Use fio_option_is_set() for ioprio setting
[fio.git] / HOWTO
... / ...
CommitLineData
1Table of contents
2-----------------
3
41. Overview
52. How fio works
63. Running fio
74. Job file format
85. Detailed list of parameters
96. Normal output
107. Terse output
118. Trace file format
129. CPU idleness profiling
13
141.0 Overview and history
15------------------------
16fio was originally written to save me the hassle of writing special test
17case programs when I wanted to test a specific workload, either for
18performance reasons or to find/reproduce a bug. The process of writing
19such a test app can be tiresome, especially if you have to do it often.
20Hence I needed a tool that would be able to simulate a given io workload
21without resorting to writing a tailored test case again and again.
22
23A test work load is difficult to define, though. There can be any number
24of processes or threads involved, and they can each be using their own
25way of generating io. You could have someone dirtying large amounts of
26memory in an memory mapped file, or maybe several threads issuing
27reads using asynchronous io. fio needed to be flexible enough to
28simulate both of these cases, and many more.
29
302.0 How fio works
31-----------------
32The first step in getting fio to simulate a desired io workload, is
33writing a job file describing that specific setup. A job file may contain
34any number of threads and/or files - the typical contents of the job file
35is a global section defining shared parameters, and one or more job
36sections describing the jobs involved. When run, fio parses this file
37and sets everything up as described. If we break down a job from top to
38bottom, it contains the following basic parameters:
39
40 IO type Defines the io pattern issued to the file(s).
41 We may only be reading sequentially from this
42 file(s), or we may be writing randomly. Or even
43 mixing reads and writes, sequentially or randomly.
44
45 Block size In how large chunks are we issuing io? This may be
46 a single value, or it may describe a range of
47 block sizes.
48
49 IO size How much data are we going to be reading/writing.
50
51 IO engine How do we issue io? We could be memory mapping the
52 file, we could be using regular read/write, we
53 could be using splice, async io, syslet, or even
54 SG (SCSI generic sg).
55
56 IO depth If the io engine is async, how large a queuing
57 depth do we want to maintain?
58
59 IO type Should we be doing buffered io, or direct/raw io?
60
61 Num files How many files are we spreading the workload over.
62
63 Num threads How many threads or processes should we spread
64 this workload over.
65
66The above are the basic parameters defined for a workload, in addition
67there's a multitude of parameters that modify other aspects of how this
68job behaves.
69
70
713.0 Running fio
72---------------
73See the README file for command line parameters, there are only a few
74of them.
75
76Running fio is normally the easiest part - you just give it the job file
77(or job files) as parameters:
78
79$ fio job_file
80
81and it will start doing what the job_file tells it to do. You can give
82more than one job file on the command line, fio will serialize the running
83of those files. Internally that is the same as using the 'stonewall'
84parameter described in the parameter section.
85
86If the job file contains only one job, you may as well just give the
87parameters on the command line. The command line parameters are identical
88to the job parameters, with a few extra that control global parameters
89(see README). For example, for the job file parameter iodepth=2, the
90mirror command line option would be --iodepth 2 or --iodepth=2. You can
91also use the command line for giving more than one job entry. For each
92--name option that fio sees, it will start a new job with that name.
93Command line entries following a --name entry will apply to that job,
94until there are no more entries or a new --name entry is seen. This is
95similar to the job file options, where each option applies to the current
96job until a new [] job entry is seen.
97
98fio does not need to run as root, except if the files or devices specified
99in the job section requires that. Some other options may also be restricted,
100such as memory locking, io scheduler switching, and decreasing the nice value.
101
102
1034.0 Job file format
104-------------------
105As previously described, fio accepts one or more job files describing
106what it is supposed to do. The job file format is the classic ini file,
107where the names enclosed in [] brackets define the job name. You are free
108to use any ascii name you want, except 'global' which has special meaning.
109A global section sets defaults for the jobs described in that file. A job
110may override a global section parameter, and a job file may even have
111several global sections if so desired. A job is only affected by a global
112section residing above it. If the first character in a line is a ';' or a
113'#', the entire line is discarded as a comment.
114
115So let's look at a really simple job file that defines two processes, each
116randomly reading from a 128MB file.
117
118; -- start job file --
119[global]
120rw=randread
121size=128m
122
123[job1]
124
125[job2]
126
127; -- end job file --
128
129As you can see, the job file sections themselves are empty as all the
130described parameters are shared. As no filename= option is given, fio
131makes up a filename for each of the jobs as it sees fit. On the command
132line, this job would look as follows:
133
134$ fio --name=global --rw=randread --size=128m --name=job1 --name=job2
135
136
137Let's look at an example that has a number of processes writing randomly
138to files.
139
140; -- start job file --
141[random-writers]
142ioengine=libaio
143iodepth=4
144rw=randwrite
145bs=32k
146direct=0
147size=64m
148numjobs=4
149
150; -- end job file --
151
152Here we have no global section, as we only have one job defined anyway.
153We want to use async io here, with a depth of 4 for each file. We also
154increased the buffer size used to 32KB and define numjobs to 4 to
155fork 4 identical jobs. The result is 4 processes each randomly writing
156to their own 64MB file. Instead of using the above job file, you could
157have given the parameters on the command line. For this case, you would
158specify:
159
160$ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --direct=0 --size=64m --numjobs=4
161
162When fio is utilized as a basis of any reasonably large test suite, it might be
163desirable to share a set of standardized settings across multiple job files.
164Instead of copy/pasting such settings, any section may pull in an external
165.fio file with 'include filename' directive, as in the following example:
166
167; -- start job file including.fio --
168[global]
169filename=/tmp/test
170filesize=1m
171include glob-include.fio
172
173[test]
174rw=randread
175bs=4k
176time_based=1
177runtime=10
178include test-include.fio
179; -- end job file including.fio --
180
181; -- start job file glob-include.fio --
182thread=1
183group_reporting=1
184; -- end job file glob-include.fio --
185
186; -- start job file test-include.fio --
187ioengine=libaio
188iodepth=4
189; -- end job file test-include.fio --
190
191Settings pulled into a section apply to that section only (except global
192section). Include directives may be nested in that any included file may
193contain further include directive(s). Include files may not contain []
194sections.
195
196
1974.1 Environment variables
198-------------------------
199
200fio also supports environment variable expansion in job files. Any
201substring of the form "${VARNAME}" as part of an option value (in other
202words, on the right of the `='), will be expanded to the value of the
203environment variable called VARNAME. If no such environment variable
204is defined, or VARNAME is the empty string, the empty string will be
205substituted.
206
207As an example, let's look at a sample fio invocation and job file:
208
209$ SIZE=64m NUMJOBS=4 fio jobfile.fio
210
211; -- start job file --
212[random-writers]
213rw=randwrite
214size=${SIZE}
215numjobs=${NUMJOBS}
216; -- end job file --
217
218This will expand to the following equivalent job file at runtime:
219
220; -- start job file --
221[random-writers]
222rw=randwrite
223size=64m
224numjobs=4
225; -- end job file --
226
227fio ships with a few example job files, you can also look there for
228inspiration.
229
2304.2 Reserved keywords
231---------------------
232
233Additionally, fio has a set of reserved keywords that will be replaced
234internally with the appropriate value. Those keywords are:
235
236$pagesize The architecture page size of the running system
237$mb_memory Megabytes of total memory in the system
238$ncpus Number of online available CPUs
239
240These can be used on the command line or in the job file, and will be
241automatically substituted with the current system values when the job
242is run. Simple math is also supported on these keywords, so you can
243perform actions like:
244
245size=8*$mb_memory
246
247and get that properly expanded to 8 times the size of memory in the
248machine.
249
250
2515.0 Detailed list of parameters
252-------------------------------
253
254This section describes in details each parameter associated with a job.
255Some parameters take an option of a given type, such as an integer or
256a string. Anywhere a numeric value is required, an arithmetic expression
257may be used, provided it is surrounded by parentheses. Supported operators
258are:
259
260 addition (+)
261 subtraction (-)
262 multiplication (*)
263 division (/)
264 modulus (%)
265 exponentiation (^)
266
267For time values in expressions, units are microseconds by default. This is
268different than for time values not in expressions (not enclosed in
269parentheses). The following types are used:
270
271str String. This is a sequence of alpha characters.
272time Integer with possible time suffix. In seconds unless otherwise
273 specified, use eg 10m for 10 minutes. Accepts s/m/h for seconds,
274 minutes, and hours, and accepts 'ms' (or 'msec') for milliseconds,
275 and 'us' (or 'usec') for microseconds.
276int SI integer. A whole number value, which may contain a suffix
277 describing the base of the number. Accepted suffixes are k/m/g/t/p,
278 meaning kilo, mega, giga, tera, and peta. The suffix is not case
279 sensitive, and you may also include trailing 'b' (eg 'kb' is the same
280 as 'k'). So if you want to specify 4096, you could either write
281 out '4096' or just give 4k. The suffixes signify base 2 values, so
282 1024 is 1k and 1024k is 1m and so on, unless the suffix is explicitly
283 set to a base 10 value using 'kib', 'mib', 'gib', etc. If that is the
284 case, then 1000 is used as the multiplier. This can be handy for
285 disks, since manufacturers generally use base 10 values when listing
286 the capacity of a drive. If the option accepts an upper and lower
287 range, use a colon ':' or minus '-' to separate such values. May also
288 include a prefix to indicate numbers base. If 0x is used, the number
289 is assumed to be hexadecimal. See irange.
290bool Boolean. Usually parsed as an integer, however only defined for
291 true and false (1 and 0).
292irange Integer range with suffix. Allows value range to be given, such
293 as 1024-4096. A colon may also be used as the separator, eg
294 1k:4k. If the option allows two sets of ranges, they can be
295 specified with a ',' or '/' delimiter: 1k-4k/8k-32k. Also see
296 int.
297float_list A list of floating numbers, separated by a ':' character.
298
299With the above in mind, here follows the complete list of fio job
300parameters.
301
302name=str ASCII name of the job. This may be used to override the
303 name printed by fio for this job. Otherwise the job
304 name is used. On the command line this parameter has the
305 special purpose of also signaling the start of a new
306 job.
307
308description=str Text description of the job. Doesn't do anything except
309 dump this text description when this job is run. It's
310 not parsed.
311
312directory=str Prefix filenames with this directory. Used to place files
313 in a different location than "./". See the 'filename' option
314 for escaping certain characters.
