Makefile: Suppress `-Wimplicit-fallthrough` when compiling `lex.yy`
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_segments = 0;
66unsigned int cur_segment = 0;
67unsigned int stat_number = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72#else
73pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74#endif
75
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void sig_int(int sig)
79{
80 if (nr_segments) {
81 if (is_backend)
82 fio_server_got_signal(sig);
83 else {
84 log_info("\nfio: terminating on signal %d\n", sig);
85 log_info_flush();
86 exit_value = 128;
87 }
88
89 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 }
91}
92
93void sig_show_status(int sig)
94{
95 show_running_run_stats();
96}
97
98static void set_sig_handlers(void)
99{
100 struct sigaction act;
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGINT, &act, NULL);
106
107 memset(&act, 0, sizeof(act));
108 act.sa_handler = sig_int;
109 act.sa_flags = SA_RESTART;
110 sigaction(SIGTERM, &act, NULL);
111
112/* Windows uses SIGBREAK as a quit signal from other applications */
113#ifdef WIN32
114 memset(&act, 0, sizeof(act));
115 act.sa_handler = sig_int;
116 act.sa_flags = SA_RESTART;
117 sigaction(SIGBREAK, &act, NULL);
118#endif
119
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_show_status;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGUSR1, &act, NULL);
124
125 if (is_backend) {
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_int;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGPIPE, &act, NULL);
130 }
131}
132
133/*
134 * Check if we are above the minimum rate given.
135 */
136static bool __check_min_rate(struct thread_data *td, struct timespec *now,
137 enum fio_ddir ddir)
138{
139 unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
140 unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
141 unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
142 unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
143
144 assert(ddir_rw(ddir));
145
146 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
147 return false;
148
149 /*
150 * allow a 2 second settle period in the beginning
151 */
152 if (mtime_since(&td->start, now) < 2000)
153 return false;
154
155 /*
156 * if last_rate_check_blocks or last_rate_check_bytes is set,
157 * we can compute a rate per ratecycle
158 */
159 if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
160 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
161 if (spent < td->o.ratecycle || spent==0)
162 return false;
163
164 if (td->o.ratemin[ddir]) {
165 /*
166 * check bandwidth specified rate
167 */
168 unsigned long long current_rate_bytes =
169 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
170 if (current_rate_bytes < option_rate_bytes_min) {
171 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
172 td->o.name, option_rate_bytes_min, current_rate_bytes);
173 return true;
174 }
175 } else {
176 /*
177 * checks iops specified rate
178 */
179 unsigned long long current_rate_iops =
180 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
181
182 if (current_rate_iops < option_rate_iops_min) {
183 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
184 td->o.name, option_rate_iops_min, current_rate_iops);
185 return true;
186 }
187 }
188 }
189
190 td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
191 td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
192 memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
193 return false;
194}
195
196static bool check_min_rate(struct thread_data *td, struct timespec *now)
197{
198 bool ret = false;
199
200 for_each_rw_ddir(ddir) {
201 if (td->bytes_done[ddir])
202 ret |= __check_min_rate(td, now, ddir);
203 }
204
205 return ret;
206}
207
208/*
209 * When job exits, we can cancel the in-flight IO if we are using async
210 * io. Attempt to do so.
211 */
212static void cleanup_pending_aio(struct thread_data *td)
213{
214 int r;
215
216 /*
217 * get immediately available events, if any
218 */
219 r = io_u_queued_complete(td, 0);
220
221 /*
222 * now cancel remaining active events
223 */
224 if (td->io_ops->cancel) {
225 struct io_u *io_u;
226 int i;
227
228 io_u_qiter(&td->io_u_all, io_u, i) {
229 if (io_u->flags & IO_U_F_FLIGHT) {
230 r = td->io_ops->cancel(td, io_u);
231 if (!r)
232 put_io_u(td, io_u);
233 }
234 }
235 }
236
237 if (td->cur_depth)
238 r = io_u_queued_complete(td, td->cur_depth);
239}
240
241/*
242 * Helper to handle the final sync of a file. Works just like the normal
243 * io path, just does everything sync.
244 */
245static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
246{
247 struct io_u *io_u = __get_io_u(td);
248 enum fio_q_status ret;
249
250 if (!io_u)
251 return true;
252
253 io_u->ddir = DDIR_SYNC;
254 io_u->file = f;
255 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
256
257 if (td_io_prep(td, io_u)) {
258 put_io_u(td, io_u);
259 return true;
260 }
261
262requeue:
263 ret = td_io_queue(td, io_u);
264 switch (ret) {
265 case FIO_Q_QUEUED:
266 td_io_commit(td);
267 if (io_u_queued_complete(td, 1) < 0)
268 return true;
269 break;
270 case FIO_Q_COMPLETED:
271 if (io_u->error) {
272 td_verror(td, io_u->error, "td_io_queue");
273 return true;
274 }
275
276 if (io_u_sync_complete(td, io_u) < 0)
277 return true;
278 break;
279 case FIO_Q_BUSY:
280 td_io_commit(td);
281 goto requeue;
282 }
283
284 return false;
285}
286
287static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
288{
289 int ret, ret2;
290
291 if (fio_file_open(f))
292 return fio_io_sync(td, f);
293
294 if (td_io_open_file(td, f))
295 return 1;
296
297 ret = fio_io_sync(td, f);
298 ret2 = 0;
299 if (fio_file_open(f))
300 ret2 = td_io_close_file(td, f);
301 return (ret || ret2);
302}
303
304static inline void __update_ts_cache(struct thread_data *td)
305{
306 fio_gettime(&td->ts_cache, NULL);
307}
308
309static inline void update_ts_cache(struct thread_data *td)
310{
311 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
312 __update_ts_cache(td);
313}
314
315static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
316{
317 if (in_ramp_time(td))
318 return false;
319 if (!td->o.timeout)
320 return false;
321 if (utime_since(&td->epoch, t) >= td->o.timeout)
322 return true;
323
324 return false;
325}
326
327/*
328 * We need to update the runtime consistently in ms, but keep a running
329 * tally of the current elapsed time in microseconds for sub millisecond
330 * updates.
331 */
332static inline void update_runtime(struct thread_data *td,
333 unsigned long long *elapsed_us,
334 const enum fio_ddir ddir)
335{
336 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
337 return;
338
339 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
340 elapsed_us[ddir] += utime_since_now(&td->start);
341 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
342}
343
344static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
345 int *retptr)
346{
347 int ret = *retptr;
348
349 if (ret < 0 || td->error) {
350 int err = td->error;
351 enum error_type_bit eb;
352
353 if (ret < 0)
354 err = -ret;
355
356 eb = td_error_type(ddir, err);
357 if (!(td->o.continue_on_error & (1 << eb)))
358 return true;
359
360 if (td_non_fatal_error(td, eb, err)) {
361 /*
362 * Continue with the I/Os in case of
363 * a non fatal error.
364 */
365 update_error_count(td, err);
366 td_clear_error(td);
367 *retptr = 0;
368 return false;
369 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
370 /*
371 * We expect to hit this error if
372 * fill_device option is set.
373 */
374 td_clear_error(td);
375 fio_mark_td_terminate(td);
376 return true;
377 } else {
378 /*
379 * Stop the I/O in case of a fatal
380 * error.
381 */
382 update_error_count(td, err);
383 return true;
384 }
385 }
386
387 return false;
388}
389
390static void check_update_rusage(struct thread_data *td)
391{
392 if (td->update_rusage) {
393 td->update_rusage = 0;
394 update_rusage_stat(td);
395 fio_sem_up(td->rusage_sem);
396 }
397}
398
399static int wait_for_completions(struct thread_data *td, struct timespec *time)
400{
401 const int full = queue_full(td);
402 int min_evts = 0;
403 int ret;
404
405 if (td->flags & TD_F_REGROW_LOGS)
406 return io_u_quiesce(td);
407
408 /*
409 * if the queue is full, we MUST reap at least 1 event
410 */
411 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
412 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
413 min_evts = 1;
414
415 if (time && should_check_rate(td))
416 fio_gettime(time, NULL);
417
418 do {
419 ret = io_u_queued_complete(td, min_evts);
420 if (ret < 0)
421 break;
422 } while (full && (td->cur_depth > td->o.iodepth_low));
423
424 return ret;
425}
426
427int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
428 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
429 struct timespec *comp_time)
430{
431 switch (*ret) {
432 case FIO_Q_COMPLETED:
433 if (io_u->error) {
434 *ret = -io_u->error;
435 clear_io_u(td, io_u);
436 } else if (io_u->resid) {
437 long long bytes = io_u->xfer_buflen - io_u->resid;
438 struct fio_file *f = io_u->file;
439
440 if (bytes_issued)
441 *bytes_issued += bytes;
442
443 if (!from_verify)
444 trim_io_piece(io_u);
445
446 /*
447 * zero read, fail
448 */
449 if (!bytes) {
450 if (!from_verify)
451 unlog_io_piece(td, io_u);
452 td_verror(td, EIO, "full resid");
453 put_io_u(td, io_u);
454 break;
455 }
456
457 io_u->xfer_buflen = io_u->resid;
458 io_u->xfer_buf += bytes;
459 io_u->offset += bytes;
460
461 if (ddir_rw(io_u->ddir))
462 td->ts.short_io_u[io_u->ddir]++;
463
464 if (io_u->offset == f->real_file_size)
465 goto sync_done;
466
467 requeue_io_u(td, &io_u);
468 } else {
469sync_done:
470 if (comp_time && should_check_rate(td))
471 fio_gettime(comp_time, NULL);
472
473 *ret = io_u_sync_complete(td, io_u);
474 if (*ret < 0)
475 break;
476 }
477
478 if (td->flags & TD_F_REGROW_LOGS)
479 regrow_logs(td);
480
481 /*
482 * when doing I/O (not when verifying),
483 * check for any errors that are to be ignored
484 */
485 if (!from_verify)
486 break;
487
488 return 0;
489 case FIO_Q_QUEUED:
490 /*
491 * if the engine doesn't have a commit hook,
492 * the io_u is really queued. if it does have such
493 * a hook, it has to call io_u_queued() itself.
