Declare stat_calc_lat_nu() static
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32
33#include "fio.h"
34#include "smalloc.h"
35#include "verify.h"
36#include "diskutil.h"
37#include "cgroup.h"
38#include "profile.h"
39#include "lib/rand.h"
40#include "lib/memalign.h"
41#include "server.h"
42#include "lib/getrusage.h"
43#include "idletime.h"
44#include "err.h"
45#include "workqueue.h"
46#include "lib/mountcheck.h"
47#include "rate-submit.h"
48#include "helper_thread.h"
49#include "pshared.h"
50
51static struct fio_sem *startup_sem;
52static struct flist_head *cgroup_list;
53static char *cgroup_mnt;
54static int exit_value;
55static volatile int fio_abort;
56static unsigned int nr_process = 0;
57static unsigned int nr_thread = 0;
58
59struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61int groupid = 0;
62unsigned int thread_number = 0;
63unsigned int stat_number = 0;
64int shm_id = 0;
65int temp_stall_ts;
66unsigned long done_secs = 0;
67
68#define JOB_START_TIMEOUT (5 * 1000)
69
70static void sig_int(int sig)
71{
72 if (threads) {
73 if (is_backend)
74 fio_server_got_signal(sig);
75 else {
76 log_info("\nfio: terminating on signal %d\n", sig);
77 log_info_flush();
78 exit_value = 128;
79 }
80
81 fio_terminate_threads(TERMINATE_ALL);
82 }
83}
84
85void sig_show_status(int sig)
86{
87 show_running_run_stats();
88}
89
90static void set_sig_handlers(void)
91{
92 struct sigaction act;
93
94 memset(&act, 0, sizeof(act));
95 act.sa_handler = sig_int;
96 act.sa_flags = SA_RESTART;
97 sigaction(SIGINT, &act, NULL);
98
99 memset(&act, 0, sizeof(act));
100 act.sa_handler = sig_int;
101 act.sa_flags = SA_RESTART;
102 sigaction(SIGTERM, &act, NULL);
103
104/* Windows uses SIGBREAK as a quit signal from other applications */
105#ifdef WIN32
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGBREAK, &act, NULL);
110#endif
111
112 memset(&act, 0, sizeof(act));
113 act.sa_handler = sig_show_status;
114 act.sa_flags = SA_RESTART;
115 sigaction(SIGUSR1, &act, NULL);
116
117 if (is_backend) {
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGPIPE, &act, NULL);
122 }
123}
124
125/*
126 * Check if we are above the minimum rate given.
127 */
128static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129 enum fio_ddir ddir)
130{
131 unsigned long long bytes = 0;
132 unsigned long iops = 0;
133 unsigned long spent;
134 unsigned long rate;
135 unsigned int ratemin = 0;
136 unsigned int rate_iops = 0;
137 unsigned int rate_iops_min = 0;
138
139 assert(ddir_rw(ddir));
140
141 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142 return false;
143
144 /*
145 * allow a 2 second settle period in the beginning
146 */
147 if (mtime_since(&td->start, now) < 2000)
148 return false;
149
150 iops += td->this_io_blocks[ddir];
151 bytes += td->this_io_bytes[ddir];
152 ratemin += td->o.ratemin[ddir];
153 rate_iops += td->o.rate_iops[ddir];
154 rate_iops_min += td->o.rate_iops_min[ddir];
155
156 /*
157 * if rate blocks is set, sample is running
158 */
159 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160 spent = mtime_since(&td->lastrate[ddir], now);
161 if (spent < td->o.ratecycle)
162 return false;
163
164 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165 /*
166 * check bandwidth specified rate
167 */
168 if (bytes < td->rate_bytes[ddir]) {
169 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170 td->o.name, ratemin, bytes);
171 return true;
172 } else {
173 if (spent)
174 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175 else
176 rate = 0;
177
178 if (rate < ratemin ||
179 bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181 td->o.name, ratemin, rate);
182 return true;
183 }
184 }
185 } else {
186 /*
187 * checks iops specified rate
188 */
189 if (iops < rate_iops) {
190 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191 td->o.name, rate_iops, iops);
192 return true;
193 } else {
194 if (spent)
195 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196 else
197 rate = 0;
198
199 if (rate < rate_iops_min ||
200 iops < td->rate_blocks[ddir]) {
201 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202 td->o.name, rate_iops_min, rate);
203 return true;
204 }
205 }
206 }
207 }
208
209 td->rate_bytes[ddir] = bytes;
210 td->rate_blocks[ddir] = iops;
211 memcpy(&td->lastrate[ddir], now, sizeof(*now));
212 return false;
213}
214
215static bool check_min_rate(struct thread_data *td, struct timespec *now)
216{
217 bool ret = false;
218
219 if (td->bytes_done[DDIR_READ])
220 ret |= __check_min_rate(td, now, DDIR_READ);
221 if (td->bytes_done[DDIR_WRITE])
222 ret |= __check_min_rate(td, now, DDIR_WRITE);
223 if (td->bytes_done[DDIR_TRIM])
224 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226 return ret;
227}
228
229/*
230 * When job exits, we can cancel the in-flight IO if we are using async
231 * io. Attempt to do so.
232 */
233static void cleanup_pending_aio(struct thread_data *td)
234{
235 int r;
236
237 /*
238 * get immediately available events, if any
239 */
240 r = io_u_queued_complete(td, 0);
241 if (r < 0)
242 return;
243
244 /*
245 * now cancel remaining active events
246 */
247 if (td->io_ops->cancel) {
248 struct io_u *io_u;
249 int i;
250
251 io_u_qiter(&td->io_u_all, io_u, i) {
252 if (io_u->flags & IO_U_F_FLIGHT) {
253 r = td->io_ops->cancel(td, io_u);
254 if (!r)
255 put_io_u(td, io_u);
256 }
257 }
258 }
259
260 if (td->cur_depth)
261 r = io_u_queued_complete(td, td->cur_depth);
262}
263
264/*
265 * Helper to handle the final sync of a file. Works just like the normal
266 * io path, just does everything sync.
267 */
268static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269{
270 struct io_u *io_u = __get_io_u(td);
271 int ret;
272
273 if (!io_u)
274 return true;
275
276 io_u->ddir = DDIR_SYNC;
277 io_u->file = f;
278
279 if (td_io_prep(td, io_u)) {
280 put_io_u(td, io_u);
281 return true;
282 }
283
284requeue:
285 ret = td_io_queue(td, io_u);
286 if (ret < 0) {
287 td_verror(td, io_u->error, "td_io_queue");
288 put_io_u(td, io_u);
289 return true;
290 } else if (ret == FIO_Q_QUEUED) {
291 if (td_io_commit(td))
292 return true;
293 if (io_u_queued_complete(td, 1) < 0)
294 return true;
295 } else if (ret == FIO_Q_COMPLETED) {
296 if (io_u->error) {
297 td_verror(td, io_u->error, "td_io_queue");
298 return true;
299 }
300
301 if (io_u_sync_complete(td, io_u) < 0)
302 return true;
303 } else if (ret == FIO_Q_BUSY) {
304 if (td_io_commit(td))
305 return true;
306 goto requeue;
307 }
308
309 return false;
310}
311
312static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
313{
314 int ret;
315
316 if (fio_file_open(f))
317 return fio_io_sync(td, f);
318
319 if (td_io_open_file(td, f))
320 return 1;
321
322 ret = fio_io_sync(td, f);
323 td_io_close_file(td, f);
324 return ret;
325}
326
327static inline void __update_ts_cache(struct thread_data *td)
328{
329 fio_gettime(&td->ts_cache, NULL);
330}
331
332static inline void update_ts_cache(struct thread_data *td)
333{
334 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
335 __update_ts_cache(td);
336}
337
338static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
339{
340 if (in_ramp_time(td))
341 return false;
342 if (!td->o.timeout)
343 return false;
344 if (utime_since(&td->epoch, t) >= td->o.timeout)
345 return true;
346
347 return false;
348}
349
350/*
351 * We need to update the runtime consistently in ms, but keep a running
352 * tally of the current elapsed time in microseconds for sub millisecond
353 * updates.
354 */
355static inline void update_runtime(struct thread_data *td,
356 unsigned long long *elapsed_us,
357 const enum fio_ddir ddir)
358{
359 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
360 return;
361
362 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
363 elapsed_us[ddir] += utime_since_now(&td->start);
364 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
365}
366
367static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
368 int *retptr)
369{
370 int ret = *retptr;
371
372 if (ret < 0 || td->error) {
373 int err = td->error;
374 enum error_type_bit eb;
375
376 if (ret < 0)
377 err = -ret;
378
379 eb = td_error_type(ddir, err);
380 if (!(td->o.continue_on_error & (1 << eb)))
381 return true;
382
383 if (td_non_fatal_error(td, eb, err)) {
384 /*
385 * Continue with the I/Os in case of
386 * a non fatal error.
