i) {
639 if (!fio_file_open(f))
640 continue;
641 if (fio_io_sync(td, f))
642 break;
643 if (file_invalidate_cache(td, f))
644 break;
645 }
646
647 check_update_rusage(td);
648
649 if (td->error)
650 return;
651
652 /*
653 * verify_state needs to be reset before verification
654 * proceeds so that expected random seeds match actual
655 * random seeds in headers. The main loop will reset
656 * all random number generators if randrepeat is set.
657 */
658 if (!td->o.rand_repeatable)
659 td_fill_verify_state_seed(td);
660
661 td_set_runstate(td, TD_VERIFYING);
662
663 io_u = NULL;
664 while (!td->terminate) {
665 enum fio_ddir ddir;
666 int full;
667
668 update_ts_cache(td);
669 check_update_rusage(td);
670
671 if (runtime_exceeded(td, &td->ts_cache)) {
672 __update_ts_cache(td);
673 if (runtime_exceeded(td, &td->ts_cache)) {
674 fio_mark_td_terminate(td);
675 break;
676 }
677 }
678
679 if (flow_threshold_exceeded(td))
680 continue;
681
682 if (!td->o.experimental_verify) {
683 io_u = __get_io_u(td);
684 if (!io_u)
685 break;
686
687 if (get_next_verify(td, io_u)) {
688 put_io_u(td, io_u);
689 break;
690 }
691
692 if (td_io_prep(td, io_u)) {
693 put_io_u(td, io_u);
694 break;
695 }
696 } else {
697 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
698 break;
699
700 while ((io_u = get_io_u(td)) != NULL) {
701 if (IS_ERR_OR_NULL(io_u)) {
702 io_u = NULL;
703 ret = FIO_Q_BUSY;
704 goto reap;
705 }
706
707 /*
708 * We are only interested in the places where
709 * we wrote or trimmed IOs. Turn those into
710 * reads for verification purposes.
711 */
712 if (io_u->ddir == DDIR_READ) {
713 /*
714 * Pretend we issued it for rwmix
715 * accounting
716 */
717 td->io_issues[DDIR_READ]++;
718 put_io_u(td, io_u);
719 continue;
720 } else if (io_u->ddir == DDIR_TRIM) {
721 io_u->ddir = DDIR_READ;
722 io_u_set(td, io_u, IO_U_F_TRIMMED);
723 break;
724 } else if (io_u->ddir == DDIR_WRITE) {
725 io_u->ddir = DDIR_READ;
726 break;
727 } else {
728 put_io_u(td, io_u);
729 continue;
730 }
731 }
732
733 if (!io_u)
734 break;
735 }
736
737 if (verify_state_should_stop(td, io_u)) {
738 put_io_u(td, io_u);
739 break;
740 }
741
742 if (td->o.verify_async)
743 io_u->end_io = verify_io_u_async;
744 else
745 io_u->end_io = verify_io_u;
746
747 ddir = io_u->ddir;
748 if (!td->o.disable_slat)
749 fio_gettime(&io_u->start_time, NULL);
750
751 ret = io_u_submit(td, io_u);
752
753 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
754 break;
755
756 /*
757 * if we can queue more, do so. but check if there are
758 * completed io_u's first. Note that we can get BUSY even
759 * without IO queued, if the system is resource starved.
760 */
761reap:
762 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
763 if (full || io_in_polling(td))
764 ret = wait_for_completions(td, NULL);
765
766 if (ret < 0)
767 break;
768 }
769
770 check_update_rusage(td);
771
772 if (!td->error) {
773 min_events = td->cur_depth;
774
775 if (min_events)
776 ret = io_u_queued_complete(td, min_events);
777 } else
778 cleanup_pending_aio(td);
779
780 td_set_runstate(td, TD_RUNNING);
781
782 dprint(FD_VERIFY, "exiting loop\n");
783}
784
785static bool exceeds_number_ios(struct thread_data *td)
786{
787 unsigned long long number_ios;
788
789 if (!td->o.number_ios)
790 return false;
791
792 number_ios = ddir_rw_sum(td->io_blocks);
793 number_ios += td->io_u_queued + td->io_u_in_flight;
794
795 return number_ios >= (td->o.number_ios * td->loops);
796}
797
798static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
799{
800 unsigned long long bytes, limit;
801
802 if (td_rw(td))
803 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
804 else if (td_write(td))
805 bytes = this_bytes[DDIR_WRITE];
806 else if (td_read(td))
807 bytes = this_bytes[DDIR_READ];
808 else
809 bytes = this_bytes[DDIR_TRIM];
810
811 if (td->o.io_size)
812 limit = td->o.io_size;
813 else
814 limit = td->o.size;
815
816 limit *= td->loops;
817 return bytes >= limit || exceeds_number_ios(td);
818}
819
820static bool io_issue_bytes_exceeded(struct thread_data *td)
821{
822 return io_bytes_exceeded(td, td->io_issue_bytes);
823}
824
825static bool io_complete_bytes_exceeded(struct thread_data *td)
826{
827 return io_bytes_exceeded(td, td->this_io_bytes);
828}
829
830/*
831 * used to calculate the next io time for rate control
832 *
833 */
834static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
835{
836 uint64_t bps = td->rate_bps[ddir];
837
838 assert(!(td->flags & TD_F_CHILD));
839
840 if (td->o.rate_process == RATE_PROCESS_POISSON) {
841 uint64_t val, iops;
842
843 iops = bps / td->o.bs[ddir];
844 val = (int64_t) (1000000 / iops) *
845 -logf(__rand_0_1(&td->poisson_state[ddir]));
846 if (val) {
847 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
848 (unsigned long long) 1000000 / val,
849 ddir);
850 }
851 td->last_usec[ddir] += val;
852 return td->last_usec[ddir];
853 } else if (bps) {
854 uint64_t bytes = td->rate_io_issue_bytes[ddir];
855 uint64_t secs = bytes / bps;
856 uint64_t remainder = bytes % bps;
857
858 return remainder * 1000000 / bps + secs * 1000000;
859 }
860
861 return 0;
862}
863
864static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
865{
866 unsigned long long b;
867 uint64_t total;
868 int left;
869
870 b = ddir_rw_sum(td->io_blocks);
871 if (b % td->o.thinktime_blocks)
872 return;
873
874 io_u_quiesce(td);
875
876 total = 0;
877 if (td->o.thinktime_spin)
878 total = usec_spin(td->o.thinktime_spin);
879
880 left = td->o.thinktime - total;
881 if (left)
882 total += usec_sleep(td, left);
883
884 /*
885 * If we're ignoring thinktime for the rate, add the number of bytes
886 * we would have done while sleeping, minus one block to ensure we
887 * start issuing immediately after the sleep.
