Signal td->free_cond with the associated mutex held
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 if (io_u->offset == f->real_file_size)
503 goto sync_done;
504
505 requeue_io_u(td, &io_u);
506 } else {
507sync_done:
508 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509 __should_check_rate(td, DDIR_WRITE) ||
510 __should_check_rate(td, DDIR_TRIM)))
511 fio_gettime(comp_time, NULL);
512
513 *ret = io_u_sync_complete(td, io_u);
514 if (*ret < 0)
515 break;
516 }
517
518 if (td->flags & TD_F_REGROW_LOGS)
519 regrow_logs(td);
520
521 /*
522 * when doing I/O (not when verifying),
523 * check for any errors that are to be ignored
524 */
525 if (!from_verify)
526 break;
527
528 return 0;
529 case FIO_Q_QUEUED:
530 /*
531 * if the engine doesn't have a commit hook,
532 * the io_u is really queued. if it does have such
533 * a hook, it has to call io_u_queued() itself.
534 */
535 if (td->io_ops->commit == NULL)
536 io_u_queued(td, io_u);
537 if (bytes_issued)
538 *bytes_issued += io_u->xfer_buflen;
539 break;
540 case FIO_Q_BUSY:
541 if (!from_verify)
542 unlog_io_piece(td, io_u);
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 *ret = ret2;
547 break;
548 default:
549 assert(*ret < 0);
550 td_verror(td, -(*ret), "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, ddir, ret))
555 return 1;
556
557 return 0;
558}
559
560static inline bool io_in_polling(struct thread_data *td)
561{
562 return !td->o.iodepth_batch_complete_min &&
563 !td->o.iodepth_batch_complete_max;
564}
565/*
566 * Unlinks files from thread data fio_file structure
567 */
568static int unlink_all_files(struct thread_data *td)
569{
570 struct fio_file *f;
571 unsigned int i;
572 int ret = 0;
573
574 for_each_file(td, f, i) {
575 if (f->filetype != FIO_TYPE_FILE)
576 continue;
577 ret = td_io_unlink_file(td, f);
578 if (ret)
579 break;
580 }
581
582 if (ret)
583 td_verror(td, ret, "unlink_all_files");
584
585 return ret;
586}
587
588/*
589 * Check if io_u will overlap an in-flight IO in the queue
590 */
591static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592{
593 bool overlap;
594 struct io_u *check_io_u;
595 unsigned long long x1, x2, y1, y2;
596 int i;
597
598 x1 = io_u->offset;
599 x2 = io_u->offset + io_u->buflen;
600 overlap = false;
601 io_u_qiter(q, check_io_u, i) {
602 if (check_io_u->flags & IO_U_F_FLIGHT) {
603 y1 = check_io_u->offset;
604 y2 = check_io_u->offset + check_io_u->buflen;
605
606 if (x1 < y2 && y1 < x2) {
607 overlap = true;
608 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609 x1, io_u->buflen,
610 y1, check_io_u->buflen);
611 break;
612 }
613 }
614 }
615
616 return overlap;
617}
618
619static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620{
621 /*
622 * Check for overlap if the user asked us to, and we have
623 * at least one IO in flight besides this one.
624 */
625 if (td->o.serialize_overlap && td->cur_depth > 1 &&
626 in_flight_overlap(&td->io_u_all, io_u))
627 return FIO_Q_BUSY;
628
629 return td_io_queue(td, io_u);
630}
631
632/*
633 * The main verify engine. Runs over the writes we previously submitted,
634 * reads the blocks back in, and checks the crc/md5 of the data.
635 */
636static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637{
638 struct fio_file *f;
639 struct io_u *io_u;
640 int ret, min_events;
641 unsigned int i;
642
643 dprint(FD_VERIFY, "starting loop\n");
644
645 /*
646 * sync io first and invalidate cache, to make sure we really
647 * read from disk.
648 */
649 for_each_file(td, f, i) {
650 if (!fio_file_open(f))
651 continue;
652 if (fio_io_sync(td, f))
653 break;
654 if (file_invalidate_cache(td, f))
655 break;
656 }
657
658 check_update_rusage(td);
659
660 if (td->error)
661 return;
662
663 /*
664 * verify_state needs to be reset before verification
665 * proceeds so that expected random seeds match actual
666 * random seeds in headers. The main loop will reset
667 * all random number generators if randrepeat is set.
668 */
669 if (!td->o.rand_repeatable)
670 td_fill_verify_state_seed(td);
671
672 td_set_runstate(td, TD_VERIFYING);
673
674 io_u = NULL;
675 while (!td->terminate) {
676 enum fio_ddir ddir;
677 int full;
678
679 update_ts_cache(td);
680 check_update_rusage(td);
681
682 if (runtime_exceeded(td, &td->ts_cache)) {
683 __update_ts_cache(td);
684 if (runtime_exceeded(td, &td->ts_cache)) {
685 fio_mark_td_terminate(td);
686 break;
687 }
688 }
689
690 if (flow_threshold_exceeded(td))
691 continue;
692
693 if (!td->o.experimental_verify) {
694 io_u = __get_io_u(td);
695 if (!io_u)
696 break;
697
698 if (get_next_verify(td, io_u)) {
699 put_io_u(td, io_u);
700 break;
701 }
702
703 if (td_io_prep(td, io_u)) {
704 put_io_u(td, io_u);
705 break;
706 }
707 } else {
708 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709 break;
710
711 while ((io_u = get_io_u(td)) != NULL) {
712 if (IS_ERR_OR_NULL(io_u)) {
713 io_u = NULL;
714 ret = FIO_Q_BUSY;
715 goto reap;
716 }
717
718 /*
719 * We are only interested in the places where
720 * we wrote or trimmed IOs. Turn those into
721 * reads for verification purposes.
722 */
723 if (io_u->ddir == DDIR_READ) {
724 /*
725 * Pretend we issued it for rwmix
726 * accounting
727 */
728 td->io_issues[DDIR_READ]++;
729 put_io_u(td, io_u);
730 continue;
731 } else if (io_u->ddir == DDIR_TRIM) {
732 io_u->ddir = DDIR_READ;
733 io_u_set(td, io_u, IO_U_F_TRIMMED);
734 break;
735 } else if (io_u->ddir == DDIR_WRITE) {
736 io_u->ddir = DDIR_READ;
737 break;
738 } else {
739 put_io_u(td, io_u);
740 continue;
741 }
742 }
743
744 if (!io_u)
745 break;
746 }
747
748 if (verify_state_should_stop(td, io_u)) {
749 put_io_u(td, io_u);
750 break;
751 }
752
753 if (td->o.verify_async)
754 io_u->end_io = verify_io_u_async;
755 else
756 io_u->end_io = verify_io_u;
757
758 ddir = io_u->ddir;
759 if (!td->o.disable_slat)
760 fio_gettime(&io_u->start_time, NULL);
761
762 ret = io_u_submit(td, io_u);
763
764 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765 break;
766
767 /*
768 * if we can queue more, do so. but check if there are
769 * completed io_u's first. Note that we can get BUSY even
770 * without IO queued, if the system is resource starved.