387 */
388 update_error_count(td, err);
389 td_clear_error(td);
390 *retptr = 0;
391 return false;
392 } else if (td->o.fill_device && err == ENOSPC) {
393 /*
394 * We expect to hit this error if
395 * fill_device option is set.
396 */
397 td_clear_error(td);
398 fio_mark_td_terminate(td);
399 return true;
400 } else {
401 /*
402 * Stop the I/O in case of a fatal
403 * error.
404 */
405 update_error_count(td, err);
406 return true;
407 }
408 }
409
410 return false;
411}
412
413static void check_update_rusage(struct thread_data *td)
414{
415 if (td->update_rusage) {
416 td->update_rusage = 0;
417 update_rusage_stat(td);
418 fio_sem_up(td->rusage_sem);
419 }
420}
421
422static int wait_for_completions(struct thread_data *td, struct timespec *time)
423{
424 const int full = queue_full(td);
425 int min_evts = 0;
426 int ret;
427
428 if (td->flags & TD_F_REGROW_LOGS)
429 return io_u_quiesce(td);
430
431 /*
432 * if the queue is full, we MUST reap at least 1 event
433 */
434 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
435 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
436 min_evts = 1;
437
438 if (time && (__should_check_rate(td, DDIR_READ) ||
439 __should_check_rate(td, DDIR_WRITE) ||
440 __should_check_rate(td, DDIR_TRIM)))
441 fio_gettime(time, NULL);
442
443 do {
444 ret = io_u_queued_complete(td, min_evts);
445 if (ret < 0)
446 break;
447 } while (full && (td->cur_depth > td->o.iodepth_low));
448
449 return ret;
450}
451
452int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
453 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
454 struct timespec *comp_time)
455{
456 int ret2;
457
458 switch (*ret) {
459 case FIO_Q_COMPLETED:
460 if (io_u->error) {
461 *ret = -io_u->error;
462 clear_io_u(td, io_u);
463 } else if (io_u->resid) {
464 int bytes = io_u->xfer_buflen - io_u->resid;
465 struct fio_file *f = io_u->file;
466
467 if (bytes_issued)
468 *bytes_issued += bytes;
469
470 if (!from_verify)
471 trim_io_piece(td, io_u);
472
473 /*
474 * zero read, fail
475 */
476 if (!bytes) {
477 if (!from_verify)
478 unlog_io_piece(td, io_u);
479 td_verror(td, EIO, "full resid");
480 put_io_u(td, io_u);
481 break;
482 }
483
484 io_u->xfer_buflen = io_u->resid;
485 io_u->xfer_buf += bytes;
486 io_u->offset += bytes;
487
488 if (ddir_rw(io_u->ddir))
489 td->ts.short_io_u[io_u->ddir]++;
490
491 if (io_u->offset == f->real_file_size)
492 goto sync_done;
493
494 requeue_io_u(td, &io_u);
495 } else {
496sync_done:
497 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
498 __should_check_rate(td, DDIR_WRITE) ||
499 __should_check_rate(td, DDIR_TRIM)))
500 fio_gettime(comp_time, NULL);
501
502 *ret = io_u_sync_complete(td, io_u);
503 if (*ret < 0)
504 break;
505 }
506
507 if (td->flags & TD_F_REGROW_LOGS)
508 regrow_logs(td);
509
510 /*
511 * when doing I/O (not when verifying),
512 * check for any errors that are to be ignored
513 */
514 if (!from_verify)
515 break;
516
517 return 0;
518 case FIO_Q_QUEUED:
519 /*
520 * if the engine doesn't have a commit hook,
521 * the io_u is really queued. if it does have such
522 * a hook, it has to call io_u_queued() itself.
523 */
524 if (td->io_ops->commit == NULL)
525 io_u_queued(td, io_u);
526 if (bytes_issued)
527 *bytes_issued += io_u->xfer_buflen;
528 break;
529 case FIO_Q_BUSY:
530 if (!from_verify)
531 unlog_io_piece(td, io_u);
532 requeue_io_u(td, &io_u);
533 ret2 = td_io_commit(td);
534 if (ret2 < 0)
535 *ret = ret2;
536 break;
537 default:
538 assert(*ret < 0);
539 td_verror(td, -(*ret), "td_io_queue");
540 break;
541 }
542
543 if (break_on_this_error(td, ddir, ret))
544 return 1;
545
546 return 0;
547}
548
549static inline bool io_in_polling(struct thread_data *td)
550{
551 return !td->o.iodepth_batch_complete_min &&
552 !td->o.iodepth_batch_complete_max;
553}
554/*
555 * Unlinks files from thread data fio_file structure
556 */
557static int unlink_all_files(struct thread_data *td)
558{
559 struct fio_file *f;
560 unsigned int i;
561 int ret = 0;
562
563 for_each_file(td, f, i) {
564 if (f->filetype != FIO_TYPE_FILE)
565 continue;
566 ret = td_io_unlink_file(td, f);
567 if (ret)
568 break;
569 }
570
571 if (ret)
572 td_verror(td, ret, "unlink_all_files");
573
574 return ret;
575}
576
577/*
578 * Check if io_u will overlap an in-flight IO in the queue
579 */
580static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
581{
582 bool overlap;
583 struct io_u *check_io_u;
584 unsigned long long x1, x2, y1, y2;
585 int i;
586
587 x1 = io_u->offset;
588 x2 = io_u->offset + io_u->buflen;
589 overlap = false;
590 io_u_qiter(q, check_io_u, i) {
591 if (check_io_u->flags & IO_U_F_FLIGHT) {
592 y1 = check_io_u->offset;
593 y2 = check_io_u->offset + check_io_u->buflen;
594
595 if (x1 < y2 && y1 < x2) {
596 overlap = true;
597 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
598 x1, io_u->buflen,
599 y1, check_io_u->buflen);
600 break;
601 }
602 }
603 }
604
605 return overlap;
606}
607
608static int io_u_submit(struct thread_data *td, struct io_u *io_u)
609{
610 /*
611 * Check for overlap if the user asked us to, and we have
612 * at least one IO in flight besides this one.
613 */
614 if (td->o.serialize_overlap && td->cur_depth > 1 &&
615 in_flight_overlap(&td->io_u_all, io_u))
616 return FIO_Q_BUSY;
617
618 return td_io_queue(td, io_u);
619}
620
621/*
622 * The main verify engine. Runs over the writes we previously submitted,
623 * reads the blocks back in, and checks the crc/md5 of the data.
624 */
625static void do_verify(struct thread_data *td, uint64_t verify_bytes)
626{
627 struct fio_file *f;
628 struct io_u *io_u;
629 int ret, min_events;
630 unsigned int i;
631
632 dprint(FD_VERIFY, "starting loop\n");
633
634 /*
635 * sync io first and invalidate cache, to make sure we really
636 * read from disk.
637 */
638 for_each_file(td, f, i) {
639 if (!fio_file_open(f))
640 continue;
641 if (fio_io_sync(td, f))
642 break;
643 if (file_invalidate_cache(td, f))
644 break;
645 }
646
647 check_update_rusage(td);
648
649 if (td->error)
650 return;
651
652 /*
653 * verify_state needs to be reset before verification
654 * proceeds so that expected random seeds match actual
655 * random seeds in headers. The main loop will reset
656 * all random number generators if randrepeat is set.
657 */
658 if (!td->o.rand_repeatable)
659 td_fill_verify_state_seed(td);
660
661 td_set_runstate(td, TD_VERIFYING);
662
663 io_u = NULL;
664 while (!td->terminate) {
665 enum fio_ddir ddir;
666 int full;
667
668 update_ts_cache(td);
669 check_update_rusage(td);
670
671 if (runtime_exceeded(td, &td->ts_cache)) {
672 __update_ts_cache(td);
673 if (runtime_exceeded(td, &td->ts_cache)) {
674 fio_mark_td_terminate(td);
675 break;
676 }
677 }
678
679 if (flow_threshold_exceeded(td))
680 continue;
681
682 if (!td->o.experimental_verify) {
683 io_u = __get_io_u(td);
684 if (!io_u)
685 break;
686
687 if (get_next_verify(td, io_u)) {
688 put_io_u(td, io_u);
689 break;
690 }
691
692 if (td_io_prep(td, io_u)) {
693 put_io_u(td, io_u);
694 break;
695 }
696 } else {
697 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
698 break;
699
700 while ((io_u = get_io_u(td)) != NULL) {
701 if (IS_ERR_OR_NULL(io_u)) {
702 io_u = NULL;
703 ret = FIO_Q_BUSY;
704 goto reap;
705 }
706
707 /*
708 * We are only interested in the places where
709 * we wrote or trimmed IOs. Turn those into
710 * reads for verification purposes.