888 */
889 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
890 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
891 uint64_t bs = td->o.min_bs[ddir];
892 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
893 uint64_t over;
894
895 if (usperop <= total)
896 over = bs;
897 else
898 over = (usperop - total) / usperop * -bs;
899
900 td->rate_io_issue_bytes[ddir] += (missed - over);
901 }
902}
903
904/*
905 * Main IO worker function. It retrieves io_u's to process and queues
906 * and reaps them, checking for rate and errors along the way.
907 *
908 * Returns number of bytes written and trimmed.
909 */
910static void do_io(struct thread_data *td, uint64_t *bytes_done)
911{
912 unsigned int i;
913 int ret = 0;
914 uint64_t total_bytes, bytes_issued = 0;
915
916 for (i = 0; i < DDIR_RWDIR_CNT; i++)
917 bytes_done[i] = td->bytes_done[i];
918
919 if (in_ramp_time(td))
920 td_set_runstate(td, TD_RAMP);
921 else
922 td_set_runstate(td, TD_RUNNING);
923
924 lat_target_init(td);
925
926 total_bytes = td->o.size;
927 /*
928 * Allow random overwrite workloads to write up to io_size
929 * before starting verification phase as 'size' doesn't apply.
930 */
931 if (td_write(td) && td_random(td) && td->o.norandommap)
932 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
933 /*
934 * If verify_backlog is enabled, we'll run the verify in this
935 * handler as well. For that case, we may need up to twice the
936 * amount of bytes.
937 */
938 if (td->o.verify != VERIFY_NONE &&
939 (td_write(td) && td->o.verify_backlog))
940 total_bytes += td->o.size;
941
942 /* In trimwrite mode, each byte is trimmed and then written, so
943 * allow total_bytes to be twice as big */
944 if (td_trimwrite(td))
945 total_bytes += td->total_io_size;
946
947 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
948 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
949 td->o.time_based) {
950 struct timespec comp_time;
951 struct io_u *io_u;
952 int full;
953 enum fio_ddir ddir;
954
955 check_update_rusage(td);
956
957 if (td->terminate || td->done)
958 break;
959
960 update_ts_cache(td);
961
962 if (runtime_exceeded(td, &td->ts_cache)) {
963 __update_ts_cache(td);
964 if (runtime_exceeded(td, &td->ts_cache)) {
965 fio_mark_td_terminate(td);
966 break;
967 }
968 }
969
970 if (flow_threshold_exceeded(td))
971 continue;
972
973 /*
974 * Break if we exceeded the bytes. The exception is time
975 * based runs, but we still need to break out of the loop
976 * for those to run verification, if enabled.
977 */
978 if (bytes_issued >= total_bytes &&
979 (!td->o.time_based ||
980 (td->o.time_based && td->o.verify != VERIFY_NONE)))
981 break;
982
983 io_u = get_io_u(td);
984 if (IS_ERR_OR_NULL(io_u)) {
985 int err = PTR_ERR(io_u);
986
987 io_u = NULL;
988 ddir = DDIR_INVAL;
989 if (err == -EBUSY) {
990 ret = FIO_Q_BUSY;
991 goto reap;
992 }
993 if (td->o.latency_target)
994 goto reap;
995 break;
996 }
997
998 ddir = io_u->ddir;
999
1000 /*
1001 * Add verification end_io handler if:
1002 * - Asked to verify (!td_rw(td))
1003 * - Or the io_u is from our verify list (mixed write/ver)
1004 */
1005 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1006 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1007
1008 if (!td->o.verify_pattern_bytes) {
1009 io_u->rand_seed = __rand(&td->verify_state);
1010 if (sizeof(int) != sizeof(long *))
1011 io_u->rand_seed *= __rand(&td->verify_state);
1012 }
1013
1014 if (verify_state_should_stop(td, io_u)) {
1015 put_io_u(td, io_u);
1016 break;
1017 }
1018
1019 if (td->o.verify_async)
1020 io_u->end_io = verify_io_u_async;
1021 else
1022 io_u->end_io = verify_io_u;
1023 td_set_runstate(td, TD_VERIFYING);
1024 } else if (in_ramp_time(td))
1025 td_set_runstate(td, TD_RAMP);
1026 else
1027 td_set_runstate(td, TD_RUNNING);
1028
1029 /*
1030 * Always log IO before it's issued, so we know the specific
1031 * order of it. The logged unit will track when the IO has
1032 * completed.
1033 */
1034 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1035 td->o.do_verify &&
1036 td->o.verify != VERIFY_NONE &&
1037 !td->o.experimental_verify)
1038 log_io_piece(td, io_u);
1039
1040 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1041 const unsigned long blen = io_u->xfer_buflen;
1042 const enum fio_ddir ddir = acct_ddir(io_u);
1043
1044 if (td->error)
1045 break;
1046
1047 workqueue_enqueue(&td->io_wq, &io_u->work);
1048 ret = FIO_Q_QUEUED;
1049
1050 if (ddir_rw(ddir)) {
1051 td->io_issues[ddir]++;
1052 td->io_issue_bytes[ddir] += blen;
1053 td->rate_io_issue_bytes[ddir] += blen;
1054 }
1055
1056 if (should_check_rate(td))
1057 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1058
1059 } else {
1060 ret = io_u_submit(td, io_u);
1061
1062 if (should_check_rate(td))
1063 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1064
1065 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1066 break;
1067
1068 /*
1069 * See if we need to complete some commands. Note that
1070 * we can get BUSY even without IO queued, if the
1071 * system is resource starved.