771 */
772reap:
773 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774 if (full || io_in_polling(td))
775 ret = wait_for_completions(td, NULL);
776
777 if (ret < 0)
778 break;
779 }
780
781 check_update_rusage(td);
782
783 if (!td->error) {
784 min_events = td->cur_depth;
785
786 if (min_events)
787 ret = io_u_queued_complete(td, min_events);
788 } else
789 cleanup_pending_aio(td);
790
791 td_set_runstate(td, TD_RUNNING);
792
793 dprint(FD_VERIFY, "exiting loop\n");
794}
795
796static bool exceeds_number_ios(struct thread_data *td)
797{
798 unsigned long long number_ios;
799
800 if (!td->o.number_ios)
801 return false;
802
803 number_ios = ddir_rw_sum(td->io_blocks);
804 number_ios += td->io_u_queued + td->io_u_in_flight;
805
806 return number_ios >= (td->o.number_ios * td->loops);
807}
808
809static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810{
811 unsigned long long bytes, limit;
812
813 if (td_rw(td))
814 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815 else if (td_write(td))
816 bytes = this_bytes[DDIR_WRITE];
817 else if (td_read(td))
818 bytes = this_bytes[DDIR_READ];
819 else
820 bytes = this_bytes[DDIR_TRIM];
821
822 if (td->o.io_size)
823 limit = td->o.io_size;
824 else
825 limit = td->o.size;
826
827 limit *= td->loops;
828 return bytes >= limit || exceeds_number_ios(td);
829}
830
831static bool io_issue_bytes_exceeded(struct thread_data *td)
832{
833 return io_bytes_exceeded(td, td->io_issue_bytes);
834}
835
836static bool io_complete_bytes_exceeded(struct thread_data *td)
837{
838 return io_bytes_exceeded(td, td->this_io_bytes);
839}
840
841/*
842 * used to calculate the next io time for rate control
843 *
844 */
845static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846{
847 uint64_t bps = td->rate_bps[ddir];
848
849 assert(!(td->flags & TD_F_CHILD));
850
851 if (td->o.rate_process == RATE_PROCESS_POISSON) {
852 uint64_t val, iops;
853
854 iops = bps / td->o.bs[ddir];
855 val = (int64_t) (1000000 / iops) *
856 -logf(__rand_0_1(&td->poisson_state[ddir]));
857 if (val) {
858 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
859 (unsigned long long) 1000000 / val,
860 ddir);
861 }
862 td->last_usec[ddir] += val;
863 return td->last_usec[ddir];
864 } else if (bps) {
865 uint64_t bytes = td->rate_io_issue_bytes[ddir];
866 uint64_t secs = bytes / bps;
867 uint64_t remainder = bytes % bps;
868
869 return remainder * 1000000 / bps + secs * 1000000;
870 }
871
872 return 0;
873}
874
875static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
876{
877 unsigned long long b;
878 uint64_t total;
879 int left;
880
881 b = ddir_rw_sum(td->io_blocks);
882 if (b % td->o.thinktime_blocks)
883 return;
884
885 io_u_quiesce(td);
886
887 total = 0;
888 if (td->o.thinktime_spin)
889 total = usec_spin(td->o.thinktime_spin);
890
891 left = td->o.thinktime - total;
892 if (left)
893 total += usec_sleep(td, left);
894
895 /*
896 * If we're ignoring thinktime for the rate, add the number of bytes
897 * we would have done while sleeping, minus one block to ensure we
898 * start issuing immediately after the sleep.
899 */
900 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
901 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
902 uint64_t bs = td->o.min_bs[ddir];
903 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
904 uint64_t over;
905
906 if (usperop <= total)
907 over = bs;
908 else
909 over = (usperop - total) / usperop * -bs;
910
911 td->rate_io_issue_bytes[ddir] += (missed - over);
912 }
913}
914
915/*
916 * Main IO worker function. It retrieves io_u's to process and queues
917 * and reaps them, checking for rate and errors along the way.
918 *
919 * Returns number of bytes written and trimmed.
920 */
921static void do_io(struct thread_data *td, uint64_t *bytes_done)
922{
923 unsigned int i;
924 int ret = 0;
925 uint64_t total_bytes, bytes_issued = 0;
926
927 for (i = 0; i < DDIR_RWDIR_CNT; i++)
928 bytes_done[i] = td->bytes_done[i];
929
930 if (in_ramp_time(td))
931 td_set_runstate(td, TD_RAMP);
932 else
933 td_set_runstate(td, TD_RUNNING);
934
935 lat_target_init(td);
936
937 total_bytes = td->o.size;
938 /*
939 * Allow random overwrite workloads to write up to io_size
940 * before starting verification phase as 'size' doesn't apply.
941 */
942 if (td_write(td) && td_random(td) && td->o.norandommap)
943 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
944 /*
945 * If verify_backlog is enabled, we'll run the verify in this
946 * handler as well. For that case, we may need up to twice the
947 * amount of bytes.
948 */
949 if (td->o.verify != VERIFY_NONE &&
950 (td_write(td) && td->o.verify_backlog))
951 total_bytes += td->o.size;
952
953 /* In trimwrite mode, each byte is trimmed and then written, so
954 * allow total_bytes to be twice as big */
955 if (td_trimwrite(td))
956 total_bytes += td->total_io_size;
957
958 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
959 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
960 td->o.time_based) {
961 struct timespec comp_time;
962 struct io_u *io_u;
963 int full;
964 enum fio_ddir ddir;
965
966 check_update_rusage(td);
967
968 if (td->terminate || td->done)
969 break;
970
971 update_ts_cache(td);
972
973 if (runtime_exceeded(td, &td->ts_cache)) {
974 __update_ts_cache(td);
975 if (runtime_exceeded(td, &td->ts_cache)) {
976 fio_mark_td_terminate(td);
977 break;
978 }
979 }
980
981 if (flow_threshold_exceeded(td))
982 continue;
983
984 /*
985 * Break if we exceeded the bytes. The exception is time
986 * based runs, but we still need to break out of the loop
987 * for those to run verification, if enabled.
988 */
989 if (bytes_issued >= total_bytes &&
990 (!td->o.time_based ||
991 (td->o.time_based && td->o.verify != VERIFY_NONE)))
992 break;
993
994 io_u = get_io_u(td);
995 if (IS_ERR_OR_NULL(io_u)) {
996 int err = PTR_ERR(io_u);
997
998 io_u = NULL;
999 ddir = DDIR_INVAL;
1000 if (err == -EBUSY) {
1001 ret = FIO_Q_BUSY;
1002 goto reap;
1003 }
1004 if (td->o.latency_target)
1005 goto reap;
1006 break;
1007 }
1008
1009 ddir = io_u->ddir;
1010
1011 /*
1012 * Add verification end_io handler if:
1013 * - Asked to verify (!td_rw(td))
1014 * - Or the io_u is from our verify list (mixed write/ver)
1015 */
1016 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1017 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1018
1019 if (!td->o.verify_pattern_bytes) {
1020 io_u->rand_seed = __rand(&td->verify_state);
1021 if (sizeof(int) != sizeof(long *))
1022 io_u->rand_seed *= __rand(&td->verify_state);
1023 }
1024
1025 if (verify_state_should_stop(td, io_u)) {
1026 put_io_u(td, io_u);
1027 break;
1028 }
1029
1030 if (td->o.verify_async)
1031 io_u->end_io = verify_io_u_async;
1032 else
1033 io_u->end_io = verify_io_u;
1034 td_set_runstate(td, TD_VERIFYING);
1035 } else if (in_ramp_time(td))
1036 td_set_runstate(td, TD_RAMP);
1037 else
1038 td_set_runstate(td, TD_RUNNING);
1039
1040 /*
1041 * Always log IO before it's issued, so we know the specific
1042 * order of it. The logged unit will track when the IO has
1043 * completed.
