ublk: remove check IO_URING_F_SQE128 in ublk_ch_uring_cmd
[linux-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266                 vma->vm_private_data;
267 }
268
269 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270 {
271         if (__vma_shareable_lock(vma)) {
272                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273
274                 down_read(&vma_lock->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         }
285 }
286
287 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288 {
289         if (__vma_shareable_lock(vma)) {
290                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291
292                 down_write(&vma_lock->rw_sema);
293         }
294 }
295
296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297 {
298         if (__vma_shareable_lock(vma)) {
299                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301                 up_write(&vma_lock->rw_sema);
302         }
303 }
304
305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306 {
307         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309         if (!__vma_shareable_lock(vma))
310                 return 1;
311
312         return down_write_trylock(&vma_lock->rw_sema);
313 }
314
315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316 {
317         if (__vma_shareable_lock(vma)) {
318                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319
320                 lockdep_assert_held(&vma_lock->rw_sema);
321         }
322 }
323
324 void hugetlb_vma_lock_release(struct kref *kref)
325 {
326         struct hugetlb_vma_lock *vma_lock = container_of(kref,
327                         struct hugetlb_vma_lock, refs);
328
329         kfree(vma_lock);
330 }
331
332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333 {
334         struct vm_area_struct *vma = vma_lock->vma;
335
336         /*
337          * vma_lock structure may or not be released as a result of put,
338          * it certainly will no longer be attached to vma so clear pointer.
339          * Semaphore synchronizes access to vma_lock->vma field.
340          */
341         vma_lock->vma = NULL;
342         vma->vm_private_data = NULL;
343         up_write(&vma_lock->rw_sema);
344         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 }
346
347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348 {
349         if (__vma_shareable_lock(vma)) {
350                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351
352                 __hugetlb_vma_unlock_write_put(vma_lock);
353         }
354 }
355
356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 {
358         /*
359          * Only present in sharable vmas.
360          */
361         if (!vma || !__vma_shareable_lock(vma))
362                 return;
363
364         if (vma->vm_private_data) {
365                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366
367                 down_write(&vma_lock->rw_sema);
368                 __hugetlb_vma_unlock_write_put(vma_lock);
369         }
370 }
371
372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373 {
374         struct hugetlb_vma_lock *vma_lock;
375
376         /* Only establish in (flags) sharable vmas */
377         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378                 return;
379
380         /* Should never get here with non-NULL vm_private_data */
381         if (vma->vm_private_data)
382                 return;
383
384         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385         if (!vma_lock) {
386                 /*
387                  * If we can not allocate structure, then vma can not
388                  * participate in pmd sharing.  This is only a possible
389                  * performance enhancement and memory saving issue.
390                  * However, the lock is also used to synchronize page
391                  * faults with truncation.  If the lock is not present,
392                  * unlikely races could leave pages in a file past i_size
393                  * until the file is removed.  Warn in the unlikely case of
394                  * allocation failure.
395                  */
396                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397                 return;
398         }
399
400         kref_init(&vma_lock->refs);
401         init_rwsem(&vma_lock->rw_sema);
402         vma_lock->vma = vma;
403         vma->vm_private_data = vma_lock;
404 }
405
406 /* Helper that removes a struct file_region from the resv_map cache and returns
407  * it for use.
408  */
409 static struct file_region *
410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411 {
412         struct file_region *nrg;
413
414         VM_BUG_ON(resv->region_cache_count <= 0);
415
416         resv->region_cache_count--;
417         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418         list_del(&nrg->link);
419
420         nrg->from = from;
421         nrg->to = to;
422
423         return nrg;
424 }
425
426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427                                               struct file_region *rg)
428 {
429 #ifdef CONFIG_CGROUP_HUGETLB
430         nrg->reservation_counter = rg->reservation_counter;
431         nrg->css = rg->css;
432         if (rg->css)
433                 css_get(rg->css);
434 #endif
435 }
436
437 /* Helper that records hugetlb_cgroup uncharge info. */
438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439                                                 struct hstate *h,
440                                                 struct resv_map *resv,
441                                                 struct file_region *nrg)
442 {
443 #ifdef CONFIG_CGROUP_HUGETLB
444         if (h_cg) {
445                 nrg->reservation_counter =
446                         &h_cg->rsvd_hugepage[hstate_index(h)];
447                 nrg->css = &h_cg->css;
448                 /*
449                  * The caller will hold exactly one h_cg->css reference for the
450                  * whole contiguous reservation region. But this area might be
451                  * scattered when there are already some file_regions reside in
452                  * it. As a result, many file_regions may share only one css
453                  * reference. In order to ensure that one file_region must hold
454                  * exactly one h_cg->css reference, we should do css_get for
455                  * each file_region and leave the reference held by caller
456                  * untouched.
457                  */
458                 css_get(&h_cg->css);
459                 if (!resv->pages_per_hpage)
460                         resv->pages_per_hpage = pages_per_huge_page(h);
461                 /* pages_per_hpage should be the same for all entries in
462                  * a resv_map.
463                  */
464                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465         } else {
466                 nrg->reservation_counter = NULL;
467                 nrg->css = NULL;
468         }
469 #endif
470 }
471
472 static void put_uncharge_info(struct file_region *rg)
473 {
474 #ifdef CONFIG_CGROUP_HUGETLB
475         if (rg->css)
476                 css_put(rg->css);
477 #endif
478 }
479
480 static bool has_same_uncharge_info(struct file_region *rg,
481                                    struct file_region *org)
482 {
483 #ifdef CONFIG_CGROUP_HUGETLB
484         return rg->reservation_counter == org->reservation_counter &&
485                rg->css == org->css;
486
487 #else
488         return true;
489 #endif
490 }
491
492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493 {
494         struct file_region *nrg, *prg;
495
496         prg = list_prev_entry(rg, link);
497         if (&prg->link != &resv->regions && prg->to == rg->from &&
498             has_same_uncharge_info(prg, rg)) {
499                 prg->to = rg->to;
500
501                 list_del(&rg->link);
502                 put_uncharge_info(rg);
503                 kfree(rg);
504
505                 rg = prg;
506         }
507
508         nrg = list_next_entry(rg, link);
509         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510             has_same_uncharge_info(nrg, rg)) {
511                 nrg->from = rg->from;
512
513                 list_del(&rg->link);
514                 put_uncharge_info(rg);
515                 kfree(rg);
516         }
517 }
518
519 static inline long
520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
522                      long *regions_needed)
523 {
524         struct file_region *nrg;
525
526         if (!regions_needed) {
527                 nrg = get_file_region_entry_from_cache(map, from, to);
528                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529                 list_add(&nrg->link, rg);
530                 coalesce_file_region(map, nrg);
531         } else
532                 *regions_needed += 1;
533
534         return to - from;
535 }
536
537 /*
538  * Must be called with resv->lock held.
539  *
540  * Calling this with regions_needed != NULL will count the number of pages
541  * to be added but will not modify the linked list. And regions_needed will
542  * indicate the number of file_regions needed in the cache to carry out to add
543  * the regions for this range.
544  */
545 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546                                      struct hugetlb_cgroup *h_cg,
547                                      struct hstate *h, long *regions_needed)
548 {
549         long add = 0;
550         struct list_head *head = &resv->regions;
551         long last_accounted_offset = f;
552         struct file_region *iter, *trg = NULL;
553         struct list_head *rg = NULL;
554
555         if (regions_needed)
556                 *regions_needed = 0;
557
558         /* In this loop, we essentially handle an entry for the range
559          * [last_accounted_offset, iter->from), at every iteration, with some
560          * bounds checking.
561          */
562         list_for_each_entry_safe(iter, trg, head, link) {
563                 /* Skip irrelevant regions that start before our range. */
564                 if (iter->from < f) {
565                         /* If this region ends after the last accounted offset,
566                          * then we need to update last_accounted_offset.
567                          */
568                         if (iter->to > last_accounted_offset)
569                                 last_accounted_offset = iter->to;
570                         continue;
571                 }
572
573                 /* When we find a region that starts beyond our range, we've
574                  * finished.
575                  */
576                 if (iter->from >= t) {
577                         rg = iter->link.prev;
578                         break;
579                 }
580
581                 /* Add an entry for last_accounted_offset -> iter->from, and
582                  * update last_accounted_offset.
583                  */
584                 if (iter->from > last_accounted_offset)
585                         add += hugetlb_resv_map_add(resv, iter->link.prev,
586                                                     last_accounted_offset,
587                                                     iter->from, h, h_cg,
588                                                     regions_needed);
589
590                 last_accounted_offset = iter->to;
591         }
592
593         /* Handle the case where our range extends beyond
594          * last_accounted_offset.
595          */
596         if (!rg)
597                 rg = head->prev;
598         if (last_accounted_offset < t)
599                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600                                             t, h, h_cg, regions_needed);
601
602         return add;
603 }
604
605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606  */
607 static int allocate_file_region_entries(struct resv_map *resv,
608                                         int regions_needed)
609         __must_hold(&resv->lock)
610 {
611         LIST_HEAD(allocated_regions);
612         int to_allocate = 0, i = 0;
613         struct file_region *trg = NULL, *rg = NULL;
614
615         VM_BUG_ON(regions_needed < 0);
616
617         /*
618          * Check for sufficient descriptors in the cache to accommodate
619          * the number of in progress add operations plus regions_needed.
620          *
621          * This is a while loop because when we drop the lock, some other call
622          * to region_add or region_del may have consumed some region_entries,
623          * so we keep looping here until we finally have enough entries for
624          * (adds_in_progress + regions_needed).
625          */
626         while (resv->region_cache_count <
627                (resv->adds_in_progress + regions_needed)) {
628                 to_allocate = resv->adds_in_progress + regions_needed -
629                               resv->region_cache_count;
630
631                 /* At this point, we should have enough entries in the cache
632                  * for all the existing adds_in_progress. We should only be
633                  * needing to allocate for regions_needed.
634                  */
635                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636
637                 spin_unlock(&resv->lock);
638                 for (i = 0; i < to_allocate; i++) {
639                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640                         if (!trg)
641                                 goto out_of_memory;
642                         list_add(&trg->link, &allocated_regions);
643                 }
644
645                 spin_lock(&resv->lock);
646
647                 list_splice(&allocated_regions, &resv->region_cache);
648                 resv->region_cache_count += to_allocate;
649         }
650
651         return 0;
652
653 out_of_memory:
654         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655                 list_del(&rg->link);
656                 kfree(rg);
657         }
658         return -ENOMEM;
659 }
660
661 /*
662  * Add the huge page range represented by [f, t) to the reserve
663  * map.  Regions will be taken from the cache to fill in this range.
664  * Sufficient regions should exist in the cache due to the previous
665  * call to region_chg with the same range, but in some cases the cache will not
666  * have sufficient entries due to races with other code doing region_add or
667  * region_del.  The extra needed entries will be allocated.
668  *
669  * regions_needed is the out value provided by a previous call to region_chg.
670  *
671  * Return the number of new huge pages added to the map.  This number is greater
672  * than or equal to zero.  If file_region entries needed to be allocated for
673  * this operation and we were not able to allocate, it returns -ENOMEM.
674  * region_add of regions of length 1 never allocate file_regions and cannot
675  * fail; region_chg will always allocate at least 1 entry and a region_add for
676  * 1 page will only require at most 1 entry.
677  */
678 static long region_add(struct resv_map *resv, long f, long t,
679                        long in_regions_needed, struct hstate *h,
680                        struct hugetlb_cgroup *h_cg)
681 {
682         long add = 0, actual_regions_needed = 0;
683
684         spin_lock(&resv->lock);
685 retry:
686
687         /* Count how many regions are actually needed to execute this add. */
688         add_reservation_in_range(resv, f, t, NULL, NULL,
689                                  &actual_regions_needed);
690
691         /*
692          * Check for sufficient descriptors in the cache to accommodate
693          * this add operation. Note that actual_regions_needed may be greater
694          * than in_regions_needed, as the resv_map may have been modified since
695          * the region_chg call. In this case, we need to make sure that we
696          * allocate extra entries, such that we have enough for all the
697          * existing adds_in_progress, plus the excess needed for this
698          * operation.
699          */
700         if (actual_regions_needed > in_regions_needed &&
701             resv->region_cache_count <
702                     resv->adds_in_progress +
703                             (actual_regions_needed - in_regions_needed)) {
704                 /* region_add operation of range 1 should never need to
705                  * allocate file_region entries.