711 */
712 if (io_u->ddir == DDIR_READ) {
713 /*
714 * Pretend we issued it for rwmix
715 * accounting
716 */
717 td->io_issues[DDIR_READ]++;
718 put_io_u(td, io_u);
719 continue;
720 } else if (io_u->ddir == DDIR_TRIM) {
721 io_u->ddir = DDIR_READ;
722 io_u_set(td, io_u, IO_U_F_TRIMMED);
723 break;
724 } else if (io_u->ddir == DDIR_WRITE) {
725 io_u->ddir = DDIR_READ;
726 populate_verify_io_u(td, io_u);
727 break;
728 } else {
729 put_io_u(td, io_u);
730 continue;
731 }
732 }
733
734 if (!io_u)
735 break;
736 }
737
738 if (verify_state_should_stop(td, io_u)) {
739 put_io_u(td, io_u);
740 break;
741 }
742
743 if (td->o.verify_async)
744 io_u->end_io = verify_io_u_async;
745 else
746 io_u->end_io = verify_io_u;
747
748 ddir = io_u->ddir;
749 if (!td->o.disable_slat)
750 fio_gettime(&io_u->start_time, NULL);
751
752 ret = io_u_submit(td, io_u);
753
754 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
755 break;
756
757 /*
758 * if we can queue more, do so. but check if there are
759 * completed io_u's first. Note that we can get BUSY even
760 * without IO queued, if the system is resource starved.
761 */
762reap:
763 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
764 if (full || io_in_polling(td))
765 ret = wait_for_completions(td, NULL);
766
767 if (ret < 0)
768 break;
769 }
770
771 check_update_rusage(td);
772
773 if (!td->error) {
774 min_events = td->cur_depth;
775
776 if (min_events)
777 ret = io_u_queued_complete(td, min_events);
778 } else
779 cleanup_pending_aio(td);
780
781 td_set_runstate(td, TD_RUNNING);
782
783 dprint(FD_VERIFY, "exiting loop\n");
784}
785
786static bool exceeds_number_ios(struct thread_data *td)
787{
788 unsigned long long number_ios;
789
790 if (!td->o.number_ios)
791 return false;
792
793 number_ios = ddir_rw_sum(td->io_blocks);
794 number_ios += td->io_u_queued + td->io_u_in_flight;
795
796 return number_ios >= (td->o.number_ios * td->loops);
797}
798
799static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
800{
801 unsigned long long bytes, limit;
802
803 if (td_rw(td))
804 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
805 else if (td_write(td))
806 bytes = this_bytes[DDIR_WRITE];
807 else if (td_read(td))
808 bytes = this_bytes[DDIR_READ];
809 else
810 bytes = this_bytes[DDIR_TRIM];
811
812 if (td->o.io_size)
813 limit = td->o.io_size;
814 else
815 limit = td->o.size;
816
817 limit *= td->loops;
818 return bytes >= limit || exceeds_number_ios(td);
819}
820
821static bool io_issue_bytes_exceeded(struct thread_data *td)
822{
823 return io_bytes_exceeded(td, td->io_issue_bytes);
824}
825
826static bool io_complete_bytes_exceeded(struct thread_data *td)
827{
828 return io_bytes_exceeded(td, td->this_io_bytes);
829}
830
831/*
832 * used to calculate the next io time for rate control
833 *
834 */
835static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
836{
837 uint64_t bps = td->rate_bps[ddir];
838
839 assert(!(td->flags & TD_F_CHILD));
840
841 if (td->o.rate_process == RATE_PROCESS_POISSON) {
842 uint64_t val, iops;
843
844 iops = bps / td->o.bs[ddir];
845 val = (int64_t) (1000000 / iops) *
846 -logf(__rand_0_1(&td->poisson_state[ddir]));
847 if (val) {
848 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
849 (unsigned long long) 1000000 / val,
850 ddir);
851 }
852 td->last_usec[ddir] += val;
853 return td->last_usec[ddir];
854 } else if (bps) {
855 uint64_t bytes = td->rate_io_issue_bytes[ddir];
856 uint64_t secs = bytes / bps;
857 uint64_t remainder = bytes % bps;
858
859 return remainder * 1000000 / bps + secs * 1000000;
860 }
861
862 return 0;
863}
864
865static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
866{
867 unsigned long long b;
868 uint64_t total;
869 int left;
870
871 b = ddir_rw_sum(td->io_blocks);
872 if (b % td->o.thinktime_blocks)
873 return;
874
875 io_u_quiesce(td);
876
877 total = 0;
878 if (td->o.thinktime_spin)
879 total = usec_spin(td->o.thinktime_spin);
880
881 left = td->o.thinktime - total;
882 if (left)
883 total += usec_sleep(td, left);
884
885 /*
886 * If we're ignoring thinktime for the rate, add the number of bytes
887 * we would have done while sleeping, minus one block to ensure we
888 * start issuing immediately after the sleep.
889 */
890 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
891 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
892 uint64_t bs = td->o.min_bs[ddir];
893 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
894 uint64_t over;
895
896 if (usperop <= total)
897 over = bs;
898 else
899 over = (usperop - total) / usperop * -bs;
900
901 td->rate_io_issue_bytes[ddir] += (missed - over);
902 }
903}
904
905/*
906 * Main IO worker function. It retrieves io_u's to process and queues
907 * and reaps them, checking for rate and errors along the way.
908 *
909 * Returns number of bytes written and trimmed.
910 */
911static void do_io(struct thread_data *td, uint64_t *bytes_done)
912{
913 unsigned int i;
914 int ret = 0;
915 uint64_t total_bytes, bytes_issued = 0;
916
917 for (i = 0; i < DDIR_RWDIR_CNT; i++)
918 bytes_done[i] = td->bytes_done[i];
919
920 if (in_ramp_time(td))
921 td_set_runstate(td, TD_RAMP);
922 else
923 td_set_runstate(td, TD_RUNNING);
924
925 lat_target_init(td);
926
927 total_bytes = td->o.size;
928 /*
929 * Allow random overwrite workloads to write up to io_size
930 * before starting verification phase as 'size' doesn't apply.
931 */
932 if (td_write(td) && td_random(td) && td->o.norandommap)
933 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
934 /*
935 * If verify_backlog is enabled, we'll run the verify in this
936 * handler as well. For that case, we may need up to twice the
937 * amount of bytes.
938 */
939 if (td->o.verify != VERIFY_NONE &&
940 (td_write(td) && td->o.verify_backlog))
941 total_bytes += td->o.size;
942
943 /* In trimwrite mode, each byte is trimmed and then written, so
944 * allow total_bytes to be twice as big */
945 if (td_trimwrite(td))
946 total_bytes += td->total_io_size;
947
948 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
949 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
950 td->o.time_based) {
951 struct timespec comp_time;
952 struct io_u *io_u;
953 int full;
954 enum fio_ddir ddir;
955
956 check_update_rusage(td);
957
958 if (td->terminate || td->done)
959 break;
960
961 update_ts_cache(td);
962
963 if (runtime_exceeded(td, &td->ts_cache)) {
964 __update_ts_cache(td);
965 if (runtime_exceeded(td, &td->ts_cache)) {
966 fio_mark_td_terminate(td);
967 break;
968 }
969 }
970
971 if (flow_threshold_exceeded(td))
972 continue;
973
974 /*
975 * Break if we exceeded the bytes. The exception is time
976 * based runs, but we still need to break out of the loop
977 * for those to run verification, if enabled.