494 */
495 if (td->io_ops->commit == NULL)
496 io_u_queued(td, io_u);
497 if (bytes_issued)
498 *bytes_issued += io_u->xfer_buflen;
499 break;
500 case FIO_Q_BUSY:
501 if (!from_verify)
502 unlog_io_piece(td, io_u);
503 requeue_io_u(td, &io_u);
504 td_io_commit(td);
505 break;
506 default:
507 assert(*ret < 0);
508 td_verror(td, -(*ret), "td_io_queue");
509 break;
510 }
511
512 if (break_on_this_error(td, ddir, ret))
513 return 1;
514
515 return 0;
516}
517
518static inline bool io_in_polling(struct thread_data *td)
519{
520 return !td->o.iodepth_batch_complete_min &&
521 !td->o.iodepth_batch_complete_max;
522}
523/*
524 * Unlinks files from thread data fio_file structure
525 */
526static int unlink_all_files(struct thread_data *td)
527{
528 struct fio_file *f;
529 unsigned int i;
530 int ret = 0;
531
532 for_each_file(td, f, i) {
533 if (f->filetype != FIO_TYPE_FILE)
534 continue;
535 ret = td_io_unlink_file(td, f);
536 if (ret)
537 break;
538 }
539
540 if (ret)
541 td_verror(td, ret, "unlink_all_files");
542
543 return ret;
544}
545
546/*
547 * Check if io_u will overlap an in-flight IO in the queue
548 */
549bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
550{
551 bool overlap;
552 struct io_u *check_io_u;
553 unsigned long long x1, x2, y1, y2;
554 int i;
555
556 x1 = io_u->offset;
557 x2 = io_u->offset + io_u->buflen;
558 overlap = false;
559 io_u_qiter(q, check_io_u, i) {
560 if (check_io_u->flags & IO_U_F_FLIGHT) {
561 y1 = check_io_u->offset;
562 y2 = check_io_u->offset + check_io_u->buflen;
563
564 if (x1 < y2 && y1 < x2) {
565 overlap = true;
566 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
567 x1, io_u->buflen,
568 y1, check_io_u->buflen);
569 break;
570 }
571 }
572 }
573
574 return overlap;
575}
576
577static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
578{
579 /*
580 * Check for overlap if the user asked us to, and we have
581 * at least one IO in flight besides this one.
582 */
583 if (td->o.serialize_overlap && td->cur_depth > 1 &&
584 in_flight_overlap(&td->io_u_all, io_u))
585 return FIO_Q_BUSY;
586
587 return td_io_queue(td, io_u);
588}
589
590/*
591 * The main verify engine. Runs over the writes we previously submitted,
592 * reads the blocks back in, and checks the crc/md5 of the data.
593 */
594static void do_verify(struct thread_data *td, uint64_t verify_bytes)
595{
596 struct fio_file *f;
597 struct io_u *io_u;
598 int ret, min_events;
599 unsigned int i;
600
601 dprint(FD_VERIFY, "starting loop\n");
602
603 /*
604 * sync io first and invalidate cache, to make sure we really
605 * read from disk.
606 */
607 for_each_file(td, f, i) {
608 if (!fio_file_open(f))
609 continue;
610 if (fio_io_sync(td, f))
611 break;
612 if (file_invalidate_cache(td, f))
613 break;
614 }
615
616 check_update_rusage(td);
617
618 if (td->error)
619 return;
620
621 /*
622 * verify_state needs to be reset before verification
623 * proceeds so that expected random seeds match actual
624 * random seeds in headers. The main loop will reset
625 * all random number generators if randrepeat is set.
626 */
627 if (!td->o.rand_repeatable)
628 td_fill_verify_state_seed(td);
629
630 td_set_runstate(td, TD_VERIFYING);
631
632 io_u = NULL;
633 while (!td->terminate) {
634 enum fio_ddir ddir;
635 int full;
636
637 update_ts_cache(td);
638 check_update_rusage(td);
639
640 if (runtime_exceeded(td, &td->ts_cache)) {
641 __update_ts_cache(td);
642 if (runtime_exceeded(td, &td->ts_cache)) {
643 fio_mark_td_terminate(td);
644 break;
645 }
646 }
647
648 if (flow_threshold_exceeded(td))
649 continue;
650
651 if (!td->o.experimental_verify) {
652 io_u = __get_io_u(td);
653 if (!io_u)
654 break;
655
656 if (get_next_verify(td, io_u)) {
657 put_io_u(td, io_u);
658 break;
659 }
660
661 if (td_io_prep(td, io_u)) {
662 put_io_u(td, io_u);
663 break;
664 }
665 } else {
666 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
667 break;
668
669 while ((io_u = get_io_u(td)) != NULL) {
670 if (IS_ERR_OR_NULL(io_u)) {
671 io_u = NULL;
672 ret = FIO_Q_BUSY;
673 goto reap;
674 }
675
676 /*
677 * We are only interested in the places where
678 * we wrote or trimmed IOs. Turn those into
679 * reads for verification purposes.
680 */
681 if (io_u->ddir == DDIR_READ) {
682 /*
683 * Pretend we issued it for rwmix
684 * accounting
685 */
686 td->io_issues[DDIR_READ]++;
687 put_io_u(td, io_u);
688 continue;
689 } else if (io_u->ddir == DDIR_TRIM) {
690 io_u->ddir = DDIR_READ;
691 io_u_set(td, io_u, IO_U_F_TRIMMED);
692 break;
693 } else if (io_u->ddir == DDIR_WRITE) {
694 io_u->ddir = DDIR_READ;
695 populate_verify_io_u(td, io_u);
696 break;
697 } else {
698 put_io_u(td, io_u);
699 continue;
700 }
701 }
702
703 if (!io_u)
704 break;
705 }
706
707 if (verify_state_should_stop(td, io_u)) {
708 put_io_u(td, io_u);
709 break;
710 }
711
712 if (td->o.verify_async)
713 io_u->end_io = verify_io_u_async;
714 else
715 io_u->end_io = verify_io_u;
716
717 ddir = io_u->ddir;
718 if (!td->o.disable_slat)
719 fio_gettime(&io_u->start_time, NULL);
720
721 ret = io_u_submit(td, io_u);
722
723 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
724 break;
725
726 /*
727 * if we can queue more, do so. but check if there are
728 * completed io_u's first. Note that we can get BUSY even
729 * without IO queued, if the system is resource starved.
