Merge branch 'patch-1' of https://github.com/chienfuchen32/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_segments = 0;
66unsigned int cur_segment = 0;
67unsigned int stat_number = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72#else
73pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74#endif
75
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void sig_int(int sig)
79{
80 if (nr_segments) {
81 if (is_backend)
82 fio_server_got_signal(sig);
83 else {
84 log_info("\nfio: terminating on signal %d\n", sig);
85 log_info_flush();
86 exit_value = 128;
87 }
88
89 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 }
91}
92
93#ifdef WIN32
94static void sig_break(int sig)
95{
96 struct thread_data *td;
97 int i;
98
99 sig_int(sig);
100
101 /**
102 * Windows terminates all job processes on SIGBREAK after the handler
103 * returns, so give them time to wrap-up and give stats
104 */
105 for_each_td(td, i) {
106 while (td->runstate < TD_EXITED)
107 sleep(1);
108 }
109}
110#endif
111
112void sig_show_status(int sig)
113{
114 show_running_run_stats();
115}
116
117static void set_sig_handlers(void)
118{
119 struct sigaction act;
120
121 memset(&act, 0, sizeof(act));
122 act.sa_handler = sig_int;
123 act.sa_flags = SA_RESTART;
124 sigaction(SIGINT, &act, NULL);
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_int;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGTERM, &act, NULL);
130
131/* Windows uses SIGBREAK as a quit signal from other applications */
132#ifdef WIN32
133 memset(&act, 0, sizeof(act));
134 act.sa_handler = sig_break;
135 act.sa_flags = SA_RESTART;
136 sigaction(SIGBREAK, &act, NULL);
137#endif
138
139 memset(&act, 0, sizeof(act));
140 act.sa_handler = sig_show_status;
141 act.sa_flags = SA_RESTART;
142 sigaction(SIGUSR1, &act, NULL);
143
144 if (is_backend) {
145 memset(&act, 0, sizeof(act));
146 act.sa_handler = sig_int;
147 act.sa_flags = SA_RESTART;
148 sigaction(SIGPIPE, &act, NULL);
149 }
150}
151
152/*
153 * Check if we are above the minimum rate given.
154 */
155static bool __check_min_rate(struct thread_data *td, struct timespec *now,
156 enum fio_ddir ddir)
157{
158 unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
159 unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
160 unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
161 unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
162
163 assert(ddir_rw(ddir));
164
165 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
166 return false;
167
168 /*
169 * allow a 2 second settle period in the beginning
170 */
171 if (mtime_since(&td->start, now) < 2000)
172 return false;
173
174 /*
175 * if last_rate_check_blocks or last_rate_check_bytes is set,
176 * we can compute a rate per ratecycle
177 */
178 if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
179 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
180 if (spent < td->o.ratecycle || spent==0)
181 return false;
182
183 if (td->o.ratemin[ddir]) {
184 /*
185 * check bandwidth specified rate
186 */
187 unsigned long long current_rate_bytes =
188 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
189 if (current_rate_bytes < option_rate_bytes_min) {
190 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
191 td->o.name, option_rate_bytes_min, current_rate_bytes);
192 return true;
193 }
194 } else {
195 /*
196 * checks iops specified rate
197 */
198 unsigned long long current_rate_iops =
199 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
200
201 if (current_rate_iops < option_rate_iops_min) {
202 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
203 td->o.name, option_rate_iops_min, current_rate_iops);
204 return true;
205 }
206 }
207 }
208
209 td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
210 td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
211 memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
212 return false;
213}
214
215static bool check_min_rate(struct thread_data *td, struct timespec *now)
216{
217 bool ret = false;
218
219 for_each_rw_ddir(ddir) {
220 if (td->bytes_done[ddir])
221 ret |= __check_min_rate(td, now, ddir);
222 }
223
224 return ret;
225}
226
227/*
228 * When job exits, we can cancel the in-flight IO if we are using async
229 * io. Attempt to do so.
230 */
231static void cleanup_pending_aio(struct thread_data *td)
232{
233 int r;
234
235 /*
236 * get immediately available events, if any
237 */
238 r = io_u_queued_complete(td, 0);
239
240 /*
241 * now cancel remaining active events
242 */
243 if (td->io_ops->cancel) {
244 struct io_u *io_u;
245 int i;
246
247 io_u_qiter(&td->io_u_all, io_u, i) {
248 if (io_u->flags & IO_U_F_FLIGHT) {
249 r = td->io_ops->cancel(td, io_u);
250 if (!r)
251 put_io_u(td, io_u);
252 }
253 }
254 }
255
256 if (td->cur_depth)
257 r = io_u_queued_complete(td, td->cur_depth);
258}
259
260/*
261 * Helper to handle the final sync of a file. Works just like the normal
262 * io path, just does everything sync.
263 */
264static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
265{
266 struct io_u *io_u = __get_io_u(td);
267 enum fio_q_status ret;
268
269 if (!io_u)
270 return true;
271
272 io_u->ddir = DDIR_SYNC;
273 io_u->file = f;
274 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
275
276 if (td_io_prep(td, io_u)) {
277 put_io_u(td, io_u);
278 return true;
279 }
280
281requeue:
282 ret = td_io_queue(td, io_u);
283 switch (ret) {
284 case FIO_Q_QUEUED:
285 td_io_commit(td);
286 if (io_u_queued_complete(td, 1) < 0)
287 return true;
288 break;
289 case FIO_Q_COMPLETED:
290 if (io_u->error) {
291 td_verror(td, io_u->error, "td_io_queue");
292 return true;
293 }
294
295 if (io_u_sync_complete(td, io_u) < 0)
296 return true;
297 break;
298 case FIO_Q_BUSY:
299 td_io_commit(td);
300 goto requeue;
301 }
302
303 return false;
304}
305
306static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
307{
308 int ret, ret2;
309
310 if (fio_file_open(f))
311 return fio_io_sync(td, f);
312
313 if (td_io_open_file(td, f))
314 return 1;
315
316 ret = fio_io_sync(td, f);
317 ret2 = 0;
318 if (fio_file_open(f))
319 ret2 = td_io_close_file(td, f);
320 return (ret || ret2);
321}
322
323static inline void __update_ts_cache(struct thread_data *td)
324{
325 fio_gettime(&td->ts_cache, NULL);
326}
327
328static inline void update_ts_cache(struct thread_data *td)
329{
330 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
331 __update_ts_cache(td);
332}
333
334static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
335{
336 if (in_ramp_time(td))
337 return false;
338 if (!td->o.timeout)
339 return false;
340 if (utime_since(&td->epoch, t) >= td->o.timeout)
341 return true;
342
343 return false;
344}
345
346/*
347 * We need to update the runtime consistently in ms, but keep a running
348 * tally of the current elapsed time in microseconds for sub millisecond
349 * updates.
350 */
351static inline void update_runtime(struct thread_data *td,
352 unsigned long long *elapsed_us,
353 const enum fio_ddir ddir)
354{
355 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
356 return;
357
358 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
359 elapsed_us[ddir] += utime_since_now(&td->start);
360 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
361}
362
363static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364 int *retptr)
365{
366 int ret = *retptr;
367
368 if (ret < 0 || td->error) {
369 int err = td->error;
370 enum error_type_bit eb;
371
372 if (ret < 0)
373 err = -ret;
374
375 eb = td_error_type(ddir, err);
376 if (!(td->o.continue_on_error & (1 << eb)))
377 return true;
378
379 if (td_non_fatal_error(td, eb, err)) {
380 /*
381 * Continue with the I/Os in case of
382 * a non fatal error.
383 */
384 update_error_count(td, err);
385 td_clear_error(td);
386 *retptr = 0;
387 return false;
388 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
389 /*
390 * We expect to hit this error if
391 * fill_device option is set.
392 */
393 td_clear_error(td);
394 fio_mark_td_terminate(td);
395 return true;
396 } else {
397 /*
398 * Stop the I/O in case of a fatal
399 * error.