978 */
979 if (bytes_issued >= total_bytes &&
980 (!td->o.time_based ||
981 (td->o.time_based && td->o.verify != VERIFY_NONE)))
982 break;
983
984 io_u = get_io_u(td);
985 if (IS_ERR_OR_NULL(io_u)) {
986 int err = PTR_ERR(io_u);
987
988 io_u = NULL;
989 ddir = DDIR_INVAL;
990 if (err == -EBUSY) {
991 ret = FIO_Q_BUSY;
992 goto reap;
993 }
994 if (td->o.latency_target)
995 goto reap;
996 break;
997 }
998
999 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1000 populate_verify_io_u(td, io_u);
1001
1002 ddir = io_u->ddir;
1003
1004 /*
1005 * Add verification end_io handler if:
1006 * - Asked to verify (!td_rw(td))
1007 * - Or the io_u is from our verify list (mixed write/ver)
1008 */
1009 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1010 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1011
1012 if (!td->o.verify_pattern_bytes) {
1013 io_u->rand_seed = __rand(&td->verify_state);
1014 if (sizeof(int) != sizeof(long *))
1015 io_u->rand_seed *= __rand(&td->verify_state);
1016 }
1017
1018 if (verify_state_should_stop(td, io_u)) {
1019 put_io_u(td, io_u);
1020 break;
1021 }
1022
1023 if (td->o.verify_async)
1024 io_u->end_io = verify_io_u_async;
1025 else
1026 io_u->end_io = verify_io_u;
1027 td_set_runstate(td, TD_VERIFYING);
1028 } else if (in_ramp_time(td))
1029 td_set_runstate(td, TD_RAMP);
1030 else
1031 td_set_runstate(td, TD_RUNNING);
1032
1033 /*
1034 * Always log IO before it's issued, so we know the specific
1035 * order of it. The logged unit will track when the IO has
1036 * completed.
1037 */
1038 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1039 td->o.do_verify &&
1040 td->o.verify != VERIFY_NONE &&
1041 !td->o.experimental_verify)
1042 log_io_piece(td, io_u);
1043
1044 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1045 const unsigned long blen = io_u->xfer_buflen;
1046 const enum fio_ddir ddir = acct_ddir(io_u);
1047
1048 if (td->error)
1049 break;
1050
1051 workqueue_enqueue(&td->io_wq, &io_u->work);
1052 ret = FIO_Q_QUEUED;
1053
1054 if (ddir_rw(ddir)) {
1055 td->io_issues[ddir]++;
1056 td->io_issue_bytes[ddir] += blen;
1057 td->rate_io_issue_bytes[ddir] += blen;
1058 }
1059
1060 if (should_check_rate(td))
1061 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1062
1063 } else {
1064 ret = io_u_submit(td, io_u);
1065
1066 if (should_check_rate(td))
1067 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1068
1069 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1070 break;
1071
1072 /*
1073 * See if we need to complete some commands. Note that
1074 * we can get BUSY even without IO queued, if the
1075 * system is resource starved.
1076 */
1077reap:
1078 full = queue_full(td) ||
1079 (ret == FIO_Q_BUSY && td->cur_depth);
1080 if (full || io_in_polling(td))
1081 ret = wait_for_completions(td, &comp_time);
1082 }
1083 if (ret < 0)
1084 break;
1085 if (!ddir_rw_sum(td->bytes_done) &&
1086 !td_ioengine_flagged(td, FIO_NOIO))
1087 continue;
1088
1089 if (!in_ramp_time(td) && should_check_rate(td)) {
1090 if (check_min_rate(td, &comp_time)) {
1091 if (exitall_on_terminate || td->o.exitall_error)
1092 fio_terminate_threads(td->groupid);
1093 td_verror(td, EIO, "check_min_rate");
1094 break;
1095 }
1096 }
1097 if (!in_ramp_time(td) && td->o.latency_target)
1098 lat_target_check(td);
1099
1100 if (ddir_rw(ddir) && td->o.thinktime)
1101 handle_thinktime(td, ddir);
1102 }
1103
1104 check_update_rusage(td);
1105
1106 if (td->trim_entries)
1107 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1108
1109 if (td->o.fill_device && td->error == ENOSPC) {
1110 td->error = 0;
1111 fio_mark_td_terminate(td);
1112 }
1113 if (!td->error) {
1114 struct fio_file *f;
1115
1116 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1117 workqueue_flush(&td->io_wq);
1118 i = 0;
1119 } else
1120 i = td->cur_depth;
1121
1122 if (i) {
1123 ret = io_u_queued_complete(td, i);
1124 if (td->o.fill_device && td->error == ENOSPC)
1125 td->error = 0;
1126 }
1127
1128 if (should_fsync(td) && td->o.end_fsync) {
1129 td_set_runstate(td, TD_FSYNCING);
1130
1131 for_each_file(td, f, i) {
1132 if (!fio_file_fsync(td, f))
1133 continue;
1134
1135 log_err("fio: end_fsync failed for file %s\n",
1136 f->file_name);
1137 }
1138 }
1139 } else
1140 cleanup_pending_aio(td);
1141
1142 /*
1143 * stop job if we failed doing any IO
1144 */
1145 if (!ddir_rw_sum(td->this_io_bytes))
1146 td->done = 1;
1147
1148 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1149 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1150}
1151
1152static void free_file_completion_logging(struct thread_data *td)
1153{
1154 struct fio_file *f;
1155 unsigned int i;
1156
1157 for_each_file(td, f, i) {
1158 if (!f->last_write_comp)
1159 break;
1160 sfree(f->last_write_comp);
1161 }
1162}
1163
1164static int init_file_completion_logging(struct thread_data *td,
1165 unsigned int depth)
1166{
1167 struct fio_file *f;
1168 unsigned int i;
1169
1170 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1171 return 0;
1172
1173 for_each_file(td, f, i) {
1174 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1175 if (!f->last_write_comp)
1176 goto cleanup;
1177 }
1178
1179 return 0;
1180
1181cleanup:
1182 free_file_completion_logging(td);
1183 log_err("fio: failed to alloc write comp data\n");
1184 return 1;
1185}
1186
1187static void cleanup_io_u(struct thread_data *td)
1188{
1189 struct io_u *io_u;
1190
1191 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1192
1193 if (td->io_ops->io_u_free)
1194 td->io_ops->io_u_free(td, io_u);
1195
1196 fio_memfree(io_u, sizeof(*io_u));
1197 }
1198
1199 free_io_mem(td);
1200
1201 io_u_rexit(&td->io_u_requeues);
1202 io_u_qexit(&td->io_u_freelist);
1203 io_u_qexit(&td->io_u_all);
1204
1205 free_file_completion_logging(td);
1206}
1207
1208static int init_io_u(struct thread_data *td)
1209{
1210 struct io_u *io_u;
1211 unsigned int max_bs, min_write;
1212 int cl_align, i, max_units;
1213 int data_xfer = 1, err;
1214 char *p;
1215
1216 max_units = td->o.iodepth;
1217 max_bs = td_max_bs(td);
1218 min_write = td->o.min_bs[DDIR_WRITE];
1219 td->orig_buffer_size = (unsigned long long) max_bs
1220 * (unsigned long long) max_units;
1221
1222 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1223 data_xfer = 0;
1224
1225 err = 0;
1226 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1227 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1228 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1229
1230 if (err) {
1231 log_err("fio: failed setting up IO queues\n");
1232 return 1;
1233 }
1234
1235 /*
1236 * if we may later need to do address alignment, then add any
1237 * possible adjustment here so that we don't cause a buffer
1238 * overflow later. this adjustment may be too much if we get
1239 * lucky and the allocator gives us an aligned address.
1240 */
1241 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1242 td_ioengine_flagged(td, FIO_RAWIO))
1243 td->orig_buffer_size += page_mask + td->o.mem_align;
1244
1245 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1246 unsigned long bs;
1247
1248 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1249 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1250 }
1251
1252 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1253 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1254 return 1;
1255 }
1256
1257 if (data_xfer && allocate_io_mem(td))
1258 return 1;
1259
1260 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1261 td_ioengine_flagged(td, FIO_RAWIO))
1262 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1263 else
1264 p = td->orig_buffer;
1265
1266 cl_align = os_cache_line_size();
1267
1268 for (i = 0; i < max_units; i++) {
1269 void *ptr;
1270
1271 if (td->terminate)
1272 return 1;
1273
1274 ptr = fio_memalign(cl_align, sizeof(*io_u));
1275 if (!ptr) {
1276 log_err("fio: unable to allocate aligned memory\n");
1277 break;
1278 }
1279
1280 io_u = ptr;
1281 memset(io_u, 0, sizeof(*io_u));
1282 INIT_FLIST_HEAD(&io_u->verify_list);
1283 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1284
1285 if (data_xfer) {
1286 io_u->buf = p;
1287 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1288
1289 if (td_write(td))
1290 io_u_fill_buffer(td, io_u, min_write, max_bs);
1291 if (td_write(td) && td->o.verify_pattern_bytes) {
1292 /*
1293 * Fill the buffer with the pattern if we are
1294 * going to be doing writes.
1295 */
1296 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1297 }
1298 }
1299
1300 io_u->index = i;
1301 io_u->flags = IO_U_F_FREE;
1302 io_u_qpush(&td->io_u_freelist, io_u);
1303
1304 /*
1305 * io_u never leaves this stack, used for iteration of all
1306 * io_u buffers.
