t/io_uring: don't print BW numbers for do_nop
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_segments = 0;
66unsigned int cur_segment = 0;
67unsigned int stat_number = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72#else
73pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74#endif
75
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void sig_int(int sig)
79{
80 if (nr_segments) {
81 if (is_backend)
82 fio_server_got_signal(sig);
83 else {
84 log_info("\nfio: terminating on signal %d\n", sig);
85 log_info_flush();
86 exit_value = 128;
87 }
88
89 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 }
91}
92
93void sig_show_status(int sig)
94{
95 show_running_run_stats();
96}
97
98static void set_sig_handlers(void)
99{
100 struct sigaction act;
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGINT, &act, NULL);
106
107 memset(&act, 0, sizeof(act));
108 act.sa_handler = sig_int;
109 act.sa_flags = SA_RESTART;
110 sigaction(SIGTERM, &act, NULL);
111
112/* Windows uses SIGBREAK as a quit signal from other applications */
113#ifdef WIN32
114 memset(&act, 0, sizeof(act));
115 act.sa_handler = sig_int;
116 act.sa_flags = SA_RESTART;
117 sigaction(SIGBREAK, &act, NULL);
118#endif
119
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_show_status;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGUSR1, &act, NULL);
124
125 if (is_backend) {
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_int;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGPIPE, &act, NULL);
130 }
131}
132
133/*
134 * Check if we are above the minimum rate given.
135 */
136static bool __check_min_rate(struct thread_data *td, struct timespec *now,
137 enum fio_ddir ddir)
138{
139 unsigned long long bytes = 0;
140 unsigned long iops = 0;
141 unsigned long spent;
142 unsigned long long rate;
143 unsigned long long ratemin = 0;
144 unsigned int rate_iops = 0;
145 unsigned int rate_iops_min = 0;
146
147 assert(ddir_rw(ddir));
148
149 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
150 return false;
151
152 /*
153 * allow a 2 second settle period in the beginning
154 */
155 if (mtime_since(&td->start, now) < 2000)
156 return false;
157
158 iops += td->this_io_blocks[ddir];
159 bytes += td->this_io_bytes[ddir];
160 ratemin += td->o.ratemin[ddir];
161 rate_iops += td->o.rate_iops[ddir];
162 rate_iops_min += td->o.rate_iops_min[ddir];
163
164 /*
165 * if rate blocks is set, sample is running
166 */
167 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
168 spent = mtime_since(&td->lastrate[ddir], now);
169 if (spent < td->o.ratecycle)
170 return false;
171
172 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
173 /*
174 * check bandwidth specified rate
175 */
176 if (bytes < td->rate_bytes[ddir]) {
177 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
178 td->o.name, ratemin, bytes);
179 return true;
180 } else {
181 if (spent)
182 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
183 else
184 rate = 0;
185
186 if (rate < ratemin ||
187 bytes < td->rate_bytes[ddir]) {
188 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189 td->o.name, ratemin, rate);
190 return true;
191 }
192 }
193 } else {
194 /*
195 * checks iops specified rate
196 */
197 if (iops < rate_iops) {
198 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
199 td->o.name, rate_iops, iops);
200 return true;
201 } else {
202 if (spent)
203 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204 else
205 rate = 0;
206
207 if (rate < rate_iops_min ||
208 iops < td->rate_blocks[ddir]) {
209 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
210 td->o.name, rate_iops_min, rate);
211 return true;
212 }
213 }
214 }
215 }
216
217 td->rate_bytes[ddir] = bytes;
218 td->rate_blocks[ddir] = iops;
219 memcpy(&td->lastrate[ddir], now, sizeof(*now));
220 return false;
221}
222
223static bool check_min_rate(struct thread_data *td, struct timespec *now)
224{
225 bool ret = false;
226
227 for_each_rw_ddir(ddir) {
228 if (td->bytes_done[ddir])
229 ret |= __check_min_rate(td, now, ddir);
230 }
231
232 return ret;
233}
234
235/*
236 * When job exits, we can cancel the in-flight IO if we are using async
237 * io. Attempt to do so.
238 */
239static void cleanup_pending_aio(struct thread_data *td)
240{
241 int r;
242
243 /*
244 * get immediately available events, if any
245 */
246 r = io_u_queued_complete(td, 0);
247
248 /*
249 * now cancel remaining active events
250 */
251 if (td->io_ops->cancel) {
252 struct io_u *io_u;
253 int i;
254
255 io_u_qiter(&td->io_u_all, io_u, i) {
256 if (io_u->flags & IO_U_F_FLIGHT) {
257 r = td->io_ops->cancel(td, io_u);
258 if (!r)
259 put_io_u(td, io_u);
260 }
261 }
262 }
263
264 if (td->cur_depth)
265 r = io_u_queued_complete(td, td->cur_depth);
266}
267
268/*
269 * Helper to handle the final sync of a file. Works just like the normal
270 * io path, just does everything sync.
271 */
272static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
273{
274 struct io_u *io_u = __get_io_u(td);
275 enum fio_q_status ret;
276
277 if (!io_u)
278 return true;
279
280 io_u->ddir = DDIR_SYNC;
281 io_u->file = f;
282 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
283
284 if (td_io_prep(td, io_u)) {
285 put_io_u(td, io_u);
286 return true;
287 }
288
289requeue:
290 ret = td_io_queue(td, io_u);
291 switch (ret) {
292 case FIO_Q_QUEUED:
293 td_io_commit(td);
294 if (io_u_queued_complete(td, 1) < 0)
295 return true;
296 break;
297 case FIO_Q_COMPLETED:
298 if (io_u->error) {
299 td_verror(td, io_u->error, "td_io_queue");
300 return true;
301 }
302
303 if (io_u_sync_complete(td, io_u) < 0)
304 return true;
305 break;
306 case FIO_Q_BUSY:
307 td_io_commit(td);
308 goto requeue;
309 }
310
311 return false;
312}
313
314static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
315{
316 int ret, ret2;
317
318 if (fio_file_open(f))
319 return fio_io_sync(td, f);
320
321 if (td_io_open_file(td, f))
322 return 1;
323
324 ret = fio_io_sync(td, f);
325 ret2 = 0;
326 if (fio_file_open(f))
327 ret2 = td_io_close_file(td, f);
328 return (ret || ret2);
329}
330
331static inline void __update_ts_cache(struct thread_data *td)
332{
333 fio_gettime(&td->ts_cache, NULL);
334}
335
336static inline void update_ts_cache(struct thread_data *td)
337{
338 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
339 __update_ts_cache(td);
340}
341
342static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
343{
344 if (in_ramp_time(td))
345 return false;
346 if (!td->o.timeout)
347 return false;
348 if (utime_since(&td->epoch, t) >= td->o.timeout)
349 return true;
350
351 return false;
352}
353
354/*
355 * We need to update the runtime consistently in ms, but keep a running
356 * tally of the current elapsed time in microseconds for sub millisecond
357 * updates.
358 */
359static inline void update_runtime(struct thread_data *td,
360 unsigned long long *elapsed_us,
361 const enum fio_ddir ddir)
362{
363 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
364 return;
365
366 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
367 elapsed_us[ddir] += utime_since_now(&td->start);
368 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
369}
370
371static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
372 int *retptr)
373{
374 int ret = *retptr;
375
376 if (ret < 0 || td->error) {
377 int err = td->error;
378 enum error_type_bit eb;
379
380 if (ret < 0)
381 err = -ret;
382
383 eb = td_error_type(ddir, err);
384 if (!(td->o.continue_on_error & (1 << eb)))
385 return true;
386
387 if (td_non_fatal_error(td, eb, err)) {
388 /*
389 * Continue with the I/Os in case of
390 * a non fatal error.
391 */
392 update_error_count(td, err);
393 td_clear_error(td);
394 *retptr = 0;
395 return false;
396 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
397 /*
398 * We expect to hit this error if
399 * fill_device option is set.
400 */
401 td_clear_error(td);
402 fio_mark_td_terminate(td);
403 return true;
404 } else {
405 /*
406 * Stop the I/O in case of a fatal
407 * error.