400 */
401 update_error_count(td, err);
402 return true;
403 }
404 }
405
406 return false;
407}
408
409static void check_update_rusage(struct thread_data *td)
410{
411 if (td->update_rusage) {
412 td->update_rusage = 0;
413 update_rusage_stat(td);
414 fio_sem_up(td->rusage_sem);
415 }
416}
417
418static int wait_for_completions(struct thread_data *td, struct timespec *time)
419{
420 const int full = queue_full(td);
421 int min_evts = 0;
422 int ret;
423
424 if (td->flags & TD_F_REGROW_LOGS)
425 return io_u_quiesce(td);
426
427 /*
428 * if the queue is full, we MUST reap at least 1 event
429 */
430 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
431 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
432 min_evts = 1;
433
434 if (time && should_check_rate(td))
435 fio_gettime(time, NULL);
436
437 do {
438 ret = io_u_queued_complete(td, min_evts);
439 if (ret < 0)
440 break;
441 } while (full && (td->cur_depth > td->o.iodepth_low));
442
443 return ret;
444}
445
446int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
447 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
448 struct timespec *comp_time)
449{
450 switch (*ret) {
451 case FIO_Q_COMPLETED:
452 if (io_u->error) {
453 *ret = -io_u->error;
454 clear_io_u(td, io_u);
455 } else if (io_u->resid) {
456 long long bytes = io_u->xfer_buflen - io_u->resid;
457 struct fio_file *f = io_u->file;
458
459 if (bytes_issued)
460 *bytes_issued += bytes;
461
462 if (!from_verify)
463 trim_io_piece(io_u);
464
465 /*
466 * zero read, fail
467 */
468 if (!bytes) {
469 if (!from_verify)
470 unlog_io_piece(td, io_u);
471 td_verror(td, EIO, "full resid");
472 put_io_u(td, io_u);
473 break;
474 }
475
476 io_u->xfer_buflen = io_u->resid;
477 io_u->xfer_buf += bytes;
478 io_u->offset += bytes;
479
480 if (ddir_rw(io_u->ddir))
481 td->ts.short_io_u[io_u->ddir]++;
482
483 if (io_u->offset == f->real_file_size)
484 goto sync_done;
485
486 requeue_io_u(td, &io_u);
487 } else {
488sync_done:
489 if (comp_time && should_check_rate(td))
490 fio_gettime(comp_time, NULL);
491
492 *ret = io_u_sync_complete(td, io_u);
493 if (*ret < 0)
494 break;
495 }
496
497 if (td->flags & TD_F_REGROW_LOGS)
498 regrow_logs(td);
499
500 /*
501 * when doing I/O (not when verifying),
502 * check for any errors that are to be ignored
503 */
504 if (!from_verify)
505 break;
506
507 return 0;
508 case FIO_Q_QUEUED:
509 /*
510 * if the engine doesn't have a commit hook,
511 * the io_u is really queued. if it does have such
512 * a hook, it has to call io_u_queued() itself.
513 */
514 if (td->io_ops->commit == NULL)
515 io_u_queued(td, io_u);
516 if (bytes_issued)
517 *bytes_issued += io_u->xfer_buflen;
518 break;
519 case FIO_Q_BUSY:
520 if (!from_verify)
521 unlog_io_piece(td, io_u);
522 requeue_io_u(td, &io_u);
523 td_io_commit(td);
524 break;
525 default:
526 assert(*ret < 0);
527 td_verror(td, -(*ret), "td_io_queue");
528 break;
529 }
530
531 if (break_on_this_error(td, ddir, ret))
532 return 1;
533
534 return 0;
535}
536
537static inline bool io_in_polling(struct thread_data *td)
538{
539 return !td->o.iodepth_batch_complete_min &&
540 !td->o.iodepth_batch_complete_max;
541}
542/*
543 * Unlinks files from thread data fio_file structure
544 */
545static int unlink_all_files(struct thread_data *td)
546{
547 struct fio_file *f;
548 unsigned int i;
549 int ret = 0;
550
551 for_each_file(td, f, i) {
552 if (f->filetype != FIO_TYPE_FILE)
553 continue;
554 ret = td_io_unlink_file(td, f);
555 if (ret)
556 break;
557 }
558
559 if (ret)
560 td_verror(td, ret, "unlink_all_files");
561
562 return ret;
563}
564
565/*
566 * Check if io_u will overlap an in-flight IO in the queue
567 */
568bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
569{
570 bool overlap;
571 struct io_u *check_io_u;
572 unsigned long long x1, x2, y1, y2;
573 int i;
574
575 x1 = io_u->offset;
576 x2 = io_u->offset + io_u->buflen;
577 overlap = false;
578 io_u_qiter(q, check_io_u, i) {
579 if (check_io_u->flags & IO_U_F_FLIGHT) {
580 y1 = check_io_u->offset;
581 y2 = check_io_u->offset + check_io_u->buflen;
582
583 if (x1 < y2 && y1 < x2) {
584 overlap = true;
585 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
586 x1, io_u->buflen,
587 y1, check_io_u->buflen);
588 break;
589 }
590 }
591 }
592
593 return overlap;
594}
595
596static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
597{
598 /*
599 * Check for overlap if the user asked us to, and we have
600 * at least one IO in flight besides this one.
601 */
602 if (td->o.serialize_overlap && td->cur_depth > 1 &&
603 in_flight_overlap(&td->io_u_all, io_u))
604 return FIO_Q_BUSY;
605
606 return td_io_queue(td, io_u);
607}
608
609/*
610 * The main verify engine. Runs over the writes we previously submitted,
611 * reads the blocks back in, and checks the crc/md5 of the data.
612 */
613static void do_verify(struct thread_data *td, uint64_t verify_bytes)
614{
615 struct fio_file *f;
616 struct io_u *io_u;
617 int ret, min_events;
618 unsigned int i;
619
620 dprint(FD_VERIFY, "starting loop\n");
621
622 /*
623 * sync io first and invalidate cache, to make sure we really
624 * read from disk.
625 */
626 for_each_file(td, f, i) {
627 if (!fio_file_open(f))
628 continue;
629 if (fio_io_sync(td, f))
630 break;
631 if (file_invalidate_cache(td, f))
632 break;
633 }
634
635 check_update_rusage(td);
636
637 if (td->error)
638 return;
639
640 /*
641 * verify_state needs to be reset before verification
642 * proceeds so that expected random seeds match actual
643 * random seeds in headers. The main loop will reset
644 * all random number generators if randrepeat is set.
645 */
646 if (!td->o.rand_repeatable)
647 td_fill_verify_state_seed(td);
648
649 td_set_runstate(td, TD_VERIFYING);
650
651 io_u = NULL;
652 while (!td->terminate) {
653 enum fio_ddir ddir;
654 int full;
655
656 update_ts_cache(td);
657 check_update_rusage(td);
658
659 if (runtime_exceeded(td, &td->ts_cache)) {
660 __update_ts_cache(td);
661 if (runtime_exceeded(td, &td->ts_cache)) {
662 fio_mark_td_terminate(td);
663 break;
664 }
665 }
666
667 if (flow_threshold_exceeded(td))
668 continue;
669
670 if (!td->o.experimental_verify) {
671 io_u = __get_io_u(td);
672 if (!io_u)
673 break;
674
675 if (get_next_verify(td, io_u)) {
676 put_io_u(td, io_u);
677 break;
678 }
679
680 if (td_io_prep(td, io_u)) {
681 put_io_u(td, io_u);
682 break;
683 }
684 } else {
685 if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
686 break;
687
688 while ((io_u = get_io_u(td)) != NULL) {
689 if (IS_ERR_OR_NULL(io_u)) {
690 io_u = NULL;
691 ret = FIO_Q_BUSY;
692 goto reap;
693 }
694
695 /*
696 * We are only interested in the places where
697 * we wrote or trimmed IOs. Turn those into
698 * reads for verification purposes.
699 */
700 if (io_u->ddir == DDIR_READ) {
701 /*
702 * Pretend we issued it for rwmix
703 * accounting
704 */
705 td->io_issues[DDIR_READ]++;
706 put_io_u(td, io_u);
707 continue;
708 } else if (io_u->ddir == DDIR_TRIM) {
709 io_u->ddir = DDIR_READ;
710 io_u_set(td, io_u, IO_U_F_TRIMMED);
711 break;
712 } else if (io_u->ddir == DDIR_WRITE) {
713 io_u->ddir = DDIR_READ;
714 io_u->numberio = td->verify_read_issues;
715 td->verify_read_issues++;
716 populate_verify_io_u(td, io_u);
717 break;
718 } else {
719 put_io_u(td, io_u);
720 continue;
721 }
722 }
723
724 if (!io_u)
725 break;
726 }
727
728 if (verify_state_should_stop(td, io_u)) {
729 put_io_u(td, io_u);
730 break;
731 }
732
733 if (td->o.verify_async)
734 io_u->end_io = verify_io_u_async;
735 else
736 io_u->end_io = verify_io_u;
737
738 ddir = io_u->ddir;
739 if (!td->o.disable_slat)
740 fio_gettime(&io_u->start_time, NULL);
741
742 ret = io_u_submit(td, io_u);
743
744 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
745 break;
746
747 /*
748 * if we can queue more, do so. but check if there are
749 * completed io_u's first. Note that we can get BUSY even
750 * without IO queued, if the system is resource starved.