315
316filename=str Fio normally makes up a filename based on the job name,
317 thread number, and file number. If you want to share
318 files between threads in a job or several jobs, specify
319 a filename for each of them to override the default. If
320 the ioengine used is 'net', the filename is the host, port,
321 and protocol to use in the format of =host,port,protocol.
322 See ioengine=net for more. If the ioengine is file based, you
323 can specify a number of files by separating the names with a
324 ':' colon. So if you wanted a job to open /dev/sda and /dev/sdb
325 as the two working files, you would use
326 filename=/dev/sda:/dev/sdb. On Windows, disk devices are
327 accessed as \\.\PhysicalDrive0 for the first device,
328 \\.\PhysicalDrive1 for the second etc. Note: Windows and
329 FreeBSD prevent write access to areas of the disk containing
330 in-use data (e.g. filesystems).
331 If the wanted filename does need to include a colon, then
332 escape that with a '\' character. For instance, if the filename
333 is "/dev/dsk/foo@3,0:c", then you would use
334 filename="/dev/dsk/foo@3,0\:c". '-' is a reserved name, meaning
335 stdin or stdout. Which of the two depends on the read/write
336 direction set.
337
338filename_format=str
339 If sharing multiple files between jobs, it is usually necessary
340 to have fio generate the exact names that you want. By default,
341 fio will name a file based on the default file format
342 specification of jobname.jobnumber.filenumber. With this
343 option, that can be customized. Fio will recognize and replace
344 the following keywords in this string:
345
346 $jobname
347 The name of the worker thread or process.
348
349 $jobnum
350 The incremental number of the worker thread or
351 process.
352
353 $filenum
354 The incremental number of the file for that worker
355 thread or process.
356
357 To have dependent jobs share a set of files, this option can
358 be set to have fio generate filenames that are shared between
359 the two. For instance, if testfiles.$filenum is specified,
360 file number 4 for any job will be named testfiles.4. The
361 default of $jobname.$jobnum.$filenum will be used if
362 no other format specifier is given.
363
364opendir=str Tell fio to recursively add any file it can find in this
365 directory and down the file system tree.
366
367lockfile=str Fio defaults to not locking any files before it does
368 IO to them. If a file or file descriptor is shared, fio
369 can serialize IO to that file to make the end result
370 consistent. This is usual for emulating real workloads that
371 share files. The lock modes are:
372
373 none No locking. The default.
374 exclusive Only one thread/process may do IO,
375 excluding all others.
376 readwrite Read-write locking on the file. Many
377 readers may access the file at the
378 same time, but writes get exclusive
379 access.
380
381readwrite=str
382rw=str Type of io pattern. Accepted values are:
383
384 read Sequential reads
385 write Sequential writes
386 randwrite Random writes
387 randread Random reads
388 rw,readwrite Sequential mixed reads and writes
389 randrw Random mixed reads and writes
390
391 For the mixed io types, the default is to split them 50/50.
392 For certain types of io the result may still be skewed a bit,
393 since the speed may be different. It is possible to specify
394 a number of IO's to do before getting a new offset, this is
395 done by appending a ':<nr>' to the end of the string given.
396 For a random read, it would look like 'rw=randread:8' for
397 passing in an offset modifier with a value of 8. If the
398 suffix is used with a sequential IO pattern, then the value
399 specified will be added to the generated offset for each IO.
400 For instance, using rw=write:4k will skip 4k for every
401 write. It turns sequential IO into sequential IO with holes.
402 See the 'rw_sequencer' option.
403
404rw_sequencer=str If an offset modifier is given by appending a number to
405 the rw=<str> line, then this option controls how that
406 number modifies the IO offset being generated. Accepted
407 values are:
408
409 sequential Generate sequential offset
410 identical Generate the same offset
411
412 'sequential' is only useful for random IO, where fio would
413 normally generate a new random offset for every IO. If you
414 append eg 8 to randread, you would get a new random offset for
415 every 8 IO's. The result would be a seek for only every 8
416 IO's, instead of for every IO. Use rw=randread:8 to specify
417 that. As sequential IO is already sequential, setting
418 'sequential' for that would not result in any differences.
419 'identical' behaves in a similar fashion, except it sends
420 the same offset 8 number of times before generating a new
421 offset.
422
423kb_base=int The base unit for a kilobyte. The defacto base is 2^10, 1024.
424 Storage manufacturers like to use 10^3 or 1000 as a base
425 ten unit instead, for obvious reasons. Allow values are
426 1024 or 1000, with 1024 being the default.
427
428unified_rw_reporting=bool Fio normally reports statistics on a per
429 data direction basis, meaning that read, write, and trim are
430 accounted and reported separately. If this option is set,
431 the fio will sum the results and report them as "mixed"
432 instead.
433
434randrepeat=bool For random IO workloads, seed the generator in a predictable
435 way so that results are repeatable across repetitions.
436
437randseed=int Seed the random number generators based on this seed value, to
438 be able to control what sequence of output is being generated.
439 If not set, the random sequence depends on the randrepeat
440 setting.
441
442fallocate=str Whether pre-allocation is performed when laying down files.
443 Accepted values are:
444
445 none Do not pre-allocate space
446 posix Pre-allocate via posix_fallocate()
447 keep Pre-allocate via fallocate() with
448 FALLOC_FL_KEEP_SIZE set
449 0 Backward-compatible alias for 'none'
450 1 Backward-compatible alias for 'posix'
451
452 May not be available on all supported platforms. 'keep' is only
453 available on Linux.If using ZFS on Solaris this must be set to
454 'none' because ZFS doesn't support it. Default: 'posix'.
455
456fadvise_hint=bool By default, fio will use fadvise() to advise the kernel
457 on what IO patterns it is likely to issue. Sometimes you
458 want to test specific IO patterns without telling the
459 kernel about it, in which case you can disable this option.
460 If set, fio will use POSIX_FADV_SEQUENTIAL for sequential
461 IO and POSIX_FADV_RANDOM for random IO.
462
463size=int The total size of file io for this job. Fio will run until
464 this many bytes has been transferred, unless runtime is
465 limited by other options (such as 'runtime', for instance).
466 Unless specific nrfiles and filesize options are given,
467 fio will divide this size between the available files
468 specified by the job. If not set, fio will use the full
469 size of the given files or devices. If the files do not
470 exist, size must be given. It is also possible to give
471 size as a percentage between 1 and 100. If size=20% is
472 given, fio will use 20% of the full size of the given
473 files or devices.
474
475io_limit=int Normally fio operates within the region set by 'size', which
476 means that the 'size' option sets both the region and size of
477 IO to be performed. Sometimes that is not what you want. With
478 this option, it is possible to define just the amount of IO
479 that fio should do. For instance, if 'size' is set to 20G and
480 'io_limit' is set to 5G, fio will perform IO within the first
481 20G but exit when 5G have been done.
482
483filesize=int Individual file sizes. May be a range, in which case fio
484 will select sizes for files at random within the given range
485 and limited to 'size' in total (if that is given). If not
486 given, each created file is the same size.
487
488file_append=bool Perform IO after the end of the file. Normally fio will
489 operate within the size of a file. If this option is set, then
490 fio will append to the file instead. This has identical
491 behavior to setting offset to the size of a file. This option
492 is ignored on non-regular files.
493
494fill_device=bool
495fill_fs=bool Sets size to something really large and waits for ENOSPC (no
496 space left on device) as the terminating condition. Only makes
497 sense with sequential write. For a read workload, the mount
498 point will be filled first then IO started on the result. This
499 option doesn't make sense if operating on a raw device node,
500 since the size of that is already known by the file system.
501 Additionally, writing beyond end-of-device will not return
502 ENOSPC there.
503
504blocksize=int
505bs=int The block size used for the io units. Defaults to 4k. Values
506 can be given for both read and writes. If a single int is
507 given, it will apply to both. If a second int is specified
508 after a comma, it will apply to writes only. In other words,
509 the format is either bs=read_and_write or bs=read,write,trim.
510 bs=4k,8k will thus use 4k blocks for reads, 8k blocks for
511 writes, and 8k for trims. You can terminate the list with
512 a trailing comma. bs=4k,8k, would use the default value for
513 trims.. If you only wish to set the write size, you
514 can do so by passing an empty read size - bs=,8k will set
515 8k for writes and leave the read default value.
516
517blockalign=int
518ba=int At what boundary to align random IO offsets. Defaults to
519 the same as 'blocksize' the minimum blocksize given.
520 Minimum alignment is typically 512b for using direct IO,
521 though it usually depends on the hardware block size. This
522 option is mutually exclusive with using a random map for
523 files, so it will turn off that option.
524
525blocksize_range=irange
526bsrange=irange Instead of giving a single block size, specify a range
527 and fio will mix the issued io block sizes. The issued
528 io unit will always be a multiple of the minimum value
529 given (also see bs_unaligned). Applies to both reads and
530 writes, however a second range can be given after a comma.
531 See bs=.
532
533bssplit=str Sometimes you want even finer grained control of the
534 block sizes issued, not just an even split between them.
535 This option allows you to weight various block sizes,
536 so that you are able to define a specific amount of
537 block sizes issued. The format for this option is:
538
539 bssplit=blocksize/percentage:blocksize/percentage
540
541 for as many block sizes as needed. So if you want to define
542 a workload that has 50% 64k blocks, 10% 4k blocks, and
543 40% 32k blocks, you would write:
544
545 bssplit=4k/10:64k/50:32k/40
546
547 Ordering does not matter. If the percentage is left blank,
548 fio will fill in the remaining values evenly. So a bssplit
549 option like this one:
550
551 bssplit=4k/50:1k/:32k/
552
553 would have 50% 4k ios, and 25% 1k and 32k ios. The percentages
554 always add up to 100, if bssplit is given a range that adds
555 up to more, it will error out.
556
557 bssplit also supports giving separate splits to reads and
558 writes. The format is identical to what bs= accepts. You
559 have to separate the read and write parts with a comma. So
560 if you want a workload that has 50% 2k reads and 50% 4k reads,
561 while having 90% 4k writes and 10% 8k writes, you would
562 specify:
563
564 bssplit=2k/50:4k/50,4k/90:8k/10
565
566blocksize_unaligned
567bs_unaligned If this option is given, any byte size value within bsrange
568 may be used as a block range. This typically wont work with
569 direct IO, as that normally requires sector alignment.
570
571bs_is_seq_rand If this option is set, fio will use the normal read,write
572 blocksize settings as sequential,random instead. Any random
573 read or write will use the WRITE blocksize settings, and any
574 sequential read or write will use the READ blocksize setting.
575
576zero_buffers If this option is given, fio will init the IO buffers to
577 all zeroes. The default is to fill them with random data.