730 */
731reap:
732 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
733 if (full || io_in_polling(td))
734 ret = wait_for_completions(td, NULL);
735
736 if (ret < 0)
737 break;
738 }
739
740 check_update_rusage(td);
741
742 if (!td->error) {
743 min_events = td->cur_depth;
744
745 if (min_events)
746 ret = io_u_queued_complete(td, min_events);
747 } else
748 cleanup_pending_aio(td);
749
750 td_set_runstate(td, TD_RUNNING);
751
752 dprint(FD_VERIFY, "exiting loop\n");
753}
754
755static bool exceeds_number_ios(struct thread_data *td)
756{
757 unsigned long long number_ios;
758
759 if (!td->o.number_ios)
760 return false;
761
762 number_ios = ddir_rw_sum(td->io_blocks);
763 number_ios += td->io_u_queued + td->io_u_in_flight;
764
765 return number_ios >= (td->o.number_ios * td->loops);
766}
767
768static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
769{
770 unsigned long long bytes, limit;
771
772 if (td_rw(td))
773 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
774 else if (td_write(td))
775 bytes = this_bytes[DDIR_WRITE];
776 else if (td_read(td))
777 bytes = this_bytes[DDIR_READ];
778 else
779 bytes = this_bytes[DDIR_TRIM];
780
781 if (td->o.io_size)
782 limit = td->o.io_size;
783 else
784 limit = td->o.size;
785
786 limit *= td->loops;
787 return bytes >= limit || exceeds_number_ios(td);
788}
789
790static bool io_issue_bytes_exceeded(struct thread_data *td)
791{
792 return io_bytes_exceeded(td, td->io_issue_bytes);
793}
794
795static bool io_complete_bytes_exceeded(struct thread_data *td)
796{
797 return io_bytes_exceeded(td, td->this_io_bytes);
798}
799
800/*
801 * used to calculate the next io time for rate control
802 *
803 */
804static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
805{
806 uint64_t bps = td->rate_bps[ddir];
807
808 assert(!(td->flags & TD_F_CHILD));
809
810 if (td->o.rate_process == RATE_PROCESS_POISSON) {
811 uint64_t val, iops;
812
813 iops = bps / td->o.min_bs[ddir];
814 val = (int64_t) (1000000 / iops) *
815 -logf(__rand_0_1(&td->poisson_state[ddir]));
816 if (val) {
817 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
818 (unsigned long long) 1000000 / val,
819 ddir);
820 }
821 td->last_usec[ddir] += val;
822 return td->last_usec[ddir];
823 } else if (bps) {
824 uint64_t bytes = td->rate_io_issue_bytes[ddir];
825 uint64_t secs = bytes / bps;
826 uint64_t remainder = bytes % bps;
827
828 return remainder * 1000000 / bps + secs * 1000000;
829 }
830
831 return 0;
832}
833
834static void init_thinktime(struct thread_data *td)
835{
836 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
837 td->thinktime_blocks_counter = td->io_blocks;
838 else
839 td->thinktime_blocks_counter = td->io_issues;
840 td->last_thinktime = td->epoch;
841 td->last_thinktime_blocks = 0;
842}
843
844static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
845 struct timespec *time)
846{
847 unsigned long long b;
848 uint64_t total;
849 int left;
850 struct timespec now;
851 bool stall = false;
852
853 if (td->o.thinktime_iotime) {
854 fio_gettime(&now, NULL);
855 if (utime_since(&td->last_thinktime, &now)
856 >= td->o.thinktime_iotime + td->o.thinktime) {
857 stall = true;
858 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
859 /*
860 * When thinktime_iotime is set and thinktime_blocks is
861 * not set, skip the thinktime_blocks check, since
862 * thinktime_blocks default value 1 does not work
863 * together with thinktime_iotime.
864 */
865 return;
866 }
867
868 }
869
870 b = ddir_rw_sum(td->thinktime_blocks_counter);
871 if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
872 stall = true;
873
874 if (!stall)
875 return;
876
877 io_u_quiesce(td);
878
879 total = 0;
880 if (td->o.thinktime_spin)
881 total = usec_spin(td->o.thinktime_spin);
882
883 left = td->o.thinktime - total;
884 if (left)
885 total += usec_sleep(td, left);
886
887 /*
888 * If we're ignoring thinktime for the rate, add the number of bytes
889 * we would have done while sleeping, minus one block to ensure we
890 * start issuing immediately after the sleep.
891 */
892 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
893 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
894 uint64_t bs = td->o.min_bs[ddir];
895 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
896 uint64_t over;
897
898 if (usperop <= total)
899 over = bs;
900 else
901 over = (usperop - total) / usperop * -bs;
902
903 td->rate_io_issue_bytes[ddir] += (missed - over);
904 /* adjust for rate_process=poisson */
905 td->last_usec[ddir] += total;
906 }
907
908 if (time && should_check_rate(td))
909 fio_gettime(time, NULL);
910
911 td->last_thinktime_blocks = b;
912 if (td->o.thinktime_iotime)
913 td->last_thinktime = now;
914}
915
916/*
917 * Main IO worker function. It retrieves io_u's to process and queues
918 * and reaps them, checking for rate and errors along the way.
919 *
920 * Returns number of bytes written and trimmed.
921 */
922static void do_io(struct thread_data *td, uint64_t *bytes_done)
923{
924 unsigned int i;
925 int ret = 0;
926 uint64_t total_bytes, bytes_issued = 0;
927
928 for (i = 0; i < DDIR_RWDIR_CNT; i++)
929 bytes_done[i] = td->bytes_done[i];
930
931 if (in_ramp_time(td))
932 td_set_runstate(td, TD_RAMP);
933 else
934 td_set_runstate(td, TD_RUNNING);
935
936 lat_target_init(td);
937
938 total_bytes = td->o.size;
939 /*
940 * Allow random overwrite workloads to write up to io_size
941 * before starting verification phase as 'size' doesn't apply.
942 */
943 if (td_write(td) && td_random(td) && td->o.norandommap)
944 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
945 /*
946 * If verify_backlog is enabled, we'll run the verify in this
947 * handler as well. For that case, we may need up to twice the
948 * amount of bytes.
949 */
950 if (td->o.verify != VERIFY_NONE &&
951 (td_write(td) && td->o.verify_backlog))
952 total_bytes += td->o.size;
953
954 /* In trimwrite mode, each byte is trimmed and then written, so
955 * allow total_bytes to be twice as big */
956 if (td_trimwrite(td))
957 total_bytes += td->total_io_size;
958
959 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
960 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
961 td->o.time_based) {
962 struct timespec comp_time;
963 struct io_u *io_u;
964 int full;
965 enum fio_ddir ddir;
966
967 check_update_rusage(td);
968
969 if (td->terminate || td->done)
970 break;
971
972 update_ts_cache(td);
973
974 if (runtime_exceeded(td, &td->ts_cache)) {
975 __update_ts_cache(td);
976 if (runtime_exceeded(td, &td->ts_cache)) {
977 fio_mark_td_terminate(td);
978 break;
979 }
980 }
981
982 if (flow_threshold_exceeded(td))
983 continue;
984
985 /*
986 * Break if we exceeded the bytes. The exception is time
987 * based runs, but we still need to break out of the loop
988 * for those to run verification, if enabled.
989 * Jobs read from iolog do not use this stop condition.
990 */
991 if (bytes_issued >= total_bytes &&
992 !td->o.read_iolog_file &&
993 (!td->o.time_based ||
994 (td->o.time_based && td->o.verify != VERIFY_NONE)))
995 break;
996
997 io_u = get_io_u(td);
998 if (IS_ERR_OR_NULL(io_u)) {
999 int err = PTR_ERR(io_u);
1000
1001 io_u = NULL;
1002 ddir = DDIR_INVAL;
1003 if (err == -EBUSY) {
1004 ret = FIO_Q_BUSY;
1005 goto reap;
1006 }
1007 if (td->o.latency_target)
1008 goto reap;
1009 break;
1010 }
1011
1012 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1013 populate_verify_io_u(td, io_u);
1014
1015 ddir = io_u->ddir;
1016
1017 /*
1018 * Add verification end_io handler if:
1019 * - Asked to verify (!td_rw(td))
1020 * - Or the io_u is from our verify list (mixed write/ver)
1021 */
1022 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1023 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1024
1025 if (verify_state_should_stop(td, io_u)) {
1026 put_io_u(td, io_u);
1027 break;
1028 }
1029
1030 if (td->o.verify_async)
1031 io_u->end_io = verify_io_u_async;
1032 else
1033 io_u->end_io = verify_io_u;
1034 td_set_runstate(td, TD_VERIFYING);
1035 } else if (in_ramp_time(td))
1036 td_set_runstate(td, TD_RAMP);
1037 else
1038 td_set_runstate(td, TD_RUNNING);
1039
1040 /*
1041 * Always log IO before it's issued, so we know the specific
1042 * order of it. The logged unit will track when the IO has
1043 * completed.
1044 */
1045 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1046 td->o.do_verify &&
1047 td->o.verify != VERIFY_NONE &&
1048 !td->o.experimental_verify)
1049 log_io_piece(td, io_u);
1050
1051 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1052 const unsigned long long blen = io_u->xfer_buflen;
1053 const enum fio_ddir __ddir = acct_ddir(io_u);
1054
1055 if (td->error)
1056 break;
1057
1058 workqueue_enqueue(&td->io_wq, &io_u->work);
1059 ret = FIO_Q_QUEUED;
1060
1061 if (ddir_rw(__ddir)) {
1062 td->io_issues[__ddir]++;
1063 td->io_issue_bytes[__ddir] += blen;
1064 td->rate_io_issue_bytes[__ddir] += blen;
1065 }
1066
1067 if (should_check_rate(td)) {
1068 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1069 fio_gettime(&comp_time, NULL);
1070 }
1071
1072 } else {
1073 ret = io_u_submit(td, io_u);
1074
1075 if (should_check_rate(td))
1076 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1077
1078 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1079 break;
1080
1081 /*
1082 * See if we need to complete some commands. Note that
1083 * we can get BUSY even without IO queued, if the
1084 * system is resource starved.