1072 */
1073reap:
1074 full = queue_full(td) ||
1075 (ret == FIO_Q_BUSY && td->cur_depth);
1076 if (full || io_in_polling(td))
1077 ret = wait_for_completions(td, &comp_time);
1078 }
1079 if (ret < 0)
1080 break;
1081 if (!ddir_rw_sum(td->bytes_done) &&
1082 !td_ioengine_flagged(td, FIO_NOIO))
1083 continue;
1084
1085 if (!in_ramp_time(td) && should_check_rate(td)) {
1086 if (check_min_rate(td, &comp_time)) {
1087 if (exitall_on_terminate || td->o.exitall_error)
1088 fio_terminate_threads(td->groupid);
1089 td_verror(td, EIO, "check_min_rate");
1090 break;
1091 }
1092 }
1093 if (!in_ramp_time(td) && td->o.latency_target)
1094 lat_target_check(td);
1095
1096 if (ddir_rw(ddir) && td->o.thinktime)
1097 handle_thinktime(td, ddir);
1098 }
1099
1100 check_update_rusage(td);
1101
1102 if (td->trim_entries)
1103 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1104
1105 if (td->o.fill_device && td->error == ENOSPC) {
1106 td->error = 0;
1107 fio_mark_td_terminate(td);
1108 }
1109 if (!td->error) {
1110 struct fio_file *f;
1111
1112 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1113 workqueue_flush(&td->io_wq);
1114 i = 0;
1115 } else
1116 i = td->cur_depth;
1117
1118 if (i) {
1119 ret = io_u_queued_complete(td, i);
1120 if (td->o.fill_device && td->error == ENOSPC)
1121 td->error = 0;
1122 }
1123
1124 if (should_fsync(td) && td->o.end_fsync) {
1125 td_set_runstate(td, TD_FSYNCING);
1126
1127 for_each_file(td, f, i) {
1128 if (!fio_file_fsync(td, f))
1129 continue;
1130
1131 log_err("fio: end_fsync failed for file %s\n",
1132 f->file_name);
1133 }
1134 }
1135 } else
1136 cleanup_pending_aio(td);
1137
1138 /*
1139 * stop job if we failed doing any IO
1140 */
1141 if (!ddir_rw_sum(td->this_io_bytes))
1142 td->done = 1;
1143
1144 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1145 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1146}
1147
1148static void free_file_completion_logging(struct thread_data *td)
1149{
1150 struct fio_file *f;
1151 unsigned int i;
1152
1153 for_each_file(td, f, i) {
1154 if (!f->last_write_comp)
1155 break;
1156 sfree(f->last_write_comp);
1157 }
1158}
1159
1160static int init_file_completion_logging(struct thread_data *td,
1161 unsigned int depth)
1162{
1163 struct fio_file *f;
1164 unsigned int i;
1165
1166 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1167 return 0;
1168
1169 for_each_file(td, f, i) {
1170 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1171 if (!f->last_write_comp)
1172 goto cleanup;
1173 }
1174
1175 return 0;
1176
1177cleanup:
1178 free_file_completion_logging(td);
1179 log_err("fio: failed to alloc write comp data\n");
1180 return 1;
1181}
1182
1183static void cleanup_io_u(struct thread_data *td)
1184{
1185 struct io_u *io_u;
1186
1187 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1188
1189 if (td->io_ops->io_u_free)
1190 td->io_ops->io_u_free(td, io_u);
1191
1192 fio_memfree(io_u, sizeof(*io_u));
1193 }
1194
1195 free_io_mem(td);
1196
1197 io_u_rexit(&td->io_u_requeues);
1198 io_u_qexit(&td->io_u_freelist);
1199 io_u_qexit(&td->io_u_all);
1200
1201 free_file_completion_logging(td);
1202}
1203
1204static int init_io_u(struct thread_data *td)
1205{
1206 struct io_u *io_u;
1207 unsigned int max_bs, min_write;
1208 int cl_align, i, max_units;
1209 int data_xfer = 1, err;
1210 char *p;
1211
1212 max_units = td->o.iodepth;
1213 max_bs = td_max_bs(td);
1214 min_write = td->o.min_bs[DDIR_WRITE];
1215 td->orig_buffer_size = (unsigned long long) max_bs
1216 * (unsigned long long) max_units;
1217
1218 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1219 data_xfer = 0;
1220
1221 err = 0;
1222 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1223 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1224 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1225
1226 if (err) {
1227 log_err("fio: failed setting up IO queues\n");
1228 return 1;
1229 }
1230
1231 /*
1232 * if we may later need to do address alignment, then add any
1233 * possible adjustment here so that we don't cause a buffer
1234 * overflow later. this adjustment may be too much if we get
1235 * lucky and the allocator gives us an aligned address.
1236 */
1237 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1238 td_ioengine_flagged(td, FIO_RAWIO))
1239 td->orig_buffer_size += page_mask + td->o.mem_align;
1240
1241 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1242 unsigned long bs;
1243
1244 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1245 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1246 }
1247
1248 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1249 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1250 return 1;
1251 }
1252
1253 if (data_xfer && allocate_io_mem(td))
1254 return 1;
1255
1256 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1257 td_ioengine_flagged(td, FIO_RAWIO))
1258 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1259 else
1260 p = td->orig_buffer;
1261
1262 cl_align = os_cache_line_size();
1263
1264 for (i = 0; i < max_units; i++) {
1265 void *ptr;
1266
1267 if (td->terminate)
1268 return 1;
1269
1270 ptr = fio_memalign(cl_align, sizeof(*io_u));
1271 if (!ptr) {
1272 log_err("fio: unable to allocate aligned memory\n");
1273 break;
1274 }
1275
1276 io_u = ptr;
1277 memset(io_u, 0, sizeof(*io_u));
1278 INIT_FLIST_HEAD(&io_u->verify_list);
1279 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1280
1281 if (data_xfer) {
1282 io_u->buf = p;
1283 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1284
1285 if (td_write(td))
1286 io_u_fill_buffer(td, io_u, min_write, max_bs);
1287 if (td_write(td) && td->o.verify_pattern_bytes) {
1288 /*
1289 * Fill the buffer with the pattern if we are
1290 * going to be doing writes.
1291 */
1292 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1293 }
1294 }
1295
1296 io_u->index = i;
1297 io_u->flags = IO_U_F_FREE;
1298 io_u_qpush(&td->io_u_freelist, io_u);
1299
1300 /*
1301 * io_u never leaves this stack, used for iteration of all
1302 * io_u buffers.
1303 */
1304 io_u_qpush(&td->io_u_all, io_u);
1305
1306 if (td->io_ops->io_u_init) {
1307 int ret = td->io_ops->io_u_init(td, io_u);
1308
1309 if (ret) {
1310 log_err("fio: failed to init engine data: %d\n", ret);
1311 return 1;
1312 }
1313 }
1314
1315 p += max_bs;
1316 }
1317
1318 if (init_file_completion_logging(td, max_units))
1319 return 1;
1320
1321 return 0;
1322}
1323
1324/*
1325 * This function is Linux specific.
1326 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1327 */
1328static int switch_ioscheduler(struct thread_data *td)
1329{
1330#ifdef FIO_HAVE_IOSCHED_SWITCH
1331 char tmp[256], tmp2[128], *p;
1332 FILE *f;
1333 int ret;
1334
1335 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1336 return 0;
1337
1338 assert(td->files && td->files[0]);
1339 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1340
1341 f = fopen(tmp, "r+");
1342 if (!f) {
1343 if (errno == ENOENT) {
1344 log_err("fio: os or kernel doesn't support IO scheduler"
1345 " switching\n");
1346 return 0;
1347 }
1348 td_verror(td, errno, "fopen iosched");
1349 return 1;
1350 }
1351
1352 /*
1353 * Set io scheduler.