1307 */
1308 io_u_qpush(&td->io_u_all, io_u);
1309
1310 if (td->io_ops->io_u_init) {
1311 int ret = td->io_ops->io_u_init(td, io_u);
1312
1313 if (ret) {
1314 log_err("fio: failed to init engine data: %d\n", ret);
1315 return 1;
1316 }
1317 }
1318
1319 p += max_bs;
1320 }
1321
1322 if (init_file_completion_logging(td, max_units))
1323 return 1;
1324
1325 return 0;
1326}
1327
1328/*
1329 * This function is Linux specific.
1330 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1331 */
1332static int switch_ioscheduler(struct thread_data *td)
1333{
1334#ifdef FIO_HAVE_IOSCHED_SWITCH
1335 char tmp[256], tmp2[128], *p;
1336 FILE *f;
1337 int ret;
1338
1339 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1340 return 0;
1341
1342 assert(td->files && td->files[0]);
1343 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1344
1345 f = fopen(tmp, "r+");
1346 if (!f) {
1347 if (errno == ENOENT) {
1348 log_err("fio: os or kernel doesn't support IO scheduler"
1349 " switching\n");
1350 return 0;
1351 }
1352 td_verror(td, errno, "fopen iosched");
1353 return 1;
1354 }
1355
1356 /*
1357 * Set io scheduler.
1358 */
1359 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1360 if (ferror(f) || ret != 1) {
1361 td_verror(td, errno, "fwrite");
1362 fclose(f);
1363 return 1;
1364 }
1365
1366 rewind(f);
1367
1368 /*
1369 * Read back and check that the selected scheduler is now the default.
1370 */
1371 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1372 if (ferror(f) || ret < 0) {
1373 td_verror(td, errno, "fread");
1374 fclose(f);
1375 return 1;
1376 }
1377 tmp[ret] = '\0';
1378 /*
1379 * either a list of io schedulers or "none\n" is expected. Strip the
1380 * trailing newline.
1381 */
1382 p = tmp;
1383 strsep(&p, "\n");
1384
1385 /*
1386 * Write to "none" entry doesn't fail, so check the result here.
1387 */
1388 if (!strcmp(tmp, "none")) {
1389 log_err("fio: io scheduler is not tunable\n");
1390 fclose(f);
1391 return 0;
1392 }
1393
1394 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1395 if (!strstr(tmp, tmp2)) {
1396 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1397 td_verror(td, EINVAL, "iosched_switch");
1398 fclose(f);
1399 return 1;
1400 }
1401
1402 fclose(f);
1403 return 0;
1404#else
1405 return 0;
1406#endif
1407}
1408
1409static bool keep_running(struct thread_data *td)
1410{
1411 unsigned long long limit;
1412
1413 if (td->done)
1414 return false;
1415 if (td->terminate)
1416 return false;
1417 if (td->o.time_based)
1418 return true;
1419 if (td->o.loops) {
1420 td->o.loops--;
1421 return true;
1422 }
1423 if (exceeds_number_ios(td))
1424 return false;
1425
1426 if (td->o.io_size)
1427 limit = td->o.io_size;
1428 else
1429 limit = td->o.size;
1430
1431 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1432 uint64_t diff;
1433
1434 /*
1435 * If the difference is less than the maximum IO size, we
1436 * are done.
1437 */
1438 diff = limit - ddir_rw_sum(td->io_bytes);
1439 if (diff < td_max_bs(td))
1440 return false;
1441
1442 if (fio_files_done(td) && !td->o.io_size)
1443 return false;
1444
1445 return true;
1446 }
1447
1448 return false;
1449}
1450
1451static int exec_string(struct thread_options *o, const char *string, const char *mode)
1452{
1453 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1454 int ret;
1455 char *str;
1456
1457 str = malloc(newlen);
1458 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1459
1460 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1461 ret = system(str);
1462 if (ret == -1)
1463 log_err("fio: exec of cmd <%s> failed\n", str);
1464
1465 free(str);
1466 return ret;
1467}
1468
1469/*
1470 * Dry run to compute correct state of numberio for verification.
1471 */
1472static uint64_t do_dry_run(struct thread_data *td)
1473{
1474 td_set_runstate(td, TD_RUNNING);
1475
1476 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1477 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1478 struct io_u *io_u;
1479 int ret;
1480
1481 if (td->terminate || td->done)
1482 break;
1483
1484 io_u = get_io_u(td);
1485 if (IS_ERR_OR_NULL(io_u))
1486 break;
1487
1488 io_u_set(td, io_u, IO_U_F_FLIGHT);
1489 io_u->error = 0;
1490 io_u->resid = 0;
1491 if (ddir_rw(acct_ddir(io_u)))
1492 td->io_issues[acct_ddir(io_u)]++;
1493 if (ddir_rw(io_u->ddir)) {
1494 io_u_mark_depth(td, 1);
1495 td->ts.total_io_u[io_u->ddir]++;
1496 }
1497
1498 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1499 td->o.do_verify &&
1500 td->o.verify != VERIFY_NONE &&
1501 !td->o.experimental_verify)
1502 log_io_piece(td, io_u);
1503
1504 ret = io_u_sync_complete(td, io_u);
1505 (void) ret;
1506 }
1507
1508 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1509}
1510
1511struct fork_data {
1512 struct thread_data *td;
1513 struct sk_out *sk_out;
1514};
1515
1516/*
1517 * Entry point for the thread based jobs. The process based jobs end up
1518 * here as well, after a little setup.
1519 */
1520static void *thread_main(void *data)
1521{
1522 struct fork_data *fd = data;
1523 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1524 struct thread_data *td = fd->td;
1525 struct thread_options *o = &td->o;
1526 struct sk_out *sk_out = fd->sk_out;
1527 uint64_t bytes_done[DDIR_RWDIR_CNT];
1528 int deadlock_loop_cnt;
1529 bool clear_state, did_some_io;
1530 int ret;
1531
1532 sk_out_assign(sk_out);
1533 free(fd);
1534
1535 if (!o->use_thread) {
1536 setsid();
1537 td->pid = getpid();
1538 } else
1539 td->pid = gettid();
1540
1541 fio_local_clock_init(o->use_thread);
1542
1543 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1544
1545 if (is_backend)
1546 fio_server_send_start(td);
1547
1548 INIT_FLIST_HEAD(&td->io_log_list);
1549 INIT_FLIST_HEAD(&td->io_hist_list);
1550 INIT_FLIST_HEAD(&td->verify_list);
1551 INIT_FLIST_HEAD(&td->trim_list);
1552 td->io_hist_tree = RB_ROOT;
1553
1554 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1555 if (ret) {
1556 td_verror(td, ret, "mutex_cond_init_pshared");
1557 goto err;
1558 }
1559 ret = cond_init_pshared(&td->verify_cond);
1560 if (ret) {
1561 td_verror(td, ret, "mutex_cond_pshared");
1562 goto err;
1563 }
1564
1565 td_set_runstate(td, TD_INITIALIZED);
1566 dprint(FD_MUTEX, "up startup_sem\n");
1567 fio_sem_up(startup_sem);
1568 dprint(FD_MUTEX, "wait on td->sem\n");
1569 fio_sem_down(td->sem);
1570 dprint(FD_MUTEX, "done waiting on td->sem\n");
1571
1572 /*
1573 * A new gid requires privilege, so we need to do this before setting
1574 * the uid.
1575 */
1576 if (o->gid != -1U && setgid(o->gid)) {
1577 td_verror(td, errno, "setgid");
1578 goto err;
1579 }
1580 if (o->uid != -1U && setuid(o->uid)) {
1581 td_verror(td, errno, "setuid");
1582 goto err;
1583 }
1584
1585 /*
1586 * Do this early, we don't want the compress threads to be limited
1587 * to the same CPUs as the IO workers. So do this before we set
1588 * any potential CPU affinity
1589 */
1590 if (iolog_compress_init(td, sk_out))
1591 goto err;
1592
1593 /*
1594 * If we have a gettimeofday() thread, make sure we exclude that
1595 * thread from this job
1596 */
1597 if (o->gtod_cpu)
1598 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1599
1600 /*
1601 * Set affinity first, in case it has an impact on the memory
1602 * allocations.