1044 */
1045 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1046 td->o.do_verify &&
1047 td->o.verify != VERIFY_NONE &&
1048 !td->o.experimental_verify)
1049 log_io_piece(td, io_u);
1050
1051 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1052 const unsigned long blen = io_u->xfer_buflen;
1053 const enum fio_ddir ddir = acct_ddir(io_u);
1054
1055 if (td->error)
1056 break;
1057
1058 workqueue_enqueue(&td->io_wq, &io_u->work);
1059 ret = FIO_Q_QUEUED;
1060
1061 if (ddir_rw(ddir)) {
1062 td->io_issues[ddir]++;
1063 td->io_issue_bytes[ddir] += blen;
1064 td->rate_io_issue_bytes[ddir] += blen;
1065 }
1066
1067 if (should_check_rate(td))
1068 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1069
1070 } else {
1071 ret = io_u_submit(td, io_u);
1072
1073 if (should_check_rate(td))
1074 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1075
1076 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1077 break;
1078
1079 /*
1080 * See if we need to complete some commands. Note that
1081 * we can get BUSY even without IO queued, if the
1082 * system is resource starved.
1083 */
1084reap:
1085 full = queue_full(td) ||
1086 (ret == FIO_Q_BUSY && td->cur_depth);
1087 if (full || io_in_polling(td))
1088 ret = wait_for_completions(td, &comp_time);
1089 }
1090 if (ret < 0)
1091 break;
1092 if (!ddir_rw_sum(td->bytes_done) &&
1093 !td_ioengine_flagged(td, FIO_NOIO))
1094 continue;
1095
1096 if (!in_ramp_time(td) && should_check_rate(td)) {
1097 if (check_min_rate(td, &comp_time)) {
1098 if (exitall_on_terminate || td->o.exitall_error)
1099 fio_terminate_threads(td->groupid);
1100 td_verror(td, EIO, "check_min_rate");
1101 break;
1102 }
1103 }
1104 if (!in_ramp_time(td) && td->o.latency_target)
1105 lat_target_check(td);
1106
1107 if (ddir_rw(ddir) && td->o.thinktime)
1108 handle_thinktime(td, ddir);
1109 }
1110
1111 check_update_rusage(td);
1112
1113 if (td->trim_entries)
1114 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1115
1116 if (td->o.fill_device && td->error == ENOSPC) {
1117 td->error = 0;
1118 fio_mark_td_terminate(td);
1119 }
1120 if (!td->error) {
1121 struct fio_file *f;
1122
1123 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1124 workqueue_flush(&td->io_wq);
1125 i = 0;
1126 } else
1127 i = td->cur_depth;
1128
1129 if (i) {
1130 ret = io_u_queued_complete(td, i);
1131 if (td->o.fill_device && td->error == ENOSPC)
1132 td->error = 0;
1133 }
1134
1135 if (should_fsync(td) && td->o.end_fsync) {
1136 td_set_runstate(td, TD_FSYNCING);
1137
1138 for_each_file(td, f, i) {
1139 if (!fio_file_fsync(td, f))
1140 continue;
1141
1142 log_err("fio: end_fsync failed for file %s\n",
1143 f->file_name);
1144 }
1145 }
1146 } else
1147 cleanup_pending_aio(td);
1148
1149 /*
1150 * stop job if we failed doing any IO
1151 */
1152 if (!ddir_rw_sum(td->this_io_bytes))
1153 td->done = 1;
1154
1155 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1156 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1157}
1158
1159static void free_file_completion_logging(struct thread_data *td)
1160{
1161 struct fio_file *f;
1162 unsigned int i;
1163
1164 for_each_file(td, f, i) {
1165 if (!f->last_write_comp)
1166 break;
1167 sfree(f->last_write_comp);
1168 }
1169}
1170
1171static int init_file_completion_logging(struct thread_data *td,
1172 unsigned int depth)
1173{
1174 struct fio_file *f;
1175 unsigned int i;
1176
1177 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1178 return 0;
1179
1180 for_each_file(td, f, i) {
1181 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1182 if (!f->last_write_comp)
1183 goto cleanup;
1184 }
1185
1186 return 0;
1187
1188cleanup:
1189 free_file_completion_logging(td);
1190 log_err("fio: failed to alloc write comp data\n");
1191 return 1;
1192}
1193
1194static void cleanup_io_u(struct thread_data *td)
1195{
1196 struct io_u *io_u;
1197
1198 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1199
1200 if (td->io_ops->io_u_free)
1201 td->io_ops->io_u_free(td, io_u);
1202
1203 fio_memfree(io_u, sizeof(*io_u));
1204 }
1205
1206 free_io_mem(td);
1207
1208 io_u_rexit(&td->io_u_requeues);
1209 io_u_qexit(&td->io_u_freelist);
1210 io_u_qexit(&td->io_u_all);
1211
1212 free_file_completion_logging(td);
1213}
1214
1215static int init_io_u(struct thread_data *td)
1216{
1217 struct io_u *io_u;
1218 unsigned int max_bs, min_write;
1219 int cl_align, i, max_units;
1220 int data_xfer = 1, err;
1221 char *p;
1222
1223 max_units = td->o.iodepth;
1224 max_bs = td_max_bs(td);
1225 min_write = td->o.min_bs[DDIR_WRITE];
1226 td->orig_buffer_size = (unsigned long long) max_bs
1227 * (unsigned long long) max_units;
1228
1229 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1230 data_xfer = 0;
1231
1232 err = 0;
1233 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1234 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1235 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1236
1237 if (err) {
1238 log_err("fio: failed setting up IO queues\n");
1239 return 1;
1240 }
1241
1242 /*
1243 * if we may later need to do address alignment, then add any
1244 * possible adjustment here so that we don't cause a buffer
1245 * overflow later. this adjustment may be too much if we get
1246 * lucky and the allocator gives us an aligned address.