751 */
752reap:
753 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
754 if (full || io_in_polling(td))
755 ret = wait_for_completions(td, NULL);
756
757 if (ret < 0)
758 break;
759 }
760
761 check_update_rusage(td);
762
763 if (!td->error) {
764 min_events = td->cur_depth;
765
766 if (min_events)
767 ret = io_u_queued_complete(td, min_events);
768 } else
769 cleanup_pending_aio(td);
770
771 td_set_runstate(td, TD_RUNNING);
772
773 dprint(FD_VERIFY, "exiting loop\n");
774}
775
776static bool exceeds_number_ios(struct thread_data *td)
777{
778 unsigned long long number_ios;
779
780 if (!td->o.number_ios)
781 return false;
782
783 number_ios = ddir_rw_sum(td->io_blocks);
784 number_ios += td->io_u_queued + td->io_u_in_flight;
785
786 return number_ios >= (td->o.number_ios * td->loops);
787}
788
789static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
790{
791 unsigned long long bytes, limit;
792
793 if (td_rw(td))
794 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
795 else if (td_write(td))
796 bytes = this_bytes[DDIR_WRITE];
797 else if (td_read(td))
798 bytes = this_bytes[DDIR_READ];
799 else
800 bytes = this_bytes[DDIR_TRIM];
801
802 if (td->o.io_size)
803 limit = td->o.io_size;
804 else
805 limit = td->o.size;
806
807 limit *= td->loops;
808 return bytes >= limit || exceeds_number_ios(td);
809}
810
811static bool io_issue_bytes_exceeded(struct thread_data *td)
812{
813 return io_bytes_exceeded(td, td->io_issue_bytes);
814}
815
816static bool io_complete_bytes_exceeded(struct thread_data *td)
817{
818 return io_bytes_exceeded(td, td->this_io_bytes);
819}
820
821/*
822 * used to calculate the next io time for rate control
823 *
824 */
825static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
826{
827 uint64_t bps = td->rate_bps[ddir];
828
829 assert(!(td->flags & TD_F_CHILD));
830
831 if (td->o.rate_process == RATE_PROCESS_POISSON) {
832 uint64_t val, iops;
833
834 iops = bps / td->o.min_bs[ddir];
835 val = (int64_t) (1000000 / iops) *
836 -logf(__rand_0_1(&td->poisson_state[ddir]));
837 if (val) {
838 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
839 (unsigned long long) 1000000 / val,
840 ddir);
841 }
842 td->last_usec[ddir] += val;
843 return td->last_usec[ddir];
844 } else if (bps) {
845 uint64_t bytes = td->rate_io_issue_bytes[ddir];
846 uint64_t secs = bytes / bps;
847 uint64_t remainder = bytes % bps;
848
849 return remainder * 1000000 / bps + secs * 1000000;
850 }
851
852 return 0;
853}
854
855static void init_thinktime(struct thread_data *td)
856{
857 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
858 td->thinktime_blocks_counter = td->io_blocks;
859 else
860 td->thinktime_blocks_counter = td->io_issues;
861 td->last_thinktime = td->epoch;
862 td->last_thinktime_blocks = 0;
863}
864
865static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
866 struct timespec *time)
867{
868 unsigned long long b;
869 uint64_t total;
870 int left;
871 struct timespec now;
872 bool stall = false;
873
874 if (td->o.thinktime_iotime) {
875 fio_gettime(&now, NULL);
876 if (utime_since(&td->last_thinktime, &now)
877 >= td->o.thinktime_iotime + td->o.thinktime) {
878 stall = true;
879 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
880 /*
881 * When thinktime_iotime is set and thinktime_blocks is
882 * not set, skip the thinktime_blocks check, since
883 * thinktime_blocks default value 1 does not work
884 * together with thinktime_iotime.
885 */
886 return;
887 }
888
889 }
890
891 b = ddir_rw_sum(td->thinktime_blocks_counter);
892 if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
893 stall = true;
894
895 if (!stall)
896 return;
897
898 io_u_quiesce(td);
899
900 total = 0;
901 if (td->o.thinktime_spin)
902 total = usec_spin(td->o.thinktime_spin);
903
904 left = td->o.thinktime - total;
905 if (left)
906 total += usec_sleep(td, left);
907
908 /*
909 * If we're ignoring thinktime for the rate, add the number of bytes
910 * we would have done while sleeping, minus one block to ensure we
911 * start issuing immediately after the sleep.
912 */
913 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
914 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
915 uint64_t bs = td->o.min_bs[ddir];
916 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
917 uint64_t over;
918
919 if (usperop <= total)
920 over = bs;
921 else
922 over = (usperop - total) / usperop * -bs;
923
924 td->rate_io_issue_bytes[ddir] += (missed - over);
925 /* adjust for rate_process=poisson */
926 td->last_usec[ddir] += total;
927 }
928
929 if (time && should_check_rate(td))
930 fio_gettime(time, NULL);
931
932 td->last_thinktime_blocks = b;
933 if (td->o.thinktime_iotime)
934 td->last_thinktime = now;
935}
936
937/*
938 * Main IO worker function. It retrieves io_u's to process and queues
939 * and reaps them, checking for rate and errors along the way.
940 *
941 * Returns number of bytes written and trimmed.
942 */
943static void do_io(struct thread_data *td, uint64_t *bytes_done)
944{
945 unsigned int i;
946 int ret = 0;
947 uint64_t total_bytes, bytes_issued = 0;
948
949 for (i = 0; i < DDIR_RWDIR_CNT; i++)
950 bytes_done[i] = td->bytes_done[i];
951
952 if (in_ramp_time(td))
953 td_set_runstate(td, TD_RAMP);
954 else
955 td_set_runstate(td, TD_RUNNING);
956
957 lat_target_init(td);
958
959 total_bytes = td->o.size;
960 /*
961 * Allow random overwrite workloads to write up to io_size
962 * before starting verification phase as 'size' doesn't apply.
963 */
964 if (td_write(td) && td_random(td) && td->o.norandommap)
965 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
966 /*
967 * If verify_backlog is enabled, we'll run the verify in this
968 * handler as well. For that case, we may need up to twice the
969 * amount of bytes.
970 */
971 if (td->o.verify != VERIFY_NONE &&
972 (td_write(td) && td->o.verify_backlog))
973 total_bytes += td->o.size;
974
975 /* In trimwrite mode, each byte is trimmed and then written, so
976 * allow total_bytes or number of ios to be twice as big */
977 if (td_trimwrite(td)) {
978 total_bytes += td->total_io_size;
979 td->o.number_ios *= 2;
980 }
981
982 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
983 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
984 td->o.time_based) {
985 struct timespec comp_time;
986 struct io_u *io_u;
987 int full;
988 enum fio_ddir ddir;
989
990 check_update_rusage(td);
991
992 if (td->terminate || td->done)
993 break;
994
995 update_ts_cache(td);
996
997 if (runtime_exceeded(td, &td->ts_cache)) {
998 __update_ts_cache(td);
999 if (runtime_exceeded(td, &td->ts_cache)) {
1000 fio_mark_td_terminate(td);
1001 break;
1002 }
1003 }
1004
1005 if (flow_threshold_exceeded(td))
1006 continue;
1007
1008 /*
1009 * Break if we exceeded the bytes. The exception is time
1010 * based runs, but we still need to break out of the loop
1011 * for those to run verification, if enabled.
1012 * Jobs read from iolog do not use this stop condition.
1013 */
1014 if (bytes_issued >= total_bytes &&
1015 !td->o.read_iolog_file &&
1016 (!td->o.time_based ||
1017 (td->o.time_based && td->o.verify != VERIFY_NONE)))
1018 break;
1019
1020 io_u = get_io_u(td);
1021 if (IS_ERR_OR_NULL(io_u)) {
1022 int err = PTR_ERR(io_u);
1023
1024 io_u = NULL;
1025 ddir = DDIR_INVAL;
1026 if (err == -EBUSY) {
1027 ret = FIO_Q_BUSY;
1028 goto reap;
1029 }
1030 if (td->o.latency_target)
1031 goto reap;
1032 break;
1033 }
1034
1035 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1036 io_u->numberio = td->io_issues[io_u->ddir];
1037 populate_verify_io_u(td, io_u);
1038 }
1039
1040 ddir = io_u->ddir;
1041
1042 /*
1043 * Add verification end_io handler if:
1044 * - Asked to verify (!td_rw(td))
1045 * - Or the io_u is from our verify list (mixed write/ver)
1046 */
1047 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1048 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1049
1050 if (verify_state_should_stop(td, io_u)) {
1051 put_io_u(td, io_u);
1052 break;
1053 }
1054
1055 if (td->o.verify_async)
1056 io_u->end_io = verify_io_u_async;
1057 else
1058 io_u->end_io = verify_io_u;
1059 td_set_runstate(td, TD_VERIFYING);
1060 } else if (in_ramp_time(td))
1061 td_set_runstate(td, TD_RAMP);
1062 else
1063 td_set_runstate(td, TD_RUNNING);
1064
1065 /*
1066 * Always log IO before it's issued, so we know the specific
1067 * order of it. The logged unit will track when the IO has
1068 * completed.
