gettime: fix cpuclock-test on AMD platforms
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52#include "fio_time.h"
53
54static struct fio_sem *startup_sem;
55static struct flist_head *cgroup_list;
56static struct cgroup_mnt *cgroup_mnt;
57static int exit_value;
58static volatile bool fio_abort;
59static unsigned int nr_process = 0;
60static unsigned int nr_thread = 0;
61
62struct io_log *agg_io_log[DDIR_RWDIR_CNT];
63
64int groupid = 0;
65unsigned int thread_number = 0;
66unsigned int nr_segments = 0;
67unsigned int cur_segment = 0;
68unsigned int stat_number = 0;
69int temp_stall_ts;
70unsigned long done_secs = 0;
71#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
72pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
73#else
74pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
75#endif
76
77#define JOB_START_TIMEOUT (5 * 1000)
78
79static void sig_int(int sig)
80{
81 if (nr_segments) {
82 if (is_backend)
83 fio_server_got_signal(sig);
84 else {
85 log_info("\nfio: terminating on signal %d\n", sig);
86 log_info_flush();
87 exit_value = 128;
88 }
89
90 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
91 }
92}
93
94#ifdef WIN32
95static void sig_break(int sig)
96{
97 sig_int(sig);
98
99 /**
100 * Windows terminates all job processes on SIGBREAK after the handler
101 * returns, so give them time to wrap-up and give stats
102 */
103 for_each_td(td) {
104 while (td->runstate < TD_EXITED)
105 sleep(1);
106 } end_for_each();
107}
108#endif
109
110void sig_show_status(int sig)
111{
112 show_running_run_stats();
113}
114
115static void set_sig_handlers(void)
116{
117 struct sigaction act;
118
119 memset(&act, 0, sizeof(act));
120 act.sa_handler = sig_int;
121 act.sa_flags = SA_RESTART;
122 sigaction(SIGINT, &act, NULL);
123
124 memset(&act, 0, sizeof(act));
125 act.sa_handler = sig_int;
126 act.sa_flags = SA_RESTART;
127 sigaction(SIGTERM, &act, NULL);
128
129/* Windows uses SIGBREAK as a quit signal from other applications */
130#ifdef WIN32
131 memset(&act, 0, sizeof(act));
132 act.sa_handler = sig_break;
133 act.sa_flags = SA_RESTART;
134 sigaction(SIGBREAK, &act, NULL);
135#endif
136
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_show_status;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGUSR1, &act, NULL);
141
142 if (is_backend) {
143 memset(&act, 0, sizeof(act));
144 act.sa_handler = sig_int;
145 act.sa_flags = SA_RESTART;
146 sigaction(SIGPIPE, &act, NULL);
147 }
148}
149
150/*
151 * Check if we are above the minimum rate given.
152 */
153static bool __check_min_rate(struct thread_data *td, struct timespec *now,
154 enum fio_ddir ddir)
155{
156 unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
157 unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
158 unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
159 unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
160
161 assert(ddir_rw(ddir));
162
163 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
164 return false;
165
166 /*
167 * allow a 2 second settle period in the beginning
168 */
169 if (mtime_since(&td->start, now) < 2000)
170 return false;
171
172 /*
173 * if last_rate_check_blocks or last_rate_check_bytes is set,
174 * we can compute a rate per ratecycle
175 */
176 if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
177 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
178 if (spent < td->o.ratecycle || spent==0)
179 return false;
180
181 if (td->o.ratemin[ddir]) {
182 /*
183 * check bandwidth specified rate
184 */
185 unsigned long long current_rate_bytes =
186 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
187 if (current_rate_bytes < option_rate_bytes_min) {
188 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189 td->o.name, option_rate_bytes_min, current_rate_bytes);
190 return true;
191 }
192 } else {
193 /*
194 * checks iops specified rate
195 */
196 unsigned long long current_rate_iops =
197 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
198
199 if (current_rate_iops < option_rate_iops_min) {
200 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
201 td->o.name, option_rate_iops_min, current_rate_iops);
202 return true;
203 }
204 }
205 }
206
207 td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
208 td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
209 memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
210 return false;
211}
212
213static bool check_min_rate(struct thread_data *td, struct timespec *now)
214{
215 bool ret = false;
216
217 for_each_rw_ddir(ddir) {
218 if (td->bytes_done[ddir])
219 ret |= __check_min_rate(td, now, ddir);
220 }
221
222 return ret;
223}
224
225/*
226 * When job exits, we can cancel the in-flight IO if we are using async
227 * io. Attempt to do so.
228 */
229static void cleanup_pending_aio(struct thread_data *td)
230{
231 int r;
232
233 /*
234 * get immediately available events, if any
235 */
236 r = io_u_queued_complete(td, 0);
237
238 /*
239 * now cancel remaining active events
240 */
241 if (td->io_ops->cancel) {
242 struct io_u *io_u;
243 int i;
244
245 io_u_qiter(&td->io_u_all, io_u, i) {
246 if (io_u->flags & IO_U_F_FLIGHT) {
247 r = td->io_ops->cancel(td, io_u);
248 if (!r)
249 put_io_u(td, io_u);
250 }
251 }
252 }
253
254 if (td->cur_depth)
255 r = io_u_queued_complete(td, td->cur_depth);
256}
257
258/*
259 * Helper to handle the final sync of a file. Works just like the normal
260 * io path, just does everything sync.
261 */
262static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
263{
264 struct io_u *io_u = __get_io_u(td);
265 enum fio_q_status ret;
266
267 if (!io_u)
268 return true;
269
270 io_u->ddir = DDIR_SYNC;
271 io_u->file = f;
272 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
273
274 if (td_io_prep(td, io_u)) {
275 put_io_u(td, io_u);
276 return true;
277 }
278
279requeue:
280 ret = td_io_queue(td, io_u);
281 switch (ret) {
282 case FIO_Q_QUEUED:
283 td_io_commit(td);
284 if (io_u_queued_complete(td, 1) < 0)
285 return true;
286 break;
287 case FIO_Q_COMPLETED:
288 if (io_u->error) {
289 td_verror(td, io_u->error, "td_io_queue");
290 return true;
291 }
292
293 if (io_u_sync_complete(td, io_u) < 0)
294 return true;
295 break;
296 case FIO_Q_BUSY:
297 td_io_commit(td);
298 goto requeue;
299 }
300
301 return false;
302}
303
304static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
305{
306 int ret, ret2;
307
308 if (fio_file_open(f))
309 return fio_io_sync(td, f);
310
311 if (td_io_open_file(td, f))
312 return 1;
313
314 ret = fio_io_sync(td, f);
315 ret2 = 0;
316 if (fio_file_open(f))
317 ret2 = td_io_close_file(td, f);
318 return (ret || ret2);
319}
320
321static inline void __update_ts_cache(struct thread_data *td)
322{
323 fio_gettime(&td->ts_cache, NULL);
324}
325
326static inline void update_ts_cache(struct thread_data *td)
327{
328 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
329 __update_ts_cache(td);
330}
331
332static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
333{
334 if (in_ramp_time(td))
335 return false;
336 if (!td->o.timeout)
337 return false;
338 if (utime_since(&td->epoch, t) >= td->o.timeout)
339 return true;
340
341 return false;
342}
343
344/*
345 * We need to update the runtime consistently in ms, but keep a running
346 * tally of the current elapsed time in microseconds for sub millisecond
347 * updates.
348 */
349static inline void update_runtime(struct thread_data *td,
350 unsigned long long *elapsed_us,
351 const enum fio_ddir ddir)
352{
353 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
354 return;
355
356 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
357 elapsed_us[ddir] += utime_since_now(&td->start);
358 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
359}
360
361static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
362 int *retptr)
363{
364 int ret = *retptr;
365
366 if (ret < 0 || td->error) {
367 int err = td->error;
368 enum error_type_bit eb;
369
370 if (ret < 0)
371 err = -ret;
372
373 eb = td_error_type(ddir, err);
374 if (!(td->o.continue_on_error & (1 << eb)))
375 return true;
376
377 if (td_non_fatal_error(td, eb, err)) {
378 /*
379 * Continue with the I/Os in case of
380 * a non fatal error.
381 */
382 update_error_count(td, err);
383 td_clear_error(td);
384 *retptr = 0;
385 return false;
386 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
387 /*
388 * We expect to hit this error if
389 * fill_device option is set.
390 */
391 td_clear_error(td);
392 fio_mark_td_terminate(td);
393 return true;
394 } else {
395 /*
396 * Stop the I/O in case of a fatal
397 * error.