578 The resulting IO buffers will not be completely zeroed,
579 unless scramble_buffers is also turned off.
580
581refill_buffers If this option is given, fio will refill the IO buffers
582 on every submit. The default is to only fill it at init
583 time and reuse that data. Only makes sense if zero_buffers
584 isn't specified, naturally. If data verification is enabled,
585 refill_buffers is also automatically enabled.
586
587scramble_buffers=bool If refill_buffers is too costly and the target is
588 using data deduplication, then setting this option will
589 slightly modify the IO buffer contents to defeat normal
590 de-dupe attempts. This is not enough to defeat more clever
591 block compression attempts, but it will stop naive dedupe of
592 blocks. Default: true.
593
594buffer_compress_percentage=int If this is set, then fio will attempt to
595 provide IO buffer content (on WRITEs) that compress to
596 the specified level. Fio does this by providing a mix of
597 random data and a fixed pattern. The fixed pattern is either
598 zeroes, or the pattern specified by buffer_pattern. If the
599 pattern option is used, it might skew the compression ratio
600 slightly. Note that this is per block size unit, for file/disk
601 wide compression level that matches this setting, you'll also
602 want to set refill_buffers.
603
604buffer_compress_chunk=int See buffer_compress_percentage. This
605 setting allows fio to manage how big the ranges of random
606 data and zeroed data is. Without this set, fio will
607 provide buffer_compress_percentage of blocksize random
608 data, followed by the remaining zeroed. With this set
609 to some chunk size smaller than the block size, fio can
610 alternate random and zeroed data throughout the IO
611 buffer.
612
613buffer_pattern=str If set, fio will fill the io buffers with this
614 pattern. If not set, the contents of io buffers is defined by
615 the other options related to buffer contents. The setting can
616 be any pattern of bytes, and can be prefixed with 0x for hex
617 values. It may also be a string, where the string must then
618 be wrapped with "".
619
620dedupe_percentage=int If set, fio will generate this percentage of
621 identical buffers when writing. These buffers will be
622 naturally dedupable. The contents of the buffers depend on
623 what other buffer compression settings have been set. It's
624 possible to have the individual buffers either fully
625 compressible, or not at all. This option only controls the
626 distribution of unique buffers.
627
628nrfiles=int Number of files to use for this job. Defaults to 1.
629
630openfiles=int Number of files to keep open at the same time. Defaults to
631 the same as nrfiles, can be set smaller to limit the number
632 simultaneous opens.
633
634file_service_type=str Defines how fio decides which file from a job to
635 service next. The following types are defined:
636
637 random Just choose a file at random.
638
639 roundrobin Round robin over open files. This
640 is the default.
641
642 sequential Finish one file before moving on to
643 the next. Multiple files can still be
644 open depending on 'openfiles'.
645
646 The string can have a number appended, indicating how
647 often to switch to a new file. So if option random:4 is
648 given, fio will switch to a new random file after 4 ios
649 have been issued.
650
651ioengine=str Defines how the job issues io to the file. The following
652 types are defined:
653
654 sync Basic read(2) or write(2) io. lseek(2) is
655 used to position the io location.
656
657 psync Basic pread(2) or pwrite(2) io.
658
659 vsync Basic readv(2) or writev(2) IO.
660
661 psyncv Basic preadv(2) or pwritev(2) IO.
662
663 libaio Linux native asynchronous io. Note that Linux
664 may only support queued behaviour with
665 non-buffered IO (set direct=1 or buffered=0).
666 This engine defines engine specific options.
667
668 posixaio glibc posix asynchronous io.
669
670 solarisaio Solaris native asynchronous io.
671
672 windowsaio Windows native asynchronous io.
673
674 mmap File is memory mapped and data copied
675 to/from using memcpy(3).
676
677 splice splice(2) is used to transfer the data and
678 vmsplice(2) to transfer data from user
679 space to the kernel.
680
681 syslet-rw Use the syslet system calls to make
682 regular read/write async.
683
684 sg SCSI generic sg v3 io. May either be
685 synchronous using the SG_IO ioctl, or if
686 the target is an sg character device
687 we use read(2) and write(2) for asynchronous
688 io.
689
690 null Doesn't transfer any data, just pretends
691 to. This is mainly used to exercise fio
692 itself and for debugging/testing purposes.
693
694 net Transfer over the network to given host:port.
695 Depending on the protocol used, the hostname,
696 port, listen and filename options are used to
697 specify what sort of connection to make, while
698 the protocol option determines which protocol
699 will be used.
700 This engine defines engine specific options.
701
702 netsplice Like net, but uses splice/vmsplice to
703 map data and send/receive.
704 This engine defines engine specific options.
705
706 cpuio Doesn't transfer any data, but burns CPU
707 cycles according to the cpuload= and
708 cpucycle= options. Setting cpuload=85
709 will cause that job to do nothing but burn
710 85% of the CPU. In case of SMP machines,
711 use numjobs=<no_of_cpu> to get desired CPU
712 usage, as the cpuload only loads a single
713 CPU at the desired rate.
714
715 guasi The GUASI IO engine is the Generic Userspace
716 Asyncronous Syscall Interface approach
717 to async IO. See
718
719 http://www.xmailserver.org/guasi-lib.html
720
721 for more info on GUASI.
722
723 rdma The RDMA I/O engine supports both RDMA
724 memory semantics (RDMA_WRITE/RDMA_READ) and
725 channel semantics (Send/Recv) for the
726 InfiniBand, RoCE and iWARP protocols.
727
728 falloc IO engine that does regular fallocate to
729 simulate data transfer as fio ioengine.
730 DDIR_READ does fallocate(,mode = keep_size,)
731 DDIR_WRITE does fallocate(,mode = 0)
732 DDIR_TRIM does fallocate(,mode = punch_hole)
733
734 e4defrag IO engine that does regular EXT4_IOC_MOVE_EXT
735 ioctls to simulate defragment activity in
736 request to DDIR_WRITE event
737
738 rbd IO engine supporting direct access to Ceph
739 Rados Block Devices (RBD) via librbd without
740 the need to use the kernel rbd driver. This
741 ioengine defines engine specific options.
742
743 gfapi Using Glusterfs libgfapi sync interface to
744 direct access to Glusterfs volumes without
745 options.
746
747 gfapi_async Using Glusterfs libgfapi async interface
748 to direct access to Glusterfs volumes without
749 having to go through FUSE. This ioengine
750 defines engine specific options.
751
752 libhdfs Read and write through Hadoop (HDFS).
753 The 'filename' option is used to specify host,
754 port of the hdfs name-node to connect. This
755 engine interprets offsets a little
756 differently. In HDFS, files once created
757 cannot be modified. So random writes are not
758 possible. To imitate this, libhdfs engine
759 expects bunch of small files to be created
760 over HDFS, and engine will randomly pick a
761 file out of those files based on the offset
762 generated by fio backend. (see the example
763 job file to create such files, use rw=write
764 option). Please note, you might want to set
765 necessary environment variables to work with
766 hdfs/libhdfs properly.
767
768 external Prefix to specify loading an external
769 IO engine object file. Append the engine
770 filename, eg ioengine=external:/tmp/foo.o
771 to load ioengine foo.o in /tmp.
772
773iodepth=int This defines how many io units to keep in flight against
774 the file. The default is 1 for each file defined in this
775 job, can be overridden with a larger value for higher
776 concurrency. Note that increasing iodepth beyond 1 will not
777 affect synchronous ioengines (except for small degress when
778 verify_async is in use). Even async engines may impose OS
779 restrictions causing the desired depth not to be achieved.
780 This may happen on Linux when using libaio and not setting
781 direct=1, since buffered IO is not async on that OS. Keep an
782 eye on the IO depth distribution in the fio output to verify
783 that the achieved depth is as expected. Default: 1.
784
785iodepth_batch_submit=int
786iodepth_batch=int This defines how many pieces of IO to submit at once.
787 It defaults to 1 which means that we submit each IO
788 as soon as it is available, but can be raised to submit
789 bigger batches of IO at the time.
790
791iodepth_batch_complete=int This defines how many pieces of IO to retrieve
792 at once. It defaults to 1 which means that we'll ask
793 for a minimum of 1 IO in the retrieval process from
794 the kernel. The IO retrieval will go on until we
795 hit the limit set by iodepth_low. If this variable is
796 set to 0, then fio will always check for completed
797 events before queuing more IO. This helps reduce
798 IO latency, at the cost of more retrieval system calls.
799
800iodepth_low=int The low water mark indicating when to start filling
801 the queue again. Defaults to the same as iodepth, meaning
802 that fio will attempt to keep the queue full at all times.
803 If iodepth is set to eg 16 and iodepth_low is set to 4, then
804 after fio has filled the queue of 16 requests, it will let
805 the depth drain down to 4 before starting to fill it again.
806
807direct=bool If value is true, use non-buffered io. This is usually
808 O_DIRECT. Note that ZFS on Solaris doesn't support direct io.
809 On Windows the synchronous ioengines don't support direct io.
810
811atomic=bool If value is true, attempt to use atomic direct IO. Atomic
812 writes are guaranteed to be stable once acknowledged by
813 the operating system. Only Linux supports O_ATOMIC right
814 now.
815
816buffered=bool If value is true, use buffered io. This is the opposite
817 of the 'direct' option. Defaults to true.
818
819offset=int Start io at the given offset in the file. The data before
820 the given offset will not be touched. This effectively
821 caps the file size at real_size - offset.
822
823offset_increment=int If this is provided, then the real offset becomes
824 offset + offset_increment * thread_number, where the thread
825 number is a counter that starts at 0 and is incremented for
826 each sub-job (i.e. when numjobs option is specified). This
827 option is useful if there are several jobs which are intended
828 to operate on a file in parallel disjoint segments, with
829 even spacing between the starting points.
830
831number_ios=int Fio will normally perform IOs until it has exhausted the size
832 of the region set by size=, or if it exhaust the allocated
833 time (or hits an error condition). With this setting, the
834 range/size can be set independently of the number of IOs to
835 perform. When fio reaches this number, it will exit normally
836 and report status. Note that this does not extend the amount
837 of IO that will be done, it will only stop fio if this
838 condition is met before other end-of-job criteria.
839
840fsync=int If writing to a file, issue a sync of the dirty data
841 for every number of blocks given. For example, if you give
842 32 as a parameter, fio will sync the file for every 32
843 writes issued. If fio is using non-buffered io, we may
844 not sync the file. The exception is the sg io engine, which
845 synchronizes the disk cache anyway.