1247 */
1248 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1249 td_ioengine_flagged(td, FIO_RAWIO))
1250 td->orig_buffer_size += page_mask + td->o.mem_align;
1251
1252 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1253 unsigned long bs;
1254
1255 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1256 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1257 }
1258
1259 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1260 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1261 return 1;
1262 }
1263
1264 if (data_xfer && allocate_io_mem(td))
1265 return 1;
1266
1267 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1268 td_ioengine_flagged(td, FIO_RAWIO))
1269 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1270 else
1271 p = td->orig_buffer;
1272
1273 cl_align = os_cache_line_size();
1274
1275 for (i = 0; i < max_units; i++) {
1276 void *ptr;
1277
1278 if (td->terminate)
1279 return 1;
1280
1281 ptr = fio_memalign(cl_align, sizeof(*io_u));
1282 if (!ptr) {
1283 log_err("fio: unable to allocate aligned memory\n");
1284 break;
1285 }
1286
1287 io_u = ptr;
1288 memset(io_u, 0, sizeof(*io_u));
1289 INIT_FLIST_HEAD(&io_u->verify_list);
1290 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1291
1292 if (data_xfer) {
1293 io_u->buf = p;
1294 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1295
1296 if (td_write(td))
1297 io_u_fill_buffer(td, io_u, min_write, max_bs);
1298 if (td_write(td) && td->o.verify_pattern_bytes) {
1299 /*
1300 * Fill the buffer with the pattern if we are
1301 * going to be doing writes.
1302 */
1303 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1304 }
1305 }
1306
1307 io_u->index = i;
1308 io_u->flags = IO_U_F_FREE;
1309 io_u_qpush(&td->io_u_freelist, io_u);
1310
1311 /*
1312 * io_u never leaves this stack, used for iteration of all
1313 * io_u buffers.
1314 */
1315 io_u_qpush(&td->io_u_all, io_u);
1316
1317 if (td->io_ops->io_u_init) {
1318 int ret = td->io_ops->io_u_init(td, io_u);
1319
1320 if (ret) {
1321 log_err("fio: failed to init engine data: %d\n", ret);
1322 return 1;
1323 }
1324 }
1325
1326 p += max_bs;
1327 }
1328
1329 if (init_file_completion_logging(td, max_units))
1330 return 1;
1331
1332 return 0;
1333}
1334
1335/*
1336 * This function is Linux specific.
1337 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1338 */
1339static int switch_ioscheduler(struct thread_data *td)
1340{
1341#ifdef FIO_HAVE_IOSCHED_SWITCH
1342 char tmp[256], tmp2[128];
1343 FILE *f;
1344 int ret;
1345
1346 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1347 return 0;
1348
1349 assert(td->files && td->files[0]);
1350 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1351
1352 f = fopen(tmp, "r+");
1353 if (!f) {
1354 if (errno == ENOENT) {
1355 log_err("fio: os or kernel doesn't support IO scheduler"
1356 " switching\n");
1357 return 0;
1358 }
1359 td_verror(td, errno, "fopen iosched");
1360 return 1;
1361 }
1362
1363 /*
1364 * Set io scheduler.
1365 */
1366 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1367 if (ferror(f) || ret != 1) {
1368 td_verror(td, errno, "fwrite");
1369 fclose(f);
1370 return 1;
1371 }
1372
1373 rewind(f);
1374
1375 /*
1376 * Read back and check that the selected scheduler is now the default.
1377 */
1378 memset(tmp, 0, sizeof(tmp));
1379 ret = fread(tmp, sizeof(tmp), 1, f);
1380 if (ferror(f) || ret < 0) {
1381 td_verror(td, errno, "fread");
1382 fclose(f);
1383 return 1;
1384 }
1385 /*
1386 * either a list of io schedulers or "none\n" is expected.
1387 */
1388 tmp[strlen(tmp) - 1] = '\0';
1389
1390 /*
1391 * Write to "none" entry doesn't fail, so check the result here.
1392 */
1393 if (!strcmp(tmp, "none")) {
1394 log_err("fio: io scheduler is not tunable\n");
1395 fclose(f);
1396 return 0;
1397 }
1398
1399 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1400 if (!strstr(tmp, tmp2)) {
1401 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1402 td_verror(td, EINVAL, "iosched_switch");
1403 fclose(f);
1404 return 1;
1405 }
1406
1407 fclose(f);
1408 return 0;
1409#else
1410 return 0;
1411#endif
1412}
1413
1414static bool keep_running(struct thread_data *td)
1415{
1416 unsigned long long limit;
1417
1418 if (td->done)
1419 return false;
1420 if (td->terminate)
1421 return false;
1422 if (td->o.time_based)
1423 return true;
1424 if (td->o.loops) {
1425 td->o.loops--;
1426 return true;
1427 }
1428 if (exceeds_number_ios(td))
1429 return false;
1430
1431 if (td->o.io_size)
1432 limit = td->o.io_size;
1433 else
1434 limit = td->o.size;
1435
1436 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1437 uint64_t diff;
1438
1439 /*
1440 * If the difference is less than the maximum IO size, we
1441 * are done.
1442 */
1443 diff = limit - ddir_rw_sum(td->io_bytes);
1444 if (diff < td_max_bs(td))
1445 return false;
1446
1447 if (fio_files_done(td) && !td->o.io_size)
1448 return false;
1449
1450 return true;
1451 }
1452
1453 return false;
1454}
1455
1456static int exec_string(struct thread_options *o, const char *string, const char *mode)
1457{
1458 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1459 int ret;
1460 char *str;
1461
1462 str = malloc(newlen);
1463 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1464
1465 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1466 ret = system(str);
1467 if (ret == -1)
1468 log_err("fio: exec of cmd <%s> failed\n", str);
1469
1470 free(str);
1471 return ret;
1472}
1473
1474/*
1475 * Dry run to compute correct state of numberio for verification.
1476 */
1477static uint64_t do_dry_run(struct thread_data *td)
1478{
1479 td_set_runstate(td, TD_RUNNING);
1480
1481 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1482 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1483 struct io_u *io_u;
1484 int ret;
1485
1486 if (td->terminate || td->done)
1487 break;
1488
1489 io_u = get_io_u(td);
1490 if (IS_ERR_OR_NULL(io_u))
1491 break;
1492
1493 io_u_set(td, io_u, IO_U_F_FLIGHT);
1494 io_u->error = 0;
1495 io_u->resid = 0;
1496 if (ddir_rw(acct_ddir(io_u)))
1497 td->io_issues[acct_ddir(io_u)]++;
1498 if (ddir_rw(io_u->ddir)) {
1499 io_u_mark_depth(td, 1);
1500 td->ts.total_io_u[io_u->ddir]++;
1501 }
1502
1503 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1504 td->o.do_verify &&
1505 td->o.verify != VERIFY_NONE &&
1506 !td->o.experimental_verify)
1507 log_io_piece(td, io_u);
1508
1509 ret = io_u_sync_complete(td, io_u);
1510 (void) ret;
1511 }
1512
1513 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1514}
1515
1516struct fork_data {
1517 struct thread_data *td;
1518 struct sk_out *sk_out;
1519};
1520
1521/*
1522 * Entry point for the thread based jobs. The process based jobs end up
1523 * here as well, after a little setup.