1085 */
1086reap:
1087 full = queue_full(td) ||
1088 (ret == FIO_Q_BUSY && td->cur_depth);
1089 if (full || io_in_polling(td))
1090 ret = wait_for_completions(td, &comp_time);
1091 }
1092 if (ret < 0)
1093 break;
1094
1095 if (ddir_rw(ddir) && td->o.thinktime)
1096 handle_thinktime(td, ddir, &comp_time);
1097
1098 if (!ddir_rw_sum(td->bytes_done) &&
1099 !td_ioengine_flagged(td, FIO_NOIO))
1100 continue;
1101
1102 if (!in_ramp_time(td) && should_check_rate(td)) {
1103 if (check_min_rate(td, &comp_time)) {
1104 if (exitall_on_terminate || td->o.exitall_error)
1105 fio_terminate_threads(td->groupid, td->o.exit_what);
1106 td_verror(td, EIO, "check_min_rate");
1107 break;
1108 }
1109 }
1110 if (!in_ramp_time(td) && td->o.latency_target)
1111 lat_target_check(td);
1112 }
1113
1114 check_update_rusage(td);
1115
1116 if (td->trim_entries)
1117 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1118
1119 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1120 td->error = 0;
1121 fio_mark_td_terminate(td);
1122 }
1123 if (!td->error) {
1124 struct fio_file *f;
1125
1126 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1127 workqueue_flush(&td->io_wq);
1128 i = 0;
1129 } else
1130 i = td->cur_depth;
1131
1132 if (i) {
1133 ret = io_u_queued_complete(td, i);
1134 if (td->o.fill_device &&
1135 (td->error == ENOSPC || td->error == EDQUOT))
1136 td->error = 0;
1137 }
1138
1139 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1140 td_set_runstate(td, TD_FSYNCING);
1141
1142 for_each_file(td, f, i) {
1143 if (!fio_file_fsync(td, f))
1144 continue;
1145
1146 log_err("fio: end_fsync failed for file %s\n",
1147 f->file_name);
1148 }
1149 }
1150 } else {
1151 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1152 workqueue_flush(&td->io_wq);
1153 cleanup_pending_aio(td);
1154 }
1155
1156 /*
1157 * stop job if we failed doing any IO
1158 */
1159 if (!ddir_rw_sum(td->this_io_bytes))
1160 td->done = 1;
1161
1162 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1163 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1164}
1165
1166static void free_file_completion_logging(struct thread_data *td)
1167{
1168 struct fio_file *f;
1169 unsigned int i;
1170
1171 for_each_file(td, f, i) {
1172 if (!f->last_write_comp)
1173 break;
1174 sfree(f->last_write_comp);
1175 }
1176}
1177
1178static int init_file_completion_logging(struct thread_data *td,
1179 unsigned int depth)
1180{
1181 struct fio_file *f;
1182 unsigned int i;
1183
1184 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1185 return 0;
1186
1187 for_each_file(td, f, i) {
1188 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1189 if (!f->last_write_comp)
1190 goto cleanup;
1191 }
1192
1193 return 0;
1194
1195cleanup:
1196 free_file_completion_logging(td);
1197 log_err("fio: failed to alloc write comp data\n");
1198 return 1;
1199}
1200
1201static void cleanup_io_u(struct thread_data *td)
1202{
1203 struct io_u *io_u;
1204
1205 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1206
1207 if (td->io_ops->io_u_free)
1208 td->io_ops->io_u_free(td, io_u);
1209
1210 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1211 }
1212
1213 free_io_mem(td);
1214
1215 io_u_rexit(&td->io_u_requeues);
1216 io_u_qexit(&td->io_u_freelist, false);
1217 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1218
1219 free_file_completion_logging(td);
1220}
1221
1222static int init_io_u(struct thread_data *td)
1223{
1224 struct io_u *io_u;
1225 int cl_align, i, max_units;
1226 int err;
1227
1228 max_units = td->o.iodepth;
1229
1230 err = 0;
1231 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1232 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1233 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1234
1235 if (err) {
1236 log_err("fio: failed setting up IO queues\n");
1237 return 1;
1238 }
1239
1240 cl_align = os_cache_line_size();
1241
1242 for (i = 0; i < max_units; i++) {
1243 void *ptr;
1244
1245 if (td->terminate)
1246 return 1;
1247
1248 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1249 if (!ptr) {
1250 log_err("fio: unable to allocate aligned memory\n");
1251 return 1;
1252 }
1253
1254 io_u = ptr;
1255 memset(io_u, 0, sizeof(*io_u));
1256 INIT_FLIST_HEAD(&io_u->verify_list);
1257 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1258
1259 io_u->index = i;
1260 io_u->flags = IO_U_F_FREE;
1261 io_u_qpush(&td->io_u_freelist, io_u);
1262
1263 /*
1264 * io_u never leaves this stack, used for iteration of all
1265 * io_u buffers.
1266 */
1267 io_u_qpush(&td->io_u_all, io_u);
1268
1269 if (td->io_ops->io_u_init) {
1270 int ret = td->io_ops->io_u_init(td, io_u);
1271
1272 if (ret) {
1273 log_err("fio: failed to init engine data: %d\n", ret);
1274 return 1;
1275 }
1276 }
1277 }
1278
1279 init_io_u_buffers(td);
1280
1281 if (init_file_completion_logging(td, max_units))
1282 return 1;
1283
1284 return 0;
1285}
1286
1287int init_io_u_buffers(struct thread_data *td)
1288{
1289 struct io_u *io_u;
1290 unsigned long long max_bs, min_write;
1291 int i, max_units;
1292 int data_xfer = 1;
1293 char *p;
1294
1295 max_units = td->o.iodepth;
1296 max_bs = td_max_bs(td);
1297 min_write = td->o.min_bs[DDIR_WRITE];
1298 td->orig_buffer_size = (unsigned long long) max_bs
1299 * (unsigned long long) max_units;
1300
1301 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1302 data_xfer = 0;
1303
1304 /*
1305 * if we may later need to do address alignment, then add any
1306 * possible adjustment here so that we don't cause a buffer
1307 * overflow later. this adjustment may be too much if we get
1308 * lucky and the allocator gives us an aligned address.
1309 */
1310 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1311 td_ioengine_flagged(td, FIO_RAWIO))
1312 td->orig_buffer_size += page_mask + td->o.mem_align;
1313
1314 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1315 unsigned long long bs;
1316
1317 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1318 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1319 }
1320
1321 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1322 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1323 return 1;
1324 }
1325
1326 if (data_xfer && allocate_io_mem(td))
1327 return 1;
1328
1329 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1330 td_ioengine_flagged(td, FIO_RAWIO))
1331 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1332 else
1333 p = td->orig_buffer;
1334
1335 for (i = 0; i < max_units; i++) {
1336 io_u = td->io_u_all.io_us[i];
1337 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1338
1339 if (data_xfer) {
1340 io_u->buf = p;
1341 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1342
1343 if (td_write(td))
1344 io_u_fill_buffer(td, io_u, min_write, max_bs);
1345 if (td_write(td) && td->o.verify_pattern_bytes) {
1346 /*
1347 * Fill the buffer with the pattern if we are
1348 * going to be doing writes.
1349 */
1350 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1351 }
1352 }
1353 p += max_bs;
1354 }
1355
1356 return 0;
1357}
1358
1359#ifdef FIO_HAVE_IOSCHED_SWITCH
1360/*
1361 * These functions are Linux specific.
1362 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1363 */
1364static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1365{
1366 char tmp[256], tmp2[128], *p;
1367 FILE *f;
1368 int ret;
1369
1370 assert(file->du && file->du->sysfs_root);
1371 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1372
1373 f = fopen(tmp, "r+");
1374 if (!f) {
1375 if (errno == ENOENT) {
1376 log_err("fio: os or kernel doesn't support IO scheduler"
1377 " switching\n");
1378 return 0;
1379 }
1380 td_verror(td, errno, "fopen iosched");
1381 return 1;
1382 }
1383
1384 /*
1385 * Set io scheduler.
1386 */
1387 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1388 if (ferror(f) || ret != 1) {
1389 td_verror(td, errno, "fwrite");
1390 fclose(f);
1391 return 1;
1392 }
1393
1394 rewind(f);
1395
1396 /*
1397 * Read back and check that the selected scheduler is now the default.
1398 */
1399 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1400 if (ferror(f) || ret < 0) {
1401 td_verror(td, errno, "fread");
1402 fclose(f);
1403 return 1;
1404 }
1405 tmp[ret] = '\0';
1406 /*
1407 * either a list of io schedulers or "none\n" is expected. Strip the
1408 * trailing newline.