398 */
399 update_error_count(td, err);
400 return true;
401 }
402 }
403
404 return false;
405}
406
407static void check_update_rusage(struct thread_data *td)
408{
409 if (td->update_rusage) {
410 td->update_rusage = 0;
411 update_rusage_stat(td);
412 fio_sem_up(td->rusage_sem);
413 }
414}
415
416static int wait_for_completions(struct thread_data *td, struct timespec *time)
417{
418 const int full = queue_full(td);
419 int min_evts = 0;
420 int ret;
421
422 if (td->flags & TD_F_REGROW_LOGS)
423 return io_u_quiesce(td);
424
425 /*
426 * if the queue is full, we MUST reap at least 1 event
427 */
428 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
429 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
430 min_evts = 1;
431
432 if (time && should_check_rate(td))
433 fio_gettime(time, NULL);
434
435 do {
436 ret = io_u_queued_complete(td, min_evts);
437 if (ret < 0)
438 break;
439 } while (full && (td->cur_depth > td->o.iodepth_low));
440
441 return ret;
442}
443
444int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
445 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
446 struct timespec *comp_time)
447{
448 switch (*ret) {
449 case FIO_Q_COMPLETED:
450 if (io_u->error) {
451 *ret = -io_u->error;
452 clear_io_u(td, io_u);
453 } else if (io_u->resid) {
454 long long bytes = io_u->xfer_buflen - io_u->resid;
455 struct fio_file *f = io_u->file;
456
457 if (bytes_issued)
458 *bytes_issued += bytes;
459
460 if (!from_verify)
461 trim_io_piece(io_u);
462
463 /*
464 * zero read, fail
465 */
466 if (!bytes) {
467 if (!from_verify)
468 unlog_io_piece(td, io_u);
469 td_verror(td, EIO, "full resid");
470 clear_io_u(td, io_u);
471 break;
472 }
473
474 io_u->xfer_buflen = io_u->resid;
475 io_u->xfer_buf += bytes;
476 io_u->offset += bytes;
477
478 if (ddir_rw(io_u->ddir))
479 td->ts.short_io_u[io_u->ddir]++;
480
481 if (io_u->offset == f->real_file_size)
482 goto sync_done;
483
484 requeue_io_u(td, &io_u);
485 } else {
486sync_done:
487 if (comp_time && should_check_rate(td))
488 fio_gettime(comp_time, NULL);
489
490 *ret = io_u_sync_complete(td, io_u);
491 if (*ret < 0)
492 break;
493 }
494
495 if (td->flags & TD_F_REGROW_LOGS)
496 regrow_logs(td);
497
498 /*
499 * when doing I/O (not when verifying),
500 * check for any errors that are to be ignored
501 */
502 if (!from_verify)
503 break;
504
505 return 0;
506 case FIO_Q_QUEUED:
507 /*
508 * if the engine doesn't have a commit hook,
509 * the io_u is really queued. if it does have such
510 * a hook, it has to call io_u_queued() itself.
511 */
512 if (td->io_ops->commit == NULL)
513 io_u_queued(td, io_u);
514 if (bytes_issued)
515 *bytes_issued += io_u->xfer_buflen;
516 break;
517 case FIO_Q_BUSY:
518 if (!from_verify)
519 unlog_io_piece(td, io_u);
520 requeue_io_u(td, &io_u);
521 td_io_commit(td);
522 break;
523 default:
524 assert(*ret < 0);
525 td_verror(td, -(*ret), "td_io_queue");
526 break;
527 }
528
529 if (break_on_this_error(td, ddir, ret))
530 return 1;
531
532 return 0;
533}
534
535static inline bool io_in_polling(struct thread_data *td)
536{
537 return !td->o.iodepth_batch_complete_min &&
538 !td->o.iodepth_batch_complete_max;
539}
540/*
541 * Unlinks files from thread data fio_file structure
542 */
543static int unlink_all_files(struct thread_data *td)
544{
545 struct fio_file *f;
546 unsigned int i;
547 int ret = 0;
548
549 for_each_file(td, f, i) {
550 if (f->filetype != FIO_TYPE_FILE)
551 continue;
552 ret = td_io_unlink_file(td, f);
553 if (ret)
554 break;
555 }
556
557 if (ret)
558 td_verror(td, ret, "unlink_all_files");
559
560 return ret;
561}
562
563/*
564 * Check if io_u will overlap an in-flight IO in the queue
565 */
566bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
567{
568 bool overlap;
569 struct io_u *check_io_u;
570 unsigned long long x1, x2, y1, y2;
571 int i;
572
573 x1 = io_u->offset;
574 x2 = io_u->offset + io_u->buflen;
575 overlap = false;
576 io_u_qiter(q, check_io_u, i) {
577 if (check_io_u->flags & IO_U_F_FLIGHT) {
578 y1 = check_io_u->offset;
579 y2 = check_io_u->offset + check_io_u->buflen;
580
581 if (x1 < y2 && y1 < x2) {
582 overlap = true;
583 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
584 x1, io_u->buflen,
585 y1, check_io_u->buflen);
586 break;
587 }
588 }
589 }
590
591 return overlap;
592}
593
594static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
595{
596 /*
597 * Check for overlap if the user asked us to, and we have
598 * at least one IO in flight besides this one.
599 */
600 if (td->o.serialize_overlap && td->cur_depth > 1 &&
601 in_flight_overlap(&td->io_u_all, io_u))
602 return FIO_Q_BUSY;
603
604 return td_io_queue(td, io_u);
605}
606
607/*
608 * The main verify engine. Runs over the writes we previously submitted,
609 * reads the blocks back in, and checks the crc/md5 of the data.
610 */
611static void do_verify(struct thread_data *td, uint64_t verify_bytes)
612{
613 struct fio_file *f;
614 struct io_u *io_u;
615 int ret, min_events;
616 unsigned int i;
617
618 dprint(FD_VERIFY, "starting loop\n");
619
620 /*
621 * sync io first and invalidate cache, to make sure we really
622 * read from disk.
623 */
624 for_each_file(td, f, i) {
625 if (!fio_file_open(f))
626 continue;
627 if (fio_io_sync(td, f))
628 break;
629 if (file_invalidate_cache(td, f))
630 break;
631 }
632
633 check_update_rusage(td);
634
635 if (td->error)
636 return;
637
638 td_set_runstate(td, TD_VERIFYING);
639
640 io_u = NULL;
641 while (!td->terminate) {
642 enum fio_ddir ddir;
643 int full;
644
645 update_ts_cache(td);
646 check_update_rusage(td);
647
648 if (runtime_exceeded(td, &td->ts_cache)) {
649 __update_ts_cache(td);
650 if (runtime_exceeded(td, &td->ts_cache)) {
651 fio_mark_td_terminate(td);
652 break;
653 }
654 }
655
656 if (flow_threshold_exceeded(td))
657 continue;
658
659 if (!td->o.experimental_verify) {
660 io_u = __get_io_u(td);
661 if (!io_u)
662 break;
663
664 if (get_next_verify(td, io_u)) {
665 put_io_u(td, io_u);
666 break;
667 }
668
669 if (td_io_prep(td, io_u)) {
670 put_io_u(td, io_u);
671 break;
672 }
673 } else {
674 if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
675 break;
676
677 while ((io_u = get_io_u(td)) != NULL) {
678 if (IS_ERR_OR_NULL(io_u)) {
679 io_u = NULL;
680 ret = FIO_Q_BUSY;
681 goto reap;
682 }
683
684 /*
685 * We are only interested in the places where
686 * we wrote or trimmed IOs. Turn those into
687 * reads for verification purposes.
688 */
689 if (io_u->ddir == DDIR_READ) {
690 /*
691 * Pretend we issued it for rwmix
692 * accounting
693 */
694 td->io_issues[DDIR_READ]++;
695 put_io_u(td, io_u);
696 continue;
697 } else if (io_u->ddir == DDIR_TRIM) {
698 io_u->ddir = DDIR_READ;
699 io_u_set(td, io_u, IO_U_F_TRIMMED);
700 break;
701 } else if (io_u->ddir == DDIR_WRITE) {
702 io_u->ddir = DDIR_READ;
703 io_u->numberio = td->verify_read_issues;
704 td->verify_read_issues++;
705 populate_verify_io_u(td, io_u);
706 break;
707 } else {
708 put_io_u(td, io_u);
709 continue;
710 }
711 }
712
713 if (!io_u)
714 break;
715 }
716
717 if (verify_state_should_stop(td, io_u)) {
718 put_io_u(td, io_u);
719 break;
720 }
721
722 if (td->o.verify_async)
723 io_u->end_io = verify_io_u_async;
724 else
725 io_u->end_io = verify_io_u;
726
727 ddir = io_u->ddir;
728 if (!td->o.disable_slat)
729 fio_gettime(&io_u->start_time, NULL);
730
731 ret = io_u_submit(td, io_u);
732
733 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
734 break;
735
736 /*
737 * if we can queue more, do so. but check if there are
738 * completed io_u's first. Note that we can get BUSY even
739 * without IO queued, if the system is resource starved.