1524 */
1525static void *thread_main(void *data)
1526{
1527 struct fork_data *fd = data;
1528 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1529 struct thread_data *td = fd->td;
1530 struct thread_options *o = &td->o;
1531 struct sk_out *sk_out = fd->sk_out;
1532 uint64_t bytes_done[DDIR_RWDIR_CNT];
1533 int deadlock_loop_cnt;
1534 bool clear_state, did_some_io;
1535 int ret;
1536
1537 sk_out_assign(sk_out);
1538 free(fd);
1539
1540 if (!o->use_thread) {
1541 setsid();
1542 td->pid = getpid();
1543 } else
1544 td->pid = gettid();
1545
1546 fio_local_clock_init(o->use_thread);
1547
1548 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1549
1550 if (is_backend)
1551 fio_server_send_start(td);
1552
1553 INIT_FLIST_HEAD(&td->io_log_list);
1554 INIT_FLIST_HEAD(&td->io_hist_list);
1555 INIT_FLIST_HEAD(&td->verify_list);
1556 INIT_FLIST_HEAD(&td->trim_list);
1557 INIT_FLIST_HEAD(&td->next_rand_list);
1558 td->io_hist_tree = RB_ROOT;
1559
1560 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1561 if (ret) {
1562 td_verror(td, ret, "mutex_cond_init_pshared");
1563 goto err;
1564 }
1565 ret = cond_init_pshared(&td->verify_cond);
1566 if (ret) {
1567 td_verror(td, ret, "mutex_cond_pshared");
1568 goto err;
1569 }
1570
1571 td_set_runstate(td, TD_INITIALIZED);
1572 dprint(FD_MUTEX, "up startup_mutex\n");
1573 fio_mutex_up(startup_mutex);
1574 dprint(FD_MUTEX, "wait on td->mutex\n");
1575 fio_mutex_down(td->mutex);
1576 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1577
1578 /*
1579 * A new gid requires privilege, so we need to do this before setting
1580 * the uid.
1581 */
1582 if (o->gid != -1U && setgid(o->gid)) {
1583 td_verror(td, errno, "setgid");
1584 goto err;
1585 }
1586 if (o->uid != -1U && setuid(o->uid)) {
1587 td_verror(td, errno, "setuid");
1588 goto err;
1589 }
1590
1591 /*
1592 * Do this early, we don't want the compress threads to be limited
1593 * to the same CPUs as the IO workers. So do this before we set
1594 * any potential CPU affinity
1595 */
1596 if (iolog_compress_init(td, sk_out))
1597 goto err;
1598
1599 /*
1600 * If we have a gettimeofday() thread, make sure we exclude that
1601 * thread from this job
1602 */
1603 if (o->gtod_cpu)
1604 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1605
1606 /*
1607 * Set affinity first, in case it has an impact on the memory
1608 * allocations.
1609 */
1610 if (fio_option_is_set(o, cpumask)) {
1611 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1612 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1613 if (!ret) {
1614 log_err("fio: no CPUs set\n");
1615 log_err("fio: Try increasing number of available CPUs\n");
1616 td_verror(td, EINVAL, "cpus_split");
1617 goto err;
1618 }
1619 }
1620 ret = fio_setaffinity(td->pid, o->cpumask);
1621 if (ret == -1) {
1622 td_verror(td, errno, "cpu_set_affinity");
1623 goto err;
1624 }
1625 }
1626
1627#ifdef CONFIG_LIBNUMA
1628 /* numa node setup */
1629 if (fio_option_is_set(o, numa_cpunodes) ||
1630 fio_option_is_set(o, numa_memnodes)) {
1631 struct bitmask *mask;
1632
1633 if (numa_available() < 0) {
1634 td_verror(td, errno, "Does not support NUMA API\n");
1635 goto err;
1636 }
1637
1638 if (fio_option_is_set(o, numa_cpunodes)) {
1639 mask = numa_parse_nodestring(o->numa_cpunodes);
1640 ret = numa_run_on_node_mask(mask);
1641 numa_free_nodemask(mask);
1642 if (ret == -1) {
1643 td_verror(td, errno, \
1644 "numa_run_on_node_mask failed\n");
1645 goto err;
1646 }
1647 }
1648
1649 if (fio_option_is_set(o, numa_memnodes)) {
1650 mask = NULL;
1651 if (o->numa_memnodes)
1652 mask = numa_parse_nodestring(o->numa_memnodes);
1653
1654 switch (o->numa_mem_mode) {
1655 case MPOL_INTERLEAVE:
1656 numa_set_interleave_mask(mask);
1657 break;
1658 case MPOL_BIND:
1659 numa_set_membind(mask);
1660 break;
1661 case MPOL_LOCAL:
1662 numa_set_localalloc();
1663 break;
1664 case MPOL_PREFERRED:
1665 numa_set_preferred(o->numa_mem_prefer_node);
1666 break;
1667 case MPOL_DEFAULT:
1668 default:
1669 break;
1670 }
1671
1672 if (mask)
1673 numa_free_nodemask(mask);
1674
1675 }
1676 }
1677#endif
1678
1679 if (fio_pin_memory(td))
1680 goto err;
1681
1682 /*
1683 * May alter parameters that init_io_u() will use, so we need to
1684 * do this first.
1685 */
1686 if (init_iolog(td))
1687 goto err;
1688
1689 if (init_io_u(td))
1690 goto err;
1691
1692 if (o->verify_async && verify_async_init(td))
1693 goto err;
1694
1695 if (fio_option_is_set(o, ioprio) ||
1696 fio_option_is_set(o, ioprio_class)) {
1697 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1698 if (ret == -1) {
1699 td_verror(td, errno, "ioprio_set");
1700 goto err;
1701 }
1702 }
1703
1704 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1705 goto err;
1706
1707 errno = 0;
1708 if (nice(o->nice) == -1 && errno != 0) {
1709 td_verror(td, errno, "nice");
1710 goto err;
1711 }
1712
1713 if (o->ioscheduler && switch_ioscheduler(td))
1714 goto err;
1715
1716 if (!o->create_serialize && setup_files(td))
1717 goto err;
1718
1719 if (td_io_init(td))
1720 goto err;
1721
1722 if (!init_random_map(td))
1723 goto err;
1724
1725 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1726 goto err;
1727
1728 if (o->pre_read && !pre_read_files(td))
1729 goto err;
1730
1731 fio_verify_init(td);
1732
1733 if (rate_submit_init(td, sk_out))
1734 goto err;
1735
1736 set_epoch_time(td, o->log_unix_epoch);
1737 fio_getrusage(&td->ru_start);
1738 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1739 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1740 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1741
1742 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1743 o->ratemin[DDIR_TRIM]) {
1744 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1745 sizeof(td->bw_sample_time));
1746 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1747 sizeof(td->bw_sample_time));
1748 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1749 sizeof(td->bw_sample_time));
1750 }
1751
1752 memset(bytes_done, 0, sizeof(bytes_done));
1753 clear_state = false;
1754 did_some_io = false;
1755
1756 while (keep_running(td)) {
1757 uint64_t verify_bytes;
1758
1759 fio_gettime(&td->start, NULL);
1760 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1761
1762 if (clear_state) {
1763 clear_io_state(td, 0);
1764
1765 if (o->unlink_each_loop && unlink_all_files(td))
1766 break;
1767 }
1768
1769 prune_io_piece_log(td);
1770
1771 if (td->o.verify_only && td_write(td))
1772 verify_bytes = do_dry_run(td);
1773 else {
1774 do_io(td, bytes_done);
1775
1776 if (!ddir_rw_sum(bytes_done)) {
1777 fio_mark_td_terminate(td);
1778 verify_bytes = 0;
1779 } else {
1780 verify_bytes = bytes_done[DDIR_WRITE] +
1781 bytes_done[DDIR_TRIM];
1782 }
1783 }
1784
1785 /*
1786 * If we took too long to shut down, the main thread could
1787 * already consider us reaped/exited. If that happens, break
1788 * out and clean up.