1409 */
1410 p = tmp;
1411 strsep(&p, "\n");
1412
1413 /*
1414 * Write to "none" entry doesn't fail, so check the result here.
1415 */
1416 if (!strcmp(tmp, "none")) {
1417 log_err("fio: io scheduler is not tunable\n");
1418 fclose(f);
1419 return 0;
1420 }
1421
1422 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1423 if (!strstr(tmp, tmp2)) {
1424 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1425 td_verror(td, EINVAL, "iosched_switch");
1426 fclose(f);
1427 return 1;
1428 }
1429
1430 fclose(f);
1431 return 0;
1432}
1433
1434static int switch_ioscheduler(struct thread_data *td)
1435{
1436 struct fio_file *f;
1437 unsigned int i;
1438 int ret = 0;
1439
1440 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1441 return 0;
1442
1443 assert(td->files && td->files[0]);
1444
1445 for_each_file(td, f, i) {
1446
1447 /* Only consider regular files and block device files */
1448 switch (f->filetype) {
1449 case FIO_TYPE_FILE:
1450 case FIO_TYPE_BLOCK:
1451 /*
1452 * Make sure that the device hosting the file could
1453 * be determined.
1454 */
1455 if (!f->du)
1456 continue;
1457 break;
1458 case FIO_TYPE_CHAR:
1459 case FIO_TYPE_PIPE:
1460 default:
1461 continue;
1462 }
1463
1464 ret = set_ioscheduler(td, f);
1465 if (ret)
1466 return ret;
1467 }
1468
1469 return 0;
1470}
1471
1472#else
1473
1474static int switch_ioscheduler(struct thread_data *td)
1475{
1476 return 0;
1477}
1478
1479#endif /* FIO_HAVE_IOSCHED_SWITCH */
1480
1481static bool keep_running(struct thread_data *td)
1482{
1483 unsigned long long limit;
1484
1485 if (td->done)
1486 return false;
1487 if (td->terminate)
1488 return false;
1489 if (td->o.time_based)
1490 return true;
1491 if (td->o.loops) {
1492 td->o.loops--;
1493 return true;
1494 }
1495 if (exceeds_number_ios(td))
1496 return false;
1497
1498 if (td->o.io_size)
1499 limit = td->o.io_size;
1500 else
1501 limit = td->o.size;
1502
1503 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1504 uint64_t diff;
1505
1506 /*
1507 * If the difference is less than the maximum IO size, we
1508 * are done.
1509 */
1510 diff = limit - ddir_rw_sum(td->io_bytes);
1511 if (diff < td_max_bs(td))
1512 return false;
1513
1514 if (fio_files_done(td) && !td->o.io_size)
1515 return false;
1516
1517 return true;
1518 }
1519
1520 return false;
1521}
1522
1523static int exec_string(struct thread_options *o, const char *string,
1524 const char *mode)
1525{
1526 int ret;
1527 char *str;
1528
1529 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1530 return -1;
1531
1532 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1533 o->name, mode);
1534 ret = system(str);
1535 if (ret == -1)
1536 log_err("fio: exec of cmd <%s> failed\n", str);
1537
1538 free(str);
1539 return ret;
1540}
1541
1542/*
1543 * Dry run to compute correct state of numberio for verification.
1544 */
1545static uint64_t do_dry_run(struct thread_data *td)
1546{
1547 td_set_runstate(td, TD_RUNNING);
1548
1549 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1550 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1551 struct io_u *io_u;
1552 int ret;
1553
1554 if (td->terminate || td->done)
1555 break;
1556
1557 io_u = get_io_u(td);
1558 if (IS_ERR_OR_NULL(io_u))
1559 break;
1560
1561 io_u_set(td, io_u, IO_U_F_FLIGHT);
1562 io_u->error = 0;
1563 io_u->resid = 0;
1564 if (ddir_rw(acct_ddir(io_u)))
1565 td->io_issues[acct_ddir(io_u)]++;
1566 if (ddir_rw(io_u->ddir)) {
1567 io_u_mark_depth(td, 1);
1568 td->ts.total_io_u[io_u->ddir]++;
1569 }
1570
1571 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1572 td->o.do_verify &&
1573 td->o.verify != VERIFY_NONE &&
1574 !td->o.experimental_verify)
1575 log_io_piece(td, io_u);
1576
1577 ret = io_u_sync_complete(td, io_u);
1578 (void) ret;
1579 }
1580
1581 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1582}
1583
1584struct fork_data {
1585 struct thread_data *td;
1586 struct sk_out *sk_out;
1587};
1588
1589/*
1590 * Entry point for the thread based jobs. The process based jobs end up
1591 * here as well, after a little setup.
1592 */
1593static void *thread_main(void *data)
1594{
1595 struct fork_data *fd = data;
1596 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1597 struct thread_data *td = fd->td;
1598 struct thread_options *o = &td->o;
1599 struct sk_out *sk_out = fd->sk_out;
1600 uint64_t bytes_done[DDIR_RWDIR_CNT];
1601 int deadlock_loop_cnt;
1602 bool clear_state;
1603 int res, ret;
1604
1605 sk_out_assign(sk_out);
1606 free(fd);
1607
1608 if (!o->use_thread) {
1609 setsid();
1610 td->pid = getpid();
1611 } else
1612 td->pid = gettid();
1613
1614 fio_local_clock_init();
1615
1616 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1617
1618 if (is_backend)
1619 fio_server_send_start(td);
1620
1621 INIT_FLIST_HEAD(&td->io_log_list);
1622 INIT_FLIST_HEAD(&td->io_hist_list);
1623 INIT_FLIST_HEAD(&td->verify_list);
1624 INIT_FLIST_HEAD(&td->trim_list);
1625 td->io_hist_tree = RB_ROOT;
1626
1627 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1628 if (ret) {
1629 td_verror(td, ret, "mutex_cond_init_pshared");
1630 goto err;
1631 }
1632 ret = cond_init_pshared(&td->verify_cond);
1633 if (ret) {
1634 td_verror(td, ret, "mutex_cond_pshared");
1635 goto err;
1636 }
1637
1638 td_set_runstate(td, TD_INITIALIZED);
1639 dprint(FD_MUTEX, "up startup_sem\n");
1640 fio_sem_up(startup_sem);
1641 dprint(FD_MUTEX, "wait on td->sem\n");
1642 fio_sem_down(td->sem);
1643 dprint(FD_MUTEX, "done waiting on td->sem\n");
1644
1645 /*
1646 * A new gid requires privilege, so we need to do this before setting
1647 * the uid.
1648 */
1649 if (o->gid != -1U && setgid(o->gid)) {
1650 td_verror(td, errno, "setgid");
1651 goto err;
1652 }
1653 if (o->uid != -1U && setuid(o->uid)) {
1654 td_verror(td, errno, "setuid");
1655 goto err;
1656 }
1657
1658 td_zone_gen_index(td);
1659
1660 /*
1661 * Do this early, we don't want the compress threads to be limited
1662 * to the same CPUs as the IO workers. So do this before we set
1663 * any potential CPU affinity
1664 */
1665 if (iolog_compress_init(td, sk_out))
1666 goto err;
1667
1668 /*
1669 * If we have a gettimeofday() thread, make sure we exclude that
1670 * thread from this job
1671 */
1672 if (o->gtod_cpu)
1673 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1674
1675 /*
1676 * Set affinity first, in case it has an impact on the memory
1677 * allocations.
1678 */
1679 if (fio_option_is_set(o, cpumask)) {
1680 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1681 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1682 if (!ret) {
1683 log_err("fio: no CPUs set\n");
1684 log_err("fio: Try increasing number of available CPUs\n");
1685 td_verror(td, EINVAL, "cpus_split");
1686 goto err;
1687 }
1688 }
1689 ret = fio_setaffinity(td->pid, o->cpumask);
1690 if (ret == -1) {
1691 td_verror(td, errno, "cpu_set_affinity");
1692 goto err;
1693 }
1694 }
1695
1696#ifdef CONFIG_LIBNUMA
1697 /* numa node setup */
1698 if (fio_option_is_set(o, numa_cpunodes) ||
1699 fio_option_is_set(o, numa_memnodes)) {
1700 struct bitmask *mask;
1701
1702 if (numa_available() < 0) {
1703 td_verror(td, errno, "Does not support NUMA API\n");
1704 goto err;
1705 }
1706
1707 if (fio_option_is_set(o, numa_cpunodes)) {
1708 mask = numa_parse_nodestring(o->numa_cpunodes);
1709 ret = numa_run_on_node_mask(mask);
1710 numa_free_nodemask(mask);
1711 if (ret == -1) {
1712 td_verror(td, errno, \
1713 "numa_run_on_node_mask failed\n");
1714 goto err;
1715 }
1716 }
1717
1718 if (fio_option_is_set(o, numa_memnodes)) {
1719 mask = NULL;
1720 if (o->numa_memnodes)
1721 mask = numa_parse_nodestring(o->numa_memnodes);
1722
1723 switch (o->numa_mem_mode) {
1724 case MPOL_INTERLEAVE:
1725 numa_set_interleave_mask(mask);
1726 break;
1727 case MPOL_BIND:
1728 numa_set_membind(mask);
1729 break;
1730 case MPOL_LOCAL:
1731 numa_set_localalloc();
1732 break;
1733 case MPOL_PREFERRED:
1734 numa_set_preferred(o->numa_mem_prefer_node);
1735 break;
1736 case MPOL_DEFAULT:
1737 default:
1738 break;
1739 }
1740
1741 if (mask)
1742 numa_free_nodemask(mask);
1743
1744 }
1745 }
1746#endif
1747
1748 if (fio_pin_memory(td))
1749 goto err;
1750
1751 /*
1752 * May alter parameters that init_io_u() will use, so we need to
1753 * do this first.