408 */
409 update_error_count(td, err);
410 return true;
411 }
412 }
413
414 return false;
415}
416
417static void check_update_rusage(struct thread_data *td)
418{
419 if (td->update_rusage) {
420 td->update_rusage = 0;
421 update_rusage_stat(td);
422 fio_sem_up(td->rusage_sem);
423 }
424}
425
426static int wait_for_completions(struct thread_data *td, struct timespec *time)
427{
428 const int full = queue_full(td);
429 int min_evts = 0;
430 int ret;
431
432 if (td->flags & TD_F_REGROW_LOGS)
433 return io_u_quiesce(td);
434
435 /*
436 * if the queue is full, we MUST reap at least 1 event
437 */
438 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
439 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
440 min_evts = 1;
441
442 if (time && should_check_rate(td))
443 fio_gettime(time, NULL);
444
445 do {
446 ret = io_u_queued_complete(td, min_evts);
447 if (ret < 0)
448 break;
449 } while (full && (td->cur_depth > td->o.iodepth_low));
450
451 return ret;
452}
453
454int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
455 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
456 struct timespec *comp_time)
457{
458 switch (*ret) {
459 case FIO_Q_COMPLETED:
460 if (io_u->error) {
461 *ret = -io_u->error;
462 clear_io_u(td, io_u);
463 } else if (io_u->resid) {
464 long long bytes = io_u->xfer_buflen - io_u->resid;
465 struct fio_file *f = io_u->file;
466
467 if (bytes_issued)
468 *bytes_issued += bytes;
469
470 if (!from_verify)
471 trim_io_piece(io_u);
472
473 /*
474 * zero read, fail
475 */
476 if (!bytes) {
477 if (!from_verify)
478 unlog_io_piece(td, io_u);
479 td_verror(td, EIO, "full resid");
480 put_io_u(td, io_u);
481 break;
482 }
483
484 io_u->xfer_buflen = io_u->resid;
485 io_u->xfer_buf += bytes;
486 io_u->offset += bytes;
487
488 if (ddir_rw(io_u->ddir))
489 td->ts.short_io_u[io_u->ddir]++;
490
491 if (io_u->offset == f->real_file_size)
492 goto sync_done;
493
494 requeue_io_u(td, &io_u);
495 } else {
496sync_done:
497 if (comp_time && should_check_rate(td))
498 fio_gettime(comp_time, NULL);
499
500 *ret = io_u_sync_complete(td, io_u);
501 if (*ret < 0)
502 break;
503 }
504
505 if (td->flags & TD_F_REGROW_LOGS)
506 regrow_logs(td);
507
508 /*
509 * when doing I/O (not when verifying),
510 * check for any errors that are to be ignored
511 */
512 if (!from_verify)
513 break;
514
515 return 0;
516 case FIO_Q_QUEUED:
517 /*
518 * if the engine doesn't have a commit hook,
519 * the io_u is really queued. if it does have such
520 * a hook, it has to call io_u_queued() itself.
521 */
522 if (td->io_ops->commit == NULL)
523 io_u_queued(td, io_u);
524 if (bytes_issued)
525 *bytes_issued += io_u->xfer_buflen;
526 break;
527 case FIO_Q_BUSY:
528 if (!from_verify)
529 unlog_io_piece(td, io_u);
530 requeue_io_u(td, &io_u);
531 td_io_commit(td);
532 break;
533 default:
534 assert(*ret < 0);
535 td_verror(td, -(*ret), "td_io_queue");
536 break;
537 }
538
539 if (break_on_this_error(td, ddir, ret))
540 return 1;
541
542 return 0;
543}
544
545static inline bool io_in_polling(struct thread_data *td)
546{
547 return !td->o.iodepth_batch_complete_min &&
548 !td->o.iodepth_batch_complete_max;
549}
550/*
551 * Unlinks files from thread data fio_file structure
552 */
553static int unlink_all_files(struct thread_data *td)
554{
555 struct fio_file *f;
556 unsigned int i;
557 int ret = 0;
558
559 for_each_file(td, f, i) {
560 if (f->filetype != FIO_TYPE_FILE)
561 continue;
562 ret = td_io_unlink_file(td, f);
563 if (ret)
564 break;
565 }
566
567 if (ret)
568 td_verror(td, ret, "unlink_all_files");
569
570 return ret;
571}
572
573/*
574 * Check if io_u will overlap an in-flight IO in the queue
575 */
576bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
577{
578 bool overlap;
579 struct io_u *check_io_u;
580 unsigned long long x1, x2, y1, y2;
581 int i;
582
583 x1 = io_u->offset;
584 x2 = io_u->offset + io_u->buflen;
585 overlap = false;
586 io_u_qiter(q, check_io_u, i) {
587 if (check_io_u->flags & IO_U_F_FLIGHT) {
588 y1 = check_io_u->offset;
589 y2 = check_io_u->offset + check_io_u->buflen;
590
591 if (x1 < y2 && y1 < x2) {
592 overlap = true;
593 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
594 x1, io_u->buflen,
595 y1, check_io_u->buflen);
596 break;
597 }
598 }
599 }
600
601 return overlap;
602}
603
604static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
605{
606 /*
607 * Check for overlap if the user asked us to, and we have
608 * at least one IO in flight besides this one.
609 */
610 if (td->o.serialize_overlap && td->cur_depth > 1 &&
611 in_flight_overlap(&td->io_u_all, io_u))
612 return FIO_Q_BUSY;
613
614 return td_io_queue(td, io_u);
615}
616
617/*
618 * The main verify engine. Runs over the writes we previously submitted,
619 * reads the blocks back in, and checks the crc/md5 of the data.
620 */
621static void do_verify(struct thread_data *td, uint64_t verify_bytes)
622{
623 struct fio_file *f;
624 struct io_u *io_u;
625 int ret, min_events;
626 unsigned int i;
627
628 dprint(FD_VERIFY, "starting loop\n");
629
630 /*
631 * sync io first and invalidate cache, to make sure we really
632 * read from disk.
633 */
634 for_each_file(td, f, i) {
635 if (!fio_file_open(f))
636 continue;
637 if (fio_io_sync(td, f))
638 break;
639 if (file_invalidate_cache(td, f))
640 break;
641 }
642
643 check_update_rusage(td);
644
645 if (td->error)
646 return;
647
648 /*
649 * verify_state needs to be reset before verification
650 * proceeds so that expected random seeds match actual
651 * random seeds in headers. The main loop will reset
652 * all random number generators if randrepeat is set.
653 */
654 if (!td->o.rand_repeatable)
655 td_fill_verify_state_seed(td);
656
657 td_set_runstate(td, TD_VERIFYING);
658
659 io_u = NULL;
660 while (!td->terminate) {
661 enum fio_ddir ddir;
662 int full;
663
664 update_ts_cache(td);
665 check_update_rusage(td);
666
667 if (runtime_exceeded(td, &td->ts_cache)) {
668 __update_ts_cache(td);
669 if (runtime_exceeded(td, &td->ts_cache)) {
670 fio_mark_td_terminate(td);
671 break;
672 }
673 }
674
675 if (flow_threshold_exceeded(td))
676 continue;
677
678 if (!td->o.experimental_verify) {
679 io_u = __get_io_u(td);
680 if (!io_u)
681 break;
682
683 if (get_next_verify(td, io_u)) {
684 put_io_u(td, io_u);
685 break;
686 }
687
688 if (td_io_prep(td, io_u)) {
689 put_io_u(td, io_u);
690 break;
691 }
692 } else {
693 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
694 break;
695
696 while ((io_u = get_io_u(td)) != NULL) {
697 if (IS_ERR_OR_NULL(io_u)) {
698 io_u = NULL;
699 ret = FIO_Q_BUSY;
700 goto reap;
701 }
702
703 /*
704 * We are only interested in the places where
705 * we wrote or trimmed IOs. Turn those into
706 * reads for verification purposes.
707 */
708 if (io_u->ddir == DDIR_READ) {
709 /*
710 * Pretend we issued it for rwmix
711 * accounting
712 */
713 td->io_issues[DDIR_READ]++;
714 put_io_u(td, io_u);
715 continue;
716 } else if (io_u->ddir == DDIR_TRIM) {
717 io_u->ddir = DDIR_READ;
718 io_u_set(td, io_u, IO_U_F_TRIMMED);
719 break;
720 } else if (io_u->ddir == DDIR_WRITE) {
721 io_u->ddir = DDIR_READ;
722 populate_verify_io_u(td, io_u);
723 break;
724 } else {
725 put_io_u(td, io_u);
726 continue;
727 }
728 }
729
730 if (!io_u)
731 break;
732 }
733
734 if (verify_state_should_stop(td, io_u)) {
735 put_io_u(td, io_u);
736 break;
737 }
738
739 if (td->o.verify_async)
740 io_u->end_io = verify_io_u_async;
741 else
742 io_u->end_io = verify_io_u;
743
744 ddir = io_u->ddir;
745 if (!td->o.disable_slat)
746 fio_gettime(&io_u->start_time, NULL);
747
748 ret = io_u_submit(td, io_u);
749
750 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
751 break;
752
753 /*
754 * if we can queue more, do so. but check if there are
755 * completed io_u's first. Note that we can get BUSY even
756 * without IO queued, if the system is resource starved.