740 */
741reap:
742 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
743 if (full || io_in_polling(td))
744 ret = wait_for_completions(td, NULL);
745
746 if (ret < 0)
747 break;
748 }
749
750 check_update_rusage(td);
751
752 if (!td->error) {
753 min_events = td->cur_depth;
754
755 if (min_events)
756 ret = io_u_queued_complete(td, min_events);
757 } else
758 cleanup_pending_aio(td);
759
760 td_set_runstate(td, TD_RUNNING);
761
762 dprint(FD_VERIFY, "exiting loop\n");
763}
764
765static bool exceeds_number_ios(struct thread_data *td)
766{
767 unsigned long long number_ios;
768
769 if (!td->o.number_ios)
770 return false;
771
772 number_ios = ddir_rw_sum(td->io_blocks);
773 number_ios += td->io_u_queued + td->io_u_in_flight;
774
775 return number_ios >= (td->o.number_ios * td->loops);
776}
777
778static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
779{
780 unsigned long long bytes, limit;
781
782 if (td_rw(td))
783 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
784 else if (td_write(td))
785 bytes = this_bytes[DDIR_WRITE];
786 else if (td_read(td))
787 bytes = this_bytes[DDIR_READ];
788 else
789 bytes = this_bytes[DDIR_TRIM];
790
791 if (td->o.io_size)
792 limit = td->o.io_size;
793 else
794 limit = td->o.size;
795
796 limit *= td->loops;
797 return bytes >= limit || exceeds_number_ios(td);
798}
799
800static bool io_issue_bytes_exceeded(struct thread_data *td)
801{
802 return io_bytes_exceeded(td, td->io_issue_bytes);
803}
804
805static bool io_complete_bytes_exceeded(struct thread_data *td)
806{
807 return io_bytes_exceeded(td, td->this_io_bytes);
808}
809
810/*
811 * used to calculate the next io time for rate control
812 *
813 */
814static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
815{
816 uint64_t bps = td->rate_bps[ddir];
817
818 assert(!(td->flags & TD_F_CHILD));
819
820 if (td->o.rate_process == RATE_PROCESS_POISSON) {
821 uint64_t val, iops;
822
823 iops = bps / td->o.min_bs[ddir];
824 val = (int64_t) (1000000 / iops) *
825 -logf(__rand_0_1(&td->poisson_state[ddir]));
826 if (val) {
827 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
828 (unsigned long long) 1000000 / val,
829 ddir);
830 }
831 td->last_usec[ddir] += val;
832 return td->last_usec[ddir];
833 } else if (bps) {
834 uint64_t bytes = td->rate_io_issue_bytes[ddir];
835 uint64_t secs = bytes / bps;
836 uint64_t remainder = bytes % bps;
837
838 return remainder * 1000000 / bps + secs * 1000000;
839 }
840
841 return 0;
842}
843
844static void init_thinktime(struct thread_data *td)
845{
846 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
847 td->thinktime_blocks_counter = td->io_blocks;
848 else
849 td->thinktime_blocks_counter = td->io_issues;
850 td->last_thinktime = td->epoch;
851 td->last_thinktime_blocks = 0;
852}
853
854static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
855 struct timespec *time)
856{
857 unsigned long long b;
858 unsigned long long runtime_left;
859 uint64_t total;
860 int left;
861 struct timespec now;
862 bool stall = false;
863
864 if (td->o.thinktime_iotime) {
865 fio_gettime(&now, NULL);
866 if (utime_since(&td->last_thinktime, &now)
867 >= td->o.thinktime_iotime) {
868 stall = true;
869 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
870 /*
871 * When thinktime_iotime is set and thinktime_blocks is
872 * not set, skip the thinktime_blocks check, since
873 * thinktime_blocks default value 1 does not work
874 * together with thinktime_iotime.
875 */
876 return;
877 }
878
879 }
880
881 b = ddir_rw_sum(td->thinktime_blocks_counter);
882 if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
883 stall = true;
884
885 if (!stall)
886 return;
887
888 io_u_quiesce(td);
889
890 left = td->o.thinktime_spin;
891 if (td->o.timeout) {
892 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
893 if (runtime_left < (unsigned long long)left)
894 left = runtime_left;
895 }
896
897 total = 0;
898 if (left)
899 total = usec_spin(left);
900
901 /*
902 * usec_spin() might run for slightly longer than intended in a VM
903 * where the vCPU could get descheduled or the hypervisor could steal
904 * CPU time. Ensure "left" doesn't become negative.
905 */
906 if (total < td->o.thinktime)
907 left = td->o.thinktime - total;
908 else
909 left = 0;
910
911 if (td->o.timeout) {
912 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
913 if (runtime_left < (unsigned long long)left)
914 left = runtime_left;
915 }
916
917 if (left)
918 total += usec_sleep(td, left);
919
920 /*
921 * If we're ignoring thinktime for the rate, add the number of bytes
922 * we would have done while sleeping, minus one block to ensure we
923 * start issuing immediately after the sleep.
924 */
925 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
926 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
927 uint64_t bs = td->o.min_bs[ddir];
928 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
929 uint64_t over;
930
931 if (usperop <= total)
932 over = bs;
933 else
934 over = (usperop - total) / usperop * -bs;
935
936 td->rate_io_issue_bytes[ddir] += (missed - over);
937 /* adjust for rate_process=poisson */
938 td->last_usec[ddir] += total;
939 }
940
941 if (time && should_check_rate(td))
942 fio_gettime(time, NULL);
943
944 td->last_thinktime_blocks = b;
945 if (td->o.thinktime_iotime) {
946 fio_gettime(&now, NULL);
947 td->last_thinktime = now;
948 }
949}
950
951/*
952 * Main IO worker function. It retrieves io_u's to process and queues
953 * and reaps them, checking for rate and errors along the way.
954 *
955 * Returns number of bytes written and trimmed.
956 */
957static void do_io(struct thread_data *td, uint64_t *bytes_done)
958{
959 unsigned int i;
960 int ret = 0;
961 uint64_t total_bytes, bytes_issued = 0;
962
963 for (i = 0; i < DDIR_RWDIR_CNT; i++)
964 bytes_done[i] = td->bytes_done[i];
965
966 if (in_ramp_time(td))
967 td_set_runstate(td, TD_RAMP);
968 else
969 td_set_runstate(td, TD_RUNNING);
970
971 lat_target_init(td);
972
973 total_bytes = td->o.size;
974 /*
975 * Allow random overwrite workloads to write up to io_size
976 * before starting verification phase as 'size' doesn't apply.
977 */
978 if (td_write(td) && td_random(td) && td->o.norandommap)
979 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
980 /*
981 * If verify_backlog is enabled, we'll run the verify in this
982 * handler as well. For that case, we may need up to twice the
983 * amount of bytes.
984 */
985 if (td->o.verify != VERIFY_NONE &&
986 (td_write(td) && td->o.verify_backlog))
987 total_bytes += td->o.size;
988
989 /* In trimwrite mode, each byte is trimmed and then written, so
990 * allow total_bytes or number of ios to be twice as big */
991 if (td_trimwrite(td)) {
992 total_bytes += td->total_io_size;
993 td->o.number_ios *= 2;
994 }
995
996 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
997 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
998 td->o.time_based) {
999 struct timespec comp_time;
1000 struct io_u *io_u;
1001 int full;
1002 enum fio_ddir ddir;
1003
1004 check_update_rusage(td);
1005
1006 if (td->terminate || td->done)
1007 break;
1008
1009 update_ts_cache(td);
1010
1011 if (runtime_exceeded(td, &td->ts_cache)) {
1012 __update_ts_cache(td);
1013 if (runtime_exceeded(td, &td->ts_cache)) {
1014 fio_mark_td_terminate(td);
1015 break;
1016 }
1017 }
1018
1019 if (flow_threshold_exceeded(td))
1020 continue;
1021
1022 /*
1023 * Break if we exceeded the bytes. The exception is time
1024 * based runs, but we still need to break out of the loop
1025 * for those to run verification, if enabled.
1026 * Jobs read from iolog do not use this stop condition.
1027 */
1028 if (bytes_issued >= total_bytes &&
1029 !td->o.read_iolog_file &&
1030 (!td->o.time_based ||
1031 (td->o.time_based && td->o.verify != VERIFY_NONE)))
1032 break;
1033
1034 io_u = get_io_u(td);
1035 if (IS_ERR_OR_NULL(io_u)) {
1036 int err = PTR_ERR(io_u);
1037
1038 io_u = NULL;
1039 ddir = DDIR_INVAL;
1040 if (err == -EBUSY) {
1041 ret = FIO_Q_BUSY;
1042 goto reap;
1043 }
1044 if (td->o.latency_target)
1045 goto reap;
1046 break;
1047 }
1048
1049 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1050 if (!(io_u->flags & IO_U_F_PATTERN_DONE)) {
1051 io_u_set(td, io_u, IO_U_F_PATTERN_DONE);
1052 io_u->numberio = td->io_issues[io_u->ddir];
1053 populate_verify_io_u(td, io_u);
1054 }
1055 }
1056
1057 ddir = io_u->ddir;
1058
1059 /*
1060 * Add verification end_io handler if:
1061 * - Asked to verify (!td_rw(td))
1062 * - Or the io_u is from our verify list (mixed write/ver)
1063 */
1064 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1065 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1066
1067 if (verify_state_should_stop(td, io_u)) {
1068 put_io_u(td, io_u);
1069 break;
1070 }
1071
1072 if (td->o.verify_async)
1073 io_u->end_io = verify_io_u_async;
1074 else
1075 io_u->end_io = verify_io_u;
1076 td_set_runstate(td, TD_VERIFYING);
1077 } else if (in_ramp_time(td))
1078 td_set_runstate(td, TD_RAMP);
1079 else
1080 td_set_runstate(td, TD_RUNNING);
1081
1082 /*
1083 * Always log IO before it's issued, so we know the specific
1084 * order of it. The logged unit will track when the IO has
1085 * completed.