846
847fdatasync=int Like fsync= but uses fdatasync() to only sync data and not
848 metadata blocks.
849 In FreeBSD and Windows there is no fdatasync(), this falls back to
850 using fsync()
851
852sync_file_range=str:val Use sync_file_range() for every 'val' number of
853 write operations. Fio will track range of writes that
854 have happened since the last sync_file_range() call. 'str'
855 can currently be one or more of:
856
857 wait_before SYNC_FILE_RANGE_WAIT_BEFORE
858 write SYNC_FILE_RANGE_WRITE
859 wait_after SYNC_FILE_RANGE_WAIT_AFTER
860
861 So if you do sync_file_range=wait_before,write:8, fio would
862 use SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE for
863 every 8 writes. Also see the sync_file_range(2) man page.
864 This option is Linux specific.
865
866overwrite=bool If true, writes to a file will always overwrite existing
867 data. If the file doesn't already exist, it will be
868 created before the write phase begins. If the file exists
869 and is large enough for the specified write phase, nothing
870 will be done.
871
872end_fsync=bool If true, fsync file contents when a write stage has completed.
873
874fsync_on_close=bool If true, fio will fsync() a dirty file on close.
875 This differs from end_fsync in that it will happen on every
876 file close, not just at the end of the job.
877
878rwmixread=int How large a percentage of the mix should be reads.
879
880rwmixwrite=int How large a percentage of the mix should be writes. If both
881 rwmixread and rwmixwrite is given and the values do not add
882 up to 100%, the latter of the two will be used to override
883 the first. This may interfere with a given rate setting,
884 if fio is asked to limit reads or writes to a certain rate.
885 If that is the case, then the distribution may be skewed.
886
887random_distribution=str:float By default, fio will use a completely uniform
888 random distribution when asked to perform random IO. Sometimes
889 it is useful to skew the distribution in specific ways,
890 ensuring that some parts of the data is more hot than others.
891 fio includes the following distribution models:
892
893 random Uniform random distribution
894 zipf Zipf distribution
895 pareto Pareto distribution
896
897 When using a zipf or pareto distribution, an input value
898 is also needed to define the access pattern. For zipf, this
899 is the zipf theta. For pareto, it's the pareto power. Fio
900 includes a test program, genzipf, that can be used visualize
901 what the given input values will yield in terms of hit rates.
902 If you wanted to use zipf with a theta of 1.2, you would use
903 random_distribution=zipf:1.2 as the option. If a non-uniform
904 model is used, fio will disable use of the random map.
905
906percentage_random=int For a random workload, set how big a percentage should
907 be random. This defaults to 100%, in which case the workload
908 is fully random. It can be set from anywhere from 0 to 100.
909 Setting it to 0 would make the workload fully sequential. Any
910 setting in between will result in a random mix of sequential
911 and random IO, at the given percentages. It is possible to
912 set different values for reads, writes, and trim. To do so,
913 simply use a comma separated list. See blocksize.
914
915norandommap Normally fio will cover every block of the file when doing
916 random IO. If this option is given, fio will just get a
917 new random offset without looking at past io history. This
918 means that some blocks may not be read or written, and that
919 some blocks may be read/written more than once. This option
920 is mutually exclusive with verify= if and only if multiple
921 blocksizes (via bsrange=) are used, since fio only tracks
922 complete rewrites of blocks.
923
924softrandommap=bool See norandommap. If fio runs with the random block map
925 enabled and it fails to allocate the map, if this option is
926 set it will continue without a random block map. As coverage
927 will not be as complete as with random maps, this option is
928 disabled by default.
929
930random_generator=str Fio supports the following engines for generating
931 IO offsets for random IO:
932
933 tausworthe Strong 2^88 cycle random number generator
934 lfsr Linear feedback shift register generator
935
936 Tausworthe is a strong random number generator, but it
937 requires tracking on the side if we want to ensure that
938 blocks are only read or written once. LFSR guarantees
939 that we never generate the same offset twice, and it's
940 also less computationally expensive. It's not a true
941 random generator, however, though for IO purposes it's
942 typically good enough. LFSR only works with single
943 block sizes, not with workloads that use multiple block
944 sizes. If used with such a workload, fio may read or write
945 some blocks multiple times.
946
947nice=int Run the job with the given nice value. See man nice(2).
948
949prio=int Set the io priority value of this job. Linux limits us to
950 a positive value between 0 and 7, with 0 being the highest.
951 See man ionice(1).
952
953prioclass=int Set the io priority class. See man ionice(1).
954
955thinktime=int Stall the job x microseconds after an io has completed before
956 issuing the next. May be used to simulate processing being
957 done by an application. See thinktime_blocks and
958 thinktime_spin.
959
960thinktime_spin=int
961 Only valid if thinktime is set - pretend to spend CPU time
962 doing something with the data received, before falling back
963 to sleeping for the rest of the period specified by
964 thinktime.
965
966thinktime_blocks=int
967 Only valid if thinktime is set - control how many blocks
968 to issue, before waiting 'thinktime' usecs. If not set,
969 defaults to 1 which will make fio wait 'thinktime' usecs
970 after every block. This effectively makes any queue depth
971 setting redundant, since no more than 1 IO will be queued
972 before we have to complete it and do our thinktime. In
973 other words, this setting effectively caps the queue depth
974 if the latter is larger.
975
976rate=int Cap the bandwidth used by this job. The number is in bytes/sec,
977 the normal suffix rules apply. You can use rate=500k to limit
978 reads and writes to 500k each, or you can specify read and
979 writes separately. Using rate=1m,500k would limit reads to
980 1MB/sec and writes to 500KB/sec. Capping only reads or
981 writes can be done with rate=,500k or rate=500k,. The former
982 will only limit writes (to 500KB/sec), the latter will only
983 limit reads.
984
985ratemin=int Tell fio to do whatever it can to maintain at least this
986 bandwidth. Failing to meet this requirement, will cause
987 the job to exit. The same format as rate is used for
988 read vs write separation.
989
990rate_iops=int Cap the bandwidth to this number of IOPS. Basically the same
991 as rate, just specified independently of bandwidth. If the
992 job is given a block size range instead of a fixed value,
993 the smallest block size is used as the metric. The same format
994 as rate is used for read vs write separation.
995
996rate_iops_min=int If fio doesn't meet this rate of IO, it will cause
997 the job to exit. The same format as rate is used for read vs
998 write separation.
999
1000latency_target=int If set, fio will attempt to find the max performance
1001 point that the given workload will run at while maintaining a
1002 latency below this target. The values is given in microseconds.
1003 See latency_window and latency_percentile
1004
1005latency_window=int Used with latency_target to specify the sample window
1006 that the job is run at varying queue depths to test the
1007 performance. The value is given in microseconds.
1008
1009latency_percentile=float The percentage of IOs that must fall within the
1010 criteria specified by latency_target and latency_window. If not
1011 set, this defaults to 100.0, meaning that all IOs must be equal
1012 or below to the value set by latency_target.
1013
1014max_latency=int If set, fio will exit the job if it exceeds this maximum
1015 latency. It will exit with an ETIME error.
1016
1017ratecycle=int Average bandwidth for 'rate' and 'ratemin' over this number
1018 of milliseconds.
1019
1020cpumask=int Set the CPU affinity of this job. The parameter given is a
1021 bitmask of allowed CPU's the job may run on. So if you want
1022 the allowed CPUs to be 1 and 5, you would pass the decimal
1023 value of (1 << 1 | 1 << 5), or 34. See man
1024 sched_setaffinity(2). This may not work on all supported
1025 operating systems or kernel versions. This option doesn't
1026 work well for a higher CPU count than what you can store in
1027 an integer mask, so it can only control cpus 1-32. For
1028 boxes with larger CPU counts, use cpus_allowed.
1029
1030cpus_allowed=str Controls the same options as cpumask, but it allows a text
1031 setting of the permitted CPUs instead. So to use CPUs 1 and
1032 5, you would specify cpus_allowed=1,5. This options also
1033 allows a range of CPUs. Say you wanted a binding to CPUs
1034 1, 5, and 8-15, you would set cpus_allowed=1,5,8-15.
1035
1036cpus_allowed_policy=str Set the policy of how fio distributes the CPUs
1037 specified by cpus_allowed or cpumask. Two policies are
1038 supported:
1039
1040 shared All jobs will share the CPU set specified.
1041 split Each job will get a unique CPU from the CPU set.
1042
1043 'shared' is the default behaviour, if the option isn't
1044 specified. If split is specified, then fio will will assign
1045 one cpu per job. If not enough CPUs are given for the jobs
1046 listed, then fio will roundrobin the CPUs in the set.
1047
1048numa_cpu_nodes=str Set this job running on spcified NUMA nodes' CPUs. The
1049 arguments allow comma delimited list of cpu numbers,
1050 A-B ranges, or 'all'. Note, to enable numa options support,
1051 fio must be built on a system with libnuma-dev(el) installed.
1052
1053numa_mem_policy=str Set this job's memory policy and corresponding NUMA
1054 nodes. Format of the argements:
1055 <mode>[:<nodelist>]
1056 `mode' is one of the following memory policy:
1057 default, prefer, bind, interleave, local
1058 For `default' and `local' memory policy, no node is
1059 needed to be specified.
1060 For `prefer', only one node is allowed.
1061 For `bind' and `interleave', it allow comma delimited
1062 list of numbers, A-B ranges, or 'all'.
1063
1064startdelay=time Start this job the specified number of seconds after fio
1065 has started. Only useful if the job file contains several
1066 jobs, and you want to delay starting some jobs to a certain
1067 time.
1068
1069runtime=time Tell fio to terminate processing after the specified number
1070 of seconds. It can be quite hard to determine for how long
1071 a specified job will run, so this parameter is handy to
1072 cap the total runtime to a given time.
1073
1074time_based If set, fio will run for the duration of the runtime
1075 specified even if the file(s) are completely read or
1076 written. It will simply loop over the same workload
1077 as many times as the runtime allows.
1078
1079ramp_time=time If set, fio will run the specified workload for this amount
1080 of time before logging any performance numbers. Useful for
1081 letting performance settle before logging results, thus
1082 minimizing the runtime required for stable results. Note
1083 that the ramp_time is considered lead in time for a job,
1084 thus it will increase the total runtime if a special timeout
1085 or runtime is specified.
1086
1087invalidate=bool Invalidate the buffer/page cache parts for this file prior
1088 to starting io. Defaults to true.