1603 */
1604 if (fio_option_is_set(o, cpumask)) {
1605 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1606 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1607 if (!ret) {
1608 log_err("fio: no CPUs set\n");
1609 log_err("fio: Try increasing number of available CPUs\n");
1610 td_verror(td, EINVAL, "cpus_split");
1611 goto err;
1612 }
1613 }
1614 ret = fio_setaffinity(td->pid, o->cpumask);
1615 if (ret == -1) {
1616 td_verror(td, errno, "cpu_set_affinity");
1617 goto err;
1618 }
1619 }
1620
1621#ifdef CONFIG_LIBNUMA
1622 /* numa node setup */
1623 if (fio_option_is_set(o, numa_cpunodes) ||
1624 fio_option_is_set(o, numa_memnodes)) {
1625 struct bitmask *mask;
1626
1627 if (numa_available() < 0) {
1628 td_verror(td, errno, "Does not support NUMA API\n");
1629 goto err;
1630 }
1631
1632 if (fio_option_is_set(o, numa_cpunodes)) {
1633 mask = numa_parse_nodestring(o->numa_cpunodes);
1634 ret = numa_run_on_node_mask(mask);
1635 numa_free_nodemask(mask);
1636 if (ret == -1) {
1637 td_verror(td, errno, \
1638 "numa_run_on_node_mask failed\n");
1639 goto err;
1640 }
1641 }
1642
1643 if (fio_option_is_set(o, numa_memnodes)) {
1644 mask = NULL;
1645 if (o->numa_memnodes)
1646 mask = numa_parse_nodestring(o->numa_memnodes);
1647
1648 switch (o->numa_mem_mode) {
1649 case MPOL_INTERLEAVE:
1650 numa_set_interleave_mask(mask);
1651 break;
1652 case MPOL_BIND:
1653 numa_set_membind(mask);
1654 break;
1655 case MPOL_LOCAL:
1656 numa_set_localalloc();
1657 break;
1658 case MPOL_PREFERRED:
1659 numa_set_preferred(o->numa_mem_prefer_node);
1660 break;
1661 case MPOL_DEFAULT:
1662 default:
1663 break;
1664 }
1665
1666 if (mask)
1667 numa_free_nodemask(mask);
1668
1669 }
1670 }
1671#endif
1672
1673 if (fio_pin_memory(td))
1674 goto err;
1675
1676 /*
1677 * May alter parameters that init_io_u() will use, so we need to
1678 * do this first.
1679 */
1680 if (init_iolog(td))
1681 goto err;
1682
1683 if (init_io_u(td))
1684 goto err;
1685
1686 if (o->verify_async && verify_async_init(td))
1687 goto err;
1688
1689 if (fio_option_is_set(o, ioprio) ||
1690 fio_option_is_set(o, ioprio_class)) {
1691 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1692 if (ret == -1) {
1693 td_verror(td, errno, "ioprio_set");
1694 goto err;
1695 }
1696 }
1697
1698 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1699 goto err;
1700
1701 errno = 0;
1702 if (nice(o->nice) == -1 && errno != 0) {
1703 td_verror(td, errno, "nice");
1704 goto err;
1705 }
1706
1707 if (o->ioscheduler && switch_ioscheduler(td))
1708 goto err;
1709
1710 if (!o->create_serialize && setup_files(td))
1711 goto err;
1712
1713 if (td_io_init(td))
1714 goto err;
1715
1716 if (!init_random_map(td))
1717 goto err;
1718
1719 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1720 goto err;
1721
1722 if (o->pre_read && !pre_read_files(td))
1723 goto err;
1724
1725 fio_verify_init(td);
1726
1727 if (rate_submit_init(td, sk_out))
1728 goto err;
1729
1730 set_epoch_time(td, o->log_unix_epoch);
1731 fio_getrusage(&td->ru_start);
1732 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1733 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1734 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1735
1736 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1737 o->ratemin[DDIR_TRIM]) {
1738 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1739 sizeof(td->bw_sample_time));
1740 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1741 sizeof(td->bw_sample_time));
1742 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1743 sizeof(td->bw_sample_time));
1744 }
1745
1746 memset(bytes_done, 0, sizeof(bytes_done));
1747 clear_state = false;
1748 did_some_io = false;
1749
1750 while (keep_running(td)) {
1751 uint64_t verify_bytes;
1752
1753 fio_gettime(&td->start, NULL);
1754 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1755
1756 if (clear_state) {
1757 clear_io_state(td, 0);
1758
1759 if (o->unlink_each_loop && unlink_all_files(td))
1760 break;
1761 }
1762
1763 prune_io_piece_log(td);
1764
1765 if (td->o.verify_only && td_write(td))
1766 verify_bytes = do_dry_run(td);
1767 else {
1768 do_io(td, bytes_done);
1769
1770 if (!ddir_rw_sum(bytes_done)) {
1771 fio_mark_td_terminate(td);
1772 verify_bytes = 0;
1773 } else {
1774 verify_bytes = bytes_done[DDIR_WRITE] +
1775 bytes_done[DDIR_TRIM];
1776 }
1777 }
1778
1779 /*
1780 * If we took too long to shut down, the main thread could
1781 * already consider us reaped/exited. If that happens, break
1782 * out and clean up.
1783 */
1784 if (td->runstate >= TD_EXITED)
1785 break;
1786
1787 clear_state = true;
1788
1789 /*
1790 * Make sure we've successfully updated the rusage stats
1791 * before waiting on the stat mutex. Otherwise we could have
1792 * the stat thread holding stat mutex and waiting for
1793 * the rusage_sem, which would never get upped because
1794 * this thread is waiting for the stat mutex.
1795 */
1796 deadlock_loop_cnt = 0;
1797 do {
1798 check_update_rusage(td);
1799 if (!fio_sem_down_trylock(stat_sem))
1800 break;
1801 usleep(1000);
1802 if (deadlock_loop_cnt++ > 5000) {
1803 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1804 td->error = EDEADLK;
1805 goto err;
1806 }
1807 } while (1);
1808
1809 if (td_read(td) && td->io_bytes[DDIR_READ])
1810 update_runtime(td, elapsed_us, DDIR_READ);
1811 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1812 update_runtime(td, elapsed_us, DDIR_WRITE);
1813 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1814 update_runtime(td, elapsed_us, DDIR_TRIM);
1815 fio_gettime(&td->start, NULL);
1816 fio_sem_up(stat_sem);
1817
1818 if (td->error || td->terminate)
1819 break;
1820
1821 if (!o->do_verify ||
1822 o->verify == VERIFY_NONE ||
1823 td_ioengine_flagged(td, FIO_UNIDIR))
1824 continue;
1825
1826 if (ddir_rw_sum(bytes_done))
1827 did_some_io = true;
1828
1829 clear_io_state(td, 0);
1830
1831 fio_gettime(&td->start, NULL);
1832
1833 do_verify(td, verify_bytes);
1834
1835 /*
1836 * See comment further up for why this is done here.
1837 */
1838 check_update_rusage(td);
1839
1840 fio_sem_down(stat_sem);
1841 update_runtime(td, elapsed_us, DDIR_READ);
1842 fio_gettime(&td->start, NULL);
1843 fio_sem_up(stat_sem);
1844
1845 if (td->error || td->terminate)
1846 break;
1847 }
1848
1849 /*
1850 * If td ended up with no I/O when it should have had,
1851 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1852 * (Are we not missing other flags that can be ignored ?)
1853 */
1854 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1855 !did_some_io && !td->o.create_only &&
1856 !(td_ioengine_flagged(td, FIO_NOIO) ||
1857 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1858 log_err("%s: No I/O performed by %s, "
1859 "perhaps try --debug=io option for details?\n",
1860 td->o.name, td->io_ops->name);
1861
1862 td_set_runstate(td, TD_FINISHING);
1863
1864 update_rusage_stat(td);
1865 td->ts.total_run_time = mtime_since_now(&td->epoch);
1866 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1867 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1868 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1869
1870 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1871 (td->o.verify != VERIFY_NONE && td_write(td)))
1872 verify_save_state(td->thread_number);
1873
1874 fio_unpin_memory(td);
1875
1876 td_writeout_logs(td, true);
1877
1878 iolog_compress_exit(td);
1879 rate_submit_exit(td);
1880
1881 if (o->exec_postrun)
1882 exec_string(o, o->exec_postrun, (const char *)"postrun");
1883
1884 if (exitall_on_terminate || (o->exitall_error && td->error))
1885 fio_terminate_threads(td->groupid);
1886
1887err:
1888 if (td->error)
1889 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1890 td->verror);
1891
1892 if (o->verify_async)
1893 verify_async_exit(td);
1894
1895 close_and_free_files(td);
1896 cleanup_io_u(td);
1897 close_ioengine(td);
1898 cgroup_shutdown(td, &cgroup_mnt);
1899 verify_free_state(td);
1900
1901 if (td->zone_state_index) {
1902 int i;
1903
1904 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1905 free(td->zone_state_index[i]);
1906 free(td->zone_state_index);
1907 td->zone_state_index = NULL;
1908 }
1909
1910 if (fio_option_is_set(o, cpumask)) {
1911 ret = fio_cpuset_exit(&o->cpumask);
1912 if (ret)
1913 td_verror(td, ret, "fio_cpuset_exit");
1914 }
1915
1916 /*
1917 * do this very late, it will log file closing as well
1918 */
1919 if (o->write_iolog_file)
1920 write_iolog_close(td);
1921
1922 td_set_runstate(td, TD_EXITED);
1923
1924 /*
1925 * Do this last after setting our runstate to exited, so we
1926 * know that the stat thread is signaled.