1086 */
1087 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1088 td->o.do_verify &&
1089 td->o.verify != VERIFY_NONE &&
1090 !td->o.experimental_verify)
1091 log_io_piece(td, io_u);
1092
1093 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1094 const unsigned long long blen = io_u->xfer_buflen;
1095 const enum fio_ddir __ddir = acct_ddir(io_u);
1096
1097 if (td->error)
1098 break;
1099
1100 workqueue_enqueue(&td->io_wq, &io_u->work);
1101 ret = FIO_Q_QUEUED;
1102
1103 if (ddir_rw(__ddir)) {
1104 td->io_issues[__ddir]++;
1105 td->io_issue_bytes[__ddir] += blen;
1106 td->rate_io_issue_bytes[__ddir] += blen;
1107 }
1108
1109 if (should_check_rate(td)) {
1110 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1111 fio_gettime(&comp_time, NULL);
1112 }
1113
1114 } else {
1115 ret = io_u_submit(td, io_u);
1116
1117 if (should_check_rate(td))
1118 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1119
1120 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1121 break;
1122
1123 /*
1124 * See if we need to complete some commands. Note that
1125 * we can get BUSY even without IO queued, if the
1126 * system is resource starved.
1127 */
1128reap:
1129 full = queue_full(td) ||
1130 (ret == FIO_Q_BUSY && td->cur_depth);
1131 if (full || io_in_polling(td))
1132 ret = wait_for_completions(td, &comp_time);
1133 }
1134 if (ret < 0)
1135 break;
1136
1137 if (ddir_rw(ddir) && td->o.thinkcycles)
1138 cycles_spin(td->o.thinkcycles);
1139
1140 if (ddir_rw(ddir) && td->o.thinktime)
1141 handle_thinktime(td, ddir, &comp_time);
1142
1143 if (!ddir_rw_sum(td->bytes_done) &&
1144 !td_ioengine_flagged(td, FIO_NOIO))
1145 continue;
1146
1147 if (!in_ramp_time(td) && should_check_rate(td)) {
1148 if (check_min_rate(td, &comp_time)) {
1149 if (exitall_on_terminate || td->o.exitall_error)
1150 fio_terminate_threads(td->groupid, td->o.exit_what);
1151 td_verror(td, EIO, "check_min_rate");
1152 break;
1153 }
1154 }
1155 if (!in_ramp_time(td) && td->o.latency_target)
1156 lat_target_check(td);
1157 }
1158
1159 check_update_rusage(td);
1160
1161 if (td->trim_entries)
1162 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1163
1164 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1165 td->error = 0;
1166 fio_mark_td_terminate(td);
1167 }
1168 if (!td->error) {
1169 struct fio_file *f;
1170
1171 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1172 workqueue_flush(&td->io_wq);
1173 i = 0;
1174 } else
1175 i = td->cur_depth;
1176
1177 if (i) {
1178 ret = io_u_queued_complete(td, i);
1179 if (td->o.fill_device &&
1180 (td->error == ENOSPC || td->error == EDQUOT))
1181 td->error = 0;
1182 }
1183
1184 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1185 td_set_runstate(td, TD_FSYNCING);
1186
1187 for_each_file(td, f, i) {
1188 if (!fio_file_fsync(td, f))
1189 continue;
1190
1191 log_err("fio: end_fsync failed for file %s\n",
1192 f->file_name);
1193 }
1194 }
1195 } else {
1196 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1197 workqueue_flush(&td->io_wq);
1198 cleanup_pending_aio(td);
1199 }
1200
1201 /*
1202 * stop job if we failed doing any IO
1203 */
1204 if (!ddir_rw_sum(td->this_io_bytes))
1205 td->done = 1;
1206
1207 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1208 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1209}
1210
1211static void free_file_completion_logging(struct thread_data *td)
1212{
1213 struct fio_file *f;
1214 unsigned int i;
1215
1216 for_each_file(td, f, i) {
1217 if (!f->last_write_comp)
1218 break;
1219 sfree(f->last_write_comp);
1220 }
1221}
1222
1223static int init_file_completion_logging(struct thread_data *td,
1224 unsigned int depth)
1225{
1226 struct fio_file *f;
1227 unsigned int i;
1228
1229 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1230 return 0;
1231
1232 for_each_file(td, f, i) {
1233 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1234 if (!f->last_write_comp)
1235 goto cleanup;
1236 }
1237
1238 return 0;
1239
1240cleanup:
1241 free_file_completion_logging(td);
1242 log_err("fio: failed to alloc write comp data\n");
1243 return 1;
1244}
1245
1246static void cleanup_io_u(struct thread_data *td)
1247{
1248 struct io_u *io_u;
1249
1250 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1251
1252 if (td->io_ops->io_u_free)
1253 td->io_ops->io_u_free(td, io_u);
1254
1255 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1256 }
1257
1258 free_io_mem(td);
1259
1260 io_u_rexit(&td->io_u_requeues);
1261 io_u_qexit(&td->io_u_freelist, false);
1262 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1263
1264 free_file_completion_logging(td);
1265}
1266
1267static int init_io_u(struct thread_data *td)
1268{
1269 struct io_u *io_u;
1270 int cl_align, i, max_units;
1271 int err;
1272
1273 max_units = td->o.iodepth;
1274
1275 err = 0;
1276 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1277 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1278 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1279
1280 if (err) {
1281 log_err("fio: failed setting up IO queues\n");
1282 return 1;
1283 }
1284
1285 cl_align = os_cache_line_size();
1286
1287 for (i = 0; i < max_units; i++) {
1288 void *ptr;
1289
1290 if (td->terminate)
1291 return 1;
1292
1293 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1294 if (!ptr) {
1295 log_err("fio: unable to allocate aligned memory\n");
1296 return 1;
1297 }
1298
1299 io_u = ptr;
1300 memset(io_u, 0, sizeof(*io_u));
1301 INIT_FLIST_HEAD(&io_u->verify_list);
1302 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1303
1304 io_u->index = i;
1305 io_u->flags = IO_U_F_FREE;
1306 io_u_qpush(&td->io_u_freelist, io_u);
1307
1308 /*
1309 * io_u never leaves this stack, used for iteration of all
1310 * io_u buffers.
1311 */
1312 io_u_qpush(&td->io_u_all, io_u);
1313
1314 if (td->io_ops->io_u_init) {
1315 int ret = td->io_ops->io_u_init(td, io_u);
1316
1317 if (ret) {
1318 log_err("fio: failed to init engine data: %d\n", ret);
1319 return 1;
1320 }
1321 }
1322 }
1323
1324 if (init_io_u_buffers(td))
1325 return 1;
1326
1327 if (init_file_completion_logging(td, max_units))
1328 return 1;
1329
1330 return 0;
1331}
1332
1333int init_io_u_buffers(struct thread_data *td)
1334{
1335 struct io_u *io_u;
1336 unsigned long long max_bs, min_write, trim_bs = 0;
1337 int i, max_units;
1338 int data_xfer = 1;
1339 char *p;
1340
1341 max_units = td->o.iodepth;
1342 max_bs = td_max_bs(td);
1343 min_write = td->o.min_bs[DDIR_WRITE];
1344 td->orig_buffer_size = (unsigned long long) max_bs
1345 * (unsigned long long) max_units;
1346
1347 if (td_trim(td) && td->o.num_range > 1) {
1348 trim_bs = td->o.num_range * sizeof(struct trim_range);
1349 td->orig_buffer_size = trim_bs
1350 * (unsigned long long) max_units;
1351 }
1352
1353 /*
1354 * For reads, writes, and multi-range trim operations we need a
1355 * data buffer
1356 */
1357 if (td_ioengine_flagged(td, FIO_NOIO) ||
1358 !(td_read(td) || td_write(td) || (td_trim(td) && td->o.num_range > 1)))
1359 data_xfer = 0;
1360
1361 /*
1362 * if we may later need to do address alignment, then add any
1363 * possible adjustment here so that we don't cause a buffer
1364 * overflow later. this adjustment may be too much if we get
1365 * lucky and the allocator gives us an aligned address.
1366 */
1367 if (td->o.odirect || td->o.mem_align ||
1368 td_ioengine_flagged(td, FIO_RAWIO))
1369 td->orig_buffer_size += page_mask + td->o.mem_align;
1370
1371 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1372 unsigned long long bs;
1373
1374 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1375 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1376 }
1377
1378 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1379 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1380 return 1;
1381 }
1382
1383 if (data_xfer && allocate_io_mem(td))
1384 return 1;
1385
1386 if (td->o.odirect || td->o.mem_align ||
1387 td_ioengine_flagged(td, FIO_RAWIO))
1388 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1389 else
1390 p = td->orig_buffer;
1391
1392 for (i = 0; i < max_units; i++) {
1393 io_u = td->io_u_all.io_us[i];
1394 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1395
1396 if (data_xfer) {
1397 io_u->buf = p;
1398 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1399
1400 if (td_write(td))
1401 io_u_fill_buffer(td, io_u, min_write, max_bs);
1402 if (td_write(td) && td->o.verify_pattern_bytes) {
1403 /*
1404 * Fill the buffer with the pattern if we are
1405 * going to be doing writes.
1406 */
1407 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1408 }
1409 }
1410 if (td_trim(td) && td->o.num_range > 1)
1411 p += trim_bs;
1412 else
1413 p += max_bs;
1414 }
1415
1416 return 0;
1417}
1418
1419#ifdef FIO_HAVE_IOSCHED_SWITCH
1420/*
1421 * These functions are Linux specific.