1789 */
1790 if (td->runstate >= TD_EXITED)
1791 break;
1792
1793 clear_state = true;
1794
1795 /*
1796 * Make sure we've successfully updated the rusage stats
1797 * before waiting on the stat mutex. Otherwise we could have
1798 * the stat thread holding stat mutex and waiting for
1799 * the rusage_sem, which would never get upped because
1800 * this thread is waiting for the stat mutex.
1801 */
1802 deadlock_loop_cnt = 0;
1803 do {
1804 check_update_rusage(td);
1805 if (!fio_mutex_down_trylock(stat_mutex))
1806 break;
1807 usleep(1000);
1808 if (deadlock_loop_cnt++ > 5000) {
1809 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1810 td->error = EDEADLK;
1811 goto err;
1812 }
1813 } while (1);
1814
1815 if (td_read(td) && td->io_bytes[DDIR_READ])
1816 update_runtime(td, elapsed_us, DDIR_READ);
1817 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1818 update_runtime(td, elapsed_us, DDIR_WRITE);
1819 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1820 update_runtime(td, elapsed_us, DDIR_TRIM);
1821 fio_gettime(&td->start, NULL);
1822 fio_mutex_up(stat_mutex);
1823
1824 if (td->error || td->terminate)
1825 break;
1826
1827 if (!o->do_verify ||
1828 o->verify == VERIFY_NONE ||
1829 td_ioengine_flagged(td, FIO_UNIDIR))
1830 continue;
1831
1832 if (ddir_rw_sum(bytes_done))
1833 did_some_io = true;
1834
1835 clear_io_state(td, 0);
1836
1837 fio_gettime(&td->start, NULL);
1838
1839 do_verify(td, verify_bytes);
1840
1841 /*
1842 * See comment further up for why this is done here.
1843 */
1844 check_update_rusage(td);
1845
1846 fio_mutex_down(stat_mutex);
1847 update_runtime(td, elapsed_us, DDIR_READ);
1848 fio_gettime(&td->start, NULL);
1849 fio_mutex_up(stat_mutex);
1850
1851 if (td->error || td->terminate)
1852 break;
1853 }
1854
1855 /*
1856 * If td ended up with no I/O when it should have had,
1857 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1858 * (Are we not missing other flags that can be ignored ?)
1859 */
1860 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1861 !did_some_io && !td->o.create_only &&
1862 !(td_ioengine_flagged(td, FIO_NOIO) ||
1863 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1864 log_err("%s: No I/O performed by %s, "
1865 "perhaps try --debug=io option for details?\n",
1866 td->o.name, td->io_ops->name);
1867
1868 td_set_runstate(td, TD_FINISHING);
1869
1870 update_rusage_stat(td);
1871 td->ts.total_run_time = mtime_since_now(&td->epoch);
1872 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1873 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1874 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1875
1876 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1877 (td->o.verify != VERIFY_NONE && td_write(td)))
1878 verify_save_state(td->thread_number);
1879
1880 fio_unpin_memory(td);
1881
1882 td_writeout_logs(td, true);
1883
1884 iolog_compress_exit(td);
1885 rate_submit_exit(td);
1886
1887 if (o->exec_postrun)
1888 exec_string(o, o->exec_postrun, (const char *)"postrun");
1889
1890 if (exitall_on_terminate || (o->exitall_error && td->error))
1891 fio_terminate_threads(td->groupid);
1892
1893err:
1894 if (td->error)
1895 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1896 td->verror);
1897
1898 if (o->verify_async)
1899 verify_async_exit(td);
1900
1901 close_and_free_files(td);
1902 cleanup_io_u(td);
1903 close_ioengine(td);
1904 cgroup_shutdown(td, &cgroup_mnt);
1905 verify_free_state(td);
1906
1907 if (td->zone_state_index) {
1908 int i;
1909
1910 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1911 free(td->zone_state_index[i]);
1912 free(td->zone_state_index);
1913 td->zone_state_index = NULL;
1914 }
1915
1916 if (fio_option_is_set(o, cpumask)) {
1917 ret = fio_cpuset_exit(&o->cpumask);
1918 if (ret)
1919 td_verror(td, ret, "fio_cpuset_exit");
1920 }
1921
1922 /*
1923 * do this very late, it will log file closing as well
1924 */
1925 if (o->write_iolog_file)
1926 write_iolog_close(td);
1927
1928 td_set_runstate(td, TD_EXITED);
1929
1930 /*
1931 * Do this last after setting our runstate to exited, so we
1932 * know that the stat thread is signaled.
1933 */
1934 check_update_rusage(td);
1935
1936 sk_out_drop();
1937 return (void *) (uintptr_t) td->error;
1938}
1939
1940/*
1941 * Run over the job map and reap the threads that have exited, if any.
1942 */
1943static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1944 uint64_t *m_rate)
1945{
1946 struct thread_data *td;
1947 unsigned int cputhreads, realthreads, pending;
1948 int i, status, ret;
1949
1950 /*
1951 * reap exited threads (TD_EXITED -> TD_REAPED)
1952 */
1953 realthreads = pending = cputhreads = 0;
1954 for_each_td(td, i) {
1955 int flags = 0;
1956
1957 if (!strcmp(td->o.ioengine, "cpuio"))
1958 cputhreads++;
1959 else
1960 realthreads++;
1961
1962 if (!td->pid) {
1963 pending++;
1964 continue;
1965 }
1966 if (td->runstate == TD_REAPED)
1967 continue;
1968 if (td->o.use_thread) {
1969 if (td->runstate == TD_EXITED) {
1970 td_set_runstate(td, TD_REAPED);
1971 goto reaped;
1972 }
1973 continue;
1974 }
1975
1976 flags = WNOHANG;
1977 if (td->runstate == TD_EXITED)
1978 flags = 0;
1979
1980 /*
1981 * check if someone quit or got killed in an unusual way
1982 */
1983 ret = waitpid(td->pid, &status, flags);
1984 if (ret < 0) {
1985 if (errno == ECHILD) {
1986 log_err("fio: pid=%d disappeared %d\n",
1987 (int) td->pid, td->runstate);
1988 td->sig = ECHILD;
1989 td_set_runstate(td, TD_REAPED);
1990 goto reaped;
1991 }
1992 perror("waitpid");
1993 } else if (ret == td->pid) {
1994 if (WIFSIGNALED(status)) {
1995 int sig = WTERMSIG(status);
1996
1997 if (sig != SIGTERM && sig != SIGUSR2)
1998 log_err("fio: pid=%d, got signal=%d\n",
1999 (int) td->pid, sig);
2000 td->sig = sig;
2001 td_set_runstate(td, TD_REAPED);
2002 goto reaped;
2003 }
2004 if (WIFEXITED(status)) {
2005 if (WEXITSTATUS(status) && !td->error)
2006 td->error = WEXITSTATUS(status);
2007
2008 td_set_runstate(td, TD_REAPED);
2009 goto reaped;
2010 }
2011 }
2012
2013 /*
2014 * If the job is stuck, do a forceful timeout of it and
2015 * move on.