1354 */
1355 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1356 if (ferror(f) || ret != 1) {
1357 td_verror(td, errno, "fwrite");
1358 fclose(f);
1359 return 1;
1360 }
1361
1362 rewind(f);
1363
1364 /*
1365 * Read back and check that the selected scheduler is now the default.
1366 */
1367 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1368 if (ferror(f) || ret < 0) {
1369 td_verror(td, errno, "fread");
1370 fclose(f);
1371 return 1;
1372 }
1373 tmp[ret] = '\0';
1374 /*
1375 * either a list of io schedulers or "none\n" is expected. Strip the
1376 * trailing newline.
1377 */
1378 p = tmp;
1379 strsep(&p, "\n");
1380
1381 /*
1382 * Write to "none" entry doesn't fail, so check the result here.
1383 */
1384 if (!strcmp(tmp, "none")) {
1385 log_err("fio: io scheduler is not tunable\n");
1386 fclose(f);
1387 return 0;
1388 }
1389
1390 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1391 if (!strstr(tmp, tmp2)) {
1392 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1393 td_verror(td, EINVAL, "iosched_switch");
1394 fclose(f);
1395 return 1;
1396 }
1397
1398 fclose(f);
1399 return 0;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405static bool keep_running(struct thread_data *td)
1406{
1407 unsigned long long limit;
1408
1409 if (td->done)
1410 return false;
1411 if (td->terminate)
1412 return false;
1413 if (td->o.time_based)
1414 return true;
1415 if (td->o.loops) {
1416 td->o.loops--;
1417 return true;
1418 }
1419 if (exceeds_number_ios(td))
1420 return false;
1421
1422 if (td->o.io_size)
1423 limit = td->o.io_size;
1424 else
1425 limit = td->o.size;
1426
1427 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1428 uint64_t diff;
1429
1430 /*
1431 * If the difference is less than the maximum IO size, we
1432 * are done.
1433 */
1434 diff = limit - ddir_rw_sum(td->io_bytes);
1435 if (diff < td_max_bs(td))
1436 return false;
1437
1438 if (fio_files_done(td) && !td->o.io_size)
1439 return false;
1440
1441 return true;
1442 }
1443
1444 return false;
1445}
1446
1447static int exec_string(struct thread_options *o, const char *string, const char *mode)
1448{
1449 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1450 int ret;
1451 char *str;
1452
1453 str = malloc(newlen);
1454 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1455
1456 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1457 ret = system(str);
1458 if (ret == -1)
1459 log_err("fio: exec of cmd <%s> failed\n", str);
1460
1461 free(str);
1462 return ret;
1463}
1464
1465/*
1466 * Dry run to compute correct state of numberio for verification.
1467 */
1468static uint64_t do_dry_run(struct thread_data *td)
1469{
1470 td_set_runstate(td, TD_RUNNING);
1471
1472 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1473 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1474 struct io_u *io_u;
1475 int ret;
1476
1477 if (td->terminate || td->done)
1478 break;
1479
1480 io_u = get_io_u(td);
1481 if (IS_ERR_OR_NULL(io_u))
1482 break;
1483
1484 io_u_set(td, io_u, IO_U_F_FLIGHT);
1485 io_u->error = 0;
1486 io_u->resid = 0;
1487 if (ddir_rw(acct_ddir(io_u)))
1488 td->io_issues[acct_ddir(io_u)]++;
1489 if (ddir_rw(io_u->ddir)) {
1490 io_u_mark_depth(td, 1);
1491 td->ts.total_io_u[io_u->ddir]++;
1492 }
1493
1494 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1495 td->o.do_verify &&
1496 td->o.verify != VERIFY_NONE &&
1497 !td->o.experimental_verify)
1498 log_io_piece(td, io_u);
1499
1500 ret = io_u_sync_complete(td, io_u);
1501 (void) ret;
1502 }
1503
1504 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1505}
1506
1507struct fork_data {
1508 struct thread_data *td;
1509 struct sk_out *sk_out;
1510};
1511
1512/*
1513 * Entry point for the thread based jobs. The process based jobs end up
1514 * here as well, after a little setup.
1515 */
1516static void *thread_main(void *data)
1517{
1518 struct fork_data *fd = data;
1519 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1520 struct thread_data *td = fd->td;
1521 struct thread_options *o = &td->o;
1522 struct sk_out *sk_out = fd->sk_out;
1523 uint64_t bytes_done[DDIR_RWDIR_CNT];
1524 int deadlock_loop_cnt;
1525 bool clear_state, did_some_io;
1526 int ret;
1527
1528 sk_out_assign(sk_out);
1529 free(fd);
1530
1531 if (!o->use_thread) {
1532 setsid();
1533 td->pid = getpid();
1534 } else
1535 td->pid = gettid();
1536
1537 fio_local_clock_init(o->use_thread);
1538
1539 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1540
1541 if (is_backend)
1542 fio_server_send_start(td);
1543
1544 INIT_FLIST_HEAD(&td->io_log_list);
1545 INIT_FLIST_HEAD(&td->io_hist_list);
1546 INIT_FLIST_HEAD(&td->verify_list);
1547 INIT_FLIST_HEAD(&td->trim_list);
1548 INIT_FLIST_HEAD(&td->next_rand_list);
1549 td->io_hist_tree = RB_ROOT;
1550
1551 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1552 if (ret) {
1553 td_verror(td, ret, "mutex_cond_init_pshared");
1554 goto err;
1555 }
1556 ret = cond_init_pshared(&td->verify_cond);
1557 if (ret) {
1558 td_verror(td, ret, "mutex_cond_pshared");
1559 goto err;
1560 }
1561
1562 td_set_runstate(td, TD_INITIALIZED);
1563 dprint(FD_MUTEX, "up startup_sem\n");
1564 fio_sem_up(startup_sem);
1565 dprint(FD_MUTEX, "wait on td->sem\n");
1566 fio_sem_down(td->sem);
1567 dprint(FD_MUTEX, "done waiting on td->sem\n");
1568
1569 /*
1570 * A new gid requires privilege, so we need to do this before setting
1571 * the uid.
1572 */
1573 if (o->gid != -1U && setgid(o->gid)) {
1574 td_verror(td, errno, "setgid");
1575 goto err;
1576 }
1577 if (o->uid != -1U && setuid(o->uid)) {
1578 td_verror(td, errno, "setuid");
1579 goto err;
1580 }
1581
1582 /*
1583 * Do this early, we don't want the compress threads to be limited
1584 * to the same CPUs as the IO workers. So do this before we set
1585 * any potential CPU affinity
1586 */
1587 if (iolog_compress_init(td, sk_out))
1588 goto err;
1589
1590 /*
1591 * If we have a gettimeofday() thread, make sure we exclude that
1592 * thread from this job
1593 */
1594 if (o->gtod_cpu)
1595 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1596
1597 /*
1598 * Set affinity first, in case it has an impact on the memory
1599 * allocations.