1089
1090sync=bool Use sync io for buffered writes. For the majority of the
1091 io engines, this means using O_SYNC.
1092
1093iomem=str
1094mem=str Fio can use various types of memory as the io unit buffer.
1095 The allowed values are:
1096
1097 malloc Use memory from malloc(3) as the buffers.
1098
1099 shm Use shared memory as the buffers. Allocated
1100 through shmget(2).
1101
1102 shmhuge Same as shm, but use huge pages as backing.
1103
1104 mmap Use mmap to allocate buffers. May either be
1105 anonymous memory, or can be file backed if
1106 a filename is given after the option. The
1107 format is mem=mmap:/path/to/file.
1108
1109 mmaphuge Use a memory mapped huge file as the buffer
1110 backing. Append filename after mmaphuge, ala
1111 mem=mmaphuge:/hugetlbfs/file
1112
1113 The area allocated is a function of the maximum allowed
1114 bs size for the job, multiplied by the io depth given. Note
1115 that for shmhuge and mmaphuge to work, the system must have
1116 free huge pages allocated. This can normally be checked
1117 and set by reading/writing /proc/sys/vm/nr_hugepages on a
1118 Linux system. Fio assumes a huge page is 4MB in size. So
1119 to calculate the number of huge pages you need for a given
1120 job file, add up the io depth of all jobs (normally one unless
1121 iodepth= is used) and multiply by the maximum bs set. Then
1122 divide that number by the huge page size. You can see the
1123 size of the huge pages in /proc/meminfo. If no huge pages
1124 are allocated by having a non-zero number in nr_hugepages,
1125 using mmaphuge or shmhuge will fail. Also see hugepage-size.
1126
1127 mmaphuge also needs to have hugetlbfs mounted and the file
1128 location should point there. So if it's mounted in /huge,
1129 you would use mem=mmaphuge:/huge/somefile.
1130
1131iomem_align=int This indiciates the memory alignment of the IO memory buffers.
1132 Note that the given alignment is applied to the first IO unit
1133 buffer, if using iodepth the alignment of the following buffers
1134 are given by the bs used. In other words, if using a bs that is
1135 a multiple of the page sized in the system, all buffers will
1136 be aligned to this value. If using a bs that is not page
1137 aligned, the alignment of subsequent IO memory buffers is the
1138 sum of the iomem_align and bs used.
1139
1140hugepage-size=int
1141 Defines the size of a huge page. Must at least be equal
1142 to the system setting, see /proc/meminfo. Defaults to 4MB.
1143 Should probably always be a multiple of megabytes, so using
1144 hugepage-size=Xm is the preferred way to set this to avoid
1145 setting a non-pow-2 bad value.
1146
1147exitall When one job finishes, terminate the rest. The default is
1148 to wait for each job to finish, sometimes that is not the
1149 desired action.
1150
1151bwavgtime=int Average the calculated bandwidth over the given time. Value
1152 is specified in milliseconds.
1153
1154iopsavgtime=int Average the calculated IOPS over the given time. Value
1155 is specified in milliseconds.
1156
1157create_serialize=bool If true, serialize the file creating for the jobs.
1158 This may be handy to avoid interleaving of data
1159 files, which may greatly depend on the filesystem
1160 used and even the number of processors in the system.
1161
1162create_fsync=bool fsync the data file after creation. This is the
1163 default.
1164
1165create_on_open=bool Don't pre-setup the files for IO, just create open()
1166 when it's time to do IO to that file.
1167
1168create_only=bool If true, fio will only run the setup phase of the job.
1169 If files need to be laid out or updated on disk, only
1170 that will be done. The actual job contents are not
1171 executed.
1172
1173pre_read=bool If this is given, files will be pre-read into memory before
1174 starting the given IO operation. This will also clear
1175 the 'invalidate' flag, since it is pointless to pre-read
1176 and then drop the cache. This will only work for IO engines
1177 that are seekable, since they allow you to read the same data
1178 multiple times. Thus it will not work on eg network or splice
1179 IO.
1180
1181unlink=bool Unlink the job files when done. Not the default, as repeated
1182 runs of that job would then waste time recreating the file
1183 set again and again.
1184
1185loops=int Run the specified number of iterations of this job. Used
1186 to repeat the same workload a given number of times. Defaults
1187 to 1.
1188
1189verify_only Do not perform specified workload---only verify data still
1190 matches previous invocation of this workload. This option
1191 allows one to check data multiple times at a later date
1192 without overwriting it. This option makes sense only for
1193 workloads that write data, and does not support workloads
1194 with the time_based option set.
1195
1196do_verify=bool Run the verify phase after a write phase. Only makes sense if
1197 verify is set. Defaults to 1.
1198
1199verify=str If writing to a file, fio can verify the file contents
1200 after each iteration of the job. The allowed values are:
1201
1202 md5 Use an md5 sum of the data area and store
1203 it in the header of each block.
1204
1205 crc64 Use an experimental crc64 sum of the data
1206 area and store it in the header of each
1207 block.
1208
1209 crc32c Use a crc32c sum of the data area and store
1210 it in the header of each block.
1211
1212 crc32c-intel Use hardware assisted crc32c calcuation
1213 provided on SSE4.2 enabled processors. Falls
1214 back to regular software crc32c, if not
1215 supported by the system.
1216
1217 crc32 Use a crc32 sum of the data area and store
1218 it in the header of each block.
1219
1220 crc16 Use a crc16 sum of the data area and store
1221 it in the header of each block.
1222
1223 crc7 Use a crc7 sum of the data area and store
1224 it in the header of each block.
1225
1226 xxhash Use xxhash as the checksum function. Generally
1227 the fastest software checksum that fio
1228 supports.
1229
1230 sha512 Use sha512 as the checksum function.
1231
1232 sha256 Use sha256 as the checksum function.
1233
1234 sha1 Use optimized sha1 as the checksum function.
1235
1236 meta Write extra information about each io
1237 (timestamp, block number etc.). The block
1238 number is verified. The io sequence number is
1239 verified for workloads that write data.
1240 See also verify_pattern.
1241
1242 null Only pretend to verify. Useful for testing
1243 internals with ioengine=null, not for much
1244 else.
1245
1246 This option can be used for repeated burn-in tests of a
1247 system to make sure that the written data is also
1248 correctly read back. If the data direction given is
1249 a read or random read, fio will assume that it should
1250 verify a previously written file. If the data direction
1251 includes any form of write, the verify will be of the
1252 newly written data.
1253
1254verifysort=bool If set, fio will sort written verify blocks when it deems
1255 it faster to read them back in a sorted manner. This is
1256 often the case when overwriting an existing file, since
1257 the blocks are already laid out in the file system. You
1258 can ignore this option unless doing huge amounts of really
1259 fast IO where the red-black tree sorting CPU time becomes
1260 significant.
1261
1262verify_offset=int Swap the verification header with data somewhere else
1263 in the block before writing. Its swapped back before
1264 verifying.
1265
1266verify_interval=int Write the verification header at a finer granularity
1267 than the blocksize. It will be written for chunks the
1268 size of header_interval. blocksize should divide this
1269 evenly.
1270
1271verify_pattern=str If set, fio will fill the io buffers with this
1272 pattern. Fio defaults to filling with totally random
1273 bytes, but sometimes it's interesting to fill with a known
1274 pattern for io verification purposes. Depending on the
1275 width of the pattern, fio will fill 1/2/3/4 bytes of the
1276 buffer at the time(it can be either a decimal or a hex number).
1277 The verify_pattern if larger than a 32-bit quantity has to
1278 be a hex number that starts with either "0x" or "0X". Use
1279 with verify=meta.
1280
1281verify_fatal=bool Normally fio will keep checking the entire contents
1282 before quitting on a block verification failure. If this
1283 option is set, fio will exit the job on the first observed
1284 failure.
1285
1286verify_dump=bool If set, dump the contents of both the original data
1287 block and the data block we read off disk to files. This
1288 allows later analysis to inspect just what kind of data
1289 corruption occurred. Off by default.
1290
1291verify_async=int Fio will normally verify IO inline from the submitting
1292 thread. This option takes an integer describing how many
1293 async offload threads to create for IO verification instead,
1294 causing fio to offload the duty of verifying IO contents
1295 to one or more separate threads. If using this offload
1296 option, even sync IO engines can benefit from using an
1297 iodepth setting higher than 1, as it allows them to have
1298 IO in flight while verifies are running.
1299
1300verify_async_cpus=str Tell fio to set the given CPU affinity on the
1301 async IO verification threads. See cpus_allowed for the
1302 format used.
1303
1304verify_backlog=int Fio will normally verify the written contents of a
1305 job that utilizes verify once that job has completed. In
1306 other words, everything is written then everything is read
1307 back and verified. You may want to verify continually
1308 instead for a variety of reasons. Fio stores the meta data
1309 associated with an IO block in memory, so for large
1310 verify workloads, quite a bit of memory would be used up
1311 holding this meta data. If this option is enabled, fio
1312 will write only N blocks before verifying these blocks.
1313
1314verify_backlog_batch=int Control how many blocks fio will verify
1315 if verify_backlog is set. If not set, will default to
1316 the value of verify_backlog (meaning the entire queue
1317 is read back and verified). If verify_backlog_batch is
1318 less than verify_backlog then not all blocks will be verified,
1319 if verify_backlog_batch is larger than verify_backlog, some
1320 blocks will be verified more than once.
1321
1322verify_state_save=bool When a job exits during the write phase of a verify
1323 workload, save its current state. This allows fio to replay
1324 up until that point, if the verify state is loaded for the
1325 verify read phase. The format of the filename is, roughly,
1326 <type>-<jobname>-<jobindex>-verify.state. <type> is "local"
1327 for a local run, "sock" for a client/server socket connection,
1328 and "ip" (192.168.0.1, for instance) for a networked
1329 client/server connection.
1330
1331verify_state_load=bool If a verify termination trigger was used, fio stores
1332 the current write state of each thread. This can be used at
1333 verification time so that fio knows how far it should verify.
1334 Without this information, fio will run a full verification
1335 pass, according to the settings in the job file used.
1336
1337stonewall
1338wait_for_previous Wait for preceding jobs in the job file to exit, before
1339 starting this one. Can be used to insert serialization
1340 points in the job file. A stone wall also implies starting
1341 a new reporting group.
1342
1343new_group Start a new reporting group. See: group_reporting.
1344
1345numjobs=int Create the specified number of clones of this job. May be
1346 used to setup a larger number of threads/processes doing
1347 the same thing. Each thread is reported separately; to see
1348 statistics for all clones as a whole, use group_reporting in
1349 conjunction with new_group.