706                  */
707                 VM_BUG_ON(t - f <= 1);
708
709                 if (allocate_file_region_entries(
710                             resv, actual_regions_needed - in_regions_needed)) {
711                         return -ENOMEM;
712                 }
713
714                 goto retry;
715         }
716
717         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718
719         resv->adds_in_progress -= in_regions_needed;
720
721         spin_unlock(&resv->lock);
722         return add;
723 }
724
725 /*
726  * Examine the existing reserve map and determine how many
727  * huge pages in the specified range [f, t) are NOT currently
728  * represented.  This routine is called before a subsequent
729  * call to region_add that will actually modify the reserve
730  * map to add the specified range [f, t).  region_chg does
731  * not change the number of huge pages represented by the
732  * map.  A number of new file_region structures is added to the cache as a
733  * placeholder, for the subsequent region_add call to use. At least 1
734  * file_region structure is added.
735  *
736  * out_regions_needed is the number of regions added to the
737  * resv->adds_in_progress.  This value needs to be provided to a follow up call
738  * to region_add or region_abort for proper accounting.
739  *
740  * Returns the number of huge pages that need to be added to the existing
741  * reservation map for the range [f, t).  This number is greater or equal to
742  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
743  * is needed and can not be allocated.
744  */
745 static long region_chg(struct resv_map *resv, long f, long t,
746                        long *out_regions_needed)
747 {
748         long chg = 0;
749
750         spin_lock(&resv->lock);
751
752         /* Count how many hugepages in this range are NOT represented. */
753         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754                                        out_regions_needed);
755
756         if (*out_regions_needed == 0)
757                 *out_regions_needed = 1;
758
759         if (allocate_file_region_entries(resv, *out_regions_needed))
760                 return -ENOMEM;
761
762         resv->adds_in_progress += *out_regions_needed;
763
764         spin_unlock(&resv->lock);
765         return chg;
766 }
767
768 /*
769  * Abort the in progress add operation.  The adds_in_progress field
770  * of the resv_map keeps track of the operations in progress between
771  * calls to region_chg and region_add.  Operations are sometimes
772  * aborted after the call to region_chg.  In such cases, region_abort
773  * is called to decrement the adds_in_progress counter. regions_needed
774  * is the value returned by the region_chg call, it is used to decrement
775  * the adds_in_progress counter.
776  *
777  * NOTE: The range arguments [f, t) are not needed or used in this
778  * routine.  They are kept to make reading the calling code easier as
779  * arguments will match the associated region_chg call.
780  */
781 static void region_abort(struct resv_map *resv, long f, long t,
782                          long regions_needed)
783 {
784         spin_lock(&resv->lock);
785         VM_BUG_ON(!resv->region_cache_count);
786         resv->adds_in_progress -= regions_needed;
787         spin_unlock(&resv->lock);
788 }
789
790 /*
791  * Delete the specified range [f, t) from the reserve map.  If the
792  * t parameter is LONG_MAX, this indicates that ALL regions after f
793  * should be deleted.  Locate the regions which intersect [f, t)
794  * and either trim, delete or split the existing regions.
795  *
796  * Returns the number of huge pages deleted from the reserve map.
797  * In the normal case, the return value is zero or more.  In the
798  * case where a region must be split, a new region descriptor must
799  * be allocated.  If the allocation fails, -ENOMEM will be returned.
800  * NOTE: If the parameter t == LONG_MAX, then we will never split
801  * a region and possibly return -ENOMEM.  Callers specifying
802  * t == LONG_MAX do not need to check for -ENOMEM error.
803  */
804 static long region_del(struct resv_map *resv, long f, long t)
805 {
806         struct list_head *head = &resv->regions;
807         struct file_region *rg, *trg;
808         struct file_region *nrg = NULL;
809         long del = 0;
810
811 retry:
812         spin_lock(&resv->lock);
813         list_for_each_entry_safe(rg, trg, head, link) {
814                 /*
815                  * Skip regions before the range to be deleted.  file_region
816                  * ranges are normally of the form [from, to).  However, there
817                  * may be a "placeholder" entry in the map which is of the form
818                  * (from, to) with from == to.  Check for placeholder entries
819                  * at the beginning of the range to be deleted.
820                  */
821                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822                         continue;
823
824                 if (rg->from >= t)
825                         break;
826
827                 if (f > rg->from && t < rg->to) { /* Must split region */
828                         /*
829                          * Check for an entry in the cache before dropping
830                          * lock and attempting allocation.
831                          */
832                         if (!nrg &&
833                             resv->region_cache_count > resv->adds_in_progress) {
834                                 nrg = list_first_entry(&resv->region_cache,
835                                                         struct file_region,
836                                                         link);
837                                 list_del(&nrg->link);
838                                 resv->region_cache_count--;
839                         }
840
841                         if (!nrg) {
842                                 spin_unlock(&resv->lock);
843                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844                                 if (!nrg)
845                                         return -ENOMEM;
846                                 goto retry;
847                         }
848
849                         del += t - f;
850                         hugetlb_cgroup_uncharge_file_region(
851                                 resv, rg, t - f, false);
852
853                         /* New entry for end of split region */
854                         nrg->from = t;
855                         nrg->to = rg->to;
856
857                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858
859                         INIT_LIST_HEAD(&nrg->link);
860
861                         /* Original entry is trimmed */
862                         rg->to = f;
863
864                         list_add(&nrg->link, &rg->link);
865                         nrg = NULL;
866                         break;
867                 }
868
869                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870                         del += rg->to - rg->from;
871                         hugetlb_cgroup_uncharge_file_region(resv, rg,
872                                                             rg->to - rg->from, true);
873                         list_del(&rg->link);
874                         kfree(rg);
875                         continue;
876                 }
877
878                 if (f <= rg->from) {    /* Trim beginning of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             t - rg->from, false);
881
882                         del += t - rg->from;
883                         rg->from = t;
884                 } else {                /* Trim end of region */
885                         hugetlb_cgroup_uncharge_file_region(resv, rg,
886                                                             rg->to - f, false);
887
888                         del += rg->to - f;
889                         rg->to = f;
890                 }
891         }
892
893         spin_unlock(&resv->lock);
894         kfree(nrg);
895         return del;
896 }
897
898 /*
899  * A rare out of memory error was encountered which prevented removal of
900  * the reserve map region for a page.  The huge page itself was free'ed
901  * and removed from the page cache.  This routine will adjust the subpool
902  * usage count, and the global reserve count if needed.  By incrementing
903  * these counts, the reserve map entry which could not be deleted will
904  * appear as a "reserved" entry instead of simply dangling with incorrect
905  * counts.
906  */
907 void hugetlb_fix_reserve_counts(struct inode *inode)
908 {
909         struct hugepage_subpool *spool = subpool_inode(inode);
910         long rsv_adjust;
911         bool reserved = false;
912
913         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914         if (rsv_adjust > 0) {
915                 struct hstate *h = hstate_inode(inode);
916
917                 if (!hugetlb_acct_memory(h, 1))
918                         reserved = true;
919         } else if (!rsv_adjust) {
920                 reserved = true;
921         }
922
923         if (!reserved)
924                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925 }
926
927 /*
928  * Count and return the number of huge pages in the reserve map
929  * that intersect with the range [f, t).
930  */
931 static long region_count(struct resv_map *resv, long f, long t)
932 {
933         struct list_head *head = &resv->regions;
934         struct file_region *rg;
935         long chg = 0;
936
937         spin_lock(&resv->lock);
938         /* Locate each segment we overlap with, and count that overlap. */
939         list_for_each_entry(rg, head, link) {
940                 long seg_from;
941                 long seg_to;
942
943                 if (rg->to <= f)
944                         continue;
945                 if (rg->from >= t)
946                         break;
947
948                 seg_from = max(rg->from, f);
949                 seg_to = min(rg->to, t);
950
951                 chg += seg_to - seg_from;
952         }
953         spin_unlock(&resv->lock);
954
955         return chg;
956 }
957
958 /*
959  * Convert the address within this vma to the page offset within
960  * the mapping, in pagecache page units; huge pages here.
961  */
962 static pgoff_t vma_hugecache_offset(struct hstate *h,
963                         struct vm_area_struct *vma, unsigned long address)
964 {
965         return ((address - vma->vm_start) >> huge_page_shift(h)) +
966                         (vma->vm_pgoff >> huge_page_order(h));
967 }
968
969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970                                      unsigned long address)
971 {
972         return vma_hugecache_offset(hstate_vma(vma), vma, address);
973 }
974 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975
976 /*
977  * Return the size of the pages allocated when backing a VMA. In the majority
978  * cases this will be same size as used by the page table entries.
979  */
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982         if (vma->vm_ops && vma->vm_ops->pagesize)
983                 return vma->vm_ops->pagesize(vma);
984         return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996         return vma_kernel_pagesize(vma);
997 }
998
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029         return (unsigned long)vma->vm_private_data;
1030 }
1031
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033                                                         unsigned long value)
1034 {
1035         vma->vm_private_data = (void *)value;
1036 }
1037
1038 static void
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040                                           struct hugetlb_cgroup *h_cg,
1041                                           struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044         if (!h_cg || !h) {
1045                 resv_map->reservation_counter = NULL;
1046                 resv_map->pages_per_hpage = 0;
1047                 resv_map->css = NULL;
1048         } else {
1049                 resv_map->reservation_counter =
1050                         &h_cg->rsvd_hugepage[hstate_index(h)];
1051                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052                 resv_map->css = &h_cg->css;
1053         }
1054 #endif
1055 }
1056
1057 struct resv_map *resv_map_alloc(void)
1058 {
1059         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061
1062         if (!resv_map || !rg) {
1063                 kfree(resv_map);
1064                 kfree(rg);
1065                 return NULL;
1066         }
1067
1068         kref_init(&resv_map->refs);
1069         spin_lock_init(&resv_map->lock);
1070         INIT_LIST_HEAD(&resv_map->regions);
1071
1072         resv_map->adds_in_progress = 0;
1073         /*
1074          * Initialize these to 0. On shared mappings, 0's here indicate these
1075          * fields don't do cgroup accounting. On private mappings, these will be
1076          * re-initialized to the proper values, to indicate that hugetlb cgroup
1077          * reservations are to be un-charged from here.
1078          */
1079         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080
1081         INIT_LIST_HEAD(&resv_map->region_cache);
1082         list_add(&rg->link, &resv_map->region_cache);
1083         resv_map->region_cache_count = 1;
1084
1085         return resv_map;
1086 }
1087
1088 void resv_map_release(struct kref *ref)
1089 {
1090         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091         struct list_head *head = &resv_map->region_cache;
1092         struct file_region *rg, *trg;
1093
1094         /* Clear out any active regions before we release the map. */
1095         region_del(resv_map, 0, LONG_MAX);
1096
1097         /* ... and any entries left in the cache */
1098         list_for_each_entry_safe(rg, trg, head, link) {
1099                 list_del(&rg->link);
1100                 kfree(rg);
1101         }
1102
1103         VM_BUG_ON(resv_map->adds_in_progress);
1104
1105         kfree(resv_map);
1106 }
1107
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110         /*
1111          * At inode evict time, i_mapping may not point to the original
1112          * address space within the inode.  This original address space
1113          * contains the pointer to the resv_map.  So, always use the
1114          * address space embedded within the inode.
1115          * The VERY common case is inode->mapping == &inode->i_data but,
1116          * this may not be true for device special inodes.
1117          */
1118         return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124         if (vma->vm_flags & VM_MAYSHARE) {
1125                 struct address_space *mapping = vma->vm_file->f_mapping;
1126                 struct inode *inode = mapping->host;
1127
1128                 return inode_resv_map(inode);
1129
1130         } else {
1131                 return (struct resv_map *)(get_vma_private_data(vma) &
1132                                                         ~HPAGE_RESV_MASK);
1133         }
1134 }
1135
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140
1141         set_vma_private_data(vma, (get_vma_private_data(vma) &
1142                                 HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149
1150         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156
1157         return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163         /*
1164          * Clear vm_private_data
1165          * - For shared mappings this is a per-vma semaphore that may be
1166          *   allocated in a subsequent call to hugetlb_vm_op_open.
1167          *   Before clearing, make sure pointer is not associated with vma
1168          *   as this will leak the structure.  This is the case when called
1169          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170          *   been called to allocate a new structure.
1171          * - For MAP_PRIVATE mappings, this is the reserve map which does
1172          *   not apply to children.  Faults generated by the children are
1173          *   not guaranteed to succeed, even if read-only.