757 */
758reap:
759 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
760 if (full || io_in_polling(td))
761 ret = wait_for_completions(td, NULL);
762
763 if (ret < 0)
764 break;
765 }
766
767 check_update_rusage(td);
768
769 if (!td->error) {
770 min_events = td->cur_depth;
771
772 if (min_events)
773 ret = io_u_queued_complete(td, min_events);
774 } else
775 cleanup_pending_aio(td);
776
777 td_set_runstate(td, TD_RUNNING);
778
779 dprint(FD_VERIFY, "exiting loop\n");
780}
781
782static bool exceeds_number_ios(struct thread_data *td)
783{
784 unsigned long long number_ios;
785
786 if (!td->o.number_ios)
787 return false;
788
789 number_ios = ddir_rw_sum(td->io_blocks);
790 number_ios += td->io_u_queued + td->io_u_in_flight;
791
792 return number_ios >= (td->o.number_ios * td->loops);
793}
794
795static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
796{
797 unsigned long long bytes, limit;
798
799 if (td_rw(td))
800 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
801 else if (td_write(td))
802 bytes = this_bytes[DDIR_WRITE];
803 else if (td_read(td))
804 bytes = this_bytes[DDIR_READ];
805 else
806 bytes = this_bytes[DDIR_TRIM];
807
808 if (td->o.io_size)
809 limit = td->o.io_size;
810 else
811 limit = td->o.size;
812
813 limit *= td->loops;
814 return bytes >= limit || exceeds_number_ios(td);
815}
816
817static bool io_issue_bytes_exceeded(struct thread_data *td)
818{
819 return io_bytes_exceeded(td, td->io_issue_bytes);
820}
821
822static bool io_complete_bytes_exceeded(struct thread_data *td)
823{
824 return io_bytes_exceeded(td, td->this_io_bytes);
825}
826
827/*
828 * used to calculate the next io time for rate control
829 *
830 */
831static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
832{
833 uint64_t bps = td->rate_bps[ddir];
834
835 assert(!(td->flags & TD_F_CHILD));
836
837 if (td->o.rate_process == RATE_PROCESS_POISSON) {
838 uint64_t val, iops;
839
840 iops = bps / td->o.bs[ddir];
841 val = (int64_t) (1000000 / iops) *
842 -logf(__rand_0_1(&td->poisson_state[ddir]));
843 if (val) {
844 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
845 (unsigned long long) 1000000 / val,
846 ddir);
847 }
848 td->last_usec[ddir] += val;
849 return td->last_usec[ddir];
850 } else if (bps) {
851 uint64_t bytes = td->rate_io_issue_bytes[ddir];
852 uint64_t secs = bytes / bps;
853 uint64_t remainder = bytes % bps;
854
855 return remainder * 1000000 / bps + secs * 1000000;
856 }
857
858 return 0;
859}
860
861static void init_thinktime(struct thread_data *td)
862{
863 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
864 td->thinktime_blocks_counter = td->io_blocks;
865 else
866 td->thinktime_blocks_counter = td->io_issues;
867 td->last_thinktime = td->epoch;
868 td->last_thinktime_blocks = 0;
869}
870
871static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
872 struct timespec *time)
873{
874 unsigned long long b;
875 uint64_t total;
876 int left;
877 struct timespec now;
878 bool stall = false;
879
880 if (td->o.thinktime_iotime) {
881 fio_gettime(&now, NULL);
882 if (utime_since(&td->last_thinktime, &now)
883 >= td->o.thinktime_iotime + td->o.thinktime) {
884 stall = true;
885 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
886 /*
887 * When thinktime_iotime is set and thinktime_blocks is
888 * not set, skip the thinktime_blocks check, since
889 * thinktime_blocks default value 1 does not work
890 * together with thinktime_iotime.
891 */
892 return;
893 }
894
895 }
896
897 b = ddir_rw_sum(td->thinktime_blocks_counter);
898 if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
899 stall = true;
900
901 if (!stall)
902 return;
903
904 io_u_quiesce(td);
905
906 total = 0;
907 if (td->o.thinktime_spin)
908 total = usec_spin(td->o.thinktime_spin);
909
910 left = td->o.thinktime - total;
911 if (left)
912 total += usec_sleep(td, left);
913
914 /*
915 * If we're ignoring thinktime for the rate, add the number of bytes
916 * we would have done while sleeping, minus one block to ensure we
917 * start issuing immediately after the sleep.
918 */
919 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
920 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
921 uint64_t bs = td->o.min_bs[ddir];
922 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
923 uint64_t over;
924
925 if (usperop <= total)
926 over = bs;
927 else
928 over = (usperop - total) / usperop * -bs;
929
930 td->rate_io_issue_bytes[ddir] += (missed - over);
931 /* adjust for rate_process=poisson */
932 td->last_usec[ddir] += total;
933 }
934
935 if (time && should_check_rate(td))
936 fio_gettime(time, NULL);
937
938 td->last_thinktime_blocks = b;
939 if (td->o.thinktime_iotime)
940 td->last_thinktime = now;
941}
942
943/*
944 * Main IO worker function. It retrieves io_u's to process and queues
945 * and reaps them, checking for rate and errors along the way.
946 *
947 * Returns number of bytes written and trimmed.
948 */
949static void do_io(struct thread_data *td, uint64_t *bytes_done)
950{
951 unsigned int i;
952 int ret = 0;
953 uint64_t total_bytes, bytes_issued = 0;
954
955 for (i = 0; i < DDIR_RWDIR_CNT; i++)
956 bytes_done[i] = td->bytes_done[i];
957
958 if (in_ramp_time(td))
959 td_set_runstate(td, TD_RAMP);
960 else
961 td_set_runstate(td, TD_RUNNING);
962
963 lat_target_init(td);
964
965 total_bytes = td->o.size;
966 /*
967 * Allow random overwrite workloads to write up to io_size
968 * before starting verification phase as 'size' doesn't apply.
969 */
970 if (td_write(td) && td_random(td) && td->o.norandommap)
971 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
972 /*
973 * If verify_backlog is enabled, we'll run the verify in this
974 * handler as well. For that case, we may need up to twice the
975 * amount of bytes.
976 */
977 if (td->o.verify != VERIFY_NONE &&
978 (td_write(td) && td->o.verify_backlog))
979 total_bytes += td->o.size;
980
981 /* In trimwrite mode, each byte is trimmed and then written, so
982 * allow total_bytes to be twice as big */
983 if (td_trimwrite(td))
984 total_bytes += td->total_io_size;
985
986 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
987 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
988 td->o.time_based) {
989 struct timespec comp_time;
990 struct io_u *io_u;
991 int full;
992 enum fio_ddir ddir;
993
994 check_update_rusage(td);
995
996 if (td->terminate || td->done)
997 break;
998
999 update_ts_cache(td);
1000
1001 if (runtime_exceeded(td, &td->ts_cache)) {
1002 __update_ts_cache(td);
1003 if (runtime_exceeded(td, &td->ts_cache)) {
1004 fio_mark_td_terminate(td);
1005 break;
1006 }
1007 }
1008
1009 if (flow_threshold_exceeded(td))
1010 continue;
1011
1012 /*
1013 * Break if we exceeded the bytes. The exception is time
1014 * based runs, but we still need to break out of the loop
1015 * for those to run verification, if enabled.
1016 * Jobs read from iolog do not use this stop condition.
1017 */
1018 if (bytes_issued >= total_bytes &&
1019 !td->o.read_iolog_file &&
1020 (!td->o.time_based ||
1021 (td->o.time_based && td->o.verify != VERIFY_NONE)))
1022 break;
1023
1024 io_u = get_io_u(td);
1025 if (IS_ERR_OR_NULL(io_u)) {
1026 int err = PTR_ERR(io_u);
1027
1028 io_u = NULL;
1029 ddir = DDIR_INVAL;
1030 if (err == -EBUSY) {
1031 ret = FIO_Q_BUSY;
1032 goto reap;
1033 }
1034 if (td->o.latency_target)
1035 goto reap;
1036 break;
1037 }
1038
1039 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1040 populate_verify_io_u(td, io_u);
1041
1042 ddir = io_u->ddir;
1043
1044 /*
1045 * Add verification end_io handler if:
1046 * - Asked to verify (!td_rw(td))
1047 * - Or the io_u is from our verify list (mixed write/ver)
1048 */
1049 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1050 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1051
1052 if (verify_state_should_stop(td, io_u)) {
1053 put_io_u(td, io_u);
1054 break;
1055 }
1056
1057 if (td->o.verify_async)
1058 io_u->end_io = verify_io_u_async;
1059 else
1060 io_u->end_io = verify_io_u;
1061 td_set_runstate(td, TD_VERIFYING);
1062 } else if (in_ramp_time(td))
1063 td_set_runstate(td, TD_RAMP);
1064 else
1065 td_set_runstate(td, TD_RUNNING);
1066
1067 /*
1068 * Always log IO before it's issued, so we know the specific
1069 * order of it. The logged unit will track when the IO has
1070 * completed.