1350
1351group_reporting It may sometimes be interesting to display statistics for
1352 groups of jobs as a whole instead of for each individual job.
1353 This is especially true if 'numjobs' is used; looking at
1354 individual thread/process output quickly becomes unwieldy.
1355 To see the final report per-group instead of per-job, use
1356 'group_reporting'. Jobs in a file will be part of the same
1357 reporting group, unless if separated by a stonewall, or by
1358 using 'new_group'.
1359
1360thread fio defaults to forking jobs, however if this option is
1361 given, fio will use pthread_create(3) to create threads
1362 instead.
1363
1364zonesize=int Divide a file into zones of the specified size. See zoneskip.
1365
1366zoneskip=int Skip the specified number of bytes when zonesize data has
1367 been read. The two zone options can be used to only do
1368 io on zones of a file.
1369
1370write_iolog=str Write the issued io patterns to the specified file. See
1371 read_iolog. Specify a separate file for each job, otherwise
1372 the iologs will be interspersed and the file may be corrupt.
1373
1374read_iolog=str Open an iolog with the specified file name and replay the
1375 io patterns it contains. This can be used to store a
1376 workload and replay it sometime later. The iolog given
1377 may also be a blktrace binary file, which allows fio
1378 to replay a workload captured by blktrace. See blktrace
1379 for how to capture such logging data. For blktrace replay,
1380 the file needs to be turned into a blkparse binary data
1381 file first (blkparse <device> -o /dev/null -d file_for_fio.bin).
1382
1383replay_no_stall=int When replaying I/O with read_iolog the default behavior
1384 is to attempt to respect the time stamps within the log and
1385 replay them with the appropriate delay between IOPS. By
1386 setting this variable fio will not respect the timestamps and
1387 attempt to replay them as fast as possible while still
1388 respecting ordering. The result is the same I/O pattern to a
1389 given device, but different timings.
1390
1391replay_redirect=str While replaying I/O patterns using read_iolog the
1392 default behavior is to replay the IOPS onto the major/minor
1393 device that each IOP was recorded from. This is sometimes
1394 undesirable because on a different machine those major/minor
1395 numbers can map to a different device. Changing hardware on
1396 the same system can also result in a different major/minor
1397 mapping. Replay_redirect causes all IOPS to be replayed onto
1398 the single specified device regardless of the device it was
1399 recorded from. i.e. replay_redirect=/dev/sdc would cause all
1400 IO in the blktrace to be replayed onto /dev/sdc. This means
1401 multiple devices will be replayed onto a single, if the trace
1402 contains multiple devices. If you want multiple devices to be
1403 replayed concurrently to multiple redirected devices you must
1404 blkparse your trace into separate traces and replay them with
1405 independent fio invocations. Unfortuantely this also breaks
1406 the strict time ordering between multiple device accesses.
1407
1408write_bw_log=str If given, write a bandwidth log of the jobs in this job
1409 file. Can be used to store data of the bandwidth of the
1410 jobs in their lifetime. The included fio_generate_plots
1411 script uses gnuplot to turn these text files into nice
1412 graphs. See write_lat_log for behaviour of given
1413 filename. For this option, the suffix is _bw.x.log, where
1414 x is the index of the job (1..N, where N is the number of
1415 jobs).
1416
1417write_lat_log=str Same as write_bw_log, except that this option stores io
1418 submission, completion, and total latencies instead. If no
1419 filename is given with this option, the default filename of
1420 "jobname_type.log" is used. Even if the filename is given,
1421 fio will still append the type of log. So if one specifies
1422
1423 write_lat_log=foo
1424
1425 The actual log names will be foo_slat.x.log, foo_clat.x.log,
1426 and foo_lat.x.log, where x is the index of the job (1..N,
1427 where N is the number of jobs). This helps fio_generate_plot
1428 fine the logs automatically.
1429
1430write_iops_log=str Same as write_bw_log, but writes IOPS. If no filename is
1431 given with this option, the default filename of
1432 "jobname_type.x.log" is used,where x is the index of the job
1433 (1..N, where N is the number of jobs). Even if the filename
1434 is given, fio will still append the type of log.
1435
1436log_avg_msec=int By default, fio will log an entry in the iops, latency,
1437 or bw log for every IO that completes. When writing to the
1438 disk log, that can quickly grow to a very large size. Setting
1439 this option makes fio average the each log entry over the
1440 specified period of time, reducing the resolution of the log.
1441 Defaults to 0.
1442
1443log_offset=int If this is set, the iolog options will include the byte
1444 offset for the IO entry as well as the other data values.
1445
1446log_compression=int If this is set, fio will compress the IO logs as
1447 it goes, to keep the memory footprint lower. When a log
1448 reaches the specified size, that chunk is removed and
1449 compressed in the background. Given that IO logs are
1450 fairly highly compressible, this yields a nice memory
1451 savings for longer runs. The downside is that the
1452 compression will consume some background CPU cycles, so
1453 it may impact the run. This, however, is also true if
1454 the logging ends up consuming most of the system memory.
1455 So pick your poison. The IO logs are saved normally at the
1456 end of a run, by decompressing the chunks and storing them
1457 in the specified log file. This feature depends on the
1458 availability of zlib.
1459
1460log_store_compressed=bool If set, and log_compression is also set,
1461 fio will store the log files in a compressed format. They
1462 can be decompressed with fio, using the --inflate-log
1463 command line parameter. The files will be stored with a
1464 .fz suffix.
1465
1466lockmem=int Pin down the specified amount of memory with mlock(2). Can
1467 potentially be used instead of removing memory or booting
1468 with less memory to simulate a smaller amount of memory.
1469 The amount specified is per worker.
1470
1471exec_prerun=str Before running this job, issue the command specified
1472 through system(3). Output is redirected in a file called
1473 jobname.prerun.txt.
1474
1475exec_postrun=str After the job completes, issue the command specified
1476 though system(3). Output is redirected in a file called
1477 jobname.postrun.txt.
1478
1479ioscheduler=str Attempt to switch the device hosting the file to the specified
1480 io scheduler before running.
1481
1482disk_util=bool Generate disk utilization statistics, if the platform
1483 supports it. Defaults to on.
1484
1485disable_lat=bool Disable measurements of total latency numbers. Useful
1486 only for cutting back the number of calls to gettimeofday,
1487 as that does impact performance at really high IOPS rates.
1488 Note that to really get rid of a large amount of these
1489 calls, this option must be used with disable_slat and
1490 disable_bw as well.
1491
1492disable_clat=bool Disable measurements of completion latency numbers. See
1493 disable_lat.
1494
1495disable_slat=bool Disable measurements of submission latency numbers. See
1496 disable_slat.
1497
1498disable_bw=bool Disable measurements of throughput/bandwidth numbers. See
1499 disable_lat.
1500
1501clat_percentiles=bool Enable the reporting of percentiles of
1502 completion latencies.
1503
1504percentile_list=float_list Overwrite the default list of percentiles
1505 for completion latencies. Each number is a floating
1506 number in the range (0,100], and the maximum length of
1507 the list is 20. Use ':' to separate the numbers, and
1508 list the numbers in ascending order. For example,
1509 --percentile_list=99.5:99.9 will cause fio to report
1510 the values of completion latency below which 99.5% and
1511 99.9% of the observed latencies fell, respectively.
1512
1513clocksource=str Use the given clocksource as the base of timing. The
1514 supported options are:
1515
1516 gettimeofday gettimeofday(2)
1517
1518 clock_gettime clock_gettime(2)
1519
1520 cpu Internal CPU clock source
1521
1522 cpu is the preferred clocksource if it is reliable, as it
1523 is very fast (and fio is heavy on time calls). Fio will
1524 automatically use this clocksource if it's supported and
1525 considered reliable on the system it is running on, unless
1526 another clocksource is specifically set. For x86/x86-64 CPUs,
1527 this means supporting TSC Invariant.
1528
1529gtod_reduce=bool Enable all of the gettimeofday() reducing options
1530 (disable_clat, disable_slat, disable_bw) plus reduce
1531 precision of the timeout somewhat to really shrink
1532 the gettimeofday() call count. With this option enabled,
1533 we only do about 0.4% of the gtod() calls we would have
1534 done if all time keeping was enabled.
1535
1536gtod_cpu=int Sometimes it's cheaper to dedicate a single thread of
1537 execution to just getting the current time. Fio (and
1538 databases, for instance) are very intensive on gettimeofday()
1539 calls. With this option, you can set one CPU aside for
1540 doing nothing but logging current time to a shared memory
1541 location. Then the other threads/processes that run IO
1542 workloads need only copy that segment, instead of entering
1543 the kernel with a gettimeofday() call. The CPU set aside
1544 for doing these time calls will be excluded from other
1545 uses. Fio will manually clear it from the CPU mask of other
1546 jobs.
1547
1548continue_on_error=str Normally fio will exit the job on the first observed
1549 failure. If this option is set, fio will continue the job when
1550 there is a 'non-fatal error' (EIO or EILSEQ) until the runtime
1551 is exceeded or the I/O size specified is completed. If this
1552 option is used, there are two more stats that are appended,
1553 the total error count and the first error. The error field
1554 given in the stats is the first error that was hit during the
1555 run.
1556
1557 The allowed values are:
1558
1559 none Exit on any IO or verify errors.
1560
1561 read Continue on read errors, exit on all others.
1562
1563 write Continue on write errors, exit on all others.
1564
1565 io Continue on any IO error, exit on all others.
1566
1567 verify Continue on verify errors, exit on all others.
1568
1569 all Continue on all errors.
1570
1571 0 Backward-compatible alias for 'none'.
1572
1573 1 Backward-compatible alias for 'all'.
1574
1575ignore_error=str Sometimes you want to ignore some errors during test
1576 in that case you can specify error list for each error type.
1577 ignore_error=READ_ERR_LIST,WRITE_ERR_LIST,VERIFY_ERR_LIST
1578 errors for given error type is separated with ':'. Error
1579 may be symbol ('ENOSPC', 'ENOMEM') or integer.
1580 Example:
1581 ignore_error=EAGAIN,ENOSPC:122
1582 This option will ignore EAGAIN from READ, and ENOSPC and
1583 122(EDQUOT) from WRITE.