1174          */
1175         if (vma->vm_flags & VM_MAYSHARE) {
1176                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177
1178                 if (vma_lock && vma_lock->vma != vma)
1179                         vma->vm_private_data = NULL;
1180         } else
1181                 vma->vm_private_data = NULL;
1182 }
1183
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_lock writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193         /*
1194          * Clear the old hugetlb private page reservation.
1195          * It has already been transferred to new_vma.
1196          *
1197          * During a mremap() operation of a hugetlb vma we call move_vma()
1198          * which copies vma into new_vma and unmaps vma. After the copy
1199          * operation both new_vma and vma share a reference to the resv_map
1200          * struct, and at that point vma is about to be unmapped. We don't
1201          * want to return the reservation to the pool at unmap of vma because
1202          * the reservation still lives on in new_vma, so simply decrement the
1203          * ref here and remove the resv_map reference from this vma.
1204          */
1205         struct resv_map *reservations = vma_resv_map(vma);
1206
1207         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209                 kref_put(&reservations->refs, resv_map_release);
1210         }
1211
1212         hugetlb_dup_vma_private(vma);
1213 }
1214
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218         if (vma->vm_flags & VM_NORESERVE) {
1219                 /*
1220                  * This address is already reserved by other process(chg == 0),
1221                  * so, we should decrement reserved count. Without decrementing,
1222                  * reserve count remains after releasing inode, because this
1223                  * allocated page will go into page cache and is regarded as
1224                  * coming from reserved pool in releasing step.  Currently, we
1225                  * don't have any other solution to deal with this situation
1226                  * properly, so add work-around here.
1227                  */
1228                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229                         return true;
1230                 else
1231                         return false;
1232         }
1233
1234         /* Shared mappings always use reserves */
1235         if (vma->vm_flags & VM_MAYSHARE) {
1236                 /*
1237                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238                  * be a region map for all pages.  The only situation where
1239                  * there is no region map is if a hole was punched via
1240                  * fallocate.  In this case, there really are no reserves to
1241                  * use.  This situation is indicated if chg != 0.
1242                  */
1243                 if (chg)
1244                         return false;
1245                 else
1246                         return true;
1247         }
1248
1249         /*
1250          * Only the process that called mmap() has reserves for
1251          * private mappings.
1252          */
1253         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254                 /*
1255                  * Like the shared case above, a hole punch or truncate
1256                  * could have been performed on the private mapping.
1257                  * Examine the value of chg to determine if reserves
1258                  * actually exist or were previously consumed.
1259                  * Very Subtle - The value of chg comes from a previous
1260                  * call to vma_needs_reserves().  The reserve map for
1261                  * private mappings has different (opposite) semantics
1262                  * than that of shared mappings.  vma_needs_reserves()
1263                  * has already taken this difference in semantics into
1264                  * account.  Therefore, the meaning of chg is the same
1265                  * as in the shared case above.  Code could easily be
1266                  * combined, but keeping it separate draws attention to
1267                  * subtle differences.
1268                  */
1269                 if (chg)
1270                         return false;
1271                 else
1272                         return true;
1273         }
1274
1275         return false;
1276 }
1277
1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279 {
1280         int nid = folio_nid(folio);
1281
1282         lockdep_assert_held(&hugetlb_lock);
1283         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286         h->free_huge_pages++;
1287         h->free_huge_pages_node[nid]++;
1288         folio_set_hugetlb_freed(folio);
1289 }
1290
1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 {
1293         struct page *page;
1294         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295
1296         lockdep_assert_held(&hugetlb_lock);
1297         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298                 if (pin && !is_longterm_pinnable_page(page))
1299                         continue;
1300
1301                 if (PageHWPoison(page))
1302                         continue;
1303
1304                 list_move(&page->lru, &h->hugepage_activelist);
1305                 set_page_refcounted(page);
1306                 ClearHPageFreed(page);
1307                 h->free_huge_pages--;
1308                 h->free_huge_pages_node[nid]--;
1309                 return page;
1310         }
1311
1312         return NULL;
1313 }
1314
1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316                 nodemask_t *nmask)
1317 {
1318         unsigned int cpuset_mems_cookie;
1319         struct zonelist *zonelist;
1320         struct zone *zone;
1321         struct zoneref *z;
1322         int node = NUMA_NO_NODE;
1323
1324         zonelist = node_zonelist(nid, gfp_mask);
1325
1326 retry_cpuset:
1327         cpuset_mems_cookie = read_mems_allowed_begin();
1328         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329                 struct page *page;
1330
1331                 if (!cpuset_zone_allowed(zone, gfp_mask))
1332                         continue;
1333                 /*
1334                  * no need to ask again on the same node. Pool is node rather than
1335                  * zone aware
1336                  */
1337                 if (zone_to_nid(zone) == node)
1338                         continue;
1339                 node = zone_to_nid(zone);
1340
1341                 page = dequeue_huge_page_node_exact(h, node);
1342                 if (page)
1343                         return page;
1344         }
1345         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346                 goto retry_cpuset;
1347
1348         return NULL;
1349 }
1350
1351 static unsigned long available_huge_pages(struct hstate *h)
1352 {
1353         return h->free_huge_pages - h->resv_huge_pages;
1354 }
1355
1356 static struct page *dequeue_huge_page_vma(struct hstate *h,
1357                                 struct vm_area_struct *vma,
1358                                 unsigned long address, int avoid_reserve,
1359                                 long chg)
1360 {
1361         struct page *page = NULL;
1362         struct mempolicy *mpol;
1363         gfp_t gfp_mask;
1364         nodemask_t *nodemask;
1365         int nid;
1366
1367         /*
1368          * A child process with MAP_PRIVATE mappings created by their parent
1369          * have no page reserves. This check ensures that reservations are
1370          * not "stolen". The child may still get SIGKILLed
1371          */
1372         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373                 goto err;
1374
1375         /* If reserves cannot be used, ensure enough pages are in the pool */
1376         if (avoid_reserve && !available_huge_pages(h))
1377                 goto err;
1378
1379         gfp_mask = htlb_alloc_mask(h);
1380         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381
1382         if (mpol_is_preferred_many(mpol)) {
1383                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384
1385                 /* Fallback to all nodes if page==NULL */
1386                 nodemask = NULL;
1387         }
1388
1389         if (!page)
1390                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391
1392         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393                 SetHPageRestoreReserve(page);
1394                 h->resv_huge_pages--;
1395         }
1396
1397         mpol_cond_put(mpol);
1398         return page;
1399
1400 err:
1401         return NULL;
1402 }
1403
1404 /*
1405  * common helper functions for hstate_next_node_to_{alloc|free}.
1406  * We may have allocated or freed a huge page based on a different
1407  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408  * be outside of *nodes_allowed.  Ensure that we use an allowed
1409  * node for alloc or free.
1410  */
1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412 {
1413         nid = next_node_in(nid, *nodes_allowed);
1414         VM_BUG_ON(nid >= MAX_NUMNODES);
1415
1416         return nid;
1417 }
1418
1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420 {
1421         if (!node_isset(nid, *nodes_allowed))
1422                 nid = next_node_allowed(nid, nodes_allowed);
1423         return nid;
1424 }
1425
1426 /*
1427  * returns the previously saved node ["this node"] from which to
1428  * allocate a persistent huge page for the pool and advance the
1429  * next node from which to allocate, handling wrap at end of node
1430  * mask.
1431  */
1432 static int hstate_next_node_to_alloc(struct hstate *h,
1433                                         nodemask_t *nodes_allowed)
1434 {
1435         int nid;
1436
1437         VM_BUG_ON(!nodes_allowed);
1438
1439         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441
1442         return nid;
1443 }
1444
1445 /*
1446  * helper for remove_pool_huge_page() - return the previously saved
1447  * node ["this node"] from which to free a huge page.  Advance the
1448  * next node id whether or not we find a free huge page to free so
1449  * that the next attempt to free addresses the next node.
1450  */
1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 {
1453         int nid;
1454
1455         VM_BUG_ON(!nodes_allowed);
1456
1457         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459
1460         return nid;
1461 }
1462
1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1464         for (nr_nodes = nodes_weight(*mask);                            \
1465                 nr_nodes > 0 &&                                         \
1466                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1467                 nr_nodes--)
1468
1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1470         for (nr_nodes = nodes_weight(*mask);                            \
1471                 nr_nodes > 0 &&                                         \
1472                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1473                 nr_nodes--)
1474
1475 /* used to demote non-gigantic_huge pages as well */
1476 static void __destroy_compound_gigantic_folio(struct folio *folio,
1477                                         unsigned int order, bool demote)
1478 {
1479         int i;
1480         int nr_pages = 1 << order;
1481         struct page *p;
1482
1483         atomic_set(folio_mapcount_ptr(folio), 0);
1484         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1485         atomic_set(folio_pincount_ptr(folio), 0);
1486
1487         for (i = 1; i < nr_pages; i++) {
1488                 p = folio_page(folio, i);
1489                 p->mapping = NULL;
1490                 clear_compound_head(p);
1491                 if (!demote)
1492                         set_page_refcounted(p);
1493         }
1494
1495         folio_set_compound_order(folio, 0);
1496         __folio_clear_head(folio);
1497 }
1498
1499 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500                                         unsigned int order)
1501 {
1502         __destroy_compound_gigantic_folio(folio, order, true);
1503 }
1504
1505 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1506 static void destroy_compound_gigantic_folio(struct folio *folio,
1507                                         unsigned int order)
1508 {
1509         __destroy_compound_gigantic_folio(folio, order, false);
1510 }
1511
1512 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513 {
1514         /*
1515          * If the page isn't allocated using the cma allocator,
1516          * cma_release() returns false.
1517          */
1518 #ifdef CONFIG_CMA
1519         int nid = folio_nid(folio);
1520
1521         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1522                 return;
1523 #endif
1524
1525         free_contig_range(folio_pfn(folio), 1 << order);
1526 }
1527
1528 #ifdef CONFIG_CONTIG_ALLOC
1529 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1530                 int nid, nodemask_t *nodemask)
1531 {
1532         struct page *page;
1533         unsigned long nr_pages = pages_per_huge_page(h);
1534         if (nid == NUMA_NO_NODE)
1535                 nid = numa_mem_id();
1536
1537 #ifdef CONFIG_CMA
1538         {
1539                 int node;
1540
1541                 if (hugetlb_cma[nid]) {
1542                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543                                         huge_page_order(h), true);
1544                         if (page)
1545                                 return page_folio(page);
1546                 }
1547
1548                 if (!(gfp_mask & __GFP_THISNODE)) {
1549                         for_each_node_mask(node, *nodemask) {
1550                                 if (node == nid || !hugetlb_cma[node])
1551                                         continue;
1552
1553                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1554                                                 huge_page_order(h), true);
1555                                 if (page)
1556                                         return page_folio(page);
1557                         }
1558                 }
1559         }
1560 #endif
1561
1562         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563         return page ? page_folio(page) : NULL;
1564 }
1565
1566 #else /* !CONFIG_CONTIG_ALLOC */
1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568                                         int nid, nodemask_t *nodemask)
1569 {
1570         return NULL;
1571 }
1572 #endif /* CONFIG_CONTIG_ALLOC */
1573
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576                                         int nid, nodemask_t *nodemask)
1577 {
1578         return NULL;
1579 }
1580 static inline void free_gigantic_folio(struct folio *folio,
1581                                                 unsigned int order) { }
1582 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1583                                                 unsigned int order) { }
1584 #endif
1585
1586 /*
1587  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1588  * as just a compound page.
1589  *
1590  * A reference is held on the folio, except in the case of demote.
1591  *
1592  * Must be called with hugetlb lock held.
1593  */
1594 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1595                                                         bool adjust_surplus,
1596                                                         bool demote)
1597 {
1598         int nid = folio_nid(folio);
1599
1600         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1601         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1602
1603         lockdep_assert_held(&hugetlb_lock);
1604         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605                 return;
1606
1607         list_del(&folio->lru);
1608
1609         if (folio_test_hugetlb_freed(folio)) {
1610                 h->free_huge_pages--;
1611                 h->free_huge_pages_node[nid]--;
1612         }
1613         if (adjust_surplus) {
1614                 h->surplus_huge_pages--;
1615                 h->surplus_huge_pages_node[nid]--;
1616         }
1617
1618         /*
1619          * Very subtle
1620          *
1621          * For non-gigantic pages set the destructor to the normal compound
1622          * page dtor.  This is needed in case someone takes an additional
1623          * temporary ref to the page, and freeing is delayed until they drop
1624          * their reference.