1600 */
1601 if (fio_option_is_set(o, cpumask)) {
1602 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1603 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1604 if (!ret) {
1605 log_err("fio: no CPUs set\n");
1606 log_err("fio: Try increasing number of available CPUs\n");
1607 td_verror(td, EINVAL, "cpus_split");
1608 goto err;
1609 }
1610 }
1611 ret = fio_setaffinity(td->pid, o->cpumask);
1612 if (ret == -1) {
1613 td_verror(td, errno, "cpu_set_affinity");
1614 goto err;
1615 }
1616 }
1617
1618#ifdef CONFIG_LIBNUMA
1619 /* numa node setup */
1620 if (fio_option_is_set(o, numa_cpunodes) ||
1621 fio_option_is_set(o, numa_memnodes)) {
1622 struct bitmask *mask;
1623
1624 if (numa_available() < 0) {
1625 td_verror(td, errno, "Does not support NUMA API\n");
1626 goto err;
1627 }
1628
1629 if (fio_option_is_set(o, numa_cpunodes)) {
1630 mask = numa_parse_nodestring(o->numa_cpunodes);
1631 ret = numa_run_on_node_mask(mask);
1632 numa_free_nodemask(mask);
1633 if (ret == -1) {
1634 td_verror(td, errno, \
1635 "numa_run_on_node_mask failed\n");
1636 goto err;
1637 }
1638 }
1639
1640 if (fio_option_is_set(o, numa_memnodes)) {
1641 mask = NULL;
1642 if (o->numa_memnodes)
1643 mask = numa_parse_nodestring(o->numa_memnodes);
1644
1645 switch (o->numa_mem_mode) {
1646 case MPOL_INTERLEAVE:
1647 numa_set_interleave_mask(mask);
1648 break;
1649 case MPOL_BIND:
1650 numa_set_membind(mask);
1651 break;
1652 case MPOL_LOCAL:
1653 numa_set_localalloc();
1654 break;
1655 case MPOL_PREFERRED:
1656 numa_set_preferred(o->numa_mem_prefer_node);
1657 break;
1658 case MPOL_DEFAULT:
1659 default:
1660 break;
1661 }
1662
1663 if (mask)
1664 numa_free_nodemask(mask);
1665
1666 }
1667 }
1668#endif
1669
1670 if (fio_pin_memory(td))
1671 goto err;
1672
1673 /*
1674 * May alter parameters that init_io_u() will use, so we need to
1675 * do this first.
1676 */
1677 if (init_iolog(td))
1678 goto err;
1679
1680 if (init_io_u(td))
1681 goto err;
1682
1683 if (o->verify_async && verify_async_init(td))
1684 goto err;
1685
1686 if (fio_option_is_set(o, ioprio) ||
1687 fio_option_is_set(o, ioprio_class)) {
1688 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1689 if (ret == -1) {
1690 td_verror(td, errno, "ioprio_set");
1691 goto err;
1692 }
1693 }
1694
1695 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1696 goto err;
1697
1698 errno = 0;
1699 if (nice(o->nice) == -1 && errno != 0) {
1700 td_verror(td, errno, "nice");
1701 goto err;
1702 }
1703
1704 if (o->ioscheduler && switch_ioscheduler(td))
1705 goto err;
1706
1707 if (!o->create_serialize && setup_files(td))
1708 goto err;
1709
1710 if (td_io_init(td))
1711 goto err;
1712
1713 if (!init_random_map(td))
1714 goto err;
1715
1716 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1717 goto err;
1718
1719 if (o->pre_read && !pre_read_files(td))
1720 goto err;
1721
1722 fio_verify_init(td);
1723
1724 if (rate_submit_init(td, sk_out))
1725 goto err;
1726
1727 set_epoch_time(td, o->log_unix_epoch);
1728 fio_getrusage(&td->ru_start);
1729 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1730 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1731 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1732
1733 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1734 o->ratemin[DDIR_TRIM]) {
1735 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1736 sizeof(td->bw_sample_time));
1737 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1738 sizeof(td->bw_sample_time));
1739 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1740 sizeof(td->bw_sample_time));
1741 }
1742
1743 memset(bytes_done, 0, sizeof(bytes_done));
1744 clear_state = false;
1745 did_some_io = false;
1746
1747 while (keep_running(td)) {
1748 uint64_t verify_bytes;
1749
1750 fio_gettime(&td->start, NULL);
1751 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1752
1753 if (clear_state) {
1754 clear_io_state(td, 0);
1755
1756 if (o->unlink_each_loop && unlink_all_files(td))
1757 break;
1758 }
1759
1760 prune_io_piece_log(td);
1761
1762 if (td->o.verify_only && td_write(td))
1763 verify_bytes = do_dry_run(td);
1764 else {
1765 do_io(td, bytes_done);
1766
1767 if (!ddir_rw_sum(bytes_done)) {
1768 fio_mark_td_terminate(td);
1769 verify_bytes = 0;
1770 } else {
1771 verify_bytes = bytes_done[DDIR_WRITE] +
1772 bytes_done[DDIR_TRIM];
1773 }
1774 }
1775
1776 /*
1777 * If we took too long to shut down, the main thread could
1778 * already consider us reaped/exited. If that happens, break
1779 * out and clean up.
1780 */
1781 if (td->runstate >= TD_EXITED)
1782 break;
1783
1784 clear_state = true;
1785
1786 /*
1787 * Make sure we've successfully updated the rusage stats
1788 * before waiting on the stat mutex. Otherwise we could have
1789 * the stat thread holding stat mutex and waiting for
1790 * the rusage_sem, which would never get upped because
1791 * this thread is waiting for the stat mutex.
1792 */
1793 deadlock_loop_cnt = 0;
1794 do {
1795 check_update_rusage(td);
1796 if (!fio_sem_down_trylock(stat_sem))
1797 break;
1798 usleep(1000);
1799 if (deadlock_loop_cnt++ > 5000) {
1800 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1801 td->error = EDEADLK;
1802 goto err;
1803 }
1804 } while (1);
1805
1806 if (td_read(td) && td->io_bytes[DDIR_READ])
1807 update_runtime(td, elapsed_us, DDIR_READ);
1808 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1809 update_runtime(td, elapsed_us, DDIR_WRITE);
1810 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1811 update_runtime(td, elapsed_us, DDIR_TRIM);
1812 fio_gettime(&td->start, NULL);
1813 fio_sem_up(stat_sem);
1814
1815 if (td->error || td->terminate)
1816 break;
1817
1818 if (!o->do_verify ||
1819 o->verify == VERIFY_NONE ||
1820 td_ioengine_flagged(td, FIO_UNIDIR))
1821 continue;
1822
1823 if (ddir_rw_sum(bytes_done))
1824 did_some_io = true;
1825
1826 clear_io_state(td, 0);
1827
1828 fio_gettime(&td->start, NULL);
1829
1830 do_verify(td, verify_bytes);
1831
1832 /*
1833 * See comment further up for why this is done here.