1071 */
1072 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1073 td->o.do_verify &&
1074 td->o.verify != VERIFY_NONE &&
1075 !td->o.experimental_verify)
1076 log_io_piece(td, io_u);
1077
1078 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1079 const unsigned long long blen = io_u->xfer_buflen;
1080 const enum fio_ddir __ddir = acct_ddir(io_u);
1081
1082 if (td->error)
1083 break;
1084
1085 workqueue_enqueue(&td->io_wq, &io_u->work);
1086 ret = FIO_Q_QUEUED;
1087
1088 if (ddir_rw(__ddir)) {
1089 td->io_issues[__ddir]++;
1090 td->io_issue_bytes[__ddir] += blen;
1091 td->rate_io_issue_bytes[__ddir] += blen;
1092 }
1093
1094 if (should_check_rate(td))
1095 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1096
1097 } else {
1098 ret = io_u_submit(td, io_u);
1099
1100 if (should_check_rate(td))
1101 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1102
1103 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1104 break;
1105
1106 /*
1107 * See if we need to complete some commands. Note that
1108 * we can get BUSY even without IO queued, if the
1109 * system is resource starved.
1110 */
1111reap:
1112 full = queue_full(td) ||
1113 (ret == FIO_Q_BUSY && td->cur_depth);
1114 if (full || io_in_polling(td))
1115 ret = wait_for_completions(td, &comp_time);
1116 }
1117 if (ret < 0)
1118 break;
1119
1120 if (ddir_rw(ddir) && td->o.thinktime)
1121 handle_thinktime(td, ddir, &comp_time);
1122
1123 if (!ddir_rw_sum(td->bytes_done) &&
1124 !td_ioengine_flagged(td, FIO_NOIO))
1125 continue;
1126
1127 if (!in_ramp_time(td) && should_check_rate(td)) {
1128 if (check_min_rate(td, &comp_time)) {
1129 if (exitall_on_terminate || td->o.exitall_error)
1130 fio_terminate_threads(td->groupid, td->o.exit_what);
1131 td_verror(td, EIO, "check_min_rate");
1132 break;
1133 }
1134 }
1135 if (!in_ramp_time(td) && td->o.latency_target)
1136 lat_target_check(td);
1137 }
1138
1139 check_update_rusage(td);
1140
1141 if (td->trim_entries)
1142 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1143
1144 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1145 td->error = 0;
1146 fio_mark_td_terminate(td);
1147 }
1148 if (!td->error) {
1149 struct fio_file *f;
1150
1151 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1152 workqueue_flush(&td->io_wq);
1153 i = 0;
1154 } else
1155 i = td->cur_depth;
1156
1157 if (i) {
1158 ret = io_u_queued_complete(td, i);
1159 if (td->o.fill_device &&
1160 (td->error == ENOSPC || td->error == EDQUOT))
1161 td->error = 0;
1162 }
1163
1164 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1165 td_set_runstate(td, TD_FSYNCING);
1166
1167 for_each_file(td, f, i) {
1168 if (!fio_file_fsync(td, f))
1169 continue;
1170
1171 log_err("fio: end_fsync failed for file %s\n",
1172 f->file_name);
1173 }
1174 }
1175 } else
1176 cleanup_pending_aio(td);
1177
1178 /*
1179 * stop job if we failed doing any IO
1180 */
1181 if (!ddir_rw_sum(td->this_io_bytes))
1182 td->done = 1;
1183
1184 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1185 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1186}
1187
1188static void free_file_completion_logging(struct thread_data *td)
1189{
1190 struct fio_file *f;
1191 unsigned int i;
1192
1193 for_each_file(td, f, i) {
1194 if (!f->last_write_comp)
1195 break;
1196 sfree(f->last_write_comp);
1197 }
1198}
1199
1200static int init_file_completion_logging(struct thread_data *td,
1201 unsigned int depth)
1202{
1203 struct fio_file *f;
1204 unsigned int i;
1205
1206 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1207 return 0;
1208
1209 for_each_file(td, f, i) {
1210 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1211 if (!f->last_write_comp)
1212 goto cleanup;
1213 }
1214
1215 return 0;
1216
1217cleanup:
1218 free_file_completion_logging(td);
1219 log_err("fio: failed to alloc write comp data\n");
1220 return 1;
1221}
1222
1223static void cleanup_io_u(struct thread_data *td)
1224{
1225 struct io_u *io_u;
1226
1227 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1228
1229 if (td->io_ops->io_u_free)
1230 td->io_ops->io_u_free(td, io_u);
1231
1232 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1233 }
1234
1235 free_io_mem(td);
1236
1237 io_u_rexit(&td->io_u_requeues);
1238 io_u_qexit(&td->io_u_freelist, false);
1239 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1240
1241 free_file_completion_logging(td);
1242}
1243
1244static int init_io_u(struct thread_data *td)
1245{
1246 struct io_u *io_u;
1247 int cl_align, i, max_units;
1248 int err;
1249
1250 max_units = td->o.iodepth;
1251
1252 err = 0;
1253 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1254 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1255 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1256
1257 if (err) {
1258 log_err("fio: failed setting up IO queues\n");
1259 return 1;
1260 }
1261
1262 cl_align = os_cache_line_size();
1263
1264 for (i = 0; i < max_units; i++) {
1265 void *ptr;
1266
1267 if (td->terminate)
1268 return 1;
1269
1270 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1271 if (!ptr) {
1272 log_err("fio: unable to allocate aligned memory\n");
1273 return 1;
1274 }
1275
1276 io_u = ptr;
1277 memset(io_u, 0, sizeof(*io_u));
1278 INIT_FLIST_HEAD(&io_u->verify_list);
1279 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1280
1281 io_u->index = i;
1282 io_u->flags = IO_U_F_FREE;
1283 io_u_qpush(&td->io_u_freelist, io_u);
1284
1285 /*
1286 * io_u never leaves this stack, used for iteration of all
1287 * io_u buffers.
1288 */
1289 io_u_qpush(&td->io_u_all, io_u);
1290
1291 if (td->io_ops->io_u_init) {
1292 int ret = td->io_ops->io_u_init(td, io_u);
1293
1294 if (ret) {
1295 log_err("fio: failed to init engine data: %d\n", ret);
1296 return 1;
1297 }
1298 }
1299 }
1300
1301 init_io_u_buffers(td);
1302
1303 if (init_file_completion_logging(td, max_units))
1304 return 1;
1305
1306 return 0;
1307}
1308
1309int init_io_u_buffers(struct thread_data *td)
1310{
1311 struct io_u *io_u;
1312 unsigned long long max_bs, min_write;
1313 int i, max_units;
1314 int data_xfer = 1;
1315 char *p;
1316
1317 max_units = td->o.iodepth;
1318 max_bs = td_max_bs(td);
1319 min_write = td->o.min_bs[DDIR_WRITE];
1320 td->orig_buffer_size = (unsigned long long) max_bs
1321 * (unsigned long long) max_units;
1322
1323 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1324 data_xfer = 0;
1325
1326 /*
1327 * if we may later need to do address alignment, then add any
1328 * possible adjustment here so that we don't cause a buffer
1329 * overflow later. this adjustment may be too much if we get
1330 * lucky and the allocator gives us an aligned address.
1331 */
1332 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1333 td_ioengine_flagged(td, FIO_RAWIO))
1334 td->orig_buffer_size += page_mask + td->o.mem_align;
1335
1336 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1337 unsigned long long bs;
1338
1339 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1340 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1341 }
1342
1343 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1344 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1345 return 1;
1346 }
1347
1348 if (data_xfer && allocate_io_mem(td))
1349 return 1;
1350
1351 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1352 td_ioengine_flagged(td, FIO_RAWIO))
1353 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1354 else
1355 p = td->orig_buffer;
1356
1357 for (i = 0; i < max_units; i++) {
1358 io_u = td->io_u_all.io_us[i];
1359 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1360
1361 if (data_xfer) {
1362 io_u->buf = p;
1363 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1364
1365 if (td_write(td))
1366 io_u_fill_buffer(td, io_u, min_write, max_bs);
1367 if (td_write(td) && td->o.verify_pattern_bytes) {
1368 /*
1369 * Fill the buffer with the pattern if we are
1370 * going to be doing writes.
1371 */
1372 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1373 }
1374 }
1375 p += max_bs;
1376 }
1377
1378 return 0;
1379}
1380
1381#ifdef FIO_HAVE_IOSCHED_SWITCH
1382/*
1383 * These functions are Linux specific.