1625          *
1626          * For gigantic pages set the destructor to the null dtor.  This
1627          * destructor will never be called.  Before freeing the gigantic
1628          * page destroy_compound_gigantic_folio will turn the folio into a
1629          * simple group of pages.  After this the destructor does not
1630          * apply.
1631          *
1632          * This handles the case where more than one ref is held when and
1633          * after update_and_free_hugetlb_folio is called.
1634          *
1635          * In the case of demote we do not ref count the page as it will soon
1636          * be turned into a page of smaller size.
1637          */
1638         if (!demote)
1639                 folio_ref_unfreeze(folio, 1);
1640         if (hstate_is_gigantic(h))
1641                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1642         else
1643                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644
1645         h->nr_huge_pages--;
1646         h->nr_huge_pages_node[nid]--;
1647 }
1648
1649 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1650                                                         bool adjust_surplus)
1651 {
1652         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653 }
1654
1655 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1656                                                         bool adjust_surplus)
1657 {
1658         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659 }
1660
1661 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1662                              bool adjust_surplus)
1663 {
1664         int zeroed;
1665         int nid = folio_nid(folio);
1666
1667         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1668
1669         lockdep_assert_held(&hugetlb_lock);
1670
1671         INIT_LIST_HEAD(&folio->lru);
1672         h->nr_huge_pages++;
1673         h->nr_huge_pages_node[nid]++;
1674
1675         if (adjust_surplus) {
1676                 h->surplus_huge_pages++;
1677                 h->surplus_huge_pages_node[nid]++;
1678         }
1679
1680         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1681         folio_change_private(folio, NULL);
1682         /*
1683          * We have to set hugetlb_vmemmap_optimized again as above
1684          * folio_change_private(folio, NULL) cleared it.
1685          */
1686         folio_set_hugetlb_vmemmap_optimized(folio);
1687
1688         /*
1689          * This folio is about to be managed by the hugetlb allocator and
1690          * should have no users.  Drop our reference, and check for others
1691          * just in case.
1692          */
1693         zeroed = folio_put_testzero(folio);
1694         if (unlikely(!zeroed))
1695                 /*
1696                  * It is VERY unlikely soneone else has taken a ref on
1697                  * the page.  In this case, we simply return as the
1698                  * hugetlb destructor (free_huge_page) will be called
1699                  * when this other ref is dropped.
1700                  */
1701                 return;
1702
1703         arch_clear_hugepage_flags(&folio->page);
1704         enqueue_hugetlb_folio(h, folio);
1705 }
1706
1707 static void __update_and_free_page(struct hstate *h, struct page *page)
1708 {
1709         int i;
1710         struct folio *folio = page_folio(page);
1711         struct page *subpage;
1712
1713         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1714                 return;
1715
1716         /*
1717          * If we don't know which subpages are hwpoisoned, we can't free
1718          * the hugepage, so it's leaked intentionally.
1719          */
1720         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721                 return;
1722
1723         if (hugetlb_vmemmap_restore(h, page)) {
1724                 spin_lock_irq(&hugetlb_lock);
1725                 /*
1726                  * If we cannot allocate vmemmap pages, just refuse to free the
1727                  * page and put the page back on the hugetlb free list and treat
1728                  * as a surplus page.
1729                  */
1730                 add_hugetlb_folio(h, folio, true);
1731                 spin_unlock_irq(&hugetlb_lock);
1732                 return;
1733         }
1734
1735         /*
1736          * Move PageHWPoison flag from head page to the raw error pages,
1737          * which makes any healthy subpages reusable.
1738          */
1739         if (unlikely(folio_test_hwpoison(folio)))
1740                 hugetlb_clear_page_hwpoison(&folio->page);
1741
1742         for (i = 0; i < pages_per_huge_page(h); i++) {
1743                 subpage = folio_page(folio, i);
1744                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1745                                 1 << PG_referenced | 1 << PG_dirty |
1746                                 1 << PG_active | 1 << PG_private |
1747                                 1 << PG_writeback);
1748         }
1749
1750         /*
1751          * Non-gigantic pages demoted from CMA allocated gigantic pages
1752          * need to be given back to CMA in free_gigantic_folio.
1753          */
1754         if (hstate_is_gigantic(h) ||
1755             hugetlb_cma_folio(folio, huge_page_order(h))) {
1756                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1757                 free_gigantic_folio(folio, huge_page_order(h));
1758         } else {
1759                 __free_pages(page, huge_page_order(h));
1760         }
1761 }
1762
1763 /*
1764  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1765  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1766  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1767  * the vmemmap pages.
1768  *
1769  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1770  * freed and frees them one-by-one. As the page->mapping pointer is going
1771  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1772  * structure of a lockless linked list of huge pages to be freed.
1773  */
1774 static LLIST_HEAD(hpage_freelist);
1775
1776 static void free_hpage_workfn(struct work_struct *work)
1777 {
1778         struct llist_node *node;
1779
1780         node = llist_del_all(&hpage_freelist);
1781
1782         while (node) {
1783                 struct page *page;
1784                 struct hstate *h;
1785
1786                 page = container_of((struct address_space **)node,
1787                                      struct page, mapping);
1788                 node = node->next;
1789                 page->mapping = NULL;
1790                 /*
1791                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1792                  * is going to trigger because a previous call to
1793                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1794                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795                  * directly.
1796                  */
1797                 h = size_to_hstate(page_size(page));
1798
1799                 __update_and_free_page(h, page);
1800
1801                 cond_resched();
1802         }
1803 }
1804 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1805
1806 static inline void flush_free_hpage_work(struct hstate *h)
1807 {
1808         if (hugetlb_vmemmap_optimizable(h))
1809                 flush_work(&free_hpage_work);
1810 }
1811
1812 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813                                  bool atomic)
1814 {
1815         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1816                 __update_and_free_page(h, &folio->page);
1817                 return;
1818         }
1819
1820         /*
1821          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1822          *
1823          * Only call schedule_work() if hpage_freelist is previously
1824          * empty. Otherwise, schedule_work() had been called but the workfn
1825          * hasn't retrieved the list yet.
1826          */
1827         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1828                 schedule_work(&free_hpage_work);
1829 }
1830
1831 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1832 {
1833         struct page *page, *t_page;
1834         struct folio *folio;
1835
1836         list_for_each_entry_safe(page, t_page, list, lru) {
1837                 folio = page_folio(page);
1838                 update_and_free_hugetlb_folio(h, folio, false);
1839                 cond_resched();
1840         }
1841 }
1842
1843 struct hstate *size_to_hstate(unsigned long size)
1844 {
1845         struct hstate *h;
1846
1847         for_each_hstate(h) {
1848                 if (huge_page_size(h) == size)
1849                         return h;
1850         }
1851         return NULL;
1852 }
1853
1854 void free_huge_page(struct page *page)
1855 {
1856         /*
1857          * Can't pass hstate in here because it is called from the
1858          * compound page destructor.
1859          */
1860         struct folio *folio = page_folio(page);
1861         struct hstate *h = folio_hstate(folio);
1862         int nid = folio_nid(folio);
1863         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864         bool restore_reserve;
1865         unsigned long flags;
1866
1867         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1869
1870         hugetlb_set_folio_subpool(folio, NULL);
1871         if (folio_test_anon(folio))
1872                 __ClearPageAnonExclusive(&folio->page);
1873         folio->mapping = NULL;
1874         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875         folio_clear_hugetlb_restore_reserve(folio);
1876
1877         /*
1878          * If HPageRestoreReserve was set on page, page allocation consumed a
1879          * reservation.  If the page was associated with a subpool, there
1880          * would have been a page reserved in the subpool before allocation
1881          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1882          * reservation, do not call hugepage_subpool_put_pages() as this will
1883          * remove the reserved page from the subpool.
1884          */
1885         if (!restore_reserve) {
1886                 /*
1887                  * A return code of zero implies that the subpool will be
1888                  * under its minimum size if the reservation is not restored
1889                  * after page is free.  Therefore, force restore_reserve
1890                  * operation.
1891                  */
1892                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1893                         restore_reserve = true;
1894         }
1895
1896         spin_lock_irqsave(&hugetlb_lock, flags);
1897         folio_clear_hugetlb_migratable(folio);
1898         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899                                      pages_per_huge_page(h), folio);
1900         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901                                           pages_per_huge_page(h), folio);
1902         if (restore_reserve)
1903                 h->resv_huge_pages++;
1904
1905         if (folio_test_hugetlb_temporary(folio)) {
1906                 remove_hugetlb_folio(h, folio, false);
1907                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908                 update_and_free_hugetlb_folio(h, folio, true);
1909         } else if (h->surplus_huge_pages_node[nid]) {
1910                 /* remove the page from active list */
1911                 remove_hugetlb_folio(h, folio, true);
1912                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913                 update_and_free_hugetlb_folio(h, folio, true);
1914         } else {
1915                 arch_clear_hugepage_flags(page);
1916                 enqueue_hugetlb_folio(h, folio);
1917                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1918         }
1919 }
1920
1921 /*
1922  * Must be called with the hugetlb lock held
1923  */
1924 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1925 {
1926         lockdep_assert_held(&hugetlb_lock);
1927         h->nr_huge_pages++;
1928         h->nr_huge_pages_node[nid]++;
1929 }
1930
1931 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1932 {
1933         hugetlb_vmemmap_optimize(h, &folio->page);
1934         INIT_LIST_HEAD(&folio->lru);
1935         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1936         hugetlb_set_folio_subpool(folio, NULL);
1937         set_hugetlb_cgroup(folio, NULL);
1938         set_hugetlb_cgroup_rsvd(folio, NULL);
1939 }
1940
1941 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1942 {
1943         __prep_new_hugetlb_folio(h, folio);
1944         spin_lock_irq(&hugetlb_lock);
1945         __prep_account_new_huge_page(h, nid);
1946         spin_unlock_irq(&hugetlb_lock);
1947 }
1948
1949 static bool __prep_compound_gigantic_folio(struct folio *folio,
1950                                         unsigned int order, bool demote)
1951 {
1952         int i, j;
1953         int nr_pages = 1 << order;
1954         struct page *p;
1955
1956         __folio_clear_reserved(folio);
1957         __folio_set_head(folio);
1958         /* we rely on prep_new_hugetlb_folio to set the destructor */
1959         folio_set_compound_order(folio, order);
1960         for (i = 0; i < nr_pages; i++) {
1961                 p = folio_page(folio, i);
1962
1963                 /*
1964                  * For gigantic hugepages allocated through bootmem at
1965                  * boot, it's safer to be consistent with the not-gigantic
1966                  * hugepages and clear the PG_reserved bit from all tail pages
1967                  * too.  Otherwise drivers using get_user_pages() to access tail
1968                  * pages may get the reference counting wrong if they see
1969                  * PG_reserved set on a tail page (despite the head page not
1970                  * having PG_reserved set).  Enforcing this consistency between
1971                  * head and tail pages allows drivers to optimize away a check
1972                  * on the head page when they need know if put_page() is needed
1973                  * after get_user_pages().
1974                  */
1975                 if (i != 0)     /* head page cleared above */
1976                         __ClearPageReserved(p);
1977                 /*
1978                  * Subtle and very unlikely
1979                  *
1980                  * Gigantic 'page allocators' such as memblock or cma will
1981                  * return a set of pages with each page ref counted.  We need
1982                  * to turn this set of pages into a compound page with tail
1983                  * page ref counts set to zero.  Code such as speculative page
1984                  * cache adding could take a ref on a 'to be' tail page.
1985                  * We need to respect any increased ref count, and only set
1986                  * the ref count to zero if count is currently 1.  If count
1987                  * is not 1, we return an error.  An error return indicates
1988                  * the set of pages can not be converted to a gigantic page.
1989                  * The caller who allocated the pages should then discard the
1990                  * pages using the appropriate free interface.
1991                  *
1992                  * In the case of demote, the ref count will be zero.