1834 */
1835 check_update_rusage(td);
1836
1837 fio_sem_down(stat_sem);
1838 update_runtime(td, elapsed_us, DDIR_READ);
1839 fio_gettime(&td->start, NULL);
1840 fio_sem_up(stat_sem);
1841
1842 if (td->error || td->terminate)
1843 break;
1844 }
1845
1846 /*
1847 * If td ended up with no I/O when it should have had,
1848 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1849 * (Are we not missing other flags that can be ignored ?)
1850 */
1851 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1852 !did_some_io && !td->o.create_only &&
1853 !(td_ioengine_flagged(td, FIO_NOIO) ||
1854 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1855 log_err("%s: No I/O performed by %s, "
1856 "perhaps try --debug=io option for details?\n",
1857 td->o.name, td->io_ops->name);
1858
1859 td_set_runstate(td, TD_FINISHING);
1860
1861 update_rusage_stat(td);
1862 td->ts.total_run_time = mtime_since_now(&td->epoch);
1863 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1864 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1865 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1866
1867 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1868 (td->o.verify != VERIFY_NONE && td_write(td)))
1869 verify_save_state(td->thread_number);
1870
1871 fio_unpin_memory(td);
1872
1873 td_writeout_logs(td, true);
1874
1875 iolog_compress_exit(td);
1876 rate_submit_exit(td);
1877
1878 if (o->exec_postrun)
1879 exec_string(o, o->exec_postrun, (const char *)"postrun");
1880
1881 if (exitall_on_terminate || (o->exitall_error && td->error))
1882 fio_terminate_threads(td->groupid);
1883
1884err:
1885 if (td->error)
1886 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1887 td->verror);
1888
1889 if (o->verify_async)
1890 verify_async_exit(td);
1891
1892 close_and_free_files(td);
1893 cleanup_io_u(td);
1894 close_ioengine(td);
1895 cgroup_shutdown(td, &cgroup_mnt);
1896 verify_free_state(td);
1897
1898 if (td->zone_state_index) {
1899 int i;
1900
1901 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1902 free(td->zone_state_index[i]);
1903 free(td->zone_state_index);
1904 td->zone_state_index = NULL;
1905 }
1906
1907 if (fio_option_is_set(o, cpumask)) {
1908 ret = fio_cpuset_exit(&o->cpumask);
1909 if (ret)
1910 td_verror(td, ret, "fio_cpuset_exit");
1911 }
1912
1913 /*
1914 * do this very late, it will log file closing as well
1915 */
1916 if (o->write_iolog_file)
1917 write_iolog_close(td);
1918
1919 td_set_runstate(td, TD_EXITED);
1920
1921 /*
1922 * Do this last after setting our runstate to exited, so we
1923 * know that the stat thread is signaled.
1924 */
1925 check_update_rusage(td);
1926
1927 sk_out_drop();
1928 return (void *) (uintptr_t) td->error;
1929}
1930
1931/*
1932 * Run over the job map and reap the threads that have exited, if any.
1933 */
1934static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1935 uint64_t *m_rate)
1936{
1937 struct thread_data *td;
1938 unsigned int cputhreads, realthreads, pending;
1939 int i, status, ret;
1940
1941 /*
1942 * reap exited threads (TD_EXITED -> TD_REAPED)
1943 */
1944 realthreads = pending = cputhreads = 0;
1945 for_each_td(td, i) {
1946 int flags = 0;
1947
1948 if (!strcmp(td->o.ioengine, "cpuio"))
1949 cputhreads++;
1950 else
1951 realthreads++;
1952
1953 if (!td->pid) {
1954 pending++;
1955 continue;
1956 }
1957 if (td->runstate == TD_REAPED)
1958 continue;
1959 if (td->o.use_thread) {
1960 if (td->runstate == TD_EXITED) {
1961 td_set_runstate(td, TD_REAPED);
1962 goto reaped;
1963 }
1964 continue;
1965 }
1966
1967 flags = WNOHANG;
1968 if (td->runstate == TD_EXITED)
1969 flags = 0;
1970
1971 /*
1972 * check if someone quit or got killed in an unusual way
1973 */
1974 ret = waitpid(td->pid, &status, flags);
1975 if (ret < 0) {
1976 if (errno == ECHILD) {
1977 log_err("fio: pid=%d disappeared %d\n",
1978 (int) td->pid, td->runstate);
1979 td->sig = ECHILD;
1980 td_set_runstate(td, TD_REAPED);
1981 goto reaped;
1982 }
1983 perror("waitpid");
1984 } else if (ret == td->pid) {
1985 if (WIFSIGNALED(status)) {
1986 int sig = WTERMSIG(status);
1987
1988 if (sig != SIGTERM && sig != SIGUSR2)
1989 log_err("fio: pid=%d, got signal=%d\n",
1990 (int) td->pid, sig);
1991 td->sig = sig;
1992 td_set_runstate(td, TD_REAPED);
1993 goto reaped;
1994 }
1995 if (WIFEXITED(status)) {
1996 if (WEXITSTATUS(status) && !td->error)
1997 td->error = WEXITSTATUS(status);
1998
1999 td_set_runstate(td, TD_REAPED);
2000 goto reaped;
2001 }
2002 }
2003
2004 /*
2005 * If the job is stuck, do a forceful timeout of it and
2006 * move on.