2016 */
2017 if (td->terminate &&
2018 td->runstate < TD_FSYNCING &&
2019 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2020 log_err("fio: job '%s' (state=%d) hasn't exited in "
2021 "%lu seconds, it appears to be stuck. Doing "
2022 "forceful exit of this job.\n",
2023 td->o.name, td->runstate,
2024 (unsigned long) time_since_now(&td->terminate_time));
2025 td_set_runstate(td, TD_REAPED);
2026 goto reaped;
2027 }
2028
2029 /*
2030 * thread is not dead, continue
2031 */
2032 pending++;
2033 continue;
2034reaped:
2035 (*nr_running)--;
2036 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2037 (*t_rate) -= ddir_rw_sum(td->o.rate);
2038 if (!td->pid)
2039 pending--;
2040
2041 if (td->error)
2042 exit_value++;
2043
2044 done_secs += mtime_since_now(&td->epoch) / 1000;
2045 profile_td_exit(td);
2046 }
2047
2048 if (*nr_running == cputhreads && !pending && realthreads)
2049 fio_terminate_threads(TERMINATE_ALL);
2050}
2051
2052static bool __check_trigger_file(void)
2053{
2054 struct stat sb;
2055
2056 if (!trigger_file)
2057 return false;
2058
2059 if (stat(trigger_file, &sb))
2060 return false;
2061
2062 if (unlink(trigger_file) < 0)
2063 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2064 strerror(errno));
2065
2066 return true;
2067}
2068
2069static bool trigger_timedout(void)
2070{
2071 if (trigger_timeout)
2072 if (time_since_genesis() >= trigger_timeout) {
2073 trigger_timeout = 0;
2074 return true;
2075 }
2076
2077 return false;
2078}
2079
2080void exec_trigger(const char *cmd)
2081{
2082 int ret;
2083
2084 if (!cmd || cmd[0] == '\0')
2085 return;
2086
2087 ret = system(cmd);
2088 if (ret == -1)
2089 log_err("fio: failed executing %s trigger\n", cmd);
2090}
2091
2092void check_trigger_file(void)
2093{
2094 if (__check_trigger_file() || trigger_timedout()) {
2095 if (nr_clients)
2096 fio_clients_send_trigger(trigger_remote_cmd);
2097 else {
2098 verify_save_state(IO_LIST_ALL);
2099 fio_terminate_threads(TERMINATE_ALL);
2100 exec_trigger(trigger_cmd);
2101 }
2102 }
2103}
2104
2105static int fio_verify_load_state(struct thread_data *td)
2106{
2107 int ret;
2108
2109 if (!td->o.verify_state)
2110 return 0;
2111
2112 if (is_backend) {
2113 void *data;
2114
2115 ret = fio_server_get_verify_state(td->o.name,
2116 td->thread_number - 1, &data);
2117 if (!ret)
2118 verify_assign_state(td, data);
2119 } else
2120 ret = verify_load_state(td, "local");
2121
2122 return ret;
2123}
2124
2125static void do_usleep(unsigned int usecs)
2126{
2127 check_for_running_stats();
2128 check_trigger_file();
2129 usleep(usecs);
2130}
2131
2132static bool check_mount_writes(struct thread_data *td)
2133{
2134 struct fio_file *f;
2135 unsigned int i;
2136
2137 if (!td_write(td) || td->o.allow_mounted_write)
2138 return false;
2139
2140 /*
2141 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2142 * are mkfs'd and mounted.
2143 */
2144 for_each_file(td, f, i) {
2145#ifdef FIO_HAVE_CHARDEV_SIZE
2146 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2147#else
2148 if (f->filetype != FIO_TYPE_BLOCK)
2149#endif
2150 continue;
2151 if (device_is_mounted(f->file_name))
2152 goto mounted;
2153 }
2154
2155 return false;
2156mounted:
2157 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2158 return true;
2159}
2160
2161static bool waitee_running(struct thread_data *me)
2162{
2163 const char *waitee = me->o.wait_for;
2164 const char *self = me->o.name;
2165 struct thread_data *td;
2166 int i;
2167
2168 if (!waitee)
2169 return false;
2170
2171 for_each_td(td, i) {
2172 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2173 continue;
2174
2175 if (td->runstate < TD_EXITED) {
2176 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2177 self, td->o.name,
2178 runstate_to_name(td->runstate));
2179 return true;
2180 }
2181 }
2182
2183 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2184 return false;
2185}
2186
2187/*
2188 * Main function for kicking off and reaping jobs, as needed.
2189 */
2190static void run_threads(struct sk_out *sk_out)
2191{
2192 struct thread_data *td;
2193 unsigned int i, todo, nr_running, nr_started;
2194 uint64_t m_rate, t_rate;
2195 uint64_t spent;
2196
2197 if (fio_gtod_offload && fio_start_gtod_thread())
2198 return;
2199
2200 fio_idle_prof_init();
2201
2202 set_sig_handlers();
2203
2204 nr_thread = nr_process = 0;
2205 for_each_td(td, i) {
2206 if (check_mount_writes(td))
2207 return;
2208 if (td->o.use_thread)
2209 nr_thread++;
2210 else
2211 nr_process++;
2212 }
2213
2214 if (output_format & FIO_OUTPUT_NORMAL) {
2215 log_info("Starting ");
2216 if (nr_thread)
2217 log_info("%d thread%s", nr_thread,
2218 nr_thread > 1 ? "s" : "");
2219 if (nr_process) {
2220 if (nr_thread)
2221 log_info(" and ");
2222 log_info("%d process%s", nr_process,
2223 nr_process > 1 ? "es" : "");
2224 }
2225 log_info("\n");
2226 log_info_flush();
2227 }
2228
2229 todo = thread_number;
2230 nr_running = 0;
2231 nr_started = 0;
2232 m_rate = t_rate = 0;
2233
2234 for_each_td(td, i) {
2235 print_status_init(td->thread_number - 1);
2236
2237 if (!td->o.create_serialize)
2238 continue;
2239
2240 if (fio_verify_load_state(td))
2241 goto reap;
2242
2243 /*
2244 * do file setup here so it happens sequentially,
2245 * we don't want X number of threads getting their
2246 * client data interspersed on disk
2247 */
2248 if (setup_files(td)) {
2249reap:
2250 exit_value++;
2251 if (td->error)
2252 log_err("fio: pid=%d, err=%d/%s\n",
2253 (int) td->pid, td->error, td->verror);
2254 td_set_runstate(td, TD_REAPED);
2255 todo--;
2256 } else {
2257 struct fio_file *f;
2258 unsigned int j;
2259
2260 /*
2261 * for sharing to work, each job must always open
2262 * its own files. so close them, if we opened them
2263 * for creation
2264 */
2265 for_each_file(td, f, j) {
2266 if (fio_file_open(f))
2267 td_io_close_file(td, f);
2268 }
2269 }
2270 }
2271
2272 /* start idle threads before io threads start to run */
2273 fio_idle_prof_start();
2274
2275 set_genesis_time();
2276
2277 while (todo) {
2278 struct thread_data *map[REAL_MAX_JOBS];
2279 struct timespec this_start;
2280 int this_jobs = 0, left;
2281 struct fork_data *fd;
2282
2283 /*
2284 * create threads (TD_NOT_CREATED -> TD_CREATED)
2285 */
2286 for_each_td(td, i) {
2287 if (td->runstate != TD_NOT_CREATED)
2288 continue;
2289
2290 /*
2291 * never got a chance to start, killed by other
2292 * thread for some reason
2293 */
2294 if (td->terminate) {
2295 todo--;
2296 continue;
2297 }
2298
2299 if (td->o.start_delay) {
2300 spent = utime_since_genesis();
2301
2302 if (td->o.start_delay > spent)
2303 continue;
2304 }
2305
2306 if (td->o.stonewall && (nr_started || nr_running)) {
2307 dprint(FD_PROCESS, "%s: stonewall wait\n",
2308 td->o.name);
2309 break;
2310 }
2311
2312 if (waitee_running(td)) {
2313 dprint(FD_PROCESS, "%s: waiting for %s\n",
2314 td->o.name, td->o.wait_for);
2315 continue;
2316 }
2317
2318 init_disk_util(td);
2319
2320 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2321 td->update_rusage = 0;
2322
2323 /*
2324 * Set state to created. Thread will transition
2325 * to TD_INITIALIZED when it's done setting up.