1993                  */
1994                 if (!demote) {
1995                         if (!page_ref_freeze(p, 1)) {
1996                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997                                 goto out_error;
1998                         }
1999                 } else {
2000                         VM_BUG_ON_PAGE(page_count(p), p);
2001                 }
2002                 if (i != 0)
2003                         set_compound_head(p, &folio->page);
2004         }
2005         atomic_set(folio_mapcount_ptr(folio), -1);
2006         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2007         atomic_set(folio_pincount_ptr(folio), 0);
2008         return true;
2009
2010 out_error:
2011         /* undo page modifications made above */
2012         for (j = 0; j < i; j++) {
2013                 p = folio_page(folio, j);
2014                 if (j != 0)
2015                         clear_compound_head(p);
2016                 set_page_refcounted(p);
2017         }
2018         /* need to clear PG_reserved on remaining tail pages  */
2019         for (; j < nr_pages; j++) {
2020                 p = folio_page(folio, j);
2021                 __ClearPageReserved(p);
2022         }
2023         folio_set_compound_order(folio, 0);
2024         __folio_clear_head(folio);
2025         return false;
2026 }
2027
2028 static bool prep_compound_gigantic_folio(struct folio *folio,
2029                                                         unsigned int order)
2030 {
2031         return __prep_compound_gigantic_folio(folio, order, false);
2032 }
2033
2034 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035                                                         unsigned int order)
2036 {
2037         return __prep_compound_gigantic_folio(folio, order, true);
2038 }
2039
2040 /*
2041  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2042  * transparent huge pages.  See the PageTransHuge() documentation for more
2043  * details.
2044  */
2045 int PageHuge(struct page *page)
2046 {
2047         if (!PageCompound(page))
2048                 return 0;
2049
2050         page = compound_head(page);
2051         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2052 }
2053 EXPORT_SYMBOL_GPL(PageHuge);
2054
2055 /*
2056  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2057  * normal or transparent huge pages.
2058  */
2059 int PageHeadHuge(struct page *page_head)
2060 {
2061         if (!PageHead(page_head))
2062                 return 0;
2063
2064         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2065 }
2066 EXPORT_SYMBOL_GPL(PageHeadHuge);
2067
2068 /*
2069  * Find and lock address space (mapping) in write mode.
2070  *
2071  * Upon entry, the page is locked which means that page_mapping() is
2072  * stable.  Due to locking order, we can only trylock_write.  If we can
2073  * not get the lock, simply return NULL to caller.
2074  */
2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076 {
2077         struct address_space *mapping = page_mapping(hpage);
2078
2079         if (!mapping)
2080                 return mapping;
2081
2082         if (i_mmap_trylock_write(mapping))
2083                 return mapping;
2084
2085         return NULL;
2086 }
2087
2088 pgoff_t hugetlb_basepage_index(struct page *page)
2089 {
2090         struct page *page_head = compound_head(page);
2091         pgoff_t index = page_index(page_head);
2092         unsigned long compound_idx;
2093
2094         if (compound_order(page_head) >= MAX_ORDER)
2095                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096         else
2097                 compound_idx = page - page_head;
2098
2099         return (index << compound_order(page_head)) + compound_idx;
2100 }
2101
2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104                 nodemask_t *node_alloc_noretry)
2105 {
2106         int order = huge_page_order(h);
2107         struct page *page;
2108         bool alloc_try_hard = true;
2109         bool retry = true;
2110
2111         /*
2112          * By default we always try hard to allocate the page with
2113          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2114          * a loop (to adjust global huge page counts) and previous allocation
2115          * failed, do not continue to try hard on the same node.  Use the
2116          * node_alloc_noretry bitmap to manage this state information.
2117          */
2118         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119                 alloc_try_hard = false;
2120         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121         if (alloc_try_hard)
2122                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123         if (nid == NUMA_NO_NODE)
2124                 nid = numa_mem_id();
2125 retry:
2126         page = __alloc_pages(gfp_mask, order, nid, nmask);
2127
2128         /* Freeze head page */
2129         if (page && !page_ref_freeze(page, 1)) {
2130                 __free_pages(page, order);
2131                 if (retry) {    /* retry once */
2132                         retry = false;
2133                         goto retry;
2134                 }
2135                 /* WOW!  twice in a row. */
2136                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137                 page = NULL;
2138         }
2139
2140         /*
2141          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142          * indicates an overall state change.  Clear bit so that we resume
2143          * normal 'try hard' allocations.
2144          */
2145         if (node_alloc_noretry && page && !alloc_try_hard)
2146                 node_clear(nid, *node_alloc_noretry);
2147
2148         /*
2149          * If we tried hard to get a page but failed, set bit so that
2150          * subsequent attempts will not try as hard until there is an
2151          * overall state change.
2152          */
2153         if (node_alloc_noretry && !page && alloc_try_hard)
2154                 node_set(nid, *node_alloc_noretry);
2155
2156         if (!page) {
2157                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158                 return NULL;
2159         }
2160
2161         __count_vm_event(HTLB_BUDDY_PGALLOC);
2162         return page_folio(page);
2163 }
2164
2165 /*
2166  * Common helper to allocate a fresh hugetlb page. All specific allocators
2167  * should use this function to get new hugetlb pages
2168  *
2169  * Note that returned page is 'frozen':  ref count of head page and all tail
2170  * pages is zero.
2171  */
2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174                 nodemask_t *node_alloc_noretry)
2175 {
2176         struct folio *folio;
2177         bool retry = false;
2178
2179 retry:
2180         if (hstate_is_gigantic(h))
2181                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182         else
2183                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184                                 nid, nmask, node_alloc_noretry);
2185         if (!folio)
2186                 return NULL;
2187         if (hstate_is_gigantic(h)) {
2188                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189                         /*
2190                          * Rare failure to convert pages to compound page.
2191                          * Free pages and try again - ONCE!
2192                          */
2193                         free_gigantic_folio(folio, huge_page_order(h));
2194                         if (!retry) {
2195                                 retry = true;
2196                                 goto retry;
2197                         }
2198                         return NULL;
2199                 }
2200         }
2201         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202
2203         return folio;
2204 }
2205
2206 /*
2207  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208  * manner.
2209  */
2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211                                 nodemask_t *node_alloc_noretry)
2212 {
2213         struct folio *folio;
2214         int nr_nodes, node;
2215         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216
2217         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219                                         nodes_allowed, node_alloc_noretry);
2220                 if (folio) {
2221                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222                         return 1;
2223                 }
2224         }
2225
2226         return 0;
2227 }
2228
2229 /*
2230  * Remove huge page from pool from next node to free.  Attempt to keep
2231  * persistent huge pages more or less balanced over allowed nodes.
2232  * This routine only 'removes' the hugetlb page.  The caller must make
2233  * an additional call to free the page to low level allocators.
2234  * Called with hugetlb_lock locked.
2235  */
2236 static struct page *remove_pool_huge_page(struct hstate *h,
2237                                                 nodemask_t *nodes_allowed,
2238                                                  bool acct_surplus)
2239 {
2240         int nr_nodes, node;
2241         struct page *page = NULL;
2242         struct folio *folio;
2243
2244         lockdep_assert_held(&hugetlb_lock);
2245         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246                 /*
2247                  * If we're returning unused surplus pages, only examine
2248                  * nodes with surplus pages.
2249                  */
2250                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251                     !list_empty(&h->hugepage_freelists[node])) {
2252                         page = list_entry(h->hugepage_freelists[node].next,
2253                                           struct page, lru);
2254                         folio = page_folio(page);
2255                         remove_hugetlb_folio(h, folio, acct_surplus);
2256                         break;
2257                 }
2258         }
2259
2260         return page;
2261 }
2262
2263 /*
2264  * Dissolve a given free hugepage into free buddy pages. This function does
2265  * nothing for in-use hugepages and non-hugepages.
2266  * This function returns values like below:
2267  *
2268  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269  *           when the system is under memory pressure and the feature of
2270  *           freeing unused vmemmap pages associated with each hugetlb page
2271  *           is enabled.
2272  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2273  *           (allocated or reserved.)
2274  *       0:  successfully dissolved free hugepages or the page is not a
2275  *           hugepage (considered as already dissolved)
2276  */
2277 int dissolve_free_huge_page(struct page *page)
2278 {
2279         int rc = -EBUSY;
2280         struct folio *folio = page_folio(page);
2281
2282 retry:
2283         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284         if (!folio_test_hugetlb(folio))
2285                 return 0;
2286
2287         spin_lock_irq(&hugetlb_lock);
2288         if (!folio_test_hugetlb(folio)) {
2289                 rc = 0;
2290                 goto out;
2291         }
2292
2293         if (!folio_ref_count(folio)) {
2294                 struct hstate *h = folio_hstate(folio);
2295                 if (!available_huge_pages(h))
2296                         goto out;
2297
2298                 /*
2299                  * We should make sure that the page is already on the free list
2300                  * when it is dissolved.
2301                  */
2302                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303                         spin_unlock_irq(&hugetlb_lock);
2304                         cond_resched();
2305
2306                         /*
2307                          * Theoretically, we should return -EBUSY when we
2308                          * encounter this race. In fact, we have a chance
2309                          * to successfully dissolve the page if we do a
2310                          * retry. Because the race window is quite small.
2311                          * If we seize this opportunity, it is an optimization
2312                          * for increasing the success rate of dissolving page.
2313                          */
2314                         goto retry;
2315                 }
2316
2317                 remove_hugetlb_folio(h, folio, false);
2318                 h->max_huge_pages--;
2319                 spin_unlock_irq(&hugetlb_lock);
2320
2321                 /*
2322                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2324                  * free the page if it can not allocate required vmemmap.  We
2325                  * need to adjust max_huge_pages if the page is not freed.
2326                  * Attempt to allocate vmemmmap here so that we can take
2327                  * appropriate action on failure.
2328                  */
2329                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330                 if (!rc) {
2331                         update_and_free_hugetlb_folio(h, folio, false);
2332                 } else {
2333                         spin_lock_irq(&hugetlb_lock);
2334                         add_hugetlb_folio(h, folio, false);
2335                         h->max_huge_pages++;
2336                         spin_unlock_irq(&hugetlb_lock);
2337                 }
2338
2339                 return rc;
2340         }
2341 out:
2342         spin_unlock_irq(&hugetlb_lock);
2343         return rc;
2344 }
2345
2346 /*
2347  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348  * make specified memory blocks removable from the system.
2349  * Note that this will dissolve a free gigantic hugepage completely, if any
2350  * part of it lies within the given range.
2351  * Also note that if dissolve_free_huge_page() returns with an error, all
2352  * free hugepages that were dissolved before that error are lost.
2353  */
2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355 {
2356         unsigned long pfn;
2357         struct page *page;
2358         int rc = 0;
2359         unsigned int order;
2360         struct hstate *h;
2361
2362         if (!hugepages_supported())
2363                 return rc;
2364
2365         order = huge_page_order(&default_hstate);
2366         for_each_hstate(h)
2367                 order = min(order, huge_page_order(h));
2368
2369         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370                 page = pfn_to_page(pfn);
2371                 rc = dissolve_free_huge_page(page);
2372                 if (rc)
2373                         break;
2374         }
2375
2376         return rc;
2377 }
2378
2379 /*
2380  * Allocates a fresh surplus page from the page allocator.
2381  */
2382 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2383                                                 int nid, nodemask_t *nmask)
2384 {
2385         struct folio *folio = NULL;
2386
2387         if (hstate_is_gigantic(h))
2388                 return NULL;
2389
2390         spin_lock_irq(&hugetlb_lock);
2391         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392                 goto out_unlock;
2393         spin_unlock_irq(&hugetlb_lock);
2394
2395         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396         if (!folio)
2397                 return NULL;
2398
2399         spin_lock_irq(&hugetlb_lock);
2400         /*
2401          * We could have raced with the pool size change.