1384 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1385 */
1386static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1387{
1388 char tmp[256], tmp2[128], *p;
1389 FILE *f;
1390 int ret;
1391
1392 assert(file->du && file->du->sysfs_root);
1393 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1394
1395 f = fopen(tmp, "r+");
1396 if (!f) {
1397 if (errno == ENOENT) {
1398 log_err("fio: os or kernel doesn't support IO scheduler"
1399 " switching\n");
1400 return 0;
1401 }
1402 td_verror(td, errno, "fopen iosched");
1403 return 1;
1404 }
1405
1406 /*
1407 * Set io scheduler.
1408 */
1409 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1410 if (ferror(f) || ret != 1) {
1411 td_verror(td, errno, "fwrite");
1412 fclose(f);
1413 return 1;
1414 }
1415
1416 rewind(f);
1417
1418 /*
1419 * Read back and check that the selected scheduler is now the default.
1420 */
1421 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1422 if (ferror(f) || ret < 0) {
1423 td_verror(td, errno, "fread");
1424 fclose(f);
1425 return 1;
1426 }
1427 tmp[ret] = '\0';
1428 /*
1429 * either a list of io schedulers or "none\n" is expected. Strip the
1430 * trailing newline.
1431 */
1432 p = tmp;
1433 strsep(&p, "\n");
1434
1435 /*
1436 * Write to "none" entry doesn't fail, so check the result here.
1437 */
1438 if (!strcmp(tmp, "none")) {
1439 log_err("fio: io scheduler is not tunable\n");
1440 fclose(f);
1441 return 0;
1442 }
1443
1444 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1445 if (!strstr(tmp, tmp2)) {
1446 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1447 td_verror(td, EINVAL, "iosched_switch");
1448 fclose(f);
1449 return 1;
1450 }
1451
1452 fclose(f);
1453 return 0;
1454}
1455
1456static int switch_ioscheduler(struct thread_data *td)
1457{
1458 struct fio_file *f;
1459 unsigned int i;
1460 int ret = 0;
1461
1462 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1463 return 0;
1464
1465 assert(td->files && td->files[0]);
1466
1467 for_each_file(td, f, i) {
1468
1469 /* Only consider regular files and block device files */
1470 switch (f->filetype) {
1471 case FIO_TYPE_FILE:
1472 case FIO_TYPE_BLOCK:
1473 /*
1474 * Make sure that the device hosting the file could
1475 * be determined.
1476 */
1477 if (!f->du)
1478 continue;
1479 break;
1480 case FIO_TYPE_CHAR:
1481 case FIO_TYPE_PIPE:
1482 default:
1483 continue;
1484 }
1485
1486 ret = set_ioscheduler(td, f);
1487 if (ret)
1488 return ret;
1489 }
1490
1491 return 0;
1492}
1493
1494#else
1495
1496static int switch_ioscheduler(struct thread_data *td)
1497{
1498 return 0;
1499}
1500
1501#endif /* FIO_HAVE_IOSCHED_SWITCH */
1502
1503static bool keep_running(struct thread_data *td)
1504{
1505 unsigned long long limit;
1506
1507 if (td->done)
1508 return false;
1509 if (td->terminate)
1510 return false;
1511 if (td->o.time_based)
1512 return true;
1513 if (td->o.loops) {
1514 td->o.loops--;
1515 return true;
1516 }
1517 if (exceeds_number_ios(td))
1518 return false;
1519
1520 if (td->o.io_size)
1521 limit = td->o.io_size;
1522 else
1523 limit = td->o.size;
1524
1525 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1526 uint64_t diff;
1527
1528 /*
1529 * If the difference is less than the maximum IO size, we
1530 * are done.
1531 */
1532 diff = limit - ddir_rw_sum(td->io_bytes);
1533 if (diff < td_max_bs(td))
1534 return false;
1535
1536 if (fio_files_done(td) && !td->o.io_size)
1537 return false;
1538
1539 return true;
1540 }
1541
1542 return false;
1543}
1544
1545static int exec_string(struct thread_options *o, const char *string,
1546 const char *mode)
1547{
1548 int ret;
1549 char *str;
1550
1551 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1552 return -1;
1553
1554 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1555 o->name, mode);
1556 ret = system(str);
1557 if (ret == -1)
1558 log_err("fio: exec of cmd <%s> failed\n", str);
1559
1560 free(str);
1561 return ret;
1562}
1563
1564/*
1565 * Dry run to compute correct state of numberio for verification.
1566 */
1567static uint64_t do_dry_run(struct thread_data *td)
1568{
1569 td_set_runstate(td, TD_RUNNING);
1570
1571 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1572 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1573 struct io_u *io_u;
1574 int ret;
1575
1576 if (td->terminate || td->done)
1577 break;
1578
1579 io_u = get_io_u(td);
1580 if (IS_ERR_OR_NULL(io_u))
1581 break;
1582
1583 io_u_set(td, io_u, IO_U_F_FLIGHT);
1584 io_u->error = 0;
1585 io_u->resid = 0;
1586 if (ddir_rw(acct_ddir(io_u)))
1587 td->io_issues[acct_ddir(io_u)]++;
1588 if (ddir_rw(io_u->ddir)) {
1589 io_u_mark_depth(td, 1);
1590 td->ts.total_io_u[io_u->ddir]++;
1591 }
1592
1593 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1594 td->o.do_verify &&
1595 td->o.verify != VERIFY_NONE &&
1596 !td->o.experimental_verify)
1597 log_io_piece(td, io_u);
1598
1599 ret = io_u_sync_complete(td, io_u);
1600 (void) ret;
1601 }
1602
1603 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1604}
1605
1606struct fork_data {
1607 struct thread_data *td;
1608 struct sk_out *sk_out;
1609};
1610
1611/*
1612 * Entry point for the thread based jobs. The process based jobs end up
1613 * here as well, after a little setup.
1614 */
1615static void *thread_main(void *data)
1616{
1617 struct fork_data *fd = data;
1618 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1619 struct thread_data *td = fd->td;
1620 struct thread_options *o = &td->o;
1621 struct sk_out *sk_out = fd->sk_out;
1622 uint64_t bytes_done[DDIR_RWDIR_CNT];
1623 int deadlock_loop_cnt;
1624 bool clear_state;
1625 int res, ret;
1626
1627 sk_out_assign(sk_out);
1628 free(fd);
1629
1630 if (!o->use_thread) {
1631 setsid();
1632 td->pid = getpid();
1633 } else
1634 td->pid = gettid();
1635
1636 fio_local_clock_init();
1637
1638 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1639
1640 if (is_backend)
1641 fio_server_send_start(td);
1642
1643 INIT_FLIST_HEAD(&td->io_log_list);
1644 INIT_FLIST_HEAD(&td->io_hist_list);
1645 INIT_FLIST_HEAD(&td->verify_list);
1646 INIT_FLIST_HEAD(&td->trim_list);
1647 td->io_hist_tree = RB_ROOT;
1648
1649 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1650 if (ret) {
1651 td_verror(td, ret, "mutex_cond_init_pshared");
1652 goto err;
1653 }
1654 ret = cond_init_pshared(&td->verify_cond);
1655 if (ret) {
1656 td_verror(td, ret, "mutex_cond_pshared");
1657 goto err;
1658 }
1659
1660 td_set_runstate(td, TD_INITIALIZED);
1661 dprint(FD_MUTEX, "up startup_sem\n");
1662 fio_sem_up(startup_sem);
1663 dprint(FD_MUTEX, "wait on td->sem\n");
1664 fio_sem_down(td->sem);
1665 dprint(FD_MUTEX, "done waiting on td->sem\n");
1666
1667 /*
1668 * A new gid requires privilege, so we need to do this before setting
1669 * the uid.
1670 */
1671 if (o->gid != -1U && setgid(o->gid)) {
1672 td_verror(td, errno, "setgid");
1673 goto err;
1674 }
1675 if (o->uid != -1U && setuid(o->uid)) {
1676 td_verror(td, errno, "setuid");
1677 goto err;
1678 }
1679
1680 td_zone_gen_index(td);
1681
1682 /*
1683 * Do this early, we don't want the compress threads to be limited
1684 * to the same CPUs as the IO workers. So do this before we set
1685 * any potential CPU affinity
1686 */
1687 if (iolog_compress_init(td, sk_out))
1688 goto err;
1689
1690 /*
1691 * If we have a gettimeofday() thread, make sure we exclude that
1692 * thread from this job
1693 */
1694 if (o->gtod_cpu)
1695 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1696
1697 /*
1698 * Set affinity first, in case it has an impact on the memory
1699 * allocations.