1069 */
1070 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1071 td->o.do_verify &&
1072 td->o.verify != VERIFY_NONE &&
1073 !td->o.experimental_verify)
1074 log_io_piece(td, io_u);
1075
1076 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1077 const unsigned long long blen = io_u->xfer_buflen;
1078 const enum fio_ddir __ddir = acct_ddir(io_u);
1079
1080 if (td->error)
1081 break;
1082
1083 workqueue_enqueue(&td->io_wq, &io_u->work);
1084 ret = FIO_Q_QUEUED;
1085
1086 if (ddir_rw(__ddir)) {
1087 td->io_issues[__ddir]++;
1088 td->io_issue_bytes[__ddir] += blen;
1089 td->rate_io_issue_bytes[__ddir] += blen;
1090 }
1091
1092 if (should_check_rate(td)) {
1093 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1094 fio_gettime(&comp_time, NULL);
1095 }
1096
1097 } else {
1098 ret = io_u_submit(td, io_u);
1099
1100 if (should_check_rate(td))
1101 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1102
1103 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1104 break;
1105
1106 /*
1107 * See if we need to complete some commands. Note that
1108 * we can get BUSY even without IO queued, if the
1109 * system is resource starved.
1110 */
1111reap:
1112 full = queue_full(td) ||
1113 (ret == FIO_Q_BUSY && td->cur_depth);
1114 if (full || io_in_polling(td))
1115 ret = wait_for_completions(td, &comp_time);
1116 }
1117 if (ret < 0)
1118 break;
1119
1120 if (ddir_rw(ddir) && td->o.thinktime)
1121 handle_thinktime(td, ddir, &comp_time);
1122
1123 if (!ddir_rw_sum(td->bytes_done) &&
1124 !td_ioengine_flagged(td, FIO_NOIO))
1125 continue;
1126
1127 if (!in_ramp_time(td) && should_check_rate(td)) {
1128 if (check_min_rate(td, &comp_time)) {
1129 if (exitall_on_terminate || td->o.exitall_error)
1130 fio_terminate_threads(td->groupid, td->o.exit_what);
1131 td_verror(td, EIO, "check_min_rate");
1132 break;
1133 }
1134 }
1135 if (!in_ramp_time(td) && td->o.latency_target)
1136 lat_target_check(td);
1137 }
1138
1139 check_update_rusage(td);
1140
1141 if (td->trim_entries)
1142 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1143
1144 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1145 td->error = 0;
1146 fio_mark_td_terminate(td);
1147 }
1148 if (!td->error) {
1149 struct fio_file *f;
1150
1151 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1152 workqueue_flush(&td->io_wq);
1153 i = 0;
1154 } else
1155 i = td->cur_depth;
1156
1157 if (i) {
1158 ret = io_u_queued_complete(td, i);
1159 if (td->o.fill_device &&
1160 (td->error == ENOSPC || td->error == EDQUOT))
1161 td->error = 0;
1162 }
1163
1164 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1165 td_set_runstate(td, TD_FSYNCING);
1166
1167 for_each_file(td, f, i) {
1168 if (!fio_file_fsync(td, f))
1169 continue;
1170
1171 log_err("fio: end_fsync failed for file %s\n",
1172 f->file_name);
1173 }
1174 }
1175 } else {
1176 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1177 workqueue_flush(&td->io_wq);
1178 cleanup_pending_aio(td);
1179 }
1180
1181 /*
1182 * stop job if we failed doing any IO
1183 */
1184 if (!ddir_rw_sum(td->this_io_bytes))
1185 td->done = 1;
1186
1187 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1188 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1189}
1190
1191static void free_file_completion_logging(struct thread_data *td)
1192{
1193 struct fio_file *f;
1194 unsigned int i;
1195
1196 for_each_file(td, f, i) {
1197 if (!f->last_write_comp)
1198 break;
1199 sfree(f->last_write_comp);
1200 }
1201}
1202
1203static int init_file_completion_logging(struct thread_data *td,
1204 unsigned int depth)
1205{
1206 struct fio_file *f;
1207 unsigned int i;
1208
1209 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1210 return 0;
1211
1212 for_each_file(td, f, i) {
1213 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1214 if (!f->last_write_comp)
1215 goto cleanup;
1216 }
1217
1218 return 0;
1219
1220cleanup:
1221 free_file_completion_logging(td);
1222 log_err("fio: failed to alloc write comp data\n");
1223 return 1;
1224}
1225
1226static void cleanup_io_u(struct thread_data *td)
1227{
1228 struct io_u *io_u;
1229
1230 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1231
1232 if (td->io_ops->io_u_free)
1233 td->io_ops->io_u_free(td, io_u);
1234
1235 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1236 }
1237
1238 free_io_mem(td);
1239
1240 io_u_rexit(&td->io_u_requeues);
1241 io_u_qexit(&td->io_u_freelist, false);
1242 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1243
1244 free_file_completion_logging(td);
1245}
1246
1247static int init_io_u(struct thread_data *td)
1248{
1249 struct io_u *io_u;
1250 int cl_align, i, max_units;
1251 int err;
1252
1253 max_units = td->o.iodepth;
1254
1255 err = 0;
1256 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1257 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1258 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1259
1260 if (err) {
1261 log_err("fio: failed setting up IO queues\n");
1262 return 1;
1263 }
1264
1265 cl_align = os_cache_line_size();
1266
1267 for (i = 0; i < max_units; i++) {
1268 void *ptr;
1269
1270 if (td->terminate)
1271 return 1;
1272
1273 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1274 if (!ptr) {
1275 log_err("fio: unable to allocate aligned memory\n");
1276 return 1;
1277 }
1278
1279 io_u = ptr;
1280 memset(io_u, 0, sizeof(*io_u));
1281 INIT_FLIST_HEAD(&io_u->verify_list);
1282 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1283
1284 io_u->index = i;
1285 io_u->flags = IO_U_F_FREE;
1286 io_u_qpush(&td->io_u_freelist, io_u);
1287
1288 /*
1289 * io_u never leaves this stack, used for iteration of all
1290 * io_u buffers.
1291 */
1292 io_u_qpush(&td->io_u_all, io_u);
1293
1294 if (td->io_ops->io_u_init) {
1295 int ret = td->io_ops->io_u_init(td, io_u);
1296
1297 if (ret) {
1298 log_err("fio: failed to init engine data: %d\n", ret);
1299 return 1;
1300 }
1301 }
1302 }
1303
1304 init_io_u_buffers(td);
1305
1306 if (init_file_completion_logging(td, max_units))
1307 return 1;
1308
1309 return 0;
1310}
1311
1312int init_io_u_buffers(struct thread_data *td)
1313{
1314 struct io_u *io_u;
1315 unsigned long long max_bs, min_write;
1316 int i, max_units;
1317 int data_xfer = 1;
1318 char *p;
1319
1320 max_units = td->o.iodepth;
1321 max_bs = td_max_bs(td);
1322 min_write = td->o.min_bs[DDIR_WRITE];
1323 td->orig_buffer_size = (unsigned long long) max_bs
1324 * (unsigned long long) max_units;
1325
1326 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1327 data_xfer = 0;
1328
1329 /*
1330 * if we may later need to do address alignment, then add any
1331 * possible adjustment here so that we don't cause a buffer
1332 * overflow later. this adjustment may be too much if we get
1333 * lucky and the allocator gives us an aligned address.
1334 */
1335 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1336 td_ioengine_flagged(td, FIO_RAWIO))
1337 td->orig_buffer_size += page_mask + td->o.mem_align;
1338
1339 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1340 unsigned long long bs;
1341
1342 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1343 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1344 }
1345
1346 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1347 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1348 return 1;
1349 }
1350
1351 if (data_xfer && allocate_io_mem(td))
1352 return 1;
1353
1354 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1355 td_ioengine_flagged(td, FIO_RAWIO))
1356 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1357 else
1358 p = td->orig_buffer;
1359
1360 for (i = 0; i < max_units; i++) {
1361 io_u = td->io_u_all.io_us[i];
1362 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1363
1364 if (data_xfer) {
1365 io_u->buf = p;
1366 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1367
1368 if (td_write(td))
1369 io_u_fill_buffer(td, io_u, min_write, max_bs);
1370 if (td_write(td) && td->o.verify_pattern_bytes) {
1371 /*
1372 * Fill the buffer with the pattern if we are
1373 * going to be doing writes.
1374 */
1375 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1376 }
1377 }
1378 p += max_bs;
1379 }
1380
1381 return 0;
1382}
1383
1384#ifdef FIO_HAVE_IOSCHED_SWITCH
1385/*
1386 * These functions are Linux specific.
1387 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1388 */
1389static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1390{
1391 char tmp[256], tmp2[128], *p;
1392 FILE *f;
1393 int ret;
1394
1395 assert(file->du && file->du->sysfs_root);
1396 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1397
1398 f = fopen(tmp, "r+");
1399 if (!f) {
1400 if (errno == ENOENT) {
1401 log_err("fio: os or kernel doesn't support IO scheduler"
1402 " switching\n");
1403 return 0;
1404 }
1405 td_verror(td, errno, "fopen iosched");
1406 return 1;
1407 }
1408
1409 /*
1410 * Set io scheduler.