2402          * Double check that and simply deallocate the new page
2403          * if we would end up overcommiting the surpluses. Abuse
2404          * temporary page to workaround the nasty free_huge_page
2405          * codeflow
2406          */
2407         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408                 folio_set_hugetlb_temporary(folio);
2409                 spin_unlock_irq(&hugetlb_lock);
2410                 free_huge_page(&folio->page);
2411                 return NULL;
2412         }
2413
2414         h->surplus_huge_pages++;
2415         h->surplus_huge_pages_node[folio_nid(folio)]++;
2416
2417 out_unlock:
2418         spin_unlock_irq(&hugetlb_lock);
2419
2420         return &folio->page;
2421 }
2422
2423 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2424                                      int nid, nodemask_t *nmask)
2425 {
2426         struct folio *folio;
2427
2428         if (hstate_is_gigantic(h))
2429                 return NULL;
2430
2431         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432         if (!folio)
2433                 return NULL;
2434
2435         /* fresh huge pages are frozen */
2436         folio_ref_unfreeze(folio, 1);
2437         /*
2438          * We do not account these pages as surplus because they are only
2439          * temporary and will be released properly on the last reference
2440          */
2441         folio_set_hugetlb_temporary(folio);
2442
2443         return &folio->page;
2444 }
2445
2446 /*
2447  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448  */
2449 static
2450 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2451                 struct vm_area_struct *vma, unsigned long addr)
2452 {
2453         struct page *page = NULL;
2454         struct mempolicy *mpol;
2455         gfp_t gfp_mask = htlb_alloc_mask(h);
2456         int nid;
2457         nodemask_t *nodemask;
2458
2459         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460         if (mpol_is_preferred_many(mpol)) {
2461                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462
2463                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2465
2466                 /* Fallback to all nodes if page==NULL */
2467                 nodemask = NULL;
2468         }
2469
2470         if (!page)
2471                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2472         mpol_cond_put(mpol);
2473         return page;
2474 }
2475
2476 /* page migration callback function */
2477 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2478                 nodemask_t *nmask, gfp_t gfp_mask)
2479 {
2480         spin_lock_irq(&hugetlb_lock);
2481         if (available_huge_pages(h)) {
2482                 struct page *page;
2483
2484                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2485                 if (page) {
2486                         spin_unlock_irq(&hugetlb_lock);
2487                         return page;
2488                 }
2489         }
2490         spin_unlock_irq(&hugetlb_lock);
2491
2492         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493 }
2494
2495 /* mempolicy aware migration callback */
2496 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2497                 unsigned long address)
2498 {
2499         struct mempolicy *mpol;
2500         nodemask_t *nodemask;
2501         struct page *page;
2502         gfp_t gfp_mask;
2503         int node;
2504
2505         gfp_mask = htlb_alloc_mask(h);
2506         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2508         mpol_cond_put(mpol);
2509
2510         return page;
2511 }
2512
2513 /*
2514  * Increase the hugetlb pool such that it can accommodate a reservation
2515  * of size 'delta'.
2516  */
2517 static int gather_surplus_pages(struct hstate *h, long delta)
2518         __must_hold(&hugetlb_lock)
2519 {
2520         LIST_HEAD(surplus_list);
2521         struct page *page, *tmp;
2522         int ret;
2523         long i;
2524         long needed, allocated;
2525         bool alloc_ok = true;
2526
2527         lockdep_assert_held(&hugetlb_lock);
2528         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2529         if (needed <= 0) {
2530                 h->resv_huge_pages += delta;
2531                 return 0;
2532         }
2533
2534         allocated = 0;
2535
2536         ret = -ENOMEM;
2537 retry:
2538         spin_unlock_irq(&hugetlb_lock);
2539         for (i = 0; i < needed; i++) {
2540                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2541                                 NUMA_NO_NODE, NULL);
2542                 if (!page) {
2543                         alloc_ok = false;
2544                         break;
2545                 }
2546                 list_add(&page->lru, &surplus_list);
2547                 cond_resched();
2548         }
2549         allocated += i;
2550
2551         /*
2552          * After retaking hugetlb_lock, we need to recalculate 'needed'
2553          * because either resv_huge_pages or free_huge_pages may have changed.
2554          */
2555         spin_lock_irq(&hugetlb_lock);
2556         needed = (h->resv_huge_pages + delta) -
2557                         (h->free_huge_pages + allocated);
2558         if (needed > 0) {
2559                 if (alloc_ok)
2560                         goto retry;
2561                 /*
2562                  * We were not able to allocate enough pages to
2563                  * satisfy the entire reservation so we free what
2564                  * we've allocated so far.
2565                  */
2566                 goto free;
2567         }
2568         /*
2569          * The surplus_list now contains _at_least_ the number of extra pages
2570          * needed to accommodate the reservation.  Add the appropriate number
2571          * of pages to the hugetlb pool and free the extras back to the buddy
2572          * allocator.  Commit the entire reservation here to prevent another
2573          * process from stealing the pages as they are added to the pool but
2574          * before they are reserved.
2575          */
2576         needed += allocated;
2577         h->resv_huge_pages += delta;
2578         ret = 0;
2579
2580         /* Free the needed pages to the hugetlb pool */
2581         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582                 if ((--needed) < 0)
2583                         break;
2584                 /* Add the page to the hugetlb allocator */
2585                 enqueue_hugetlb_folio(h, page_folio(page));
2586         }
2587 free:
2588         spin_unlock_irq(&hugetlb_lock);
2589
2590         /*
2591          * Free unnecessary surplus pages to the buddy allocator.
2592          * Pages have no ref count, call free_huge_page directly.
2593          */
2594         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2595                 free_huge_page(page);
2596         spin_lock_irq(&hugetlb_lock);
2597
2598         return ret;
2599 }
2600
2601 /*
2602  * This routine has two main purposes:
2603  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2604  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2605  *    to the associated reservation map.
2606  * 2) Free any unused surplus pages that may have been allocated to satisfy
2607  *    the reservation.  As many as unused_resv_pages may be freed.
2608  */
2609 static void return_unused_surplus_pages(struct hstate *h,
2610                                         unsigned long unused_resv_pages)
2611 {
2612         unsigned long nr_pages;
2613         struct page *page;
2614         LIST_HEAD(page_list);
2615
2616         lockdep_assert_held(&hugetlb_lock);
2617         /* Uncommit the reservation */
2618         h->resv_huge_pages -= unused_resv_pages;
2619
2620         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2621                 goto out;
2622
2623         /*
2624          * Part (or even all) of the reservation could have been backed
2625          * by pre-allocated pages. Only free surplus pages.
2626          */
2627         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628
2629         /*
2630          * We want to release as many surplus pages as possible, spread
2631          * evenly across all nodes with memory. Iterate across these nodes
2632          * until we can no longer free unreserved surplus pages. This occurs
2633          * when the nodes with surplus pages have no free pages.
2634          * remove_pool_huge_page() will balance the freed pages across the
2635          * on-line nodes with memory and will handle the hstate accounting.
2636          */
2637         while (nr_pages--) {
2638                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2639                 if (!page)
2640                         goto out;
2641
2642                 list_add(&page->lru, &page_list);
2643         }
2644
2645 out:
2646         spin_unlock_irq(&hugetlb_lock);
2647         update_and_free_pages_bulk(h, &page_list);
2648         spin_lock_irq(&hugetlb_lock);
2649 }
2650
2651
2652 /*
2653  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2654  * are used by the huge page allocation routines to manage reservations.
2655  *
2656  * vma_needs_reservation is called to determine if the huge page at addr
2657  * within the vma has an associated reservation.  If a reservation is
2658  * needed, the value 1 is returned.  The caller is then responsible for
2659  * managing the global reservation and subpool usage counts.  After
2660  * the huge page has been allocated, vma_commit_reservation is called
2661  * to add the page to the reservation map.  If the page allocation fails,
2662  * the reservation must be ended instead of committed.  vma_end_reservation
2663  * is called in such cases.
2664  *
2665  * In the normal case, vma_commit_reservation returns the same value
2666  * as the preceding vma_needs_reservation call.  The only time this
2667  * is not the case is if a reserve map was changed between calls.  It
2668  * is the responsibility of the caller to notice the difference and
2669  * take appropriate action.
2670  *
2671  * vma_add_reservation is used in error paths where a reservation must
2672  * be restored when a newly allocated huge page must be freed.  It is
2673  * to be called after calling vma_needs_reservation to determine if a
2674  * reservation exists.
2675  *
2676  * vma_del_reservation is used in error paths where an entry in the reserve
2677  * map was created during huge page allocation and must be removed.  It is to
2678  * be called after calling vma_needs_reservation to determine if a reservation
2679  * exists.
2680  */
2681 enum vma_resv_mode {
2682         VMA_NEEDS_RESV,
2683         VMA_COMMIT_RESV,
2684         VMA_END_RESV,
2685         VMA_ADD_RESV,
2686         VMA_DEL_RESV,
2687 };
2688 static long __vma_reservation_common(struct hstate *h,
2689                                 struct vm_area_struct *vma, unsigned long addr,
2690                                 enum vma_resv_mode mode)
2691 {
2692         struct resv_map *resv;
2693         pgoff_t idx;
2694         long ret;
2695         long dummy_out_regions_needed;
2696
2697         resv = vma_resv_map(vma);
2698         if (!resv)
2699                 return 1;
2700
2701         idx = vma_hugecache_offset(h, vma, addr);
2702         switch (mode) {
2703         case VMA_NEEDS_RESV:
2704                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2705                 /* We assume that vma_reservation_* routines always operate on
2706                  * 1 page, and that adding to resv map a 1 page entry can only
2707                  * ever require 1 region.
2708                  */
2709                 VM_BUG_ON(dummy_out_regions_needed != 1);
2710                 break;
2711         case VMA_COMMIT_RESV:
2712                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2713                 /* region_add calls of range 1 should never fail. */
2714                 VM_BUG_ON(ret < 0);
2715                 break;
2716         case VMA_END_RESV:
2717                 region_abort(resv, idx, idx + 1, 1);
2718                 ret = 0;
2719                 break;
2720         case VMA_ADD_RESV:
2721                 if (vma->vm_flags & VM_MAYSHARE) {
2722                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723                         /* region_add calls of range 1 should never fail. */
2724                         VM_BUG_ON(ret < 0);
2725                 } else {
2726                         region_abort(resv, idx, idx + 1, 1);
2727                         ret = region_del(resv, idx, idx + 1);
2728                 }
2729                 break;
2730         case VMA_DEL_RESV:
2731                 if (vma->vm_flags & VM_MAYSHARE) {
2732                         region_abort(resv, idx, idx + 1, 1);
2733                         ret = region_del(resv, idx, idx + 1);
2734                 } else {
2735                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2736                         /* region_add calls of range 1 should never fail. */
2737                         VM_BUG_ON(ret < 0);
2738                 }
2739                 break;
2740         default:
2741                 BUG();
2742         }
2743
2744         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745                 return ret;
2746         /*
2747          * We know private mapping must have HPAGE_RESV_OWNER set.
2748          *
2749          * In most cases, reserves always exist for private mappings.
2750          * However, a file associated with mapping could have been
2751          * hole punched or truncated after reserves were consumed.
2752          * As subsequent fault on such a range will not use reserves.
2753          * Subtle - The reserve map for private mappings has the
2754          * opposite meaning than that of shared mappings.  If NO
2755          * entry is in the reserve map, it means a reservation exists.
2756          * If an entry exists in the reserve map, it means the
2757          * reservation has already been consumed.  As a result, the
2758          * return value of this routine is the opposite of the
2759          * value returned from reserve map manipulation routines above.
2760          */
2761         if (ret > 0)
2762                 return 0;
2763         if (ret == 0)
2764                 return 1;
2765         return ret;
2766 }
2767
2768 static long vma_needs_reservation(struct hstate *h,
2769                         struct vm_area_struct *vma, unsigned long addr)
2770 {
2771         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772 }
2773
2774 static long vma_commit_reservation(struct hstate *h,
2775                         struct vm_area_struct *vma, unsigned long addr)
2776 {
2777         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778 }
2779
2780 static void vma_end_reservation(struct hstate *h,
2781                         struct vm_area_struct *vma, unsigned long addr)
2782 {
2783         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784 }
2785
2786 static long vma_add_reservation(struct hstate *h,
2787                         struct vm_area_struct *vma, unsigned long addr)
2788 {
2789         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790 }
2791
2792 static long vma_del_reservation(struct hstate *h,
2793                         struct vm_area_struct *vma, unsigned long addr)
2794 {
2795         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2796 }
2797
2798 /*
2799  * This routine is called to restore reservation information on error paths.
2800  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2801  * the hugetlb mutex should remain held when calling this routine.
2802  *
2803  * It handles two specific cases:
2804  * 1) A reservation was in place and the page consumed the reservation.
2805  *    HPageRestoreReserve is set in the page.
2806  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2807  *    not set.  However, alloc_huge_page always updates the reserve map.
2808  *
2809  * In case 1, free_huge_page later in the error path will increment the
2810  * global reserve count.  But, free_huge_page does not have enough context
2811  * to adjust the reservation map.  This case deals primarily with private
2812  * mappings.  Adjust the reserve map here to be consistent with global
2813  * reserve count adjustments to be made by free_huge_page.  Make sure the
2814  * reserve map indicates there is a reservation present.