1422 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1423 */
1424static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1425{
1426 char tmp[256], tmp2[128], *p;
1427 FILE *f;
1428 int ret;
1429
1430 assert(file->du && file->du->sysfs_root);
1431 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1432
1433 f = fopen(tmp, "r+");
1434 if (!f) {
1435 if (errno == ENOENT) {
1436 log_err("fio: os or kernel doesn't support IO scheduler"
1437 " switching\n");
1438 return 0;
1439 }
1440 td_verror(td, errno, "fopen iosched");
1441 return 1;
1442 }
1443
1444 /*
1445 * Set io scheduler.
1446 */
1447 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1448 if (ferror(f) || ret != 1) {
1449 td_verror(td, errno, "fwrite");
1450 fclose(f);
1451 return 1;
1452 }
1453
1454 rewind(f);
1455
1456 /*
1457 * Read back and check that the selected scheduler is now the default.
1458 */
1459 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1460 if (ferror(f) || ret < 0) {
1461 td_verror(td, errno, "fread");
1462 fclose(f);
1463 return 1;
1464 }
1465 tmp[ret] = '\0';
1466 /*
1467 * either a list of io schedulers or "none\n" is expected. Strip the
1468 * trailing newline.
1469 */
1470 p = tmp;
1471 strsep(&p, "\n");
1472
1473 /*
1474 * Write to "none" entry doesn't fail, so check the result here.
1475 */
1476 if (!strcmp(tmp, "none")) {
1477 log_err("fio: io scheduler is not tunable\n");
1478 fclose(f);
1479 return 0;
1480 }
1481
1482 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1483 if (!strstr(tmp, tmp2)) {
1484 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1485 td_verror(td, EINVAL, "iosched_switch");
1486 fclose(f);
1487 return 1;
1488 }
1489
1490 fclose(f);
1491 return 0;
1492}
1493
1494static int switch_ioscheduler(struct thread_data *td)
1495{
1496 struct fio_file *f;
1497 unsigned int i;
1498 int ret = 0;
1499
1500 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1501 return 0;
1502
1503 assert(td->files && td->files[0]);
1504
1505 for_each_file(td, f, i) {
1506
1507 /* Only consider regular files and block device files */
1508 switch (f->filetype) {
1509 case FIO_TYPE_FILE:
1510 case FIO_TYPE_BLOCK:
1511 /*
1512 * Make sure that the device hosting the file could
1513 * be determined.
1514 */
1515 if (!f->du)
1516 continue;
1517 break;
1518 case FIO_TYPE_CHAR:
1519 case FIO_TYPE_PIPE:
1520 default:
1521 continue;
1522 }
1523
1524 ret = set_ioscheduler(td, f);
1525 if (ret)
1526 return ret;
1527 }
1528
1529 return 0;
1530}
1531
1532#else
1533
1534static int switch_ioscheduler(struct thread_data *td)
1535{
1536 return 0;
1537}
1538
1539#endif /* FIO_HAVE_IOSCHED_SWITCH */
1540
1541static bool keep_running(struct thread_data *td)
1542{
1543 unsigned long long limit;
1544
1545 if (td->done)
1546 return false;
1547 if (td->terminate)
1548 return false;
1549 if (td->o.time_based)
1550 return true;
1551 if (td->o.loops) {
1552 td->o.loops--;
1553 return true;
1554 }
1555 if (exceeds_number_ios(td))
1556 return false;
1557
1558 if (td->o.io_size)
1559 limit = td->o.io_size;
1560 else
1561 limit = td->o.size;
1562
1563 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1564 uint64_t diff;
1565
1566 /*
1567 * If the difference is less than the maximum IO size, we
1568 * are done.
1569 */
1570 diff = limit - ddir_rw_sum(td->io_bytes);
1571 if (diff < td_max_bs(td))
1572 return false;
1573
1574 if (fio_files_done(td) && !td->o.io_size)
1575 return false;
1576
1577 return true;
1578 }
1579
1580 return false;
1581}
1582
1583static int exec_string(struct thread_options *o, const char *string,
1584 const char *mode)
1585{
1586 int ret;
1587 char *str;
1588
1589 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1590 return -1;
1591
1592 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1593 o->name, mode);
1594 ret = system(str);
1595 if (ret == -1)
1596 log_err("fio: exec of cmd <%s> failed\n", str);
1597
1598 free(str);
1599 return ret;
1600}
1601
1602/*
1603 * Dry run to compute correct state of numberio for verification.
1604 */
1605static uint64_t do_dry_run(struct thread_data *td)
1606{
1607 td_set_runstate(td, TD_RUNNING);
1608
1609 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1610 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1611 struct io_u *io_u;
1612 int ret;
1613
1614 if (td->terminate || td->done)
1615 break;
1616
1617 io_u = get_io_u(td);
1618 if (IS_ERR_OR_NULL(io_u))
1619 break;
1620
1621 io_u_set(td, io_u, IO_U_F_FLIGHT);
1622 io_u->error = 0;
1623 io_u->resid = 0;
1624 if (ddir_rw(acct_ddir(io_u)))
1625 td->io_issues[acct_ddir(io_u)]++;
1626 if (ddir_rw(io_u->ddir)) {
1627 io_u_mark_depth(td, 1);
1628 td->ts.total_io_u[io_u->ddir]++;
1629 }
1630
1631 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1632 td->o.do_verify &&
1633 td->o.verify != VERIFY_NONE &&
1634 !td->o.experimental_verify)
1635 log_io_piece(td, io_u);
1636
1637 ret = io_u_sync_complete(td, io_u);
1638 (void) ret;
1639 }
1640
1641 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1642}
1643
1644struct fork_data {
1645 struct thread_data *td;
1646 struct sk_out *sk_out;
1647};
1648
1649/*
1650 * Entry point for the thread based jobs. The process based jobs end up
1651 * here as well, after a little setup.
1652 */
1653static void *thread_main(void *data)
1654{
1655 struct fork_data *fd = data;
1656 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1657 struct thread_data *td = fd->td;
1658 struct thread_options *o = &td->o;
1659 struct sk_out *sk_out = fd->sk_out;
1660 uint64_t bytes_done[DDIR_RWDIR_CNT];
1661 int deadlock_loop_cnt;
1662 bool clear_state;
1663 int ret;
1664
1665 sk_out_assign(sk_out);
1666 free(fd);
1667
1668 if (!o->use_thread) {
1669 setsid();
1670 td->pid = getpid();
1671 } else
1672 td->pid = gettid();
1673
1674 fio_local_clock_init();
1675
1676 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1677
1678 if (is_backend)
1679 fio_server_send_start(td);
1680
1681 INIT_FLIST_HEAD(&td->io_log_list);
1682 INIT_FLIST_HEAD(&td->io_hist_list);
1683 INIT_FLIST_HEAD(&td->verify_list);
1684 INIT_FLIST_HEAD(&td->trim_list);
1685 td->io_hist_tree = RB_ROOT;
1686
1687 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1688 if (ret) {
1689 td_verror(td, ret, "mutex_cond_init_pshared");
1690 goto err;
1691 }
1692 ret = cond_init_pshared(&td->verify_cond);
1693 if (ret) {
1694 td_verror(td, ret, "mutex_cond_pshared");
1695 goto err;
1696 }
1697
1698 td_set_runstate(td, TD_INITIALIZED);
1699 dprint(FD_MUTEX, "up startup_sem\n");
1700 fio_sem_up(startup_sem);
1701 dprint(FD_MUTEX, "wait on td->sem\n");
1702 fio_sem_down(td->sem);
1703 dprint(FD_MUTEX, "done waiting on td->sem\n");
1704
1705 /*
1706 * A new gid requires privilege, so we need to do this before setting
1707 * the uid.
1708 */
1709 if (o->gid != -1U && setgid(o->gid)) {
1710 td_verror(td, errno, "setgid");
1711 goto err;
1712 }
1713 if (o->uid != -1U && setuid(o->uid)) {
1714 td_verror(td, errno, "setuid");
1715 goto err;
1716 }
1717
1718 td_zone_gen_index(td);
1719
1720 /*
1721 * Do this early, we don't want the compress threads to be limited
1722 * to the same CPUs as the IO workers. So do this before we set
1723 * any potential CPU affinity
1724 */
1725 if (iolog_compress_init(td, sk_out))
1726 goto err;
1727
1728 /*
1729 * If we have a gettimeofday() thread, make sure we exclude that
1730 * thread from this job
1731 */
1732 if (o->gtod_cpu)
1733 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1734
1735 /*
1736 * Set affinity first, in case it has an impact on the memory
1737 * allocations.