2007 */
2008 if (td->terminate &&
2009 td->runstate < TD_FSYNCING &&
2010 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2011 log_err("fio: job '%s' (state=%d) hasn't exited in "
2012 "%lu seconds, it appears to be stuck. Doing "
2013 "forceful exit of this job.\n",
2014 td->o.name, td->runstate,
2015 (unsigned long) time_since_now(&td->terminate_time));
2016 td_set_runstate(td, TD_REAPED);
2017 goto reaped;
2018 }
2019
2020 /*
2021 * thread is not dead, continue
2022 */
2023 pending++;
2024 continue;
2025reaped:
2026 (*nr_running)--;
2027 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2028 (*t_rate) -= ddir_rw_sum(td->o.rate);
2029 if (!td->pid)
2030 pending--;
2031
2032 if (td->error)
2033 exit_value++;
2034
2035 done_secs += mtime_since_now(&td->epoch) / 1000;
2036 profile_td_exit(td);
2037 }
2038
2039 if (*nr_running == cputhreads && !pending && realthreads)
2040 fio_terminate_threads(TERMINATE_ALL);
2041}
2042
2043static bool __check_trigger_file(void)
2044{
2045 struct stat sb;
2046
2047 if (!trigger_file)
2048 return false;
2049
2050 if (stat(trigger_file, &sb))
2051 return false;
2052
2053 if (unlink(trigger_file) < 0)
2054 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2055 strerror(errno));
2056
2057 return true;
2058}
2059
2060static bool trigger_timedout(void)
2061{
2062 if (trigger_timeout)
2063 if (time_since_genesis() >= trigger_timeout) {
2064 trigger_timeout = 0;
2065 return true;
2066 }
2067
2068 return false;
2069}
2070
2071void exec_trigger(const char *cmd)
2072{
2073 int ret;
2074
2075 if (!cmd || cmd[0] == '\0')
2076 return;
2077
2078 ret = system(cmd);
2079 if (ret == -1)
2080 log_err("fio: failed executing %s trigger\n", cmd);
2081}
2082
2083void check_trigger_file(void)
2084{
2085 if (__check_trigger_file() || trigger_timedout()) {
2086 if (nr_clients)
2087 fio_clients_send_trigger(trigger_remote_cmd);
2088 else {
2089 verify_save_state(IO_LIST_ALL);
2090 fio_terminate_threads(TERMINATE_ALL);
2091 exec_trigger(trigger_cmd);
2092 }
2093 }
2094}
2095
2096static int fio_verify_load_state(struct thread_data *td)
2097{
2098 int ret;
2099
2100 if (!td->o.verify_state)
2101 return 0;
2102
2103 if (is_backend) {
2104 void *data;
2105
2106 ret = fio_server_get_verify_state(td->o.name,
2107 td->thread_number - 1, &data);
2108 if (!ret)
2109 verify_assign_state(td, data);
2110 } else
2111 ret = verify_load_state(td, "local");
2112
2113 return ret;
2114}
2115
2116static void do_usleep(unsigned int usecs)
2117{
2118 check_for_running_stats();
2119 check_trigger_file();
2120 usleep(usecs);
2121}
2122
2123static bool check_mount_writes(struct thread_data *td)
2124{
2125 struct fio_file *f;
2126 unsigned int i;
2127
2128 if (!td_write(td) || td->o.allow_mounted_write)
2129 return false;
2130
2131 /*
2132 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2133 * are mkfs'd and mounted.
2134 */
2135 for_each_file(td, f, i) {
2136#ifdef FIO_HAVE_CHARDEV_SIZE
2137 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2138#else
2139 if (f->filetype != FIO_TYPE_BLOCK)
2140#endif
2141 continue;
2142 if (device_is_mounted(f->file_name))
2143 goto mounted;
2144 }
2145
2146 return false;
2147mounted:
2148 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2149 return true;
2150}
2151
2152static bool waitee_running(struct thread_data *me)
2153{
2154 const char *waitee = me->o.wait_for;
2155 const char *self = me->o.name;
2156 struct thread_data *td;
2157 int i;
2158
2159 if (!waitee)
2160 return false;
2161
2162 for_each_td(td, i) {
2163 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2164 continue;
2165
2166 if (td->runstate < TD_EXITED) {
2167 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2168 self, td->o.name,
2169 runstate_to_name(td->runstate));
2170 return true;
2171 }
2172 }
2173
2174 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2175 return false;
2176}
2177
2178/*
2179 * Main function for kicking off and reaping jobs, as needed.
2180 */
2181static void run_threads(struct sk_out *sk_out)
2182{
2183 struct thread_data *td;
2184 unsigned int i, todo, nr_running, nr_started;
2185 uint64_t m_rate, t_rate;
2186 uint64_t spent;
2187
2188 if (fio_gtod_offload && fio_start_gtod_thread())
2189 return;
2190
2191 fio_idle_prof_init();
2192
2193 set_sig_handlers();
2194
2195 nr_thread = nr_process = 0;
2196 for_each_td(td, i) {
2197 if (check_mount_writes(td))
2198 return;
2199 if (td->o.use_thread)
2200 nr_thread++;
2201 else
2202 nr_process++;
2203 }
2204
2205 if (output_format & FIO_OUTPUT_NORMAL) {
2206 log_info("Starting ");
2207 if (nr_thread)
2208 log_info("%d thread%s", nr_thread,
2209 nr_thread > 1 ? "s" : "");
2210 if (nr_process) {
2211 if (nr_thread)
2212 log_info(" and ");
2213 log_info("%d process%s", nr_process,
2214 nr_process > 1 ? "es" : "");
2215 }
2216 log_info("\n");
2217 log_info_flush();
2218 }
2219
2220 todo = thread_number;
2221 nr_running = 0;
2222 nr_started = 0;
2223 m_rate = t_rate = 0;
2224
2225 for_each_td(td, i) {
2226 print_status_init(td->thread_number - 1);
2227
2228 if (!td->o.create_serialize)
2229 continue;
2230
2231 if (fio_verify_load_state(td))
2232 goto reap;
2233
2234 /*
2235 * do file setup here so it happens sequentially,
2236 * we don't want X number of threads getting their
2237 * client data interspersed on disk
2238 */
2239 if (setup_files(td)) {
2240reap:
2241 exit_value++;
2242 if (td->error)
2243 log_err("fio: pid=%d, err=%d/%s\n",
2244 (int) td->pid, td->error, td->verror);
2245 td_set_runstate(td, TD_REAPED);
2246 todo--;
2247 } else {
2248 struct fio_file *f;
2249 unsigned int j;
2250
2251 /*
2252 * for sharing to work, each job must always open
2253 * its own files. so close them, if we opened them
2254 * for creation
2255 */
2256 for_each_file(td, f, j) {
2257 if (fio_file_open(f))
2258 td_io_close_file(td, f);
2259 }
2260 }
2261 }
2262
2263 /* start idle threads before io threads start to run */
2264 fio_idle_prof_start();
2265
2266 set_genesis_time();
2267
2268 while (todo) {
2269 struct thread_data *map[REAL_MAX_JOBS];
2270 struct timespec this_start;
2271 int this_jobs = 0, left;
2272 struct fork_data *fd;
2273
2274 /*
2275 * create threads (TD_NOT_CREATED -> TD_CREATED)
2276 */
2277 for_each_td(td, i) {
2278 if (td->runstate != TD_NOT_CREATED)
2279 continue;
2280
2281 /*
2282 * never got a chance to start, killed by other
2283 * thread for some reason
2284 */
2285 if (td->terminate) {
2286 todo--;
2287 continue;
2288 }
2289
2290 if (td->o.start_delay) {
2291 spent = utime_since_genesis();
2292
2293 if (td->o.start_delay > spent)
2294 continue;
2295 }
2296
2297 if (td->o.stonewall && (nr_started || nr_running)) {
2298 dprint(FD_PROCESS, "%s: stonewall wait\n",
2299 td->o.name);
2300 break;
2301 }
2302
2303 if (waitee_running(td)) {
2304 dprint(FD_PROCESS, "%s: waiting for %s\n",
2305 td->o.name, td->o.wait_for);
2306 continue;
2307 }
2308
2309 init_disk_util(td);
2310
2311 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2312 td->update_rusage = 0;
2313
2314 /*
2315 * Set state to created. Thread will transition
2316 * to TD_INITIALIZED when it's done setting up.