1927 */
1928 check_update_rusage(td);
1929
1930 sk_out_drop();
1931 return (void *) (uintptr_t) td->error;
1932}
1933
1934/*
1935 * Run over the job map and reap the threads that have exited, if any.
1936 */
1937static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1938 uint64_t *m_rate)
1939{
1940 struct thread_data *td;
1941 unsigned int cputhreads, realthreads, pending;
1942 int i, status, ret;
1943
1944 /*
1945 * reap exited threads (TD_EXITED -> TD_REAPED)
1946 */
1947 realthreads = pending = cputhreads = 0;
1948 for_each_td(td, i) {
1949 int flags = 0;
1950
1951 if (!strcmp(td->o.ioengine, "cpuio"))
1952 cputhreads++;
1953 else
1954 realthreads++;
1955
1956 if (!td->pid) {
1957 pending++;
1958 continue;
1959 }
1960 if (td->runstate == TD_REAPED)
1961 continue;
1962 if (td->o.use_thread) {
1963 if (td->runstate == TD_EXITED) {
1964 td_set_runstate(td, TD_REAPED);
1965 goto reaped;
1966 }
1967 continue;
1968 }
1969
1970 flags = WNOHANG;
1971 if (td->runstate == TD_EXITED)
1972 flags = 0;
1973
1974 /*
1975 * check if someone quit or got killed in an unusual way
1976 */
1977 ret = waitpid(td->pid, &status, flags);
1978 if (ret < 0) {
1979 if (errno == ECHILD) {
1980 log_err("fio: pid=%d disappeared %d\n",
1981 (int) td->pid, td->runstate);
1982 td->sig = ECHILD;
1983 td_set_runstate(td, TD_REAPED);
1984 goto reaped;
1985 }
1986 perror("waitpid");
1987 } else if (ret == td->pid) {
1988 if (WIFSIGNALED(status)) {
1989 int sig = WTERMSIG(status);
1990
1991 if (sig != SIGTERM && sig != SIGUSR2)
1992 log_err("fio: pid=%d, got signal=%d\n",
1993 (int) td->pid, sig);
1994 td->sig = sig;
1995 td_set_runstate(td, TD_REAPED);
1996 goto reaped;
1997 }
1998 if (WIFEXITED(status)) {
1999 if (WEXITSTATUS(status) && !td->error)
2000 td->error = WEXITSTATUS(status);
2001
2002 td_set_runstate(td, TD_REAPED);
2003 goto reaped;
2004 }
2005 }
2006
2007 /*
2008 * If the job is stuck, do a forceful timeout of it and
2009 * move on.
2010 */
2011 if (td->terminate &&
2012 td->runstate < TD_FSYNCING &&
2013 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2014 log_err("fio: job '%s' (state=%d) hasn't exited in "
2015 "%lu seconds, it appears to be stuck. Doing "
2016 "forceful exit of this job.\n",
2017 td->o.name, td->runstate,
2018 (unsigned long) time_since_now(&td->terminate_time));
2019 td_set_runstate(td, TD_REAPED);
2020 goto reaped;
2021 }
2022
2023 /*
2024 * thread is not dead, continue
2025 */
2026 pending++;
2027 continue;
2028reaped:
2029 (*nr_running)--;
2030 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2031 (*t_rate) -= ddir_rw_sum(td->o.rate);
2032 if (!td->pid)
2033 pending--;
2034
2035 if (td->error)
2036 exit_value++;
2037
2038 done_secs += mtime_since_now(&td->epoch) / 1000;
2039 profile_td_exit(td);
2040 }
2041
2042 if (*nr_running == cputhreads && !pending && realthreads)
2043 fio_terminate_threads(TERMINATE_ALL);
2044}
2045
2046static bool __check_trigger_file(void)
2047{
2048 struct stat sb;
2049
2050 if (!trigger_file)
2051 return false;
2052
2053 if (stat(trigger_file, &sb))
2054 return false;
2055
2056 if (unlink(trigger_file) < 0)
2057 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2058 strerror(errno));
2059
2060 return true;
2061}
2062
2063static bool trigger_timedout(void)
2064{
2065 if (trigger_timeout)
2066 if (time_since_genesis() >= trigger_timeout) {
2067 trigger_timeout = 0;
2068 return true;
2069 }
2070
2071 return false;
2072}
2073
2074void exec_trigger(const char *cmd)
2075{
2076 int ret;
2077
2078 if (!cmd || cmd[0] == '\0')
2079 return;
2080
2081 ret = system(cmd);
2082 if (ret == -1)
2083 log_err("fio: failed executing %s trigger\n", cmd);
2084}
2085
2086void check_trigger_file(void)
2087{
2088 if (__check_trigger_file() || trigger_timedout()) {
2089 if (nr_clients)
2090 fio_clients_send_trigger(trigger_remote_cmd);
2091 else {
2092 verify_save_state(IO_LIST_ALL);
2093 fio_terminate_threads(TERMINATE_ALL);
2094 exec_trigger(trigger_cmd);
2095 }
2096 }
2097}
2098
2099static int fio_verify_load_state(struct thread_data *td)
2100{
2101 int ret;
2102
2103 if (!td->o.verify_state)
2104 return 0;
2105
2106 if (is_backend) {
2107 void *data;
2108
2109 ret = fio_server_get_verify_state(td->o.name,
2110 td->thread_number - 1, &data);
2111 if (!ret)
2112 verify_assign_state(td, data);
2113 } else
2114 ret = verify_load_state(td, "local");
2115
2116 return ret;
2117}
2118
2119static void do_usleep(unsigned int usecs)
2120{
2121 check_for_running_stats();
2122 check_trigger_file();
2123 usleep(usecs);
2124}
2125
2126static bool check_mount_writes(struct thread_data *td)
2127{
2128 struct fio_file *f;
2129 unsigned int i;
2130
2131 if (!td_write(td) || td->o.allow_mounted_write)
2132 return false;
2133
2134 /*
2135 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2136 * are mkfs'd and mounted.
2137 */
2138 for_each_file(td, f, i) {
2139#ifdef FIO_HAVE_CHARDEV_SIZE
2140 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2141#else
2142 if (f->filetype != FIO_TYPE_BLOCK)
2143#endif
2144 continue;
2145 if (device_is_mounted(f->file_name))
2146 goto mounted;
2147 }
2148
2149 return false;
2150mounted:
2151 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2152 return true;
2153}
2154
2155static bool waitee_running(struct thread_data *me)
2156{
2157 const char *waitee = me->o.wait_for;
2158 const char *self = me->o.name;
2159 struct thread_data *td;
2160 int i;
2161
2162 if (!waitee)
2163 return false;
2164
2165 for_each_td(td, i) {
2166 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2167 continue;
2168
2169 if (td->runstate < TD_EXITED) {
2170 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2171 self, td->o.name,
2172 runstate_to_name(td->runstate));
2173 return true;
2174 }
2175 }
2176
2177 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2178 return false;
2179}
2180
2181/*
2182 * Main function for kicking off and reaping jobs, as needed.