1754 */
1755 if (!init_iolog(td))
1756 goto err;
1757
1758 /* ioprio_set() has to be done before td_io_init() */
1759 if (fio_option_is_set(o, ioprio) ||
1760 fio_option_is_set(o, ioprio_class)) {
1761 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1762 if (ret == -1) {
1763 td_verror(td, errno, "ioprio_set");
1764 goto err;
1765 }
1766 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio);
1767 td->ts.ioprio = td->ioprio;
1768 }
1769
1770 if (td_io_init(td))
1771 goto err;
1772
1773 if (init_io_u(td))
1774 goto err;
1775
1776 if (td->io_ops->post_init && td->io_ops->post_init(td))
1777 goto err;
1778
1779 if (o->verify_async && verify_async_init(td))
1780 goto err;
1781
1782 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1783 goto err;
1784
1785 errno = 0;
1786 if (nice(o->nice) == -1 && errno != 0) {
1787 td_verror(td, errno, "nice");
1788 goto err;
1789 }
1790
1791 if (o->ioscheduler && switch_ioscheduler(td))
1792 goto err;
1793
1794 if (!o->create_serialize && setup_files(td))
1795 goto err;
1796
1797 if (!init_random_map(td))
1798 goto err;
1799
1800 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1801 goto err;
1802
1803 if (o->pre_read && !pre_read_files(td))
1804 goto err;
1805
1806 fio_verify_init(td);
1807
1808 if (rate_submit_init(td, sk_out))
1809 goto err;
1810
1811 set_epoch_time(td, o->log_unix_epoch | o->log_alternate_epoch, o->log_alternate_epoch_clock_id);
1812 fio_getrusage(&td->ru_start);
1813 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1814 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1815 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1816
1817 init_thinktime(td);
1818
1819 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1820 o->ratemin[DDIR_TRIM]) {
1821 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1822 sizeof(td->bw_sample_time));
1823 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1824 sizeof(td->bw_sample_time));
1825 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1826 sizeof(td->bw_sample_time));
1827 }
1828
1829 memset(bytes_done, 0, sizeof(bytes_done));
1830 clear_state = false;
1831
1832 while (keep_running(td)) {
1833 uint64_t verify_bytes;
1834
1835 fio_gettime(&td->start, NULL);
1836 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1837
1838 if (clear_state) {
1839 clear_io_state(td, 0);
1840
1841 if (o->unlink_each_loop && unlink_all_files(td))
1842 break;
1843 }
1844
1845 prune_io_piece_log(td);
1846
1847 if (td->o.verify_only && td_write(td))
1848 verify_bytes = do_dry_run(td);
1849 else {
1850 do_io(td, bytes_done);
1851
1852 if (!ddir_rw_sum(bytes_done)) {
1853 fio_mark_td_terminate(td);
1854 verify_bytes = 0;
1855 } else {
1856 verify_bytes = bytes_done[DDIR_WRITE] +
1857 bytes_done[DDIR_TRIM];
1858 }
1859 }
1860
1861 /*
1862 * If we took too long to shut down, the main thread could
1863 * already consider us reaped/exited. If that happens, break
1864 * out and clean up.
1865 */
1866 if (td->runstate >= TD_EXITED)
1867 break;
1868
1869 clear_state = true;
1870
1871 /*
1872 * Make sure we've successfully updated the rusage stats
1873 * before waiting on the stat mutex. Otherwise we could have
1874 * the stat thread holding stat mutex and waiting for
1875 * the rusage_sem, which would never get upped because
1876 * this thread is waiting for the stat mutex.
1877 */
1878 deadlock_loop_cnt = 0;
1879 do {
1880 check_update_rusage(td);
1881 if (!fio_sem_down_trylock(stat_sem))
1882 break;
1883 usleep(1000);
1884 if (deadlock_loop_cnt++ > 5000) {
1885 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1886 td->error = EDEADLK;
1887 goto err;
1888 }
1889 } while (1);
1890
1891 if (td_read(td) && td->io_bytes[DDIR_READ])
1892 update_runtime(td, elapsed_us, DDIR_READ);
1893 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1894 update_runtime(td, elapsed_us, DDIR_WRITE);
1895 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1896 update_runtime(td, elapsed_us, DDIR_TRIM);
1897 fio_gettime(&td->start, NULL);
1898 fio_sem_up(stat_sem);
1899
1900 if (td->error || td->terminate)
1901 break;
1902
1903 if (!o->do_verify ||
1904 o->verify == VERIFY_NONE ||
1905 td_ioengine_flagged(td, FIO_UNIDIR))
1906 continue;
1907
1908 clear_io_state(td, 0);
1909
1910 fio_gettime(&td->start, NULL);
1911
1912 do_verify(td, verify_bytes);
1913
1914 /*
1915 * See comment further up for why this is done here.
1916 */
1917 check_update_rusage(td);
1918
1919 fio_sem_down(stat_sem);
1920 update_runtime(td, elapsed_us, DDIR_READ);
1921 fio_gettime(&td->start, NULL);
1922 fio_sem_up(stat_sem);
1923
1924 if (td->error || td->terminate)
1925 break;
1926 }
1927
1928 /*
1929 * Acquire this lock if we were doing overlap checking in
1930 * offload mode so that we don't clean up this job while
1931 * another thread is checking its io_u's for overlap
1932 */
1933 if (td_offload_overlap(td)) {
1934 int res = pthread_mutex_lock(&overlap_check);
1935 assert(res == 0);
1936 }
1937 td_set_runstate(td, TD_FINISHING);
1938 if (td_offload_overlap(td)) {
1939 res = pthread_mutex_unlock(&overlap_check);
1940 assert(res == 0);
1941 }
1942
1943 update_rusage_stat(td);
1944 td->ts.total_run_time = mtime_since_now(&td->epoch);
1945 for_each_rw_ddir(ddir) {
1946 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1947 }
1948
1949 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1950 (td->o.verify != VERIFY_NONE && td_write(td)))
1951 verify_save_state(td->thread_number);
1952
1953 fio_unpin_memory(td);
1954
1955 td_writeout_logs(td, true);
1956
1957 iolog_compress_exit(td);
1958 rate_submit_exit(td);
1959
1960 if (o->exec_postrun)
1961 exec_string(o, o->exec_postrun, "postrun");
1962
1963 if (exitall_on_terminate || (o->exitall_error && td->error))
1964 fio_terminate_threads(td->groupid, td->o.exit_what);
1965
1966err:
1967 if (td->error)
1968 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1969 td->verror);
1970
1971 if (o->verify_async)
1972 verify_async_exit(td);
1973
1974 close_and_free_files(td);
1975 cleanup_io_u(td);
1976 close_ioengine(td);
1977 cgroup_shutdown(td, cgroup_mnt);
1978 verify_free_state(td);
1979 td_zone_free_index(td);
1980
1981 if (fio_option_is_set(o, cpumask)) {
1982 ret = fio_cpuset_exit(&o->cpumask);
1983 if (ret)
1984 td_verror(td, ret, "fio_cpuset_exit");
1985 }
1986
1987 /*
1988 * do this very late, it will log file closing as well
1989 */
1990 if (o->write_iolog_file)
1991 write_iolog_close(td);
1992 if (td->io_log_rfile)
1993 fclose(td->io_log_rfile);
1994
1995 td_set_runstate(td, TD_EXITED);
1996
1997 /*
1998 * Do this last after setting our runstate to exited, so we
1999 * know that the stat thread is signaled.
2000 */
2001 check_update_rusage(td);
2002
2003 sk_out_drop();
2004 return (void *) (uintptr_t) td->error;
2005}
2006
2007/*
2008 * Run over the job map and reap the threads that have exited, if any.