2317 */
2318 td_set_runstate(td, TD_CREATED);
2319 map[this_jobs++] = td;
2320 nr_started++;
2321
2322 fd = calloc(1, sizeof(*fd));
2323 fd->td = td;
2324 fd->sk_out = sk_out;
2325
2326 if (td->o.use_thread) {
2327 int ret;
2328
2329 dprint(FD_PROCESS, "will pthread_create\n");
2330 ret = pthread_create(&td->thread, NULL,
2331 thread_main, fd);
2332 if (ret) {
2333 log_err("pthread_create: %s\n",
2334 strerror(ret));
2335 free(fd);
2336 nr_started--;
2337 break;
2338 }
2339 fd = NULL;
2340 ret = pthread_detach(td->thread);
2341 if (ret)
2342 log_err("pthread_detach: %s",
2343 strerror(ret));
2344 } else {
2345 pid_t pid;
2346 dprint(FD_PROCESS, "will fork\n");
2347 pid = fork();
2348 if (!pid) {
2349 int ret;
2350
2351 ret = (int)(uintptr_t)thread_main(fd);
2352 _exit(ret);
2353 } else if (i == fio_debug_jobno)
2354 *fio_debug_jobp = pid;
2355 }
2356 dprint(FD_MUTEX, "wait on startup_sem\n");
2357 if (fio_sem_down_timeout(startup_sem, 10000)) {
2358 log_err("fio: job startup hung? exiting.\n");
2359 fio_terminate_threads(TERMINATE_ALL);
2360 fio_abort = 1;
2361 nr_started--;
2362 free(fd);
2363 break;
2364 }
2365 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2366 }
2367
2368 /*
2369 * Wait for the started threads to transition to
2370 * TD_INITIALIZED.
2371 */
2372 fio_gettime(&this_start, NULL);
2373 left = this_jobs;
2374 while (left && !fio_abort) {
2375 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2376 break;
2377
2378 do_usleep(100000);
2379
2380 for (i = 0; i < this_jobs; i++) {
2381 td = map[i];
2382 if (!td)
2383 continue;
2384 if (td->runstate == TD_INITIALIZED) {
2385 map[i] = NULL;
2386 left--;
2387 } else if (td->runstate >= TD_EXITED) {
2388 map[i] = NULL;
2389 left--;
2390 todo--;
2391 nr_running++; /* work-around... */
2392 }
2393 }
2394 }
2395
2396 if (left) {
2397 log_err("fio: %d job%s failed to start\n", left,
2398 left > 1 ? "s" : "");
2399 for (i = 0; i < this_jobs; i++) {
2400 td = map[i];
2401 if (!td)
2402 continue;
2403 kill(td->pid, SIGTERM);
2404 }
2405 break;
2406 }
2407
2408 /*
2409 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2410 */
2411 for_each_td(td, i) {
2412 if (td->runstate != TD_INITIALIZED)
2413 continue;
2414
2415 if (in_ramp_time(td))
2416 td_set_runstate(td, TD_RAMP);
2417 else
2418 td_set_runstate(td, TD_RUNNING);
2419 nr_running++;
2420 nr_started--;
2421 m_rate += ddir_rw_sum(td->o.ratemin);
2422 t_rate += ddir_rw_sum(td->o.rate);
2423 todo--;
2424 fio_sem_up(td->sem);
2425 }
2426
2427 reap_threads(&nr_running, &t_rate, &m_rate);
2428
2429 if (todo)
2430 do_usleep(100000);
2431 }
2432
2433 while (nr_running) {
2434 reap_threads(&nr_running, &t_rate, &m_rate);
2435 do_usleep(10000);
2436 }
2437
2438 fio_idle_prof_stop();
2439
2440 update_io_ticks();
2441}
2442
2443static void free_disk_util(void)
2444{
2445 disk_util_prune_entries();
2446 helper_thread_destroy();
2447}
2448
2449int fio_backend(struct sk_out *sk_out)
2450{
2451 struct thread_data *td;
2452 int i;
2453
2454 if (exec_profile) {
2455 if (load_profile(exec_profile))
2456 return 1;
2457 free(exec_profile);
2458 exec_profile = NULL;
2459 }
2460 if (!thread_number)
2461 return 0;
2462
2463 if (write_bw_log) {
2464 struct log_params p = {
2465 .log_type = IO_LOG_TYPE_BW,
2466 };
2467
2468 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2469 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2470 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2471 }
2472
2473 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2474 if (startup_sem == NULL)
2475 return 1;
2476
2477 set_genesis_time();
2478 stat_init();
2479 helper_thread_create(startup_sem, sk_out);
2480
2481 cgroup_list = smalloc(sizeof(*cgroup_list));
2482 if (cgroup_list)
2483 INIT_FLIST_HEAD(cgroup_list);
2484
2485 run_threads(sk_out);
2486
2487 helper_thread_exit();
2488
2489 if (!fio_abort) {
2490 __show_run_stats();
2491 if (write_bw_log) {
2492 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2493 struct io_log *log = agg_io_log[i];
2494
2495 flush_log(log, false);
2496 free_log(log);
2497 }
2498 }
2499 }
2500
2501 for_each_td(td, i) {
2502 steadystate_free(td);
2503 fio_options_free(td);
2504 if (td->rusage_sem) {
2505 fio_sem_remove(td->rusage_sem);
2506 td->rusage_sem = NULL;
2507 }
2508 fio_sem_remove(td->sem);
2509 td->sem = NULL;
2510 }
2511
2512 free_disk_util();
2513 if (cgroup_list) {
2514 cgroup_kill(cgroup_list);
2515 sfree(cgroup_list);
2516 }
2517 sfree(cgroup_mnt);
2518
2519 fio_sem_remove(startup_sem);
2520 stat_exit();
2521 return exit_value;
2522}