1584
1585error_dump=bool If set dump every error even if it is non fatal, true
1586 by default. If disabled only fatal error will be dumped
1587
1588cgroup=str Add job to this control group. If it doesn't exist, it will
1589 be created. The system must have a mounted cgroup blkio
1590 mount point for this to work. If your system doesn't have it
1591 mounted, you can do so with:
1592
1593 # mount -t cgroup -o blkio none /cgroup
1594
1595cgroup_weight=int Set the weight of the cgroup to this value. See
1596 the documentation that comes with the kernel, allowed values
1597 are in the range of 100..1000.
1598
1599cgroup_nodelete=bool Normally fio will delete the cgroups it has created after
1600 the job completion. To override this behavior and to leave
1601 cgroups around after the job completion, set cgroup_nodelete=1.
1602 This can be useful if one wants to inspect various cgroup
1603 files after job completion. Default: false
1604
1605uid=int Instead of running as the invoking user, set the user ID to
1606 this value before the thread/process does any work.
1607
1608gid=int Set group ID, see uid.
1609
1610flow_id=int The ID of the flow. If not specified, it defaults to being a
1611 global flow. See flow.
1612
1613flow=int Weight in token-based flow control. If this value is used, then
1614 there is a 'flow counter' which is used to regulate the
1615 proportion of activity between two or more jobs. fio attempts
1616 to keep this flow counter near zero. The 'flow' parameter
1617 stands for how much should be added or subtracted to the flow
1618 counter on each iteration of the main I/O loop. That is, if
1619 one job has flow=8 and another job has flow=-1, then there
1620 will be a roughly 1:8 ratio in how much one runs vs the other.
1621
1622flow_watermark=int The maximum value that the absolute value of the flow
1623 counter is allowed to reach before the job must wait for a
1624 lower value of the counter.
1625
1626flow_sleep=int The period of time, in microseconds, to wait after the flow
1627 watermark has been exceeded before retrying operations
1628
1629In addition, there are some parameters which are only valid when a specific
1630ioengine is in use. These are used identically to normal parameters, with the
1631caveat that when used on the command line, they must come after the ioengine
1632that defines them is selected.
1633
1634[libaio] userspace_reap Normally, with the libaio engine in use, fio will use
1635 the io_getevents system call to reap newly returned events.
1636 With this flag turned on, the AIO ring will be read directly
1637 from user-space to reap events. The reaping mode is only
1638 enabled when polling for a minimum of 0 events (eg when
1639 iodepth_batch_complete=0).
1640
1641[cpu] cpuload=int Attempt to use the specified percentage of CPU cycles.
1642
1643[cpu] cpuchunks=int Split the load into cycles of the given time. In
1644 microseconds.
1645
1646[cpu] exit_on_io_done=bool Detect when IO threads are done, then exit.
1647
1648[netsplice] hostname=str
1649[net] hostname=str The host name or IP address to use for TCP or UDP based IO.
1650 If the job is a TCP listener or UDP reader, the hostname is not
1651 used and must be omitted unless it is a valid UDP multicast
1652 address.
1653
1654[netsplice] port=int
1655[net] port=int The TCP or UDP port to bind to or connect to. If this is used
1656with numjobs to spawn multiple instances of the same job type, then this will
1657be the starting port number since fio will use a range of ports.
1658
1659[netsplice] interface=str
1660[net] interface=str The IP address of the network interface used to send or
1661 receive UDP multicast
1662
1663[netsplice] ttl=int
1664[net] ttl=int Time-to-live value for outgoing UDP multicast packets.
1665 Default: 1
1666
1667[netsplice] nodelay=bool
1668[net] nodelay=bool Set TCP_NODELAY on TCP connections.
1669
1670[netsplice] protocol=str
1671[netsplice] proto=str
1672[net] protocol=str
1673[net] proto=str The network protocol to use. Accepted values are:
1674
1675 tcp Transmission control protocol
1676 tcpv6 Transmission control protocol V6
1677 udp User datagram protocol
1678 udpv6 User datagram protocol V6
1679 unix UNIX domain socket
1680
1681 When the protocol is TCP or UDP, the port must also be given,
1682 as well as the hostname if the job is a TCP listener or UDP
1683 reader. For unix sockets, the normal filename option should be
1684 used and the port is invalid.
1685
1686[net] listen For TCP network connections, tell fio to listen for incoming
1687 connections rather than initiating an outgoing connection. The
1688 hostname must be omitted if this option is used.
1689
1690[net] pingpong Normaly a network writer will just continue writing data, and
1691 a network reader will just consume packages. If pingpong=1
1692 is set, a writer will send its normal payload to the reader,
1693 then wait for the reader to send the same payload back. This
1694 allows fio to measure network latencies. The submission
1695 and completion latencies then measure local time spent
1696 sending or receiving, and the completion latency measures
1697 how long it took for the other end to receive and send back.
1698 For UDP multicast traffic pingpong=1 should only be set for a
1699 single reader when multiple readers are listening to the same
1700 address.
1701
1702[net] window_size Set the desired socket buffer size for the connection.
1703
1704[net] mss Set the TCP maximum segment size (TCP_MAXSEG).
1705
1706[e4defrag] donorname=str
1707 File will be used as a block donor(swap extents between files)
1708[e4defrag] inplace=int
1709 Configure donor file blocks allocation strategy
1710 0(default): Preallocate donor's file on init
1711 1 : allocate space immidietly inside defragment event,
1712 and free right after event
1713
1714
1715
17166.0 Interpreting the output
1717---------------------------
1718
1719fio spits out a lot of output. While running, fio will display the
1720status of the jobs created. An example of that would be:
1721
1722Threads: 1: [_r] [24.8% done] [ 13509/ 8334 kb/s] [eta 00h:01m:31s]
1723
1724The characters inside the square brackets denote the current status of
1725each thread. The possible values (in typical life cycle order) are:
1726
1727Idle Run
1728---- ---
1729P Thread setup, but not started.
1730C Thread created.
1731I Thread initialized, waiting or generating necessary data.
1732 p Thread running pre-reading file(s).
1733 R Running, doing sequential reads.
1734 r Running, doing random reads.
1735 W Running, doing sequential writes.
1736 w Running, doing random writes.
1737 M Running, doing mixed sequential reads/writes.
1738 m Running, doing mixed random reads/writes.
1739 F Running, currently waiting for fsync()
1740 f Running, finishing up (writing IO logs, etc)
1741 V Running, doing verification of written data.
1742E Thread exited, not reaped by main thread yet.
1743_ Thread reaped, or
1744X Thread reaped, exited with an error.
1745K Thread reaped, exited due to signal.
1746
1747Fio will condense the thread string as not to take up more space on the
1748command line as is needed. For instance, if you have 10 readers and 10
1749writers running, the output would look like this:
1750
1751Jobs: 20 (f=20): [R(10),W(10)] [4.0% done] [2103MB/0KB/0KB /s] [538K/0/0 iops] [eta 57m:36s]
1752
1753Fio will still maintain the ordering, though. So the above means that jobs
17541..10 are readers, and 11..20 are writers.
1755
1756The other values are fairly self explanatory - number of threads
1757currently running and doing io, rate of io since last check (read speed
1758listed first, then write speed), and the estimated completion percentage
1759and time for the running group. It's impossible to estimate runtime of
1760the following groups (if any). Note that the string is displayed in order,
1761so it's possible to tell which of the jobs are currently doing what. The
1762first character is the first job defined in the job file, and so forth.
1763
1764When fio is done (or interrupted by ctrl-c), it will show the data for
1765each thread, group of threads, and disks in that order. For each data
1766direction, the output looks like:
1767
1768Client1 (g=0): err= 0:
1769 write: io= 32MB, bw= 666KB/s, iops=89 , runt= 50320msec
1770 slat (msec): min= 0, max= 136, avg= 0.03, stdev= 1.92
1771 clat (msec): min= 0, max= 631, avg=48.50, stdev=86.82
1772 bw (KB/s) : min= 0, max= 1196, per=51.00%, avg=664.02, stdev=681.68
1773 cpu : usr=1.49%, sys=0.25%, ctx=7969, majf=0, minf=17
1774 IO depths : 1=0.1%, 2=0.3%, 4=0.5%, 8=99.0%, 16=0.0%, 32=0.0%, >32=0.0%
1775 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
1776 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
1777 issued r/w: total=0/32768, short=0/0
1778 lat (msec): 2=1.6%, 4=0.0%, 10=3.2%, 20=12.8%, 50=38.4%, 100=24.8%,
1779 lat (msec): 250=15.2%, 500=0.0%, 750=0.0%, 1000=0.0%, >=2048=0.0%
1780
1781The client number is printed, along with the group id and error of that
1782thread. Below is the io statistics, here for writes. In the order listed,
1783they denote:
1784
1785io= Number of megabytes io performed
1786bw= Average bandwidth rate
1787iops= Average IOs performed per second
1788runt= The runtime of that thread
1789 slat= Submission latency (avg being the average, stdev being the
1790 standard deviation). This is the time it took to submit
1791 the io. For sync io, the slat is really the completion
1792 latency, since queue/complete is one operation there. This
1793 value can be in milliseconds or microseconds, fio will choose
1794 the most appropriate base and print that. In the example
1795 above, milliseconds is the best scale. Note: in --minimal mode
1796 latencies are always expressed in microseconds.
1797 clat= Completion latency. Same names as slat, this denotes the
1798 time from submission to completion of the io pieces. For
1799 sync io, clat will usually be equal (or very close) to 0,
1800 as the time from submit to complete is basically just
1801 CPU time (io has already been done, see slat explanation).
1802 bw= Bandwidth. Same names as the xlat stats, but also includes
1803 an approximate percentage of total aggregate bandwidth
1804 this thread received in this group. This last value is
1805 only really useful if the threads in this group are on the
1806 same disk, since they are then competing for disk access.
1807cpu= CPU usage. User and system time, along with the number
1808 of context switches this thread went through, usage of
1809 system and user time, and finally the number of major
1810 and minor page faults.
1811IO depths= The distribution of io depths over the job life time. The
1812 numbers are divided into powers of 2, so for example the
1813 16= entries includes depths up to that value but higher
1814 than the previous entry. In other words, it covers the
1815 range from 16 to 31.
1816IO submit= How many pieces of IO were submitting in a single submit
1817 call. Each entry denotes that amount and below, until
1818 the previous entry - eg, 8=100% mean that we submitted
1819 anywhere in between 5-8 ios per submit call.
1820IO complete= Like the above submit number, but for completions instead.
1821IO issued= The number of read/write requests issued, and how many
1822 of them were short.
1823IO latencies= The distribution of IO completion latencies. This is the
1824 time from when IO leaves fio and when it gets completed.