2009 */
2010static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2011 uint64_t *m_rate)
2012{
2013 struct thread_data *td;
2014 unsigned int cputhreads, realthreads, pending;
2015 int i, status, ret;
2016
2017 /*
2018 * reap exited threads (TD_EXITED -> TD_REAPED)
2019 */
2020 realthreads = pending = cputhreads = 0;
2021 for_each_td(td, i) {
2022 int flags = 0;
2023
2024 if (!strcmp(td->o.ioengine, "cpuio"))
2025 cputhreads++;
2026 else
2027 realthreads++;
2028
2029 if (!td->pid) {
2030 pending++;
2031 continue;
2032 }
2033 if (td->runstate == TD_REAPED)
2034 continue;
2035 if (td->o.use_thread) {
2036 if (td->runstate == TD_EXITED) {
2037 td_set_runstate(td, TD_REAPED);
2038 goto reaped;
2039 }
2040 continue;
2041 }
2042
2043 flags = WNOHANG;
2044 if (td->runstate == TD_EXITED)
2045 flags = 0;
2046
2047 /*
2048 * check if someone quit or got killed in an unusual way
2049 */
2050 ret = waitpid(td->pid, &status, flags);
2051 if (ret < 0) {
2052 if (errno == ECHILD) {
2053 log_err("fio: pid=%d disappeared %d\n",
2054 (int) td->pid, td->runstate);
2055 td->sig = ECHILD;
2056 td_set_runstate(td, TD_REAPED);
2057 goto reaped;
2058 }
2059 perror("waitpid");
2060 } else if (ret == td->pid) {
2061 if (WIFSIGNALED(status)) {
2062 int sig = WTERMSIG(status);
2063
2064 if (sig != SIGTERM && sig != SIGUSR2)
2065 log_err("fio: pid=%d, got signal=%d\n",
2066 (int) td->pid, sig);
2067 td->sig = sig;
2068 td_set_runstate(td, TD_REAPED);
2069 goto reaped;
2070 }
2071 if (WIFEXITED(status)) {
2072 if (WEXITSTATUS(status) && !td->error)
2073 td->error = WEXITSTATUS(status);
2074
2075 td_set_runstate(td, TD_REAPED);
2076 goto reaped;
2077 }
2078 }
2079
2080 /*
2081 * If the job is stuck, do a forceful timeout of it and
2082 * move on.
2083 */
2084 if (td->terminate &&
2085 td->runstate < TD_FSYNCING &&
2086 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2087 log_err("fio: job '%s' (state=%d) hasn't exited in "
2088 "%lu seconds, it appears to be stuck. Doing "
2089 "forceful exit of this job.\n",
2090 td->o.name, td->runstate,
2091 (unsigned long) time_since_now(&td->terminate_time));
2092 td_set_runstate(td, TD_REAPED);
2093 goto reaped;
2094 }
2095
2096 /*
2097 * thread is not dead, continue
2098 */
2099 pending++;
2100 continue;
2101reaped:
2102 (*nr_running)--;
2103 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2104 (*t_rate) -= ddir_rw_sum(td->o.rate);
2105 if (!td->pid)
2106 pending--;
2107
2108 if (td->error)
2109 exit_value++;
2110
2111 done_secs += mtime_since_now(&td->epoch) / 1000;
2112 profile_td_exit(td);
2113 flow_exit_job(td);
2114 }
2115
2116 if (*nr_running == cputhreads && !pending && realthreads)
2117 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2118}
2119
2120static bool __check_trigger_file(void)
2121{
2122 struct stat sb;
2123
2124 if (!trigger_file)
2125 return false;
2126
2127 if (stat(trigger_file, &sb))
2128 return false;
2129
2130 if (unlink(trigger_file) < 0)
2131 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2132 strerror(errno));
2133
2134 return true;
2135}
2136
2137static bool trigger_timedout(void)
2138{
2139 if (trigger_timeout)
2140 if (time_since_genesis() >= trigger_timeout) {
2141 trigger_timeout = 0;
2142 return true;
2143 }
2144
2145 return false;
2146}
2147
2148void exec_trigger(const char *cmd)
2149{
2150 int ret;
2151
2152 if (!cmd || cmd[0] == '\0')
2153 return;
2154
2155 ret = system(cmd);
2156 if (ret == -1)
2157 log_err("fio: failed executing %s trigger\n", cmd);
2158}
2159
2160void check_trigger_file(void)
2161{
2162 if (__check_trigger_file() || trigger_timedout()) {
2163 if (nr_clients)
2164 fio_clients_send_trigger(trigger_remote_cmd);
2165 else {
2166 verify_save_state(IO_LIST_ALL);
2167 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2168 exec_trigger(trigger_cmd);
2169 }
2170 }
2171}
2172
2173static int fio_verify_load_state(struct thread_data *td)
2174{
2175 int ret;
2176
2177 if (!td->o.verify_state)
2178 return 0;
2179
2180 if (is_backend) {
2181 void *data;
2182
2183 ret = fio_server_get_verify_state(td->o.name,
2184 td->thread_number - 1, &data);
2185 if (!ret)
2186 verify_assign_state(td, data);
2187 } else {
2188 char prefix[PATH_MAX];
2189
2190 if (aux_path)
2191 sprintf(prefix, "%s%clocal", aux_path,
2192 FIO_OS_PATH_SEPARATOR);
2193 else
2194 strcpy(prefix, "local");
2195 ret = verify_load_state(td, prefix);
2196 }
2197
2198 return ret;
2199}
2200
2201static void do_usleep(unsigned int usecs)
2202{
2203 check_for_running_stats();
2204 check_trigger_file();
2205 usleep(usecs);
2206}
2207
2208static bool check_mount_writes(struct thread_data *td)
2209{
2210 struct fio_file *f;
2211 unsigned int i;
2212
2213 if (!td_write(td) || td->o.allow_mounted_write)
2214 return false;
2215
2216 /*
2217 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2218 * are mkfs'd and mounted.
2219 */
2220 for_each_file(td, f, i) {
2221#ifdef FIO_HAVE_CHARDEV_SIZE
2222 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2223#else
2224 if (f->filetype != FIO_TYPE_BLOCK)
2225#endif
2226 continue;
2227 if (device_is_mounted(f->file_name))
2228 goto mounted;
2229 }
2230
2231 return false;
2232mounted:
2233 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2234 return true;
2235}
2236
2237static bool waitee_running(struct thread_data *me)
2238{
2239 const char *waitee = me->o.wait_for;
2240 const char *self = me->o.name;
2241 struct thread_data *td;
2242 int i;
2243
2244 if (!waitee)
2245 return false;
2246
2247 for_each_td(td, i) {
2248 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2249 continue;
2250
2251 if (td->runstate < TD_EXITED) {
2252 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2253 self, td->o.name,
2254 runstate_to_name(td->runstate));
2255 return true;
2256 }
2257 }
2258
2259 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2260 return false;
2261}
2262
2263/*
2264 * Main function for kicking off and reaping jobs, as needed.