1738 */
1739 if (fio_option_is_set(o, cpumask)) {
1740 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1741 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1742 if (!ret) {
1743 log_err("fio: no CPUs set\n");
1744 log_err("fio: Try increasing number of available CPUs\n");
1745 td_verror(td, EINVAL, "cpus_split");
1746 goto err;
1747 }
1748 }
1749 ret = fio_setaffinity(td->pid, o->cpumask);
1750 if (ret == -1) {
1751 td_verror(td, errno, "cpu_set_affinity");
1752 goto err;
1753 }
1754 }
1755
1756#ifdef CONFIG_LIBNUMA
1757 /* numa node setup */
1758 if (fio_option_is_set(o, numa_cpunodes) ||
1759 fio_option_is_set(o, numa_memnodes)) {
1760 struct bitmask *mask;
1761
1762 if (numa_available() < 0) {
1763 td_verror(td, errno, "Does not support NUMA API\n");
1764 goto err;
1765 }
1766
1767 if (fio_option_is_set(o, numa_cpunodes)) {
1768 mask = numa_parse_nodestring(o->numa_cpunodes);
1769 ret = numa_run_on_node_mask(mask);
1770 numa_free_nodemask(mask);
1771 if (ret == -1) {
1772 td_verror(td, errno, \
1773 "numa_run_on_node_mask failed\n");
1774 goto err;
1775 }
1776 }
1777
1778 if (fio_option_is_set(o, numa_memnodes)) {
1779 mask = NULL;
1780 if (o->numa_memnodes)
1781 mask = numa_parse_nodestring(o->numa_memnodes);
1782
1783 switch (o->numa_mem_mode) {
1784 case MPOL_INTERLEAVE:
1785 numa_set_interleave_mask(mask);
1786 break;
1787 case MPOL_BIND:
1788 numa_set_membind(mask);
1789 break;
1790 case MPOL_LOCAL:
1791 numa_set_localalloc();
1792 break;
1793 case MPOL_PREFERRED:
1794 numa_set_preferred(o->numa_mem_prefer_node);
1795 break;
1796 case MPOL_DEFAULT:
1797 default:
1798 break;
1799 }
1800
1801 if (mask)
1802 numa_free_nodemask(mask);
1803
1804 }
1805 }
1806#endif
1807
1808 if (fio_pin_memory(td))
1809 goto err;
1810
1811 /*
1812 * May alter parameters that init_io_u() will use, so we need to
1813 * do this first.
1814 */
1815 if (!init_iolog(td))
1816 goto err;
1817
1818 /* ioprio_set() has to be done before td_io_init() */
1819 if (fio_option_is_set(o, ioprio) ||
1820 fio_option_is_set(o, ioprio_class) ||
1821 fio_option_is_set(o, ioprio_hint)) {
1822 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class,
1823 o->ioprio, o->ioprio_hint);
1824 if (ret == -1) {
1825 td_verror(td, errno, "ioprio_set");
1826 goto err;
1827 }
1828 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio,
1829 o->ioprio_hint);
1830 td->ts.ioprio = td->ioprio;
1831 }
1832
1833 if (td_io_init(td))
1834 goto err;
1835
1836 if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1 && td->o.io_submit_mode != IO_MODE_OFFLOAD) {
1837 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1838 "are selected, queue depth will be capped at 1\n");
1839 }
1840
1841 if (init_io_u(td))
1842 goto err;
1843
1844 if (td->io_ops->post_init && td->io_ops->post_init(td))
1845 goto err;
1846
1847 if (o->verify_async && verify_async_init(td))
1848 goto err;
1849
1850 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1851 goto err;
1852
1853 errno = 0;
1854 if (nice(o->nice) == -1 && errno != 0) {
1855 td_verror(td, errno, "nice");
1856 goto err;
1857 }
1858
1859 if (o->ioscheduler && switch_ioscheduler(td))
1860 goto err;
1861
1862 if (!o->create_serialize && setup_files(td))
1863 goto err;
1864
1865 if (!init_random_map(td))
1866 goto err;
1867
1868 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1869 goto err;
1870
1871 if (o->pre_read && !pre_read_files(td))
1872 goto err;
1873
1874 fio_verify_init(td);
1875
1876 if (rate_submit_init(td, sk_out))
1877 goto err;
1878
1879 set_epoch_time(td, o->log_alternate_epoch_clock_id, o->job_start_clock_id);
1880 fio_getrusage(&td->ru_start);
1881 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1882 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1883 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1884
1885 init_thinktime(td);
1886
1887 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1888 o->ratemin[DDIR_TRIM]) {
1889 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1890 sizeof(td->bw_sample_time));
1891 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1892 sizeof(td->bw_sample_time));
1893 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1894 sizeof(td->bw_sample_time));
1895 }
1896
1897 memset(bytes_done, 0, sizeof(bytes_done));
1898 clear_state = false;
1899
1900 while (keep_running(td)) {
1901 uint64_t verify_bytes;
1902
1903 fio_gettime(&td->start, NULL);
1904 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1905
1906 if (clear_state) {
1907 clear_io_state(td, 0);
1908
1909 if (o->unlink_each_loop && unlink_all_files(td))
1910 break;
1911 }
1912
1913 prune_io_piece_log(td);
1914
1915 if (td->o.verify_only && td_write(td))
1916 verify_bytes = do_dry_run(td);
1917 else {
1918 if (!td->o.rand_repeatable)
1919 /* save verify rand state to replay hdr seeds later at verify */
1920 frand_copy(&td->verify_state_last_do_io, &td->verify_state);
1921 do_io(td, bytes_done);
1922 if (!td->o.rand_repeatable)
1923 frand_copy(&td->verify_state, &td->verify_state_last_do_io);
1924 if (!ddir_rw_sum(bytes_done)) {
1925 fio_mark_td_terminate(td);
1926 verify_bytes = 0;
1927 } else {
1928 verify_bytes = bytes_done[DDIR_WRITE] +
1929 bytes_done[DDIR_TRIM];
1930 }
1931 }
1932
1933 /*
1934 * If we took too long to shut down, the main thread could
1935 * already consider us reaped/exited. If that happens, break
1936 * out and clean up.
1937 */
1938 if (td->runstate >= TD_EXITED)
1939 break;
1940
1941 clear_state = true;
1942
1943 /*
1944 * Make sure we've successfully updated the rusage stats
1945 * before waiting on the stat mutex. Otherwise we could have
1946 * the stat thread holding stat mutex and waiting for
1947 * the rusage_sem, which would never get upped because
1948 * this thread is waiting for the stat mutex.
1949 */
1950 deadlock_loop_cnt = 0;
1951 do {
1952 check_update_rusage(td);
1953 if (!fio_sem_down_trylock(stat_sem))
1954 break;
1955 usleep(1000);
1956 if (deadlock_loop_cnt++ > 5000) {
1957 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1958 td->error = EDEADLK;
1959 goto err;
1960 }
1961 } while (1);
1962
1963 if (td->io_bytes[DDIR_READ] && (td_read(td) ||
1964 ((td->flags & TD_F_VER_BACKLOG) && td_write(td))))
1965 update_runtime(td, elapsed_us, DDIR_READ);
1966 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1967 update_runtime(td, elapsed_us, DDIR_WRITE);
1968 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1969 update_runtime(td, elapsed_us, DDIR_TRIM);
1970 fio_gettime(&td->start, NULL);
1971 fio_sem_up(stat_sem);
1972
1973 if (td->error || td->terminate)
1974 break;
1975
1976 if (!o->do_verify ||
1977 o->verify == VERIFY_NONE ||
1978 td_ioengine_flagged(td, FIO_UNIDIR))
1979 continue;
1980
1981 clear_io_state(td, 0);
1982
1983 fio_gettime(&td->start, NULL);
1984
1985 do_verify(td, verify_bytes);
1986
1987 /*
1988 * See comment further up for why this is done here.
1989 */
1990 check_update_rusage(td);
1991
1992 fio_sem_down(stat_sem);
1993 update_runtime(td, elapsed_us, DDIR_READ);
1994 fio_gettime(&td->start, NULL);
1995 fio_sem_up(stat_sem);
1996
1997 if (td->error || td->terminate)
1998 break;
1999 }
2000
2001 /*
2002 * Acquire this lock if we were doing overlap checking in
2003 * offload mode so that we don't clean up this job while
2004 * another thread is checking its io_u's for overlap
2005 */
2006 if (td_offload_overlap(td)) {
2007 int res;
2008
2009 res = pthread_mutex_lock(&overlap_check);
2010 if (res) {
2011 td->error = errno;
2012 goto err;
2013 }
2014 }
2015 td_set_runstate(td, TD_FINISHING);
2016 if (td_offload_overlap(td)) {
2017 int res;
2018
2019 res = pthread_mutex_unlock(&overlap_check);
2020 if (res) {
2021 td->error = errno;
2022 goto err;
2023 }
2024 }
2025
2026 update_rusage_stat(td);
2027 td->ts.total_run_time = mtime_since_now(&td->epoch);
2028 for_each_rw_ddir(ddir) {
2029 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2030 }
2031
2032 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
2033 (td->o.verify != VERIFY_NONE && td_write(td)))
2034 verify_save_state(td->thread_number);
2035
2036 fio_unpin_memory(td);
2037
2038 td_writeout_logs(td, true);
2039
2040 iolog_compress_exit(td);
2041 rate_submit_exit(td);
2042
2043 if (o->exec_postrun)
2044 exec_string(o, o->exec_postrun, "postrun");
2045
2046 if (exitall_on_terminate || (o->exitall_error && td->error))
2047 fio_terminate_threads(td->groupid, td->o.exit_what);
2048
2049err:
2050 if (td->error)
2051 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
2052 td->verror);
2053
2054 if (o->verify_async)
2055 verify_async_exit(td);
2056
2057 close_and_free_files(td);
2058 cleanup_io_u(td);
2059 close_ioengine(td);
2060 cgroup_shutdown(td, cgroup_mnt);
2061 verify_free_state(td);
2062 td_zone_free_index(td);
2063
2064 if (fio_option_is_set(o, cpumask)) {
2065 ret = fio_cpuset_exit(&o->cpumask);
2066 if (ret)
2067 td_verror(td, ret, "fio_cpuset_exit");
2068 }
2069
2070 /*
2071 * do this very late, it will log file closing as well
2072 */
2073 if (o->write_iolog_file)
2074 write_iolog_close(td);
2075 if (td->io_log_rfile)
2076 fclose(td->io_log_rfile);
2077
2078 td_set_runstate(td, TD_EXITED);
2079
2080 /*
2081 * Do this last after setting our runstate to exited, so we
2082 * know that the stat thread is signaled.