1700 */
1701 if (fio_option_is_set(o, cpumask)) {
1702 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1703 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1704 if (!ret) {
1705 log_err("fio: no CPUs set\n");
1706 log_err("fio: Try increasing number of available CPUs\n");
1707 td_verror(td, EINVAL, "cpus_split");
1708 goto err;
1709 }
1710 }
1711 ret = fio_setaffinity(td->pid, o->cpumask);
1712 if (ret == -1) {
1713 td_verror(td, errno, "cpu_set_affinity");
1714 goto err;
1715 }
1716 }
1717
1718#ifdef CONFIG_LIBNUMA
1719 /* numa node setup */
1720 if (fio_option_is_set(o, numa_cpunodes) ||
1721 fio_option_is_set(o, numa_memnodes)) {
1722 struct bitmask *mask;
1723
1724 if (numa_available() < 0) {
1725 td_verror(td, errno, "Does not support NUMA API\n");
1726 goto err;
1727 }
1728
1729 if (fio_option_is_set(o, numa_cpunodes)) {
1730 mask = numa_parse_nodestring(o->numa_cpunodes);
1731 ret = numa_run_on_node_mask(mask);
1732 numa_free_nodemask(mask);
1733 if (ret == -1) {
1734 td_verror(td, errno, \
1735 "numa_run_on_node_mask failed\n");
1736 goto err;
1737 }
1738 }
1739
1740 if (fio_option_is_set(o, numa_memnodes)) {
1741 mask = NULL;
1742 if (o->numa_memnodes)
1743 mask = numa_parse_nodestring(o->numa_memnodes);
1744
1745 switch (o->numa_mem_mode) {
1746 case MPOL_INTERLEAVE:
1747 numa_set_interleave_mask(mask);
1748 break;
1749 case MPOL_BIND:
1750 numa_set_membind(mask);
1751 break;
1752 case MPOL_LOCAL:
1753 numa_set_localalloc();
1754 break;
1755 case MPOL_PREFERRED:
1756 numa_set_preferred(o->numa_mem_prefer_node);
1757 break;
1758 case MPOL_DEFAULT:
1759 default:
1760 break;
1761 }
1762
1763 if (mask)
1764 numa_free_nodemask(mask);
1765
1766 }
1767 }
1768#endif
1769
1770 if (fio_pin_memory(td))
1771 goto err;
1772
1773 /*
1774 * May alter parameters that init_io_u() will use, so we need to
1775 * do this first.
1776 */
1777 if (!init_iolog(td))
1778 goto err;
1779
1780 if (td_io_init(td))
1781 goto err;
1782
1783 if (init_io_u(td))
1784 goto err;
1785
1786 if (td->io_ops->post_init && td->io_ops->post_init(td))
1787 goto err;
1788
1789 if (o->verify_async && verify_async_init(td))
1790 goto err;
1791
1792 if (fio_option_is_set(o, ioprio) ||
1793 fio_option_is_set(o, ioprio_class)) {
1794 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1795 if (ret == -1) {
1796 td_verror(td, errno, "ioprio_set");
1797 goto err;
1798 }
1799 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio);
1800 }
1801
1802 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1803 goto err;
1804
1805 errno = 0;
1806 if (nice(o->nice) == -1 && errno != 0) {
1807 td_verror(td, errno, "nice");
1808 goto err;
1809 }
1810
1811 if (o->ioscheduler && switch_ioscheduler(td))
1812 goto err;
1813
1814 if (!o->create_serialize && setup_files(td))
1815 goto err;
1816
1817 if (!init_random_map(td))
1818 goto err;
1819
1820 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1821 goto err;
1822
1823 if (o->pre_read && !pre_read_files(td))
1824 goto err;
1825
1826 fio_verify_init(td);
1827
1828 if (rate_submit_init(td, sk_out))
1829 goto err;
1830
1831 set_epoch_time(td, o->log_unix_epoch);
1832 fio_getrusage(&td->ru_start);
1833 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1834 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1835 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1836
1837 init_thinktime(td);
1838
1839 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1840 o->ratemin[DDIR_TRIM]) {
1841 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1842 sizeof(td->bw_sample_time));
1843 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1844 sizeof(td->bw_sample_time));
1845 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1846 sizeof(td->bw_sample_time));
1847 }
1848
1849 memset(bytes_done, 0, sizeof(bytes_done));
1850 clear_state = false;
1851
1852 while (keep_running(td)) {
1853 uint64_t verify_bytes;
1854
1855 fio_gettime(&td->start, NULL);
1856 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1857
1858 if (clear_state) {
1859 clear_io_state(td, 0);
1860
1861 if (o->unlink_each_loop && unlink_all_files(td))
1862 break;
1863 }
1864
1865 prune_io_piece_log(td);
1866
1867 if (td->o.verify_only && td_write(td))
1868 verify_bytes = do_dry_run(td);
1869 else {
1870 do_io(td, bytes_done);
1871
1872 if (!ddir_rw_sum(bytes_done)) {
1873 fio_mark_td_terminate(td);
1874 verify_bytes = 0;
1875 } else {
1876 verify_bytes = bytes_done[DDIR_WRITE] +
1877 bytes_done[DDIR_TRIM];
1878 }
1879 }
1880
1881 /*
1882 * If we took too long to shut down, the main thread could
1883 * already consider us reaped/exited. If that happens, break
1884 * out and clean up.
1885 */
1886 if (td->runstate >= TD_EXITED)
1887 break;
1888
1889 clear_state = true;
1890
1891 /*
1892 * Make sure we've successfully updated the rusage stats
1893 * before waiting on the stat mutex. Otherwise we could have
1894 * the stat thread holding stat mutex and waiting for
1895 * the rusage_sem, which would never get upped because
1896 * this thread is waiting for the stat mutex.
1897 */
1898 deadlock_loop_cnt = 0;
1899 do {
1900 check_update_rusage(td);
1901 if (!fio_sem_down_trylock(stat_sem))
1902 break;
1903 usleep(1000);
1904 if (deadlock_loop_cnt++ > 5000) {
1905 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1906 td->error = EDEADLK;
1907 goto err;
1908 }
1909 } while (1);
1910
1911 if (td_read(td) && td->io_bytes[DDIR_READ])
1912 update_runtime(td, elapsed_us, DDIR_READ);
1913 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1914 update_runtime(td, elapsed_us, DDIR_WRITE);
1915 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1916 update_runtime(td, elapsed_us, DDIR_TRIM);
1917 fio_gettime(&td->start, NULL);
1918 fio_sem_up(stat_sem);
1919
1920 if (td->error || td->terminate)
1921 break;
1922
1923 if (!o->do_verify ||
1924 o->verify == VERIFY_NONE ||
1925 td_ioengine_flagged(td, FIO_UNIDIR))
1926 continue;
1927
1928 clear_io_state(td, 0);
1929
1930 fio_gettime(&td->start, NULL);
1931
1932 do_verify(td, verify_bytes);
1933
1934 /*
1935 * See comment further up for why this is done here.
1936 */
1937 check_update_rusage(td);
1938
1939 fio_sem_down(stat_sem);
1940 update_runtime(td, elapsed_us, DDIR_READ);
1941 fio_gettime(&td->start, NULL);
1942 fio_sem_up(stat_sem);
1943
1944 if (td->error || td->terminate)
1945 break;
1946 }
1947
1948 /*
1949 * Acquire this lock if we were doing overlap checking in
1950 * offload mode so that we don't clean up this job while
1951 * another thread is checking its io_u's for overlap
1952 */
1953 if (td_offload_overlap(td)) {
1954 int res = pthread_mutex_lock(&overlap_check);
1955 assert(res == 0);
1956 }
1957 td_set_runstate(td, TD_FINISHING);
1958 if (td_offload_overlap(td)) {
1959 res = pthread_mutex_unlock(&overlap_check);
1960 assert(res == 0);
1961 }
1962
1963 update_rusage_stat(td);
1964 td->ts.total_run_time = mtime_since_now(&td->epoch);
1965 for_each_rw_ddir(ddir) {
1966 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1967 }
1968
1969 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1970 (td->o.verify != VERIFY_NONE && td_write(td)))
1971 verify_save_state(td->thread_number);
1972
1973 fio_unpin_memory(td);
1974
1975 td_writeout_logs(td, true);
1976
1977 iolog_compress_exit(td);
1978 rate_submit_exit(td);
1979
1980 if (o->exec_postrun)
1981 exec_string(o, o->exec_postrun, "postrun");
1982
1983 if (exitall_on_terminate || (o->exitall_error && td->error))
1984 fio_terminate_threads(td->groupid, td->o.exit_what);
1985
1986err:
1987 if (td->error)
1988 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1989 td->verror);
1990
1991 if (o->verify_async)
1992 verify_async_exit(td);
1993
1994 close_and_free_files(td);
1995 cleanup_io_u(td);
1996 close_ioengine(td);
1997 cgroup_shutdown(td, cgroup_mnt);
1998 verify_free_state(td);
1999 td_zone_free_index(td);
2000
2001 if (fio_option_is_set(o, cpumask)) {
2002 ret = fio_cpuset_exit(&o->cpumask);
2003 if (ret)
2004 td_verror(td, ret, "fio_cpuset_exit");
2005 }
2006
2007 /*
2008 * do this very late, it will log file closing as well
2009 */
2010 if (o->write_iolog_file)
2011 write_iolog_close(td);
2012 if (td->io_log_rfile)
2013 fclose(td->io_log_rfile);
2014
2015 td_set_runstate(td, TD_EXITED);
2016
2017 /*
2018 * Do this last after setting our runstate to exited, so we
2019 * know that the stat thread is signaled.