2265 */
2266static void run_threads(struct sk_out *sk_out)
2267{
2268 struct thread_data *td;
2269 unsigned int i, todo, nr_running, nr_started;
2270 uint64_t m_rate, t_rate;
2271 uint64_t spent;
2272
2273 if (fio_gtod_offload && fio_start_gtod_thread())
2274 return;
2275
2276 fio_idle_prof_init();
2277
2278 set_sig_handlers();
2279
2280 nr_thread = nr_process = 0;
2281 for_each_td(td, i) {
2282 if (check_mount_writes(td))
2283 return;
2284 if (td->o.use_thread)
2285 nr_thread++;
2286 else
2287 nr_process++;
2288 }
2289
2290 if (output_format & FIO_OUTPUT_NORMAL) {
2291 struct buf_output out;
2292
2293 buf_output_init(&out);
2294 __log_buf(&out, "Starting ");
2295 if (nr_thread)
2296 __log_buf(&out, "%d thread%s", nr_thread,
2297 nr_thread > 1 ? "s" : "");
2298 if (nr_process) {
2299 if (nr_thread)
2300 __log_buf(&out, " and ");
2301 __log_buf(&out, "%d process%s", nr_process,
2302 nr_process > 1 ? "es" : "");
2303 }
2304 __log_buf(&out, "\n");
2305 log_info_buf(out.buf, out.buflen);
2306 buf_output_free(&out);
2307 }
2308
2309 todo = thread_number;
2310 nr_running = 0;
2311 nr_started = 0;
2312 m_rate = t_rate = 0;
2313
2314 for_each_td(td, i) {
2315 print_status_init(td->thread_number - 1);
2316
2317 if (!td->o.create_serialize)
2318 continue;
2319
2320 if (fio_verify_load_state(td))
2321 goto reap;
2322
2323 /*
2324 * do file setup here so it happens sequentially,
2325 * we don't want X number of threads getting their
2326 * client data interspersed on disk
2327 */
2328 if (setup_files(td)) {
2329reap:
2330 exit_value++;
2331 if (td->error)
2332 log_err("fio: pid=%d, err=%d/%s\n",
2333 (int) td->pid, td->error, td->verror);
2334 td_set_runstate(td, TD_REAPED);
2335 todo--;
2336 } else {
2337 struct fio_file *f;
2338 unsigned int j;
2339
2340 /*
2341 * for sharing to work, each job must always open
2342 * its own files. so close them, if we opened them
2343 * for creation
2344 */
2345 for_each_file(td, f, j) {
2346 if (fio_file_open(f))
2347 td_io_close_file(td, f);
2348 }
2349 }
2350 }
2351
2352 /* start idle threads before io threads start to run */
2353 fio_idle_prof_start();
2354
2355 set_genesis_time();
2356
2357 while (todo) {
2358 struct thread_data *map[REAL_MAX_JOBS];
2359 struct timespec this_start;
2360 int this_jobs = 0, left;
2361 struct fork_data *fd;
2362
2363 /*
2364 * create threads (TD_NOT_CREATED -> TD_CREATED)
2365 */
2366 for_each_td(td, i) {
2367 if (td->runstate != TD_NOT_CREATED)
2368 continue;
2369
2370 /*
2371 * never got a chance to start, killed by other
2372 * thread for some reason
2373 */
2374 if (td->terminate) {
2375 todo--;
2376 continue;
2377 }
2378
2379 if (td->o.start_delay) {
2380 spent = utime_since_genesis();
2381
2382 if (td->o.start_delay > spent)
2383 continue;
2384 }
2385
2386 if (td->o.stonewall && (nr_started || nr_running)) {
2387 dprint(FD_PROCESS, "%s: stonewall wait\n",
2388 td->o.name);
2389 break;
2390 }
2391
2392 if (waitee_running(td)) {
2393 dprint(FD_PROCESS, "%s: waiting for %s\n",
2394 td->o.name, td->o.wait_for);
2395 continue;
2396 }
2397
2398 init_disk_util(td);
2399
2400 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2401 td->update_rusage = 0;
2402
2403 /*
2404 * Set state to created. Thread will transition
2405 * to TD_INITIALIZED when it's done setting up.
2406 */
2407 td_set_runstate(td, TD_CREATED);
2408 map[this_jobs++] = td;
2409 nr_started++;
2410
2411 fd = calloc(1, sizeof(*fd));
2412 fd->td = td;
2413 fd->sk_out = sk_out;
2414
2415 if (td->o.use_thread) {
2416 int ret;
2417
2418 dprint(FD_PROCESS, "will pthread_create\n");
2419 ret = pthread_create(&td->thread, NULL,
2420 thread_main, fd);
2421 if (ret) {
2422 log_err("pthread_create: %s\n",
2423 strerror(ret));
2424 free(fd);
2425 nr_started--;
2426 break;
2427 }
2428 fd = NULL;
2429 ret = pthread_detach(td->thread);
2430 if (ret)
2431 log_err("pthread_detach: %s",
2432 strerror(ret));
2433 } else {
2434 pid_t pid;
2435 struct fio_file **files;
2436 void *eo;
2437 dprint(FD_PROCESS, "will fork\n");
2438 files = td->files;
2439 eo = td->eo;
2440 read_barrier();
2441 pid = fork();
2442 if (!pid) {
2443 int ret;
2444
2445 ret = (int)(uintptr_t)thread_main(fd);
2446 _exit(ret);
2447 } else if (i == fio_debug_jobno)
2448 *fio_debug_jobp = pid;
2449 // freeing previously allocated memory for files
2450 // this memory freed MUST NOT be shared between processes, only the pointer itself may be shared within TD
2451 free(files);
2452 free(eo);
2453 free(fd);
2454 fd = NULL;
2455 }
2456 dprint(FD_MUTEX, "wait on startup_sem\n");
2457 if (fio_sem_down_timeout(startup_sem, 10000)) {
2458 log_err("fio: job startup hung? exiting.\n");
2459 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2460 fio_abort = true;
2461 nr_started--;
2462 free(fd);
2463 break;
2464 }
2465 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2466 }
2467
2468 /*
2469 * Wait for the started threads to transition to
2470 * TD_INITIALIZED.
2471 */
2472 fio_gettime(&this_start, NULL);
2473 left = this_jobs;
2474 while (left && !fio_abort) {
2475 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2476 break;
2477
2478 do_usleep(100000);
2479
2480 for (i = 0; i < this_jobs; i++) {
2481 td = map[i];
2482 if (!td)
2483 continue;
2484 if (td->runstate == TD_INITIALIZED) {
2485 map[i] = NULL;
2486 left--;
2487 } else if (td->runstate >= TD_EXITED) {
2488 map[i] = NULL;
2489 left--;
2490 todo--;
2491 nr_running++; /* work-around... */
2492 }
2493 }
2494 }
2495
2496 if (left) {
2497 log_err("fio: %d job%s failed to start\n", left,
2498 left > 1 ? "s" : "");
2499 for (i = 0; i < this_jobs; i++) {
2500 td = map[i];
2501 if (!td)
2502 continue;
2503 kill(td->pid, SIGTERM);
2504 }
2505 break;
2506 }
2507
2508 /*
2509 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2510 */
2511 for_each_td(td, i) {
2512 if (td->runstate != TD_INITIALIZED)
2513 continue;
2514
2515 if (in_ramp_time(td))
2516 td_set_runstate(td, TD_RAMP);
2517 else
2518 td_set_runstate(td, TD_RUNNING);
2519 nr_running++;
2520 nr_started--;
2521 m_rate += ddir_rw_sum(td->o.ratemin);
2522 t_rate += ddir_rw_sum(td->o.rate);
2523 todo--;
2524 fio_sem_up(td->sem);
2525 }
2526
2527 reap_threads(&nr_running, &t_rate, &m_rate);
2528
2529 if (todo)
2530 do_usleep(100000);
2531 }
2532
2533 while (nr_running) {
2534 reap_threads(&nr_running, &t_rate, &m_rate);
2535 do_usleep(10000);
2536 }
2537
2538 fio_idle_prof_stop();
2539
2540 update_io_ticks();
2541}
2542
2543static void free_disk_util(void)
2544{
2545 disk_util_prune_entries();
2546 helper_thread_destroy();
2547}
2548
2549int fio_backend(struct sk_out *sk_out)
2550{
2551 struct thread_data *td;
2552 int i;
2553
2554 if (exec_profile) {
2555 if (load_profile(exec_profile))
2556 return 1;
2557 free(exec_profile);
2558 exec_profile = NULL;
2559 }
2560 if (!thread_number)
2561 return 0;
2562
2563 if (write_bw_log) {
2564 struct log_params p = {
2565 .log_type = IO_LOG_TYPE_BW,
2566 };
2567
2568 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2569 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2570 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2571 }
2572
2573 if (init_global_dedupe_working_set_seeds()) {
2574 log_err("fio: failed to initialize global dedupe working set\n");
2575 return 1;
2576 }
2577
2578 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2579 if (!sk_out)
2580 is_local_backend = true;
2581 if (startup_sem == NULL)
2582 return 1;
2583
2584 set_genesis_time();
2585 stat_init();
2586 if (helper_thread_create(startup_sem, sk_out))
2587 log_err("fio: failed to create helper thread\n");
2588
2589 cgroup_list = smalloc(sizeof(*cgroup_list));
2590 if (cgroup_list)
2591 INIT_FLIST_HEAD(cgroup_list);
2592
2593 run_threads(sk_out);
2594
2595 helper_thread_exit();
2596
2597 if (!fio_abort) {
2598 __show_run_stats();
2599 if (write_bw_log) {
2600 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2601 struct io_log *log = agg_io_log[i];
2602
2603 flush_log(log, false);
2604 free_log(log);
2605 }
2606 }
2607 }
2608
2609 for_each_td(td, i) {
2610 struct thread_stat *ts = &td->ts;
2611
2612 free_clat_prio_stats(ts);
2613 steadystate_free(td);
2614 fio_options_free(td);
2615 fio_dump_options_free(td);
2616 if (td->rusage_sem) {
2617 fio_sem_remove(td->rusage_sem);
2618 td->rusage_sem = NULL;
2619 }
2620 fio_sem_remove(td->sem);
2621 td->sem = NULL;
2622 }
2623
2624 free_disk_util();
2625 if (cgroup_list) {
2626 cgroup_kill(cgroup_list);
2627 sfree(cgroup_list);
2628 }
2629
2630 fio_sem_remove(startup_sem);
2631 stat_exit();
2632 return exit_value;
2633}