2083 */
2084 check_update_rusage(td);
2085
2086 sk_out_drop();
2087 return (void *) (uintptr_t) td->error;
2088}
2089
2090/*
2091 * Run over the job map and reap the threads that have exited, if any.
2092 */
2093static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2094 uint64_t *m_rate)
2095{
2096 unsigned int cputhreads, realthreads, pending;
2097 int status, ret;
2098
2099 /*
2100 * reap exited threads (TD_EXITED -> TD_REAPED)
2101 */
2102 realthreads = pending = cputhreads = 0;
2103 for_each_td(td) {
2104 int flags = 0;
2105
2106 if (!strcmp(td->o.ioengine, "cpuio"))
2107 cputhreads++;
2108 else
2109 realthreads++;
2110
2111 if (!td->pid) {
2112 pending++;
2113 continue;
2114 }
2115 if (td->runstate == TD_REAPED)
2116 continue;
2117 if (td->o.use_thread) {
2118 if (td->runstate == TD_EXITED) {
2119 td_set_runstate(td, TD_REAPED);
2120 goto reaped;
2121 }
2122 continue;
2123 }
2124
2125 flags = WNOHANG;
2126 if (td->runstate == TD_EXITED)
2127 flags = 0;
2128
2129 /*
2130 * check if someone quit or got killed in an unusual way
2131 */
2132 ret = waitpid(td->pid, &status, flags);
2133 if (ret < 0) {
2134 if (errno == ECHILD) {
2135 log_err("fio: pid=%d disappeared %d\n",
2136 (int) td->pid, td->runstate);
2137 td->sig = ECHILD;
2138 td_set_runstate(td, TD_REAPED);
2139 goto reaped;
2140 }
2141 perror("waitpid");
2142 } else if (ret == td->pid) {
2143 if (WIFSIGNALED(status)) {
2144 int sig = WTERMSIG(status);
2145
2146 if (sig != SIGTERM && sig != SIGUSR2)
2147 log_err("fio: pid=%d, got signal=%d\n",
2148 (int) td->pid, sig);
2149 td->sig = sig;
2150 td_set_runstate(td, TD_REAPED);
2151 goto reaped;
2152 }
2153 if (WIFEXITED(status)) {
2154 if (WEXITSTATUS(status) && !td->error)
2155 td->error = WEXITSTATUS(status);
2156
2157 td_set_runstate(td, TD_REAPED);
2158 goto reaped;
2159 }
2160 }
2161
2162 /*
2163 * If the job is stuck, do a forceful timeout of it and
2164 * move on.
2165 */
2166 if (td->terminate &&
2167 td->runstate < TD_FSYNCING &&
2168 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2169 log_err("fio: job '%s' (state=%d) hasn't exited in "
2170 "%lu seconds, it appears to be stuck. Doing "
2171 "forceful exit of this job.\n",
2172 td->o.name, td->runstate,
2173 (unsigned long) time_since_now(&td->terminate_time));
2174 td_set_runstate(td, TD_REAPED);
2175 goto reaped;
2176 }
2177
2178 /*
2179 * thread is not dead, continue
2180 */
2181 pending++;
2182 continue;
2183reaped:
2184 (*nr_running)--;
2185 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2186 (*t_rate) -= ddir_rw_sum(td->o.rate);
2187 if (!td->pid)
2188 pending--;
2189
2190 if (td->error)
2191 exit_value++;
2192
2193 done_secs += mtime_since_now(&td->epoch) / 1000;
2194 profile_td_exit(td);
2195 flow_exit_job(td);
2196 } end_for_each();
2197
2198 if (*nr_running == cputhreads && !pending && realthreads)
2199 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2200}
2201
2202static bool __check_trigger_file(void)
2203{
2204 struct stat sb;
2205
2206 if (!trigger_file)
2207 return false;
2208
2209 if (stat(trigger_file, &sb))
2210 return false;
2211
2212 if (unlink(trigger_file) < 0)
2213 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2214 strerror(errno));
2215
2216 return true;
2217}
2218
2219static bool trigger_timedout(void)
2220{
2221 if (trigger_timeout)
2222 if (time_since_genesis() >= trigger_timeout) {
2223 trigger_timeout = 0;
2224 return true;
2225 }
2226
2227 return false;
2228}
2229
2230void exec_trigger(const char *cmd)
2231{
2232 int ret;
2233
2234 if (!cmd || cmd[0] == '\0')
2235 return;
2236
2237 ret = system(cmd);
2238 if (ret == -1)
2239 log_err("fio: failed executing %s trigger\n", cmd);
2240}
2241
2242void check_trigger_file(void)
2243{
2244 if (__check_trigger_file() || trigger_timedout()) {
2245 if (nr_clients)
2246 fio_clients_send_trigger(trigger_remote_cmd);
2247 else {
2248 verify_save_state(IO_LIST_ALL);
2249 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2250 exec_trigger(trigger_cmd);
2251 }
2252 }
2253}
2254
2255static int fio_verify_load_state(struct thread_data *td)
2256{
2257 int ret;
2258
2259 if (!td->o.verify_state)
2260 return 0;
2261
2262 if (is_backend) {
2263 void *data;
2264
2265 ret = fio_server_get_verify_state(td->o.name,
2266 td->thread_number - 1, &data);
2267 if (!ret)
2268 verify_assign_state(td, data);
2269 } else {
2270 char prefix[PATH_MAX];
2271
2272 if (aux_path)
2273 sprintf(prefix, "%s%clocal", aux_path,
2274 FIO_OS_PATH_SEPARATOR);
2275 else
2276 strcpy(prefix, "local");
2277 ret = verify_load_state(td, prefix);
2278 }
2279
2280 return ret;
2281}
2282
2283static void do_usleep(unsigned int usecs)
2284{
2285 check_for_running_stats();
2286 check_trigger_file();
2287 usleep(usecs);
2288}
2289
2290static bool check_mount_writes(struct thread_data *td)
2291{
2292 struct fio_file *f;
2293 unsigned int i;
2294
2295 if (!td_write(td) || td->o.allow_mounted_write)
2296 return false;
2297
2298 /*
2299 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2300 * are mkfs'd and mounted.
2301 */
2302 for_each_file(td, f, i) {
2303#ifdef FIO_HAVE_CHARDEV_SIZE
2304 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2305#else
2306 if (f->filetype != FIO_TYPE_BLOCK)
2307#endif
2308 continue;
2309 if (device_is_mounted(f->file_name))
2310 goto mounted;
2311 }
2312
2313 return false;
2314mounted:
2315 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2316 return true;
2317}
2318
2319static bool waitee_running(struct thread_data *me)
2320{
2321 const char *waitee = me->o.wait_for;
2322 const char *self = me->o.name;
2323
2324 if (!waitee)
2325 return false;
2326
2327 for_each_td(td) {
2328 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2329 continue;
2330
2331 if (td->runstate < TD_EXITED) {
2332 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2333 self, td->o.name,
2334 runstate_to_name(td->runstate));
2335 return true;
2336 }
2337 } end_for_each();
2338
2339 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2340 return false;
2341}
2342
2343/*
2344 * Main function for kicking off and reaping jobs, as needed.