2020 */
2021 check_update_rusage(td);
2022
2023 sk_out_drop();
2024 return (void *) (uintptr_t) td->error;
2025}
2026
2027/*
2028 * Run over the job map and reap the threads that have exited, if any.
2029 */
2030static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2031 uint64_t *m_rate)
2032{
2033 struct thread_data *td;
2034 unsigned int cputhreads, realthreads, pending;
2035 int i, status, ret;
2036
2037 /*
2038 * reap exited threads (TD_EXITED -> TD_REAPED)
2039 */
2040 realthreads = pending = cputhreads = 0;
2041 for_each_td(td, i) {
2042 int flags = 0;
2043
2044 if (!strcmp(td->o.ioengine, "cpuio"))
2045 cputhreads++;
2046 else
2047 realthreads++;
2048
2049 if (!td->pid) {
2050 pending++;
2051 continue;
2052 }
2053 if (td->runstate == TD_REAPED)
2054 continue;
2055 if (td->o.use_thread) {
2056 if (td->runstate == TD_EXITED) {
2057 td_set_runstate(td, TD_REAPED);
2058 goto reaped;
2059 }
2060 continue;
2061 }
2062
2063 flags = WNOHANG;
2064 if (td->runstate == TD_EXITED)
2065 flags = 0;
2066
2067 /*
2068 * check if someone quit or got killed in an unusual way
2069 */
2070 ret = waitpid(td->pid, &status, flags);
2071 if (ret < 0) {
2072 if (errno == ECHILD) {
2073 log_err("fio: pid=%d disappeared %d\n",
2074 (int) td->pid, td->runstate);
2075 td->sig = ECHILD;
2076 td_set_runstate(td, TD_REAPED);
2077 goto reaped;
2078 }
2079 perror("waitpid");
2080 } else if (ret == td->pid) {
2081 if (WIFSIGNALED(status)) {
2082 int sig = WTERMSIG(status);
2083
2084 if (sig != SIGTERM && sig != SIGUSR2)
2085 log_err("fio: pid=%d, got signal=%d\n",
2086 (int) td->pid, sig);
2087 td->sig = sig;
2088 td_set_runstate(td, TD_REAPED);
2089 goto reaped;
2090 }
2091 if (WIFEXITED(status)) {
2092 if (WEXITSTATUS(status) && !td->error)
2093 td->error = WEXITSTATUS(status);
2094
2095 td_set_runstate(td, TD_REAPED);
2096 goto reaped;
2097 }
2098 }
2099
2100 /*
2101 * If the job is stuck, do a forceful timeout of it and
2102 * move on.
2103 */
2104 if (td->terminate &&
2105 td->runstate < TD_FSYNCING &&
2106 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2107 log_err("fio: job '%s' (state=%d) hasn't exited in "
2108 "%lu seconds, it appears to be stuck. Doing "
2109 "forceful exit of this job.\n",
2110 td->o.name, td->runstate,
2111 (unsigned long) time_since_now(&td->terminate_time));
2112 td_set_runstate(td, TD_REAPED);
2113 goto reaped;
2114 }
2115
2116 /*
2117 * thread is not dead, continue
2118 */
2119 pending++;
2120 continue;
2121reaped:
2122 (*nr_running)--;
2123 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2124 (*t_rate) -= ddir_rw_sum(td->o.rate);
2125 if (!td->pid)
2126 pending--;
2127
2128 if (td->error)
2129 exit_value++;
2130
2131 done_secs += mtime_since_now(&td->epoch) / 1000;
2132 profile_td_exit(td);
2133 flow_exit_job(td);
2134 }
2135
2136 if (*nr_running == cputhreads && !pending && realthreads)
2137 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2138}
2139
2140static bool __check_trigger_file(void)
2141{
2142 struct stat sb;
2143
2144 if (!trigger_file)
2145 return false;
2146
2147 if (stat(trigger_file, &sb))
2148 return false;
2149
2150 if (unlink(trigger_file) < 0)
2151 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2152 strerror(errno));
2153
2154 return true;
2155}
2156
2157static bool trigger_timedout(void)
2158{
2159 if (trigger_timeout)
2160 if (time_since_genesis() >= trigger_timeout) {
2161 trigger_timeout = 0;
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
2168void exec_trigger(const char *cmd)
2169{
2170 int ret;
2171
2172 if (!cmd || cmd[0] == '\0')
2173 return;
2174
2175 ret = system(cmd);
2176 if (ret == -1)
2177 log_err("fio: failed executing %s trigger\n", cmd);
2178}
2179
2180void check_trigger_file(void)
2181{
2182 if (__check_trigger_file() || trigger_timedout()) {
2183 if (nr_clients)
2184 fio_clients_send_trigger(trigger_remote_cmd);
2185 else {
2186 verify_save_state(IO_LIST_ALL);
2187 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2188 exec_trigger(trigger_cmd);
2189 }
2190 }
2191}
2192
2193static int fio_verify_load_state(struct thread_data *td)
2194{
2195 int ret;
2196
2197 if (!td->o.verify_state)
2198 return 0;
2199
2200 if (is_backend) {
2201 void *data;
2202
2203 ret = fio_server_get_verify_state(td->o.name,
2204 td->thread_number - 1, &data);
2205 if (!ret)
2206 verify_assign_state(td, data);
2207 } else {
2208 char prefix[PATH_MAX];
2209
2210 if (aux_path)
2211 sprintf(prefix, "%s%clocal", aux_path,
2212 FIO_OS_PATH_SEPARATOR);
2213 else
2214 strcpy(prefix, "local");
2215 ret = verify_load_state(td, prefix);
2216 }
2217
2218 return ret;
2219}
2220
2221static void do_usleep(unsigned int usecs)
2222{
2223 check_for_running_stats();
2224 check_trigger_file();
2225 usleep(usecs);
2226}
2227
2228static bool check_mount_writes(struct thread_data *td)
2229{
2230 struct fio_file *f;
2231 unsigned int i;
2232
2233 if (!td_write(td) || td->o.allow_mounted_write)
2234 return false;
2235
2236 /*
2237 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2238 * are mkfs'd and mounted.
2239 */
2240 for_each_file(td, f, i) {
2241#ifdef FIO_HAVE_CHARDEV_SIZE
2242 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2243#else
2244 if (f->filetype != FIO_TYPE_BLOCK)
2245#endif
2246 continue;
2247 if (device_is_mounted(f->file_name))
2248 goto mounted;
2249 }
2250
2251 return false;
2252mounted:
2253 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2254 return true;
2255}
2256
2257static bool waitee_running(struct thread_data *me)
2258{
2259 const char *waitee = me->o.wait_for;
2260 const char *self = me->o.name;
2261 struct thread_data *td;
2262 int i;
2263
2264 if (!waitee)
2265 return false;
2266
2267 for_each_td(td, i) {
2268 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2269 continue;
2270
2271 if (td->runstate < TD_EXITED) {
2272 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2273 self, td->o.name,
2274 runstate_to_name(td->runstate));
2275 return true;
2276 }
2277 }
2278
2279 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2280 return false;
2281}
2282
2283/*
2284 * Main function for kicking off and reaping jobs, as needed.