1411 */
1412 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1413 if (ferror(f) || ret != 1) {
1414 td_verror(td, errno, "fwrite");
1415 fclose(f);
1416 return 1;
1417 }
1418
1419 rewind(f);
1420
1421 /*
1422 * Read back and check that the selected scheduler is now the default.
1423 */
1424 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1425 if (ferror(f) || ret < 0) {
1426 td_verror(td, errno, "fread");
1427 fclose(f);
1428 return 1;
1429 }
1430 tmp[ret] = '\0';
1431 /*
1432 * either a list of io schedulers or "none\n" is expected. Strip the
1433 * trailing newline.
1434 */
1435 p = tmp;
1436 strsep(&p, "\n");
1437
1438 /*
1439 * Write to "none" entry doesn't fail, so check the result here.
1440 */
1441 if (!strcmp(tmp, "none")) {
1442 log_err("fio: io scheduler is not tunable\n");
1443 fclose(f);
1444 return 0;
1445 }
1446
1447 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1448 if (!strstr(tmp, tmp2)) {
1449 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1450 td_verror(td, EINVAL, "iosched_switch");
1451 fclose(f);
1452 return 1;
1453 }
1454
1455 fclose(f);
1456 return 0;
1457}
1458
1459static int switch_ioscheduler(struct thread_data *td)
1460{
1461 struct fio_file *f;
1462 unsigned int i;
1463 int ret = 0;
1464
1465 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1466 return 0;
1467
1468 assert(td->files && td->files[0]);
1469
1470 for_each_file(td, f, i) {
1471
1472 /* Only consider regular files and block device files */
1473 switch (f->filetype) {
1474 case FIO_TYPE_FILE:
1475 case FIO_TYPE_BLOCK:
1476 /*
1477 * Make sure that the device hosting the file could
1478 * be determined.
1479 */
1480 if (!f->du)
1481 continue;
1482 break;
1483 case FIO_TYPE_CHAR:
1484 case FIO_TYPE_PIPE:
1485 default:
1486 continue;
1487 }
1488
1489 ret = set_ioscheduler(td, f);
1490 if (ret)
1491 return ret;
1492 }
1493
1494 return 0;
1495}
1496
1497#else
1498
1499static int switch_ioscheduler(struct thread_data *td)
1500{
1501 return 0;
1502}
1503
1504#endif /* FIO_HAVE_IOSCHED_SWITCH */
1505
1506static bool keep_running(struct thread_data *td)
1507{
1508 unsigned long long limit;
1509
1510 if (td->done)
1511 return false;
1512 if (td->terminate)
1513 return false;
1514 if (td->o.time_based)
1515 return true;
1516 if (td->o.loops) {
1517 td->o.loops--;
1518 return true;
1519 }
1520 if (exceeds_number_ios(td))
1521 return false;
1522
1523 if (td->o.io_size)
1524 limit = td->o.io_size;
1525 else
1526 limit = td->o.size;
1527
1528 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1529 uint64_t diff;
1530
1531 /*
1532 * If the difference is less than the maximum IO size, we
1533 * are done.
1534 */
1535 diff = limit - ddir_rw_sum(td->io_bytes);
1536 if (diff < td_max_bs(td))
1537 return false;
1538
1539 if (fio_files_done(td) && !td->o.io_size)
1540 return false;
1541
1542 return true;
1543 }
1544
1545 return false;
1546}
1547
1548static int exec_string(struct thread_options *o, const char *string,
1549 const char *mode)
1550{
1551 int ret;
1552 char *str;
1553
1554 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1555 return -1;
1556
1557 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1558 o->name, mode);
1559 ret = system(str);
1560 if (ret == -1)
1561 log_err("fio: exec of cmd <%s> failed\n", str);
1562
1563 free(str);
1564 return ret;
1565}
1566
1567/*
1568 * Dry run to compute correct state of numberio for verification.
1569 */
1570static uint64_t do_dry_run(struct thread_data *td)
1571{
1572 td_set_runstate(td, TD_RUNNING);
1573
1574 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1575 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1576 struct io_u *io_u;
1577 int ret;
1578
1579 if (td->terminate || td->done)
1580 break;
1581
1582 io_u = get_io_u(td);
1583 if (IS_ERR_OR_NULL(io_u))
1584 break;
1585
1586 io_u_set(td, io_u, IO_U_F_FLIGHT);
1587 io_u->error = 0;
1588 io_u->resid = 0;
1589 if (ddir_rw(acct_ddir(io_u)))
1590 td->io_issues[acct_ddir(io_u)]++;
1591 if (ddir_rw(io_u->ddir)) {
1592 io_u_mark_depth(td, 1);
1593 td->ts.total_io_u[io_u->ddir]++;
1594 }
1595
1596 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1597 td->o.do_verify &&
1598 td->o.verify != VERIFY_NONE &&
1599 !td->o.experimental_verify)
1600 log_io_piece(td, io_u);
1601
1602 ret = io_u_sync_complete(td, io_u);
1603 (void) ret;
1604 }
1605
1606 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1607}
1608
1609struct fork_data {
1610 struct thread_data *td;
1611 struct sk_out *sk_out;
1612};
1613
1614/*
1615 * Entry point for the thread based jobs. The process based jobs end up
1616 * here as well, after a little setup.
1617 */
1618static void *thread_main(void *data)
1619{
1620 struct fork_data *fd = data;
1621 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1622 struct thread_data *td = fd->td;
1623 struct thread_options *o = &td->o;
1624 struct sk_out *sk_out = fd->sk_out;
1625 uint64_t bytes_done[DDIR_RWDIR_CNT];
1626 int deadlock_loop_cnt;
1627 bool clear_state;
1628 int res, ret;
1629
1630 sk_out_assign(sk_out);
1631 free(fd);
1632
1633 if (!o->use_thread) {
1634 setsid();
1635 td->pid = getpid();
1636 } else
1637 td->pid = gettid();
1638
1639 fio_local_clock_init();
1640
1641 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1642
1643 if (is_backend)
1644 fio_server_send_start(td);
1645
1646 INIT_FLIST_HEAD(&td->io_log_list);
1647 INIT_FLIST_HEAD(&td->io_hist_list);
1648 INIT_FLIST_HEAD(&td->verify_list);
1649 INIT_FLIST_HEAD(&td->trim_list);
1650 td->io_hist_tree = RB_ROOT;
1651
1652 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1653 if (ret) {
1654 td_verror(td, ret, "mutex_cond_init_pshared");
1655 goto err;
1656 }
1657 ret = cond_init_pshared(&td->verify_cond);
1658 if (ret) {
1659 td_verror(td, ret, "mutex_cond_pshared");
1660 goto err;
1661 }
1662
1663 td_set_runstate(td, TD_INITIALIZED);
1664 dprint(FD_MUTEX, "up startup_sem\n");
1665 fio_sem_up(startup_sem);
1666 dprint(FD_MUTEX, "wait on td->sem\n");
1667 fio_sem_down(td->sem);
1668 dprint(FD_MUTEX, "done waiting on td->sem\n");
1669
1670 /*
1671 * A new gid requires privilege, so we need to do this before setting
1672 * the uid.
1673 */
1674 if (o->gid != -1U && setgid(o->gid)) {
1675 td_verror(td, errno, "setgid");
1676 goto err;
1677 }
1678 if (o->uid != -1U && setuid(o->uid)) {
1679 td_verror(td, errno, "setuid");
1680 goto err;
1681 }
1682
1683 td_zone_gen_index(td);
1684
1685 /*
1686 * Do this early, we don't want the compress threads to be limited
1687 * to the same CPUs as the IO workers. So do this before we set
1688 * any potential CPU affinity
1689 */
1690 if (iolog_compress_init(td, sk_out))
1691 goto err;
1692
1693 /*
1694 * If we have a gettimeofday() thread, make sure we exclude that
1695 * thread from this job
1696 */
1697 if (o->gtod_cpu)
1698 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1699
1700 /*
1701 * Set affinity first, in case it has an impact on the memory
1702 * allocations.