2345 */
2346static void run_threads(struct sk_out *sk_out)
2347{
2348 struct thread_data *td;
2349 unsigned int i, todo, nr_running, nr_started;
2350 uint64_t m_rate, t_rate;
2351 uint64_t spent;
2352
2353 if (fio_gtod_offload && fio_start_gtod_thread())
2354 return;
2355
2356 fio_idle_prof_init();
2357
2358 set_sig_handlers();
2359
2360 nr_thread = nr_process = 0;
2361 for_each_td(td) {
2362 if (check_mount_writes(td))
2363 return;
2364 if (td->o.use_thread)
2365 nr_thread++;
2366 else
2367 nr_process++;
2368 } end_for_each();
2369
2370 if (output_format & FIO_OUTPUT_NORMAL) {
2371 struct buf_output out;
2372
2373 buf_output_init(&out);
2374 __log_buf(&out, "Starting ");
2375 if (nr_thread)
2376 __log_buf(&out, "%d thread%s", nr_thread,
2377 nr_thread > 1 ? "s" : "");
2378 if (nr_process) {
2379 if (nr_thread)
2380 __log_buf(&out, " and ");
2381 __log_buf(&out, "%d process%s", nr_process,
2382 nr_process > 1 ? "es" : "");
2383 }
2384 __log_buf(&out, "\n");
2385 log_info_buf(out.buf, out.buflen);
2386 buf_output_free(&out);
2387 }
2388
2389 todo = thread_number;
2390 nr_running = 0;
2391 nr_started = 0;
2392 m_rate = t_rate = 0;
2393
2394 for_each_td(td) {
2395 print_status_init(td->thread_number - 1);
2396
2397 if (!td->o.create_serialize)
2398 continue;
2399
2400 if (fio_verify_load_state(td))
2401 goto reap;
2402
2403 /*
2404 * do file setup here so it happens sequentially,
2405 * we don't want X number of threads getting their
2406 * client data interspersed on disk
2407 */
2408 if (setup_files(td)) {
2409reap:
2410 exit_value++;
2411 if (td->error)
2412 log_err("fio: pid=%d, err=%d/%s\n",
2413 (int) td->pid, td->error, td->verror);
2414 td_set_runstate(td, TD_REAPED);
2415 todo--;
2416 } else {
2417 struct fio_file *f;
2418 unsigned int j;
2419
2420 /*
2421 * for sharing to work, each job must always open
2422 * its own files. so close them, if we opened them
2423 * for creation
2424 */
2425 for_each_file(td, f, j) {
2426 if (fio_file_open(f))
2427 td_io_close_file(td, f);
2428 }
2429 }
2430 } end_for_each();
2431
2432 /* start idle threads before io threads start to run */
2433 fio_idle_prof_start();
2434
2435 set_genesis_time();
2436
2437 while (todo) {
2438 struct thread_data *map[REAL_MAX_JOBS];
2439 struct timespec this_start;
2440 int this_jobs = 0, left;
2441 struct fork_data *fd;
2442
2443 /*
2444 * create threads (TD_NOT_CREATED -> TD_CREATED)
2445 */
2446 for_each_td(td) {
2447 if (td->runstate != TD_NOT_CREATED)
2448 continue;
2449
2450 /*
2451 * never got a chance to start, killed by other
2452 * thread for some reason
2453 */
2454 if (td->terminate) {
2455 todo--;
2456 continue;
2457 }
2458
2459 if (td->o.start_delay) {
2460 spent = utime_since_genesis();
2461
2462 if (td->o.start_delay > spent)
2463 continue;
2464 }
2465
2466 if (td->o.stonewall && (nr_started || nr_running)) {
2467 dprint(FD_PROCESS, "%s: stonewall wait\n",
2468 td->o.name);
2469 break;
2470 }
2471
2472 if (waitee_running(td)) {
2473 dprint(FD_PROCESS, "%s: waiting for %s\n",
2474 td->o.name, td->o.wait_for);
2475 continue;
2476 }
2477
2478 init_disk_util(td);
2479
2480 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2481 td->update_rusage = 0;
2482
2483 /*
2484 * Set state to created. Thread will transition
2485 * to TD_INITIALIZED when it's done setting up.
2486 */
2487 td_set_runstate(td, TD_CREATED);
2488 map[this_jobs++] = td;
2489 nr_started++;
2490
2491 fd = calloc(1, sizeof(*fd));
2492 fd->td = td;
2493 fd->sk_out = sk_out;
2494
2495 if (td->o.use_thread) {
2496 int ret;
2497
2498 dprint(FD_PROCESS, "will pthread_create\n");
2499 ret = pthread_create(&td->thread, NULL,
2500 thread_main, fd);
2501 if (ret) {
2502 log_err("pthread_create: %s\n",
2503 strerror(ret));
2504 free(fd);
2505 nr_started--;
2506 break;
2507 }
2508 fd = NULL;
2509 ret = pthread_detach(td->thread);
2510 if (ret)
2511 log_err("pthread_detach: %s",
2512 strerror(ret));
2513 } else {
2514 pid_t pid;
2515 void *eo;
2516 dprint(FD_PROCESS, "will fork\n");
2517 eo = td->eo;
2518 read_barrier();
2519 pid = fork();
2520 if (!pid) {
2521 int ret;
2522
2523 ret = (int)(uintptr_t)thread_main(fd);
2524 _exit(ret);
2525 } else if (__td_index == fio_debug_jobno)
2526 *fio_debug_jobp = pid;
2527 free(eo);
2528 free(fd);
2529 fd = NULL;
2530 }
2531 dprint(FD_MUTEX, "wait on startup_sem\n");
2532 if (fio_sem_down_timeout(startup_sem, 10000)) {
2533 log_err("fio: job startup hung? exiting.\n");
2534 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2535 fio_abort = true;
2536 nr_started--;
2537 free(fd);
2538 break;
2539 }
2540 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2541 } end_for_each();
2542
2543 /*
2544 * Wait for the started threads to transition to
2545 * TD_INITIALIZED.
2546 */
2547 fio_gettime(&this_start, NULL);
2548 left = this_jobs;
2549 while (left && !fio_abort) {
2550 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2551 break;
2552
2553 do_usleep(100000);
2554
2555 for (i = 0; i < this_jobs; i++) {
2556 td = map[i];
2557 if (!td)
2558 continue;
2559 if (td->runstate == TD_INITIALIZED) {
2560 map[i] = NULL;
2561 left--;
2562 } else if (td->runstate >= TD_EXITED) {
2563 map[i] = NULL;
2564 left--;
2565 todo--;
2566 nr_running++; /* work-around... */
2567 }
2568 }
2569 }
2570
2571 if (left) {
2572 log_err("fio: %d job%s failed to start\n", left,
2573 left > 1 ? "s" : "");
2574 for (i = 0; i < this_jobs; i++) {
2575 td = map[i];
2576 if (!td)
2577 continue;
2578 kill(td->pid, SIGTERM);
2579 }
2580 break;
2581 }
2582
2583 /*
2584 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2585 */
2586 for_each_td(td) {
2587 if (td->runstate != TD_INITIALIZED)
2588 continue;
2589
2590 if (in_ramp_time(td))
2591 td_set_runstate(td, TD_RAMP);
2592 else
2593 td_set_runstate(td, TD_RUNNING);
2594 nr_running++;
2595 nr_started--;
2596 m_rate += ddir_rw_sum(td->o.ratemin);
2597 t_rate += ddir_rw_sum(td->o.rate);
2598 todo--;
2599 fio_sem_up(td->sem);
2600 } end_for_each();
2601
2602 reap_threads(&nr_running, &t_rate, &m_rate);
2603
2604 if (todo)
2605 do_usleep(100000);
2606 }
2607
2608 while (nr_running) {
2609 reap_threads(&nr_running, &t_rate, &m_rate);
2610 do_usleep(10000);
2611 }
2612
2613 fio_idle_prof_stop();
2614
2615 update_io_ticks();
2616}
2617
2618static void free_disk_util(void)
2619{
2620 disk_util_prune_entries();
2621 helper_thread_destroy();
2622}
2623
2624int fio_backend(struct sk_out *sk_out)
2625{
2626 int i;
2627 if (exec_profile) {
2628 if (load_profile(exec_profile))
2629 return 1;
2630 free(exec_profile);
2631 exec_profile = NULL;
2632 }
2633 if (!thread_number)
2634 return 0;
2635
2636 if (write_bw_log) {
2637 struct log_params p = {
2638 .log_type = IO_LOG_TYPE_BW,
2639 };
2640
2641 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2642 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2643 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2644 }
2645
2646 if (init_global_dedupe_working_set_seeds()) {
2647 log_err("fio: failed to initialize global dedupe working set\n");
2648 return 1;
2649 }
2650
2651 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2652 if (!sk_out)
2653 is_local_backend = true;
2654 if (startup_sem == NULL)
2655 return 1;
2656
2657 set_genesis_time();
2658 stat_init();
2659 if (helper_thread_create(startup_sem, sk_out))
2660 log_err("fio: failed to create helper thread\n");
2661
2662 cgroup_list = smalloc(sizeof(*cgroup_list));
2663 if (cgroup_list)
2664 INIT_FLIST_HEAD(cgroup_list);
2665
2666 run_threads(sk_out);
2667
2668 helper_thread_exit();
2669
2670 if (!fio_abort) {
2671 __show_run_stats();
2672 if (write_bw_log) {
2673 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2674 struct io_log *log = agg_io_log[i];
2675
2676 flush_log(log, false);
2677 free_log(log);
2678 }
2679 }
2680 }
2681
2682 for_each_td(td) {
2683 struct thread_stat *ts = &td->ts;
2684
2685 free_clat_prio_stats(ts);
2686 steadystate_free(td);
2687 fio_options_free(td);
2688 fio_dump_options_free(td);
2689 if (td->rusage_sem) {
2690 fio_sem_remove(td->rusage_sem);
2691 td->rusage_sem = NULL;
2692 }
2693 fio_sem_remove(td->sem);
2694 td->sem = NULL;
2695 } end_for_each();
2696
2697 free_disk_util();
2698 if (cgroup_list) {
2699 cgroup_kill(cgroup_list);
2700 sfree(cgroup_list);
2701 }
2702
2703 fio_sem_remove(startup_sem);
2704 stat_exit();
2705 return exit_value;
2706}