2285 */
2286static void run_threads(struct sk_out *sk_out)
2287{
2288 struct thread_data *td;
2289 unsigned int i, todo, nr_running, nr_started;
2290 uint64_t m_rate, t_rate;
2291 uint64_t spent;
2292
2293 if (fio_gtod_offload && fio_start_gtod_thread())
2294 return;
2295
2296 fio_idle_prof_init();
2297
2298 set_sig_handlers();
2299
2300 nr_thread = nr_process = 0;
2301 for_each_td(td, i) {
2302 if (check_mount_writes(td))
2303 return;
2304 if (td->o.use_thread)
2305 nr_thread++;
2306 else
2307 nr_process++;
2308 }
2309
2310 if (output_format & FIO_OUTPUT_NORMAL) {
2311 struct buf_output out;
2312
2313 buf_output_init(&out);
2314 __log_buf(&out, "Starting ");
2315 if (nr_thread)
2316 __log_buf(&out, "%d thread%s", nr_thread,
2317 nr_thread > 1 ? "s" : "");
2318 if (nr_process) {
2319 if (nr_thread)
2320 __log_buf(&out, " and ");
2321 __log_buf(&out, "%d process%s", nr_process,
2322 nr_process > 1 ? "es" : "");
2323 }
2324 __log_buf(&out, "\n");
2325 log_info_buf(out.buf, out.buflen);
2326 buf_output_free(&out);
2327 }
2328
2329 todo = thread_number;
2330 nr_running = 0;
2331 nr_started = 0;
2332 m_rate = t_rate = 0;
2333
2334 for_each_td(td, i) {
2335 print_status_init(td->thread_number - 1);
2336
2337 if (!td->o.create_serialize)
2338 continue;
2339
2340 if (fio_verify_load_state(td))
2341 goto reap;
2342
2343 /*
2344 * do file setup here so it happens sequentially,
2345 * we don't want X number of threads getting their
2346 * client data interspersed on disk
2347 */
2348 if (setup_files(td)) {
2349reap:
2350 exit_value++;
2351 if (td->error)
2352 log_err("fio: pid=%d, err=%d/%s\n",
2353 (int) td->pid, td->error, td->verror);
2354 td_set_runstate(td, TD_REAPED);
2355 todo--;
2356 } else {
2357 struct fio_file *f;
2358 unsigned int j;
2359
2360 /*
2361 * for sharing to work, each job must always open
2362 * its own files. so close them, if we opened them
2363 * for creation
2364 */
2365 for_each_file(td, f, j) {
2366 if (fio_file_open(f))
2367 td_io_close_file(td, f);
2368 }
2369 }
2370 }
2371
2372 /* start idle threads before io threads start to run */
2373 fio_idle_prof_start();
2374
2375 set_genesis_time();
2376
2377 while (todo) {
2378 struct thread_data *map[REAL_MAX_JOBS];
2379 struct timespec this_start;
2380 int this_jobs = 0, left;
2381 struct fork_data *fd;
2382
2383 /*
2384 * create threads (TD_NOT_CREATED -> TD_CREATED)
2385 */
2386 for_each_td(td, i) {
2387 if (td->runstate != TD_NOT_CREATED)
2388 continue;
2389
2390 /*
2391 * never got a chance to start, killed by other
2392 * thread for some reason
2393 */
2394 if (td->terminate) {
2395 todo--;
2396 continue;
2397 }
2398
2399 if (td->o.start_delay) {
2400 spent = utime_since_genesis();
2401
2402 if (td->o.start_delay > spent)
2403 continue;
2404 }
2405
2406 if (td->o.stonewall && (nr_started || nr_running)) {
2407 dprint(FD_PROCESS, "%s: stonewall wait\n",
2408 td->o.name);
2409 break;
2410 }
2411
2412 if (waitee_running(td)) {
2413 dprint(FD_PROCESS, "%s: waiting for %s\n",
2414 td->o.name, td->o.wait_for);
2415 continue;
2416 }
2417
2418 init_disk_util(td);
2419
2420 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2421 td->update_rusage = 0;
2422
2423 /*
2424 * Set state to created. Thread will transition
2425 * to TD_INITIALIZED when it's done setting up.
2426 */
2427 td_set_runstate(td, TD_CREATED);
2428 map[this_jobs++] = td;
2429 nr_started++;
2430
2431 fd = calloc(1, sizeof(*fd));
2432 fd->td = td;
2433 fd->sk_out = sk_out;
2434
2435 if (td->o.use_thread) {
2436 int ret;
2437
2438 dprint(FD_PROCESS, "will pthread_create\n");
2439 ret = pthread_create(&td->thread, NULL,
2440 thread_main, fd);
2441 if (ret) {
2442 log_err("pthread_create: %s\n",
2443 strerror(ret));
2444 free(fd);
2445 nr_started--;
2446 break;
2447 }
2448 fd = NULL;
2449 ret = pthread_detach(td->thread);
2450 if (ret)
2451 log_err("pthread_detach: %s",
2452 strerror(ret));
2453 } else {
2454 pid_t pid;
2455 dprint(FD_PROCESS, "will fork\n");
2456 pid = fork();
2457 if (!pid) {
2458 int ret;
2459
2460 ret = (int)(uintptr_t)thread_main(fd);
2461 _exit(ret);
2462 } else if (i == fio_debug_jobno)
2463 *fio_debug_jobp = pid;
2464 }
2465 dprint(FD_MUTEX, "wait on startup_sem\n");
2466 if (fio_sem_down_timeout(startup_sem, 10000)) {
2467 log_err("fio: job startup hung? exiting.\n");
2468 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2469 fio_abort = true;
2470 nr_started--;
2471 free(fd);
2472 break;
2473 }
2474 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2475 }
2476
2477 /*
2478 * Wait for the started threads to transition to
2479 * TD_INITIALIZED.
2480 */
2481 fio_gettime(&this_start, NULL);
2482 left = this_jobs;
2483 while (left && !fio_abort) {
2484 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2485 break;
2486
2487 do_usleep(100000);
2488
2489 for (i = 0; i < this_jobs; i++) {
2490 td = map[i];
2491 if (!td)
2492 continue;
2493 if (td->runstate == TD_INITIALIZED) {
2494 map[i] = NULL;
2495 left--;
2496 } else if (td->runstate >= TD_EXITED) {
2497 map[i] = NULL;
2498 left--;
2499 todo--;
2500 nr_running++; /* work-around... */
2501 }
2502 }
2503 }
2504
2505 if (left) {
2506 log_err("fio: %d job%s failed to start\n", left,
2507 left > 1 ? "s" : "");
2508 for (i = 0; i < this_jobs; i++) {
2509 td = map[i];
2510 if (!td)
2511 continue;
2512 kill(td->pid, SIGTERM);
2513 }
2514 break;
2515 }
2516
2517 /*
2518 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2519 */
2520 for_each_td(td, i) {
2521 if (td->runstate != TD_INITIALIZED)
2522 continue;
2523
2524 if (in_ramp_time(td))
2525 td_set_runstate(td, TD_RAMP);
2526 else
2527 td_set_runstate(td, TD_RUNNING);
2528 nr_running++;
2529 nr_started--;
2530 m_rate += ddir_rw_sum(td->o.ratemin);
2531 t_rate += ddir_rw_sum(td->o.rate);
2532 todo--;
2533 fio_sem_up(td->sem);
2534 }
2535
2536 reap_threads(&nr_running, &t_rate, &m_rate);
2537
2538 if (todo)
2539 do_usleep(100000);
2540 }
2541
2542 while (nr_running) {
2543 reap_threads(&nr_running, &t_rate, &m_rate);
2544 do_usleep(10000);
2545 }
2546
2547 fio_idle_prof_stop();
2548
2549 update_io_ticks();
2550}
2551
2552static void free_disk_util(void)
2553{
2554 disk_util_prune_entries();
2555 helper_thread_destroy();
2556}
2557
2558int fio_backend(struct sk_out *sk_out)
2559{
2560 struct thread_data *td;
2561 int i;
2562
2563 if (exec_profile) {
2564 if (load_profile(exec_profile))
2565 return 1;
2566 free(exec_profile);
2567 exec_profile = NULL;
2568 }
2569 if (!thread_number)
2570 return 0;
2571
2572 if (write_bw_log) {
2573 struct log_params p = {
2574 .log_type = IO_LOG_TYPE_BW,
2575 };
2576
2577 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2578 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2579 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2580 }
2581
2582 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2583 if (!sk_out)
2584 is_local_backend = true;
2585 if (startup_sem == NULL)
2586 return 1;
2587
2588 set_genesis_time();
2589 stat_init();
2590 if (helper_thread_create(startup_sem, sk_out))
2591 log_err("fio: failed to create helper thread\n");
2592
2593 cgroup_list = smalloc(sizeof(*cgroup_list));
2594 if (cgroup_list)
2595 INIT_FLIST_HEAD(cgroup_list);
2596
2597 run_threads(sk_out);
2598
2599 helper_thread_exit();
2600
2601 if (!fio_abort) {
2602 __show_run_stats();
2603 if (write_bw_log) {
2604 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2605 struct io_log *log = agg_io_log[i];
2606
2607 flush_log(log, false);
2608 free_log(log);
2609 }
2610 }
2611 }
2612
2613 for_each_td(td, i) {
2614 steadystate_free(td);
2615 fio_options_free(td);
2616 fio_dump_options_free(td);
2617 if (td->rusage_sem) {
2618 fio_sem_remove(td->rusage_sem);
2619 td->rusage_sem = NULL;
2620 }
2621 fio_sem_remove(td->sem);
2622 td->sem = NULL;
2623 }
2624
2625 free_disk_util();
2626 if (cgroup_list) {
2627 cgroup_kill(cgroup_list);
2628 sfree(cgroup_list);
2629 }
2630
2631 fio_sem_remove(startup_sem);
2632 stat_exit();
2633 return exit_value;
2634}