1703 */
1704 if (fio_option_is_set(o, cpumask)) {
1705 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1706 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1707 if (!ret) {
1708 log_err("fio: no CPUs set\n");
1709 log_err("fio: Try increasing number of available CPUs\n");
1710 td_verror(td, EINVAL, "cpus_split");
1711 goto err;
1712 }
1713 }
1714 ret = fio_setaffinity(td->pid, o->cpumask);
1715 if (ret == -1) {
1716 td_verror(td, errno, "cpu_set_affinity");
1717 goto err;
1718 }
1719 }
1720
1721#ifdef CONFIG_LIBNUMA
1722 /* numa node setup */
1723 if (fio_option_is_set(o, numa_cpunodes) ||
1724 fio_option_is_set(o, numa_memnodes)) {
1725 struct bitmask *mask;
1726
1727 if (numa_available() < 0) {
1728 td_verror(td, errno, "Does not support NUMA API\n");
1729 goto err;
1730 }
1731
1732 if (fio_option_is_set(o, numa_cpunodes)) {
1733 mask = numa_parse_nodestring(o->numa_cpunodes);
1734 ret = numa_run_on_node_mask(mask);
1735 numa_free_nodemask(mask);
1736 if (ret == -1) {
1737 td_verror(td, errno, \
1738 "numa_run_on_node_mask failed\n");
1739 goto err;
1740 }
1741 }
1742
1743 if (fio_option_is_set(o, numa_memnodes)) {
1744 mask = NULL;
1745 if (o->numa_memnodes)
1746 mask = numa_parse_nodestring(o->numa_memnodes);
1747
1748 switch (o->numa_mem_mode) {
1749 case MPOL_INTERLEAVE:
1750 numa_set_interleave_mask(mask);
1751 break;
1752 case MPOL_BIND:
1753 numa_set_membind(mask);
1754 break;
1755 case MPOL_LOCAL:
1756 numa_set_localalloc();
1757 break;
1758 case MPOL_PREFERRED:
1759 numa_set_preferred(o->numa_mem_prefer_node);
1760 break;
1761 case MPOL_DEFAULT:
1762 default:
1763 break;
1764 }
1765
1766 if (mask)
1767 numa_free_nodemask(mask);
1768
1769 }
1770 }
1771#endif
1772
1773 if (fio_pin_memory(td))
1774 goto err;
1775
1776 /*
1777 * May alter parameters that init_io_u() will use, so we need to
1778 * do this first.
1779 */
1780 if (!init_iolog(td))
1781 goto err;
1782
1783 /* ioprio_set() has to be done before td_io_init() */
1784 if (fio_option_is_set(o, ioprio) ||
1785 fio_option_is_set(o, ioprio_class)) {
1786 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1787 if (ret == -1) {
1788 td_verror(td, errno, "ioprio_set");
1789 goto err;
1790 }
1791 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio);
1792 td->ts.ioprio = td->ioprio;
1793 }
1794
1795 if (td_io_init(td))
1796 goto err;
1797
1798 if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1) {
1799 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1800 "are selected, queue depth will be capped at 1\n");
1801 }
1802
1803 if (init_io_u(td))
1804 goto err;
1805
1806 if (td->io_ops->post_init && td->io_ops->post_init(td))
1807 goto err;
1808
1809 if (o->verify_async && verify_async_init(td))
1810 goto err;
1811
1812 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1813 goto err;
1814
1815 errno = 0;
1816 if (nice(o->nice) == -1 && errno != 0) {
1817 td_verror(td, errno, "nice");
1818 goto err;
1819 }
1820
1821 if (o->ioscheduler && switch_ioscheduler(td))
1822 goto err;
1823
1824 if (!o->create_serialize && setup_files(td))
1825 goto err;
1826
1827 if (!init_random_map(td))
1828 goto err;
1829
1830 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1831 goto err;
1832
1833 if (o->pre_read && !pre_read_files(td))
1834 goto err;
1835
1836 fio_verify_init(td);
1837
1838 if (rate_submit_init(td, sk_out))
1839 goto err;
1840
1841 set_epoch_time(td, o->log_unix_epoch | o->log_alternate_epoch, o->log_alternate_epoch_clock_id);
1842 fio_getrusage(&td->ru_start);
1843 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1844 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1845 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1846
1847 init_thinktime(td);
1848
1849 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1850 o->ratemin[DDIR_TRIM]) {
1851 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1852 sizeof(td->bw_sample_time));
1853 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1854 sizeof(td->bw_sample_time));
1855 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1856 sizeof(td->bw_sample_time));
1857 }
1858
1859 memset(bytes_done, 0, sizeof(bytes_done));
1860 clear_state = false;
1861
1862 while (keep_running(td)) {
1863 uint64_t verify_bytes;
1864
1865 fio_gettime(&td->start, NULL);
1866 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1867
1868 if (clear_state) {
1869 clear_io_state(td, 0);
1870
1871 if (o->unlink_each_loop && unlink_all_files(td))
1872 break;
1873 }
1874
1875 prune_io_piece_log(td);
1876
1877 if (td->o.verify_only && td_write(td))
1878 verify_bytes = do_dry_run(td);
1879 else {
1880 do_io(td, bytes_done);
1881
1882 if (!ddir_rw_sum(bytes_done)) {
1883 fio_mark_td_terminate(td);
1884 verify_bytes = 0;
1885 } else {
1886 verify_bytes = bytes_done[DDIR_WRITE] +
1887 bytes_done[DDIR_TRIM];
1888 }
1889 }
1890
1891 /*
1892 * If we took too long to shut down, the main thread could
1893 * already consider us reaped/exited. If that happens, break
1894 * out and clean up.
1895 */
1896 if (td->runstate >= TD_EXITED)
1897 break;
1898
1899 clear_state = true;
1900
1901 /*
1902 * Make sure we've successfully updated the rusage stats
1903 * before waiting on the stat mutex. Otherwise we could have
1904 * the stat thread holding stat mutex and waiting for
1905 * the rusage_sem, which would never get upped because
1906 * this thread is waiting for the stat mutex.
1907 */
1908 deadlock_loop_cnt = 0;
1909 do {
1910 check_update_rusage(td);
1911 if (!fio_sem_down_trylock(stat_sem))
1912 break;
1913 usleep(1000);
1914 if (deadlock_loop_cnt++ > 5000) {
1915 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1916 td->error = EDEADLK;
1917 goto err;
1918 }
1919 } while (1);
1920
1921 if (td_read(td) && td->io_bytes[DDIR_READ])
1922 update_runtime(td, elapsed_us, DDIR_READ);
1923 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1924 update_runtime(td, elapsed_us, DDIR_WRITE);
1925 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1926 update_runtime(td, elapsed_us, DDIR_TRIM);
1927 fio_gettime(&td->start, NULL);
1928 fio_sem_up(stat_sem);
1929
1930 if (td->error || td->terminate)
1931 break;
1932
1933 if (!o->do_verify ||
1934 o->verify == VERIFY_NONE ||
1935 td_ioengine_flagged(td, FIO_UNIDIR))
1936 continue;
1937
1938 clear_io_state(td, 0);
1939
1940 fio_gettime(&td->start, NULL);
1941
1942 do_verify(td, verify_bytes);
1943
1944 /*
1945 * See comment further up for why this is done here.
1946 */
1947 check_update_rusage(td);
1948
1949 fio_sem_down(stat_sem);
1950 update_runtime(td, elapsed_us, DDIR_READ);
1951 fio_gettime(&td->start, NULL);
1952 fio_sem_up(stat_sem);
1953
1954 if (td->error || td->terminate)
1955 break;
1956 }
1957
1958 /*
1959 * Acquire this lock if we were doing overlap checking in
1960 * offload mode so that we don't clean up this job while
1961 * another thread is checking its io_u's for overlap
1962 */
1963 if (td_offload_overlap(td)) {
1964 int res = pthread_mutex_lock(&overlap_check);
1965 assert(res == 0);
1966 }
1967 td_set_runstate(td, TD_FINISHING);
1968 if (td_offload_overlap(td)) {
1969 res = pthread_mutex_unlock(&overlap_check);
1970 assert(res == 0);
1971 }
1972
1973 update_rusage_stat(td);
1974 td->ts.total_run_time = mtime_since_now(&td->epoch);
1975 for_each_rw_ddir(ddir) {
1976 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1977 }
1978
1979 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1980 (td->o.verify != VERIFY_NONE && td_write(td)))
1981 verify_save_state(td->thread_number);
1982
1983 fio_unpin_memory(td);
1984
1985 td_writeout_logs(td, true);
1986
1987 iolog_compress_exit(td);
1988 rate_submit_exit(td);
1989
1990 if (o->exec_postrun)
1991 exec_string(o, o->exec_postrun, "postrun");
1992
1993 if (exitall_on_terminate || (o->exitall_error && td->error))
1994 fio_terminate_threads(td->groupid, td->o.exit_what);
1995
1996err:
1997 if (td->error)
1998 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1999 td->verror);
2000
2001 if (o->verify_async)
2002 verify_async_exit(td);
2003
2004 close_and_free_files(td);
2005 cleanup_io_u(td);
2006 close_ioengine(td);
2007 cgroup_shutdown(td, cgroup_mnt);
2008 verify_free_state(td);
2009 td_zone_free_index(td);
2010
2011 if (fio_option_is_set(o, cpumask)) {
2012 ret = fio_cpuset_exit(&o->cpumask);
2013 if (ret)
2014 td_verror(td, ret, "fio_cpuset_exit");
2015 }
2016
2017 /*
2018 * do this very late, it will log file closing as well
2019 */
2020 if (o->write_iolog_file)
2021 write_iolog_close(td);
2022 if (td->io_log_rfile)
2023 fclose(td->io_log_rfile);
2024
2025 td_set_runstate(td, TD_EXITED);
2026
2027 /*
2028 * Do this last after setting our runstate to exited, so we
2029 * know that the stat thread is signaled.