2326 */
2327 td_set_runstate(td, TD_CREATED);
2328 map[this_jobs++] = td;
2329 nr_started++;
2330
2331 fd = calloc(1, sizeof(*fd));
2332 fd->td = td;
2333 fd->sk_out = sk_out;
2334
2335 if (td->o.use_thread) {
2336 int ret;
2337
2338 dprint(FD_PROCESS, "will pthread_create\n");
2339 ret = pthread_create(&td->thread, NULL,
2340 thread_main, fd);
2341 if (ret) {
2342 log_err("pthread_create: %s\n",
2343 strerror(ret));
2344 free(fd);
2345 nr_started--;
2346 break;
2347 }
2348 fd = NULL;
2349 ret = pthread_detach(td->thread);
2350 if (ret)
2351 log_err("pthread_detach: %s",
2352 strerror(ret));
2353 } else {
2354 pid_t pid;
2355 dprint(FD_PROCESS, "will fork\n");
2356 pid = fork();
2357 if (!pid) {
2358 int ret;
2359
2360 ret = (int)(uintptr_t)thread_main(fd);
2361 _exit(ret);
2362 } else if (i == fio_debug_jobno)
2363 *fio_debug_jobp = pid;
2364 }
2365 dprint(FD_MUTEX, "wait on startup_mutex\n");
2366 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2367 log_err("fio: job startup hung? exiting.\n");
2368 fio_terminate_threads(TERMINATE_ALL);
2369 fio_abort = 1;
2370 nr_started--;
2371 free(fd);
2372 break;
2373 }
2374 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2375 }
2376
2377 /*
2378 * Wait for the started threads to transition to
2379 * TD_INITIALIZED.
2380 */
2381 fio_gettime(&this_start, NULL);
2382 left = this_jobs;
2383 while (left && !fio_abort) {
2384 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2385 break;
2386
2387 do_usleep(100000);
2388
2389 for (i = 0; i < this_jobs; i++) {
2390 td = map[i];
2391 if (!td)
2392 continue;
2393 if (td->runstate == TD_INITIALIZED) {
2394 map[i] = NULL;
2395 left--;
2396 } else if (td->runstate >= TD_EXITED) {
2397 map[i] = NULL;
2398 left--;
2399 todo--;
2400 nr_running++; /* work-around... */
2401 }
2402 }
2403 }
2404
2405 if (left) {
2406 log_err("fio: %d job%s failed to start\n", left,
2407 left > 1 ? "s" : "");
2408 for (i = 0; i < this_jobs; i++) {
2409 td = map[i];
2410 if (!td)
2411 continue;
2412 kill(td->pid, SIGTERM);
2413 }
2414 break;
2415 }
2416
2417 /*
2418 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2419 */
2420 for_each_td(td, i) {
2421 if (td->runstate != TD_INITIALIZED)
2422 continue;
2423
2424 if (in_ramp_time(td))
2425 td_set_runstate(td, TD_RAMP);
2426 else
2427 td_set_runstate(td, TD_RUNNING);
2428 nr_running++;
2429 nr_started--;
2430 m_rate += ddir_rw_sum(td->o.ratemin);
2431 t_rate += ddir_rw_sum(td->o.rate);
2432 todo--;
2433 fio_mutex_up(td->mutex);
2434 }
2435
2436 reap_threads(&nr_running, &t_rate, &m_rate);
2437
2438 if (todo)
2439 do_usleep(100000);
2440 }
2441
2442 while (nr_running) {
2443 reap_threads(&nr_running, &t_rate, &m_rate);
2444 do_usleep(10000);
2445 }
2446
2447 fio_idle_prof_stop();
2448
2449 update_io_ticks();
2450}
2451
2452static void free_disk_util(void)
2453{
2454 disk_util_prune_entries();
2455 helper_thread_destroy();
2456}
2457
2458int fio_backend(struct sk_out *sk_out)
2459{
2460 struct thread_data *td;
2461 int i;
2462
2463 if (exec_profile) {
2464 if (load_profile(exec_profile))
2465 return 1;
2466 free(exec_profile);
2467 exec_profile = NULL;
2468 }
2469 if (!thread_number)
2470 return 0;
2471
2472 if (write_bw_log) {
2473 struct log_params p = {
2474 .log_type = IO_LOG_TYPE_BW,
2475 };
2476
2477 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2478 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2479 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2480 }
2481
2482 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2483 if (startup_mutex == NULL)
2484 return 1;
2485
2486 set_genesis_time();
2487 stat_init();
2488 helper_thread_create(startup_mutex, sk_out);
2489
2490 cgroup_list = smalloc(sizeof(*cgroup_list));
2491 INIT_FLIST_HEAD(cgroup_list);
2492
2493 run_threads(sk_out);
2494
2495 helper_thread_exit();
2496
2497 if (!fio_abort) {
2498 __show_run_stats();
2499 if (write_bw_log) {
2500 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2501 struct io_log *log = agg_io_log[i];
2502
2503 flush_log(log, false);
2504 free_log(log);
2505 }
2506 }
2507 }
2508
2509 for_each_td(td, i) {
2510 steadystate_free(td);
2511 fio_options_free(td);
2512 if (td->rusage_sem) {
2513 fio_mutex_remove(td->rusage_sem);
2514 td->rusage_sem = NULL;
2515 }
2516 fio_mutex_remove(td->mutex);
2517 td->mutex = NULL;
2518 }
2519
2520 free_disk_util();
2521 cgroup_kill(cgroup_list);
2522 sfree(cgroup_list);
2523 sfree(cgroup_mnt);
2524
2525 fio_mutex_remove(startup_mutex);
2526 stat_exit();
2527 return exit_value;
2528}