2815  *
2816  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2817  */
2818 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2819                         unsigned long address, struct page *page)
2820 {
2821         long rc = vma_needs_reservation(h, vma, address);
2822
2823         if (HPageRestoreReserve(page)) {
2824                 if (unlikely(rc < 0))
2825                         /*
2826                          * Rare out of memory condition in reserve map
2827                          * manipulation.  Clear HPageRestoreReserve so that
2828                          * global reserve count will not be incremented
2829                          * by free_huge_page.  This will make it appear
2830                          * as though the reservation for this page was
2831                          * consumed.  This may prevent the task from
2832                          * faulting in the page at a later time.  This
2833                          * is better than inconsistent global huge page
2834                          * accounting of reserve counts.
2835                          */
2836                         ClearHPageRestoreReserve(page);
2837                 else if (rc)
2838                         (void)vma_add_reservation(h, vma, address);
2839                 else
2840                         vma_end_reservation(h, vma, address);
2841         } else {
2842                 if (!rc) {
2843                         /*
2844                          * This indicates there is an entry in the reserve map
2845                          * not added by alloc_huge_page.  We know it was added
2846                          * before the alloc_huge_page call, otherwise
2847                          * HPageRestoreReserve would be set on the page.
2848                          * Remove the entry so that a subsequent allocation
2849                          * does not consume a reservation.
2850                          */
2851                         rc = vma_del_reservation(h, vma, address);
2852                         if (rc < 0)
2853                                 /*
2854                                  * VERY rare out of memory condition.  Since
2855                                  * we can not delete the entry, set
2856                                  * HPageRestoreReserve so that the reserve
2857                                  * count will be incremented when the page
2858                                  * is freed.  This reserve will be consumed
2859                                  * on a subsequent allocation.
2860                                  */
2861                                 SetHPageRestoreReserve(page);
2862                 } else if (rc < 0) {
2863                         /*
2864                          * Rare out of memory condition from
2865                          * vma_needs_reservation call.  Memory allocation is
2866                          * only attempted if a new entry is needed.  Therefore,
2867                          * this implies there is not an entry in the
2868                          * reserve map.
2869                          *
2870                          * For shared mappings, no entry in the map indicates
2871                          * no reservation.  We are done.
2872                          */
2873                         if (!(vma->vm_flags & VM_MAYSHARE))
2874                                 /*
2875                                  * For private mappings, no entry indicates
2876                                  * a reservation is present.  Since we can
2877                                  * not add an entry, set SetHPageRestoreReserve
2878                                  * on the page so reserve count will be
2879                                  * incremented when freed.  This reserve will
2880                                  * be consumed on a subsequent allocation.
2881                                  */
2882                                 SetHPageRestoreReserve(page);
2883                 } else
2884                         /*
2885                          * No reservation present, do nothing
2886                          */
2887                          vma_end_reservation(h, vma, address);
2888         }
2889 }
2890
2891 /*
2892  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2893  * the old one
2894  * @h: struct hstate old page belongs to
2895  * @old_folio: Old folio to dissolve
2896  * @list: List to isolate the page in case we need to
2897  * Returns 0 on success, otherwise negated error.
2898  */
2899 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2900                         struct folio *old_folio, struct list_head *list)
2901 {
2902         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2903         int nid = folio_nid(old_folio);
2904         struct folio *new_folio;
2905         int ret = 0;
2906
2907         /*
2908          * Before dissolving the folio, we need to allocate a new one for the
2909          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2910          * by doing everything but actually updating counters and adding to
2911          * the pool.  This simplifies and let us do most of the processing
2912          * under the lock.
2913          */
2914         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915         if (!new_folio)
2916                 return -ENOMEM;
2917         __prep_new_hugetlb_folio(h, new_folio);
2918
2919 retry:
2920         spin_lock_irq(&hugetlb_lock);
2921         if (!folio_test_hugetlb(old_folio)) {
2922                 /*
2923                  * Freed from under us. Drop new_folio too.
2924                  */
2925                 goto free_new;
2926         } else if (folio_ref_count(old_folio)) {
2927                 /*
2928                  * Someone has grabbed the folio, try to isolate it here.
2929                  * Fail with -EBUSY if not possible.
2930                  */
2931                 spin_unlock_irq(&hugetlb_lock);
2932                 ret = isolate_hugetlb(&old_folio->page, list);
2933                 spin_lock_irq(&hugetlb_lock);
2934                 goto free_new;
2935         } else if (!folio_test_hugetlb_freed(old_folio)) {
2936                 /*
2937                  * Folio's refcount is 0 but it has not been enqueued in the
2938                  * freelist yet. Race window is small, so we can succeed here if
2939                  * we retry.
2940                  */
2941                 spin_unlock_irq(&hugetlb_lock);
2942                 cond_resched();
2943                 goto retry;
2944         } else {
2945                 /*
2946                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2947                  * the freelist and decrease the counters. These will be
2948                  * incremented again when calling __prep_account_new_huge_page()
2949                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2950                  * remain stable since this happens under the lock.
2951                  */
2952                 remove_hugetlb_folio(h, old_folio, false);
2953
2954                 /*
2955                  * Ref count on new_folio is already zero as it was dropped
2956                  * earlier.  It can be directly added to the pool free list.
2957                  */
2958                 __prep_account_new_huge_page(h, nid);
2959                 enqueue_hugetlb_folio(h, new_folio);
2960
2961                 /*
2962                  * Folio has been replaced, we can safely free the old one.
2963                  */
2964                 spin_unlock_irq(&hugetlb_lock);
2965                 update_and_free_hugetlb_folio(h, old_folio, false);
2966         }
2967
2968         return ret;
2969
2970 free_new:
2971         spin_unlock_irq(&hugetlb_lock);
2972         /* Folio has a zero ref count, but needs a ref to be freed */
2973         folio_ref_unfreeze(new_folio, 1);
2974         update_and_free_hugetlb_folio(h, new_folio, false);
2975
2976         return ret;
2977 }
2978
2979 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980 {
2981         struct hstate *h;
2982         struct folio *folio = page_folio(page);
2983         int ret = -EBUSY;
2984
2985         /*
2986          * The page might have been dissolved from under our feet, so make sure
2987          * to carefully check the state under the lock.
2988          * Return success when racing as if we dissolved the page ourselves.
2989          */
2990         spin_lock_irq(&hugetlb_lock);
2991         if (folio_test_hugetlb(folio)) {
2992                 h = folio_hstate(folio);
2993         } else {
2994                 spin_unlock_irq(&hugetlb_lock);
2995                 return 0;
2996         }
2997         spin_unlock_irq(&hugetlb_lock);
2998
2999         /*
3000          * Fence off gigantic pages as there is a cyclic dependency between
3001          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3002          * of bailing out right away without further retrying.
3003          */
3004         if (hstate_is_gigantic(h))
3005                 return -ENOMEM;
3006
3007         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3008                 ret = 0;
3009         else if (!folio_ref_count(folio))
3010                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3011
3012         return ret;
3013 }
3014
3015 struct page *alloc_huge_page(struct vm_area_struct *vma,
3016                                     unsigned long addr, int avoid_reserve)
3017 {
3018         struct hugepage_subpool *spool = subpool_vma(vma);
3019         struct hstate *h = hstate_vma(vma);
3020         struct page *page;
3021         struct folio *folio;
3022         long map_chg, map_commit;
3023         long gbl_chg;
3024         int ret, idx;
3025         struct hugetlb_cgroup *h_cg;
3026         bool deferred_reserve;
3027
3028         idx = hstate_index(h);
3029         /*
3030          * Examine the region/reserve map to determine if the process
3031          * has a reservation for the page to be allocated.  A return
3032          * code of zero indicates a reservation exists (no change).
3033          */
3034         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3035         if (map_chg < 0)
3036                 return ERR_PTR(-ENOMEM);
3037
3038         /*
3039          * Processes that did not create the mapping will have no
3040          * reserves as indicated by the region/reserve map. Check
3041          * that the allocation will not exceed the subpool limit.
3042          * Allocations for MAP_NORESERVE mappings also need to be
3043          * checked against any subpool limit.
3044          */
3045         if (map_chg || avoid_reserve) {
3046                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3047                 if (gbl_chg < 0) {
3048                         vma_end_reservation(h, vma, addr);
3049                         return ERR_PTR(-ENOSPC);
3050                 }
3051
3052                 /*
3053                  * Even though there was no reservation in the region/reserve
3054                  * map, there could be reservations associated with the
3055                  * subpool that can be used.  This would be indicated if the
3056                  * return value of hugepage_subpool_get_pages() is zero.
3057                  * However, if avoid_reserve is specified we still avoid even
3058                  * the subpool reservations.
3059                  */
3060                 if (avoid_reserve)
3061                         gbl_chg = 1;
3062         }
3063
3064         /* If this allocation is not consuming a reservation, charge it now.
3065          */
3066         deferred_reserve = map_chg || avoid_reserve;
3067         if (deferred_reserve) {
3068                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3069                         idx, pages_per_huge_page(h), &h_cg);
3070                 if (ret)
3071                         goto out_subpool_put;
3072         }
3073
3074         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3075         if (ret)
3076                 goto out_uncharge_cgroup_reservation;
3077
3078         spin_lock_irq(&hugetlb_lock);
3079         /*
3080          * glb_chg is passed to indicate whether or not a page must be taken
3081          * from the global free pool (global change).  gbl_chg == 0 indicates
3082          * a reservation exists for the allocation.
3083          */
3084         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3085         if (!page) {
3086                 spin_unlock_irq(&hugetlb_lock);
3087                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3088                 if (!page)
3089                         goto out_uncharge_cgroup;
3090                 spin_lock_irq(&hugetlb_lock);
3091                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3092                         SetHPageRestoreReserve(page);
3093                         h->resv_huge_pages--;
3094                 }
3095                 list_add(&page->lru, &h->hugepage_activelist);
3096                 set_page_refcounted(page);
3097                 /* Fall through */
3098         }
3099         folio = page_folio(page);
3100         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3101         /* If allocation is not consuming a reservation, also store the
3102          * hugetlb_cgroup pointer on the page.
3103          */
3104         if (deferred_reserve) {
3105                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3106                                                   h_cg, page);
3107         }
3108
3109         spin_unlock_irq(&hugetlb_lock);
3110
3111         hugetlb_set_page_subpool(page, spool);
3112
3113         map_commit = vma_commit_reservation(h, vma, addr);
3114         if (unlikely(map_chg > map_commit)) {
3115                 /*
3116                  * The page was added to the reservation map between
3117                  * vma_needs_reservation and vma_commit_reservation.
3118                  * This indicates a race with hugetlb_reserve_pages.
3119                  * Adjust for the subpool count incremented above AND
3120                  * in hugetlb_reserve_pages for the same page.  Also,
3121                  * the reservation count added in hugetlb_reserve_pages
3122                  * no longer applies.
3123                  */
3124                 long rsv_adjust;
3125
3126                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3127                 hugetlb_acct_memory(h, -rsv_adjust);
3128                 if (deferred_reserve)
3129                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3130                                         pages_per_huge_page(h), folio);
3131         }
3132         return page;
3133
3134 out_uncharge_cgroup:
3135         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3136 out_uncharge_cgroup_reservation:
3137         if (deferred_reserve)
3138                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139                                                     h_cg);
3140 out_subpool_put:
3141         if (map_chg || avoid_reserve)
3142                 hugepage_subpool_put_pages(spool, 1);
3143         vma_end_reservation(h, vma, addr);
3144         return ERR_PTR(-ENOSPC);
3145 }
3146
3147 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3149 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150 {
3151         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152         int nr_nodes, node;
3153
3154         /* do node specific alloc */
3155         if (nid != NUMA_NO_NODE) {
3156                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3157                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158                 if (!m)
3159                         return 0;
3160                 goto found;
3161         }
3162         /* allocate from next node when distributing huge pages */
3163         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3164                 m = memblock_alloc_try_nid_raw(
3165                                 huge_page_size(h), huge_page_size(h),
3166                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167                 /*
3168                  * Use the beginning of the huge page to store the
3169                  * huge_bootmem_page struct (until gather_bootmem
3170                  * puts them into the mem_map).
3171                  */
3172                 if (!m)
3173                         return 0;
3174                 goto found;
3175         }
3176
3177 found:
3178         /* Put them into a private list first because mem_map is not up yet */
3179         INIT_LIST_HEAD(&m->list);
3180         list_add(&m->list, &huge_boot_pages);
3181         m->hstate = h;
3182         return 1;
3183 }
3184
3185 /*
3186  * Put bootmem huge pages into the standard lists after mem_map is up.