2030 */
2031 check_update_rusage(td);
2032
2033 sk_out_drop();
2034 return (void *) (uintptr_t) td->error;
2035}
2036
2037/*
2038 * Run over the job map and reap the threads that have exited, if any.
2039 */
2040static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2041 uint64_t *m_rate)
2042{
2043 struct thread_data *td;
2044 unsigned int cputhreads, realthreads, pending;
2045 int i, status, ret;
2046
2047 /*
2048 * reap exited threads (TD_EXITED -> TD_REAPED)
2049 */
2050 realthreads = pending = cputhreads = 0;
2051 for_each_td(td, i) {
2052 int flags = 0;
2053
2054 if (!strcmp(td->o.ioengine, "cpuio"))
2055 cputhreads++;
2056 else
2057 realthreads++;
2058
2059 if (!td->pid) {
2060 pending++;
2061 continue;
2062 }
2063 if (td->runstate == TD_REAPED)
2064 continue;
2065 if (td->o.use_thread) {
2066 if (td->runstate == TD_EXITED) {
2067 td_set_runstate(td, TD_REAPED);
2068 goto reaped;
2069 }
2070 continue;
2071 }
2072
2073 flags = WNOHANG;
2074 if (td->runstate == TD_EXITED)
2075 flags = 0;
2076
2077 /*
2078 * check if someone quit or got killed in an unusual way
2079 */
2080 ret = waitpid(td->pid, &status, flags);
2081 if (ret < 0) {
2082 if (errno == ECHILD) {
2083 log_err("fio: pid=%d disappeared %d\n",
2084 (int) td->pid, td->runstate);
2085 td->sig = ECHILD;
2086 td_set_runstate(td, TD_REAPED);
2087 goto reaped;
2088 }
2089 perror("waitpid");
2090 } else if (ret == td->pid) {
2091 if (WIFSIGNALED(status)) {
2092 int sig = WTERMSIG(status);
2093
2094 if (sig != SIGTERM && sig != SIGUSR2)
2095 log_err("fio: pid=%d, got signal=%d\n",
2096 (int) td->pid, sig);
2097 td->sig = sig;
2098 td_set_runstate(td, TD_REAPED);
2099 goto reaped;
2100 }
2101 if (WIFEXITED(status)) {
2102 if (WEXITSTATUS(status) && !td->error)
2103 td->error = WEXITSTATUS(status);
2104
2105 td_set_runstate(td, TD_REAPED);
2106 goto reaped;
2107 }
2108 }
2109
2110 /*
2111 * If the job is stuck, do a forceful timeout of it and
2112 * move on.
2113 */
2114 if (td->terminate &&
2115 td->runstate < TD_FSYNCING &&
2116 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2117 log_err("fio: job '%s' (state=%d) hasn't exited in "
2118 "%lu seconds, it appears to be stuck. Doing "
2119 "forceful exit of this job.\n",
2120 td->o.name, td->runstate,
2121 (unsigned long) time_since_now(&td->terminate_time));
2122 td_set_runstate(td, TD_REAPED);
2123 goto reaped;
2124 }
2125
2126 /*
2127 * thread is not dead, continue
2128 */
2129 pending++;
2130 continue;
2131reaped:
2132 (*nr_running)--;
2133 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2134 (*t_rate) -= ddir_rw_sum(td->o.rate);
2135 if (!td->pid)
2136 pending--;
2137
2138 if (td->error)
2139 exit_value++;
2140
2141 done_secs += mtime_since_now(&td->epoch) / 1000;
2142 profile_td_exit(td);
2143 flow_exit_job(td);
2144 }
2145
2146 if (*nr_running == cputhreads && !pending && realthreads)
2147 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2148}
2149
2150static bool __check_trigger_file(void)
2151{
2152 struct stat sb;
2153
2154 if (!trigger_file)
2155 return false;
2156
2157 if (stat(trigger_file, &sb))
2158 return false;
2159
2160 if (unlink(trigger_file) < 0)
2161 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2162 strerror(errno));
2163
2164 return true;
2165}
2166
2167static bool trigger_timedout(void)
2168{
2169 if (trigger_timeout)
2170 if (time_since_genesis() >= trigger_timeout) {
2171 trigger_timeout = 0;
2172 return true;
2173 }
2174
2175 return false;
2176}
2177
2178void exec_trigger(const char *cmd)
2179{
2180 int ret;
2181
2182 if (!cmd || cmd[0] == '\0')
2183 return;
2184
2185 ret = system(cmd);
2186 if (ret == -1)
2187 log_err("fio: failed executing %s trigger\n", cmd);
2188}
2189
2190void check_trigger_file(void)
2191{
2192 if (__check_trigger_file() || trigger_timedout()) {
2193 if (nr_clients)
2194 fio_clients_send_trigger(trigger_remote_cmd);
2195 else {
2196 verify_save_state(IO_LIST_ALL);
2197 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2198 exec_trigger(trigger_cmd);
2199 }
2200 }
2201}
2202
2203static int fio_verify_load_state(struct thread_data *td)
2204{
2205 int ret;
2206
2207 if (!td->o.verify_state)
2208 return 0;
2209
2210 if (is_backend) {
2211 void *data;
2212
2213 ret = fio_server_get_verify_state(td->o.name,
2214 td->thread_number - 1, &data);
2215 if (!ret)
2216 verify_assign_state(td, data);
2217 } else {
2218 char prefix[PATH_MAX];
2219
2220 if (aux_path)
2221 sprintf(prefix, "%s%clocal", aux_path,
2222 FIO_OS_PATH_SEPARATOR);
2223 else
2224 strcpy(prefix, "local");
2225 ret = verify_load_state(td, prefix);
2226 }
2227
2228 return ret;
2229}
2230
2231static void do_usleep(unsigned int usecs)
2232{
2233 check_for_running_stats();
2234 check_trigger_file();
2235 usleep(usecs);
2236}
2237
2238static bool check_mount_writes(struct thread_data *td)
2239{
2240 struct fio_file *f;
2241 unsigned int i;
2242
2243 if (!td_write(td) || td->o.allow_mounted_write)
2244 return false;
2245
2246 /*
2247 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2248 * are mkfs'd and mounted.
2249 */
2250 for_each_file(td, f, i) {
2251#ifdef FIO_HAVE_CHARDEV_SIZE
2252 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2253#else
2254 if (f->filetype != FIO_TYPE_BLOCK)
2255#endif
2256 continue;
2257 if (device_is_mounted(f->file_name))
2258 goto mounted;
2259 }
2260
2261 return false;
2262mounted:
2263 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2264 return true;
2265}
2266
2267static bool waitee_running(struct thread_data *me)
2268{
2269 const char *waitee = me->o.wait_for;
2270 const char *self = me->o.name;
2271 struct thread_data *td;
2272 int i;
2273
2274 if (!waitee)
2275 return false;
2276
2277 for_each_td(td, i) {
2278 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2279 continue;
2280
2281 if (td->runstate < TD_EXITED) {
2282 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2283 self, td->o.name,
2284 runstate_to_name(td->runstate));
2285 return true;
2286 }
2287 }
2288
2289 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2290 return false;
2291}
2292
2293/*
2294 * Main function for kicking off and reaping jobs, as needed.