1825 The numbers follow the same pattern as the IO depths,
1826 meaning that 2=1.6% means that 1.6% of the IO completed
1827 within 2 msecs, 20=12.8% means that 12.8% of the IO
1828 took more than 10 msecs, but less than (or equal to) 20 msecs.
1829
1830After each client has been listed, the group statistics are printed. They
1831will look like this:
1832
1833Run status group 0 (all jobs):
1834 READ: io=64MB, aggrb=22178, minb=11355, maxb=11814, mint=2840msec, maxt=2955msec
1835 WRITE: io=64MB, aggrb=1302, minb=666, maxb=669, mint=50093msec, maxt=50320msec
1836
1837For each data direction, it prints:
1838
1839io= Number of megabytes io performed.
1840aggrb= Aggregate bandwidth of threads in this group.
1841minb= The minimum average bandwidth a thread saw.
1842maxb= The maximum average bandwidth a thread saw.
1843mint= The smallest runtime of the threads in that group.
1844maxt= The longest runtime of the threads in that group.
1845
1846And finally, the disk statistics are printed. They will look like this:
1847
1848Disk stats (read/write):
1849 sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00%
1850
1851Each value is printed for both reads and writes, with reads first. The
1852numbers denote:
1853
1854ios= Number of ios performed by all groups.
1855merge= Number of merges io the io scheduler.
1856ticks= Number of ticks we kept the disk busy.
1857io_queue= Total time spent in the disk queue.
1858util= The disk utilization. A value of 100% means we kept the disk
1859 busy constantly, 50% would be a disk idling half of the time.
1860
1861It is also possible to get fio to dump the current output while it is
1862running, without terminating the job. To do that, send fio the USR1 signal.
1863You can also get regularly timed dumps by using the --status-interval
1864parameter, or by creating a file in /tmp named fio-dump-status. If fio
1865sees this file, it will unlink it and dump the current output status.
1866
1867
18687.0 Terse output
1869----------------
1870
1871For scripted usage where you typically want to generate tables or graphs
1872of the results, fio can output the results in a semicolon separated format.
1873The format is one long line of values, such as:
1874
18752;card0;0;0;7139336;121836;60004;1;10109;27.932460;116.933948;220;126861;3495.446807;1085.368601;226;126864;3523.635629;1089.012448;24063;99944;50.275485%;59818.274627;5540.657370;7155060;122104;60004;1;8338;29.086342;117.839068;388;128077;5032.488518;1234.785715;391;128085;5061.839412;1236.909129;23436;100928;50.287926%;59964.832030;5644.844189;14.595833%;19.394167%;123706;0;7313;0.1%;0.1%;0.1%;0.1%;0.1%;0.1%;100.0%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.01%;0.02%;0.05%;0.16%;6.04%;40.40%;52.68%;0.64%;0.01%;0.00%;0.01%;0.00%;0.00%;0.00%;0.00%;0.00%
1876A description of this job goes here.
1877
1878The job description (if provided) follows on a second line.
1879
1880To enable terse output, use the --minimal command line option. The first
1881value is the version of the terse output format. If the output has to
1882be changed for some reason, this number will be incremented by 1 to
1883signify that change.
1884
1885Split up, the format is as follows:
1886
1887 terse version, fio version, jobname, groupid, error
1888 READ status:
1889 Total IO (KB), bandwidth (KB/sec), IOPS, runtime (msec)
1890 Submission latency: min, max, mean, deviation (usec)
1891 Completion latency: min, max, mean, deviation (usec)
1892 Completion latency percentiles: 20 fields (see below)
1893 Total latency: min, max, mean, deviation (usec)
1894 Bw (KB/s): min, max, aggregate percentage of total, mean, deviation
1895 WRITE status:
1896 Total IO (KB), bandwidth (KB/sec), IOPS, runtime (msec)
1897 Submission latency: min, max, mean, deviation (usec)
1898 Completion latency: min, max, mean, deviation (usec)
1899 Completion latency percentiles: 20 fields (see below)
1900 Total latency: min, max, mean, deviation (usec)
1901 Bw (KB/s): min, max, aggregate percentage of total, mean, deviation
1902 CPU usage: user, system, context switches, major faults, minor faults
1903 IO depths: <=1, 2, 4, 8, 16, 32, >=64
1904 IO latencies microseconds: <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000
1905 IO latencies milliseconds: <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000
1906 Disk utilization: Disk name, Read ios, write ios,
1907 Read merges, write merges,
1908 Read ticks, write ticks,
1909 Time spent in queue, disk utilization percentage
1910 Additional Info (dependent on continue_on_error, default off): total # errors, first error code
1911
1912 Additional Info (dependent on description being set): Text description
1913
1914Completion latency percentiles can be a grouping of up to 20 sets, so
1915for the terse output fio writes all of them. Each field will look like this:
1916
1917 1.00%=6112
1918
1919which is the Xth percentile, and the usec latency associated with it.
1920
1921For disk utilization, all disks used by fio are shown. So for each disk
1922there will be a disk utilization section.
1923
1924
19258.0 Trace file format
1926---------------------
1927There are two trace file format that you can encounter. The older (v1) format
1928is unsupported since version 1.20-rc3 (March 2008). It will still be described
1929below in case that you get an old trace and want to understand it.
1930
1931In any case the trace is a simple text file with a single action per line.
1932
1933
19348.1 Trace file format v1
1935------------------------
1936Each line represents a single io action in the following format:
1937
1938rw, offset, length
1939
1940where rw=0/1 for read/write, and the offset and length entries being in bytes.
1941
1942This format is not supported in Fio versions => 1.20-rc3.
1943
1944
19458.2 Trace file format v2
1946------------------------
1947The second version of the trace file format was added in Fio version 1.17.
1948It allows to access more then one file per trace and has a bigger set of
1949possible file actions.
1950
1951The first line of the trace file has to be:
1952
1953fio version 2 iolog
1954
1955Following this can be lines in two different formats, which are described below.
1956
1957The file management format:
1958
1959filename action
1960
1961The filename is given as an absolute path. The action can be one of these:
1962
1963add Add the given filename to the trace
1964open Open the file with the given filename. The filename has to have
1965 been added with the add action before.
1966close Close the file with the given filename. The file has to have been
1967 opened before.
1968
1969
1970The file io action format:
1971
1972filename action offset length
1973
1974The filename is given as an absolute path, and has to have been added and opened
1975before it can be used with this format. The offset and length are given in
1976bytes. The action can be one of these:
1977
1978wait Wait for 'offset' microseconds. Everything below 100 is discarded.
1979read Read 'length' bytes beginning from 'offset'
1980write Write 'length' bytes beginning from 'offset'
1981sync fsync() the file
1982datasync fdatasync() the file
1983trim trim the given file from the given 'offset' for 'length' bytes
1984
1985
19869.0 CPU idleness profiling
1987--------------------------
1988In some cases, we want to understand CPU overhead in a test. For example,
1989we test patches for the specific goodness of whether they reduce CPU usage.
1990fio implements a balloon approach to create a thread per CPU that runs at
1991idle priority, meaning that it only runs when nobody else needs the cpu.
1992By measuring the amount of work completed by the thread, idleness of each
1993CPU can be derived accordingly.
1994
1995An unit work is defined as touching a full page of unsigned characters. Mean
1996and standard deviation of time to complete an unit work is reported in "unit
1997work" section. Options can be chosen to report detailed percpu idleness or
1998overall system idleness by aggregating percpu stats.
1999
2000
200110.0 Verification and triggers
2002------------------------------
2003Fio is usually run in one of two ways, when data verification is done. The
2004first is a normal write job of some sort with verify enabled. When the
2005write phase has completed, fio switches to reads and verifies everything
2006it wrote. The second model is running just the write phase, and then later
2007on running the same job (but with reads instead of writes) to repeat the
2008same IO patterns and verify the contents. Both of these methods depend
2009on the write phase being completed, as fio otherwise has no idea how much
2010data was written.
2011
2012With verification triggers, fio supports dumping the current write state
2013to local files. Then a subsequent read verify workload can load this state
2014and know exactly where to stop. This is useful for testing cases where
2015power is cut to a server in a managed fashion, for instance.
2016
2017A verification trigger consists of two things:
2018
20191) Storing the write state of each job
20202) Executing a trigger command
2021
2022The write state is relatively small, on the order of hundreds of bytes
2023to single kilobytes. It contains information on the number of completions
2024done, the last X completions, etc.
2025
2026A trigger is invoked either through creation ('touch') of a specified
2027file in the system, or through a timeout setting. If fio is run with
2028--trigger-file=/tmp/trigger-file, then it will continually check for
2029the existence of /tmp/trigger-file. When it sees this file, it will
2030fire off the trigger (thus saving state, and executing the trigger
2031command).
2032
2033For client/server runs, there's both a local and remote trigger. If
2034fio is running as a server backend, it will send the job states back
2035to the client for safe storage, then execute the remote trigger, if
2036specified. If a local trigger is specified, the server will still send
2037back the write state, but the client will then execute the trigger.
2038
203910.1 Verification trigger example
2040---------------------------------
2041Lets say we want to run a powercut test on the remote machine 'server'.
2042Our write workload is in write-test.fio. We want to cut power to 'server'
2043at some point during the run, and we'll run this test from the safety
2044or our local machine, 'localbox'. On the server, we'll start the fio
2045backend normally:
2046
2047server# fio --server
2048
2049and on the client, we'll fire off the workload:
2050
2051localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger-remote="bash -c \"echo b > /proc/sysrq-triger\""
2052
2053We set /tmp/my-trigger as the trigger file, and we tell fio to execute
2054
2055echo b > /proc/sysrq-trigger
2056
2057on the server once it has received the trigger and sent us the write
2058state. This will work, but it's not _really_ cutting power to the server,
2059it's merely abruptly rebooting it. If we have a remote way of cutting
2060power to the server through IPMI or similar, we could do that through
2061a local trigger command instead. Lets assume we have a script that does
2062IPMI reboot of a given hostname, ipmi-reboot. On localbox, we could
2063then have run fio with a local trigger instead:
2064
2065localbox$ fio --client=server --trigger-file=/tmp/my-trigger --trigger="ipmi-reboot server"
2066
2067For this case, fio would wait for the server to send us the write state,
2068then execute 'ipmi-reboot server' when that happened.
2069
207010.1 Loading verify state
2071-------------------------
2072To load store write state, read verification job file must contain
2073the verify_state_load option. If that is set, fio will load the previously
2074stored state. For a local fio run this is done by loading the files directly,
2075and on a client/server run, the server backend will ask the client to send
2076the files over and load them from there.