2183 */
2184static void run_threads(struct sk_out *sk_out)
2185{
2186 struct thread_data *td;
2187 unsigned int i, todo, nr_running, nr_started;
2188 uint64_t m_rate, t_rate;
2189 uint64_t spent;
2190
2191 if (fio_gtod_offload && fio_start_gtod_thread())
2192 return;
2193
2194 fio_idle_prof_init();
2195
2196 set_sig_handlers();
2197
2198 nr_thread = nr_process = 0;
2199 for_each_td(td, i) {
2200 if (check_mount_writes(td))
2201 return;
2202 if (td->o.use_thread)
2203 nr_thread++;
2204 else
2205 nr_process++;
2206 }
2207
2208 if (output_format & FIO_OUTPUT_NORMAL) {
2209 log_info("Starting ");
2210 if (nr_thread)
2211 log_info("%d thread%s", nr_thread,
2212 nr_thread > 1 ? "s" : "");
2213 if (nr_process) {
2214 if (nr_thread)
2215 log_info(" and ");
2216 log_info("%d process%s", nr_process,
2217 nr_process > 1 ? "es" : "");
2218 }
2219 log_info("\n");
2220 log_info_flush();
2221 }
2222
2223 todo = thread_number;
2224 nr_running = 0;
2225 nr_started = 0;
2226 m_rate = t_rate = 0;
2227
2228 for_each_td(td, i) {
2229 print_status_init(td->thread_number - 1);
2230
2231 if (!td->o.create_serialize)
2232 continue;
2233
2234 if (fio_verify_load_state(td))
2235 goto reap;
2236
2237 /*
2238 * do file setup here so it happens sequentially,
2239 * we don't want X number of threads getting their
2240 * client data interspersed on disk
2241 */
2242 if (setup_files(td)) {
2243reap:
2244 exit_value++;
2245 if (td->error)
2246 log_err("fio: pid=%d, err=%d/%s\n",
2247 (int) td->pid, td->error, td->verror);
2248 td_set_runstate(td, TD_REAPED);
2249 todo--;
2250 } else {
2251 struct fio_file *f;
2252 unsigned int j;
2253
2254 /*
2255 * for sharing to work, each job must always open
2256 * its own files. so close them, if we opened them
2257 * for creation
2258 */
2259 for_each_file(td, f, j) {
2260 if (fio_file_open(f))
2261 td_io_close_file(td, f);
2262 }
2263 }
2264 }
2265
2266 /* start idle threads before io threads start to run */
2267 fio_idle_prof_start();
2268
2269 set_genesis_time();
2270
2271 while (todo) {
2272 struct thread_data *map[REAL_MAX_JOBS];
2273 struct timespec this_start;
2274 int this_jobs = 0, left;
2275 struct fork_data *fd;
2276
2277 /*
2278 * create threads (TD_NOT_CREATED -> TD_CREATED)
2279 */
2280 for_each_td(td, i) {
2281 if (td->runstate != TD_NOT_CREATED)
2282 continue;
2283
2284 /*
2285 * never got a chance to start, killed by other
2286 * thread for some reason
2287 */
2288 if (td->terminate) {
2289 todo--;
2290 continue;
2291 }
2292
2293 if (td->o.start_delay) {
2294 spent = utime_since_genesis();
2295
2296 if (td->o.start_delay > spent)
2297 continue;
2298 }
2299
2300 if (td->o.stonewall && (nr_started || nr_running)) {
2301 dprint(FD_PROCESS, "%s: stonewall wait\n",
2302 td->o.name);
2303 break;
2304 }
2305
2306 if (waitee_running(td)) {
2307 dprint(FD_PROCESS, "%s: waiting for %s\n",
2308 td->o.name, td->o.wait_for);
2309 continue;
2310 }
2311
2312 init_disk_util(td);
2313
2314 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2315 td->update_rusage = 0;
2316
2317 /*
2318 * Set state to created. Thread will transition
2319 * to TD_INITIALIZED when it's done setting up.
2320 */
2321 td_set_runstate(td, TD_CREATED);
2322 map[this_jobs++] = td;
2323 nr_started++;
2324
2325 fd = calloc(1, sizeof(*fd));
2326 fd->td = td;
2327 fd->sk_out = sk_out;
2328
2329 if (td->o.use_thread) {
2330 int ret;
2331
2332 dprint(FD_PROCESS, "will pthread_create\n");
2333 ret = pthread_create(&td->thread, NULL,
2334 thread_main, fd);
2335 if (ret) {
2336 log_err("pthread_create: %s\n",
2337 strerror(ret));
2338 free(fd);
2339 nr_started--;
2340 break;
2341 }
2342 fd = NULL;
2343 ret = pthread_detach(td->thread);
2344 if (ret)
2345 log_err("pthread_detach: %s",
2346 strerror(ret));
2347 } else {
2348 pid_t pid;
2349 dprint(FD_PROCESS, "will fork\n");
2350 pid = fork();
2351 if (!pid) {
2352 int ret;
2353
2354 ret = (int)(uintptr_t)thread_main(fd);
2355 _exit(ret);
2356 } else if (i == fio_debug_jobno)
2357 *fio_debug_jobp = pid;
2358 }
2359 dprint(FD_MUTEX, "wait on startup_sem\n");
2360 if (fio_sem_down_timeout(startup_sem, 10000)) {
2361 log_err("fio: job startup hung? exiting.\n");
2362 fio_terminate_threads(TERMINATE_ALL);
2363 fio_abort = 1;
2364 nr_started--;
2365 free(fd);
2366 break;
2367 }
2368 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2369 }
2370
2371 /*
2372 * Wait for the started threads to transition to
2373 * TD_INITIALIZED.
2374 */
2375 fio_gettime(&this_start, NULL);
2376 left = this_jobs;
2377 while (left && !fio_abort) {
2378 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2379 break;
2380
2381 do_usleep(100000);
2382
2383 for (i = 0; i < this_jobs; i++) {
2384 td = map[i];
2385 if (!td)
2386 continue;
2387 if (td->runstate == TD_INITIALIZED) {
2388 map[i] = NULL;
2389 left--;
2390 } else if (td->runstate >= TD_EXITED) {
2391 map[i] = NULL;
2392 left--;
2393 todo--;
2394 nr_running++; /* work-around... */
2395 }
2396 }
2397 }
2398
2399 if (left) {
2400 log_err("fio: %d job%s failed to start\n", left,
2401 left > 1 ? "s" : "");
2402 for (i = 0; i < this_jobs; i++) {
2403 td = map[i];
2404 if (!td)
2405 continue;
2406 kill(td->pid, SIGTERM);
2407 }
2408 break;
2409 }
2410
2411 /*
2412 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2413 */
2414 for_each_td(td, i) {
2415 if (td->runstate != TD_INITIALIZED)
2416 continue;
2417
2418 if (in_ramp_time(td))
2419 td_set_runstate(td, TD_RAMP);
2420 else
2421 td_set_runstate(td, TD_RUNNING);
2422 nr_running++;
2423 nr_started--;
2424 m_rate += ddir_rw_sum(td->o.ratemin);
2425 t_rate += ddir_rw_sum(td->o.rate);
2426 todo--;
2427 fio_sem_up(td->sem);
2428 }
2429
2430 reap_threads(&nr_running, &t_rate, &m_rate);
2431
2432 if (todo)
2433 do_usleep(100000);
2434 }
2435
2436 while (nr_running) {
2437 reap_threads(&nr_running, &t_rate, &m_rate);
2438 do_usleep(10000);
2439 }
2440
2441 fio_idle_prof_stop();
2442
2443 update_io_ticks();
2444}
2445
2446static void free_disk_util(void)
2447{
2448 disk_util_prune_entries();
2449 helper_thread_destroy();
2450}
2451
2452int fio_backend(struct sk_out *sk_out)
2453{
2454 struct thread_data *td;
2455 int i;
2456
2457 if (exec_profile) {
2458 if (load_profile(exec_profile))
2459 return 1;
2460 free(exec_profile);
2461 exec_profile = NULL;
2462 }
2463 if (!thread_number)
2464 return 0;
2465
2466 if (write_bw_log) {
2467 struct log_params p = {
2468 .log_type = IO_LOG_TYPE_BW,
2469 };
2470
2471 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2472 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2473 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2474 }
2475
2476 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2477 if (startup_sem == NULL)
2478 return 1;
2479
2480 set_genesis_time();
2481 stat_init();
2482 helper_thread_create(startup_sem, sk_out);
2483
2484 cgroup_list = smalloc(sizeof(*cgroup_list));
2485 if (cgroup_list)
2486 INIT_FLIST_HEAD(cgroup_list);
2487
2488 run_threads(sk_out);
2489
2490 helper_thread_exit();
2491
2492 if (!fio_abort) {
2493 __show_run_stats();
2494 if (write_bw_log) {
2495 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2496 struct io_log *log = agg_io_log[i];
2497
2498 flush_log(log, false);
2499 free_log(log);
2500 }
2501 }
2502 }
2503
2504 for_each_td(td, i) {
2505 steadystate_free(td);
2506 fio_options_free(td);
2507 if (td->rusage_sem) {
2508 fio_sem_remove(td->rusage_sem);
2509 td->rusage_sem = NULL;
2510 }
2511 fio_sem_remove(td->sem);
2512 td->sem = NULL;
2513 }
2514
2515 free_disk_util();
2516 if (cgroup_list) {
2517 cgroup_kill(cgroup_list);
2518 sfree(cgroup_list);
2519 }
2520 sfree(cgroup_mnt);
2521
2522 fio_sem_remove(startup_sem);
2523 stat_exit();
2524 return exit_value;
2525}