2295 */
2296static void run_threads(struct sk_out *sk_out)
2297{
2298 struct thread_data *td;
2299 unsigned int i, todo, nr_running, nr_started;
2300 uint64_t m_rate, t_rate;
2301 uint64_t spent;
2302
2303 if (fio_gtod_offload && fio_start_gtod_thread())
2304 return;
2305
2306 fio_idle_prof_init();
2307
2308 set_sig_handlers();
2309
2310 nr_thread = nr_process = 0;
2311 for_each_td(td, i) {
2312 if (check_mount_writes(td))
2313 return;
2314 if (td->o.use_thread)
2315 nr_thread++;
2316 else
2317 nr_process++;
2318 }
2319
2320 if (output_format & FIO_OUTPUT_NORMAL) {
2321 struct buf_output out;
2322
2323 buf_output_init(&out);
2324 __log_buf(&out, "Starting ");
2325 if (nr_thread)
2326 __log_buf(&out, "%d thread%s", nr_thread,
2327 nr_thread > 1 ? "s" : "");
2328 if (nr_process) {
2329 if (nr_thread)
2330 __log_buf(&out, " and ");
2331 __log_buf(&out, "%d process%s", nr_process,
2332 nr_process > 1 ? "es" : "");
2333 }
2334 __log_buf(&out, "\n");
2335 log_info_buf(out.buf, out.buflen);
2336 buf_output_free(&out);
2337 }
2338
2339 todo = thread_number;
2340 nr_running = 0;
2341 nr_started = 0;
2342 m_rate = t_rate = 0;
2343
2344 for_each_td(td, i) {
2345 print_status_init(td->thread_number - 1);
2346
2347 if (!td->o.create_serialize)
2348 continue;
2349
2350 if (fio_verify_load_state(td))
2351 goto reap;
2352
2353 /*
2354 * do file setup here so it happens sequentially,
2355 * we don't want X number of threads getting their
2356 * client data interspersed on disk
2357 */
2358 if (setup_files(td)) {
2359reap:
2360 exit_value++;
2361 if (td->error)
2362 log_err("fio: pid=%d, err=%d/%s\n",
2363 (int) td->pid, td->error, td->verror);
2364 td_set_runstate(td, TD_REAPED);
2365 todo--;
2366 } else {
2367 struct fio_file *f;
2368 unsigned int j;
2369
2370 /*
2371 * for sharing to work, each job must always open
2372 * its own files. so close them, if we opened them
2373 * for creation
2374 */
2375 for_each_file(td, f, j) {
2376 if (fio_file_open(f))
2377 td_io_close_file(td, f);
2378 }
2379 }
2380 }
2381
2382 /* start idle threads before io threads start to run */
2383 fio_idle_prof_start();
2384
2385 set_genesis_time();
2386
2387 while (todo) {
2388 struct thread_data *map[REAL_MAX_JOBS];
2389 struct timespec this_start;
2390 int this_jobs = 0, left;
2391 struct fork_data *fd;
2392
2393 /*
2394 * create threads (TD_NOT_CREATED -> TD_CREATED)
2395 */
2396 for_each_td(td, i) {
2397 if (td->runstate != TD_NOT_CREATED)
2398 continue;
2399
2400 /*
2401 * never got a chance to start, killed by other
2402 * thread for some reason
2403 */
2404 if (td->terminate) {
2405 todo--;
2406 continue;
2407 }
2408
2409 if (td->o.start_delay) {
2410 spent = utime_since_genesis();
2411
2412 if (td->o.start_delay > spent)
2413 continue;
2414 }
2415
2416 if (td->o.stonewall && (nr_started || nr_running)) {
2417 dprint(FD_PROCESS, "%s: stonewall wait\n",
2418 td->o.name);
2419 break;
2420 }
2421
2422 if (waitee_running(td)) {
2423 dprint(FD_PROCESS, "%s: waiting for %s\n",
2424 td->o.name, td->o.wait_for);
2425 continue;
2426 }
2427
2428 init_disk_util(td);
2429
2430 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2431 td->update_rusage = 0;
2432
2433 /*
2434 * Set state to created. Thread will transition
2435 * to TD_INITIALIZED when it's done setting up.
2436 */
2437 td_set_runstate(td, TD_CREATED);
2438 map[this_jobs++] = td;
2439 nr_started++;
2440
2441 fd = calloc(1, sizeof(*fd));
2442 fd->td = td;
2443 fd->sk_out = sk_out;
2444
2445 if (td->o.use_thread) {
2446 int ret;
2447
2448 dprint(FD_PROCESS, "will pthread_create\n");
2449 ret = pthread_create(&td->thread, NULL,
2450 thread_main, fd);
2451 if (ret) {
2452 log_err("pthread_create: %s\n",
2453 strerror(ret));
2454 free(fd);
2455 nr_started--;
2456 break;
2457 }
2458 fd = NULL;
2459 ret = pthread_detach(td->thread);
2460 if (ret)
2461 log_err("pthread_detach: %s",
2462 strerror(ret));
2463 } else {
2464 pid_t pid;
2465 void *eo;
2466 dprint(FD_PROCESS, "will fork\n");
2467 eo = td->eo;
2468 read_barrier();
2469 pid = fork();
2470 if (!pid) {
2471 int ret;
2472
2473 ret = (int)(uintptr_t)thread_main(fd);
2474 _exit(ret);
2475 } else if (i == fio_debug_jobno)
2476 *fio_debug_jobp = pid;
2477 free(eo);
2478 free(fd);
2479 fd = NULL;
2480 }
2481 dprint(FD_MUTEX, "wait on startup_sem\n");
2482 if (fio_sem_down_timeout(startup_sem, 10000)) {
2483 log_err("fio: job startup hung? exiting.\n");
2484 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2485 fio_abort = true;
2486 nr_started--;
2487 free(fd);
2488 break;
2489 }
2490 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2491 }
2492
2493 /*
2494 * Wait for the started threads to transition to
2495 * TD_INITIALIZED.
2496 */
2497 fio_gettime(&this_start, NULL);
2498 left = this_jobs;
2499 while (left && !fio_abort) {
2500 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2501 break;
2502
2503 do_usleep(100000);
2504
2505 for (i = 0; i < this_jobs; i++) {
2506 td = map[i];
2507 if (!td)
2508 continue;
2509 if (td->runstate == TD_INITIALIZED) {
2510 map[i] = NULL;
2511 left--;
2512 } else if (td->runstate >= TD_EXITED) {
2513 map[i] = NULL;
2514 left--;
2515 todo--;
2516 nr_running++; /* work-around... */
2517 }
2518 }
2519 }
2520
2521 if (left) {
2522 log_err("fio: %d job%s failed to start\n", left,
2523 left > 1 ? "s" : "");
2524 for (i = 0; i < this_jobs; i++) {
2525 td = map[i];
2526 if (!td)
2527 continue;
2528 kill(td->pid, SIGTERM);
2529 }
2530 break;
2531 }
2532
2533 /*
2534 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2535 */
2536 for_each_td(td, i) {
2537 if (td->runstate != TD_INITIALIZED)
2538 continue;
2539
2540 if (in_ramp_time(td))
2541 td_set_runstate(td, TD_RAMP);
2542 else
2543 td_set_runstate(td, TD_RUNNING);
2544 nr_running++;
2545 nr_started--;
2546 m_rate += ddir_rw_sum(td->o.ratemin);
2547 t_rate += ddir_rw_sum(td->o.rate);
2548 todo--;
2549 fio_sem_up(td->sem);
2550 }
2551
2552 reap_threads(&nr_running, &t_rate, &m_rate);
2553
2554 if (todo)
2555 do_usleep(100000);
2556 }
2557
2558 while (nr_running) {
2559 reap_threads(&nr_running, &t_rate, &m_rate);
2560 do_usleep(10000);
2561 }
2562
2563 fio_idle_prof_stop();
2564
2565 update_io_ticks();
2566}
2567
2568static void free_disk_util(void)
2569{
2570 disk_util_prune_entries();
2571 helper_thread_destroy();
2572}
2573
2574int fio_backend(struct sk_out *sk_out)
2575{
2576 struct thread_data *td;
2577 int i;
2578
2579 if (exec_profile) {
2580 if (load_profile(exec_profile))
2581 return 1;
2582 free(exec_profile);
2583 exec_profile = NULL;
2584 }
2585 if (!thread_number)
2586 return 0;
2587
2588 if (write_bw_log) {
2589 struct log_params p = {
2590 .log_type = IO_LOG_TYPE_BW,
2591 };
2592
2593 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2594 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2595 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2596 }
2597
2598 if (init_global_dedupe_working_set_seeds()) {
2599 log_err("fio: failed to initialize global dedupe working set\n");
2600 return 1;
2601 }
2602
2603 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2604 if (!sk_out)
2605 is_local_backend = true;
2606 if (startup_sem == NULL)
2607 return 1;
2608
2609 set_genesis_time();
2610 stat_init();
2611 if (helper_thread_create(startup_sem, sk_out))
2612 log_err("fio: failed to create helper thread\n");
2613
2614 cgroup_list = smalloc(sizeof(*cgroup_list));
2615 if (cgroup_list)
2616 INIT_FLIST_HEAD(cgroup_list);
2617
2618 run_threads(sk_out);
2619
2620 helper_thread_exit();
2621
2622 if (!fio_abort) {
2623 __show_run_stats();
2624 if (write_bw_log) {
2625 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2626 struct io_log *log = agg_io_log[i];
2627
2628 flush_log(log, false);
2629 free_log(log);
2630 }
2631 }
2632 }
2633
2634 for_each_td(td, i) {
2635 struct thread_stat *ts = &td->ts;
2636
2637 free_clat_prio_stats(ts);
2638 steadystate_free(td);
2639 fio_options_free(td);
2640 fio_dump_options_free(td);
2641 if (td->rusage_sem) {
2642 fio_sem_remove(td->rusage_sem);
2643 td->rusage_sem = NULL;
2644 }
2645 fio_sem_remove(td->sem);
2646 td->sem = NULL;
2647 }
2648
2649 free_disk_util();
2650 if (cgroup_list) {
2651 cgroup_kill(cgroup_list);
2652 sfree(cgroup_list);
2653 }
2654
2655 fio_sem_remove(startup_sem);
2656 stat_exit();
2657 return exit_value;
2658}