3187  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3188  */
3189 static void __init gather_bootmem_prealloc(void)
3190 {
3191         struct huge_bootmem_page *m;
3192
3193         list_for_each_entry(m, &huge_boot_pages, list) {
3194                 struct page *page = virt_to_page(m);
3195                 struct folio *folio = page_folio(page);
3196                 struct hstate *h = m->hstate;
3197
3198                 VM_BUG_ON(!hstate_is_gigantic(h));
3199                 WARN_ON(folio_ref_count(folio) != 1);
3200                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3201                         WARN_ON(folio_test_reserved(folio));
3202                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3203                         free_huge_page(page); /* add to the hugepage allocator */
3204                 } else {
3205                         /* VERY unlikely inflated ref count on a tail page */
3206                         free_gigantic_folio(folio, huge_page_order(h));
3207                 }
3208
3209                 /*
3210                  * We need to restore the 'stolen' pages to totalram_pages
3211                  * in order to fix confusing memory reports from free(1) and
3212                  * other side-effects, like CommitLimit going negative.
3213                  */
3214                 adjust_managed_page_count(page, pages_per_huge_page(h));
3215                 cond_resched();
3216         }
3217 }
3218 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3219 {
3220         unsigned long i;
3221         char buf[32];
3222
3223         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3224                 if (hstate_is_gigantic(h)) {
3225                         if (!alloc_bootmem_huge_page(h, nid))
3226                                 break;
3227                 } else {
3228                         struct folio *folio;
3229                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3230
3231                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3232                                         &node_states[N_MEMORY], NULL);
3233                         if (!folio)
3234                                 break;
3235                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3236                 }
3237                 cond_resched();
3238         }
3239         if (i == h->max_huge_pages_node[nid])
3240                 return;
3241
3242         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3243         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3244                 h->max_huge_pages_node[nid], buf, nid, i);
3245         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3246         h->max_huge_pages_node[nid] = i;
3247 }
3248
3249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250 {
3251         unsigned long i;
3252         nodemask_t *node_alloc_noretry;
3253         bool node_specific_alloc = false;
3254
3255         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3256         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3257                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3258                 return;
3259         }
3260
3261         /* do node specific alloc */
3262         for_each_online_node(i) {
3263                 if (h->max_huge_pages_node[i] > 0) {
3264                         hugetlb_hstate_alloc_pages_onenode(h, i);
3265                         node_specific_alloc = true;
3266                 }
3267         }
3268
3269         if (node_specific_alloc)
3270                 return;
3271
3272         /* below will do all node balanced alloc */
3273         if (!hstate_is_gigantic(h)) {
3274                 /*
3275                  * Bit mask controlling how hard we retry per-node allocations.
3276                  * Ignore errors as lower level routines can deal with
3277                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3278                  * time, we are likely in bigger trouble.
3279                  */
3280                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281                                                 GFP_KERNEL);
3282         } else {
3283                 /* allocations done at boot time */
3284                 node_alloc_noretry = NULL;
3285         }
3286
3287         /* bit mask controlling how hard we retry per-node allocations */
3288         if (node_alloc_noretry)
3289                 nodes_clear(*node_alloc_noretry);
3290
3291         for (i = 0; i < h->max_huge_pages; ++i) {
3292                 if (hstate_is_gigantic(h)) {
3293                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3294                                 break;
3295                 } else if (!alloc_pool_huge_page(h,
3296                                          &node_states[N_MEMORY],
3297                                          node_alloc_noretry))
3298                         break;
3299                 cond_resched();
3300         }
3301         if (i < h->max_huge_pages) {
3302                 char buf[32];
3303
3304                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3305                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3306                         h->max_huge_pages, buf, i);
3307                 h->max_huge_pages = i;
3308         }
3309         kfree(node_alloc_noretry);
3310 }
3311
3312 static void __init hugetlb_init_hstates(void)
3313 {
3314         struct hstate *h, *h2;
3315
3316         for_each_hstate(h) {
3317                 /* oversize hugepages were init'ed in early boot */
3318                 if (!hstate_is_gigantic(h))
3319                         hugetlb_hstate_alloc_pages(h);
3320
3321                 /*
3322                  * Set demote order for each hstate.  Note that
3323                  * h->demote_order is initially 0.
3324                  * - We can not demote gigantic pages if runtime freeing
3325                  *   is not supported, so skip this.
3326                  * - If CMA allocation is possible, we can not demote
3327                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3328                  */
3329                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3330                         continue;
3331                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3332                         continue;
3333                 for_each_hstate(h2) {
3334                         if (h2 == h)
3335                                 continue;
3336                         if (h2->order < h->order &&
3337                             h2->order > h->demote_order)
3338                                 h->demote_order = h2->order;
3339                 }
3340         }
3341 }
3342
3343 static void __init report_hugepages(void)
3344 {
3345         struct hstate *h;
3346
3347         for_each_hstate(h) {
3348                 char buf[32];
3349
3350                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3351                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3352                         buf, h->free_huge_pages);
3353                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3354                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3355         }
3356 }
3357
3358 #ifdef CONFIG_HIGHMEM
3359 static void try_to_free_low(struct hstate *h, unsigned long count,
3360                                                 nodemask_t *nodes_allowed)
3361 {
3362         int i;
3363         LIST_HEAD(page_list);
3364
3365         lockdep_assert_held(&hugetlb_lock);
3366         if (hstate_is_gigantic(h))
3367                 return;
3368
3369         /*
3370          * Collect pages to be freed on a list, and free after dropping lock
3371          */
3372         for_each_node_mask(i, *nodes_allowed) {
3373                 struct page *page, *next;
3374                 struct list_head *freel = &h->hugepage_freelists[i];
3375                 list_for_each_entry_safe(page, next, freel, lru) {
3376                         if (count >= h->nr_huge_pages)
3377                                 goto out;
3378                         if (PageHighMem(page))
3379                                 continue;
3380                         remove_hugetlb_folio(h, page_folio(page), false);
3381                         list_add(&page->lru, &page_list);
3382                 }
3383         }
3384
3385 out:
3386         spin_unlock_irq(&hugetlb_lock);
3387         update_and_free_pages_bulk(h, &page_list);
3388         spin_lock_irq(&hugetlb_lock);
3389 }
3390 #else
3391 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3392                                                 nodemask_t *nodes_allowed)
3393 {
3394 }
3395 #endif
3396
3397 /*
3398  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3399  * balanced by operating on them in a round-robin fashion.
3400  * Returns 1 if an adjustment was made.
3401  */
3402 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3403                                 int delta)
3404 {
3405         int nr_nodes, node;
3406
3407         lockdep_assert_held(&hugetlb_lock);
3408         VM_BUG_ON(delta != -1 && delta != 1);
3409
3410         if (delta < 0) {
3411                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3412                         if (h->surplus_huge_pages_node[node])
3413                                 goto found;
3414                 }
3415         } else {
3416                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3417                         if (h->surplus_huge_pages_node[node] <
3418                                         h->nr_huge_pages_node[node])
3419                                 goto found;
3420                 }
3421         }
3422         return 0;
3423
3424 found:
3425         h->surplus_huge_pages += delta;
3426         h->surplus_huge_pages_node[node] += delta;
3427         return 1;
3428 }
3429
3430 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3431 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3432                               nodemask_t *nodes_allowed)
3433 {
3434         unsigned long min_count, ret;
3435         struct page *page;
3436         LIST_HEAD(page_list);
3437         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438
3439         /*
3440          * Bit mask controlling how hard we retry per-node allocations.
3441          * If we can not allocate the bit mask, do not attempt to allocate
3442          * the requested huge pages.
3443          */
3444         if (node_alloc_noretry)
3445                 nodes_clear(*node_alloc_noretry);
3446         else
3447                 return -ENOMEM;
3448
3449         /*
3450          * resize_lock mutex prevents concurrent adjustments to number of
3451          * pages in hstate via the proc/sysfs interfaces.
3452          */
3453         mutex_lock(&h->resize_lock);
3454         flush_free_hpage_work(h);
3455         spin_lock_irq(&hugetlb_lock);
3456
3457         /*
3458          * Check for a node specific request.
3459          * Changing node specific huge page count may require a corresponding
3460          * change to the global count.  In any case, the passed node mask
3461          * (nodes_allowed) will restrict alloc/free to the specified node.
3462          */
3463         if (nid != NUMA_NO_NODE) {
3464                 unsigned long old_count = count;
3465
3466                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3467                 /*
3468                  * User may have specified a large count value which caused the
3469                  * above calculation to overflow.  In this case, they wanted
3470                  * to allocate as many huge pages as possible.  Set count to
3471                  * largest possible value to align with their intention.
3472                  */
3473                 if (count < old_count)
3474                         count = ULONG_MAX;
3475         }
3476
3477         /*
3478          * Gigantic pages runtime allocation depend on the capability for large
3479          * page range allocation.
3480          * If the system does not provide this feature, return an error when
3481          * the user tries to allocate gigantic pages but let the user free the
3482          * boottime allocated gigantic pages.
3483          */
3484         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3485                 if (count > persistent_huge_pages(h)) {
3486                         spin_unlock_irq(&hugetlb_lock);
3487                         mutex_unlock(&h->resize_lock);
3488                         NODEMASK_FREE(node_alloc_noretry);
3489                         return -EINVAL;
3490                 }
3491                 /* Fall through to decrease pool */
3492         }
3493
3494         /*
3495          * Increase the pool size
3496          * First take pages out of surplus state.  Then make up the
3497          * remaining difference by allocating fresh huge pages.
3498          *
3499          * We might race with alloc_surplus_huge_page() here and be unable
3500          * to convert a surplus huge page to a normal huge page. That is
3501          * not critical, though, it just means the overall size of the
3502          * pool might be one hugepage larger than it needs to be, but
3503          * within all the constraints specified by the sysctls.
3504          */
3505         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3506                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3507                         break;
3508         }
3509
3510         while (count > persistent_huge_pages(h)) {
3511                 /*
3512                  * If this allocation races such that we no longer need the
3513                  * page, free_huge_page will handle it by freeing the page
3514                  * and reducing the surplus.
3515                  */
3516                 spin_unlock_irq(&hugetlb_lock);
3517
3518                 /* yield cpu to avoid soft lockup */
3519                 cond_resched();
3520
3521                 ret = alloc_pool_huge_page(h, nodes_allowed,
3522                                                 node_alloc_noretry);
3523                 spin_lock_irq(&hugetlb_lock);
3524                 if (!ret)
3525                         goto out;
3526
3527                 /* Bail for signals. Probably ctrl-c from user */
3528                 if (signal_pending(current))
3529                         goto out;
3530         }
3531
3532         /*
3533          * Decrease the pool size
3534          * First return free pages to the buddy allocator (being careful
3535          * to keep enough around to satisfy reservations).  Then place
3536          * pages into surplus state as needed so the pool will shrink
3537          * to the desired size as pages become free.
3538          *
3539          * By placing pages into the surplus state independent of the
3540          * overcommit value, we are allowing the surplus pool size to
3541          * exceed overcommit. There are few sane options here. Since
3542          * alloc_surplus_huge_page() is checking the global counter,
3543          * though, we'll note that we're not allowed to exceed surplus
3544          * and won't grow the pool anywhere else. Not until one of the
3545          * sysctls are changed, or the surplus pages go out of use.
3546          */
3547         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3548         min_count = max(count, min_count);
3549         try_to_free_low(h, min_count, nodes_allowed);
3550
3551         /*
3552          * Collect pages to be removed on list without dropping lock
3553          */
3554         while (min_count < persistent_huge_pages(h)) {
3555                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3556                 if (!page)
3557                         break;
3558
3559                 list_add(&page->lru, &page_list);
3560         }
3561         /* free the pages after dropping lock */
3562         spin_unlock_irq(&hugetlb_lock);
3563         update_and_free_pages_bulk(h, &page_list);
3564         flush_free_hpage_work(h);
3565         spin_lock_irq(&hugetlb_lock);
3566
3567         while (count < persistent_huge_pages(h)) {
3568                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3569                         break;
3570         }
3571 out:
3572         h->max_huge_pages = persistent_huge_pages(h);
3573         spin_unlock_irq(&hugetlb_lock);
3574         mutex_unlock(&h->resize_lock);
3575
3576         NODEMASK_FREE(node_alloc_noretry);
3577
3578         return 0;
3579 }
3580
3581 static int demote_free_huge_page(struct hstate *h, struct page *page)
3582 {
3583         int i, nid = page_to_nid(page);
3584         struct hstate *target_hstate;
3585         struct folio *folio = page_folio(page);
3586         struct page *subpage;
3587         int rc = 0;
3588
3589         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3590
3591         remove_hugetlb_folio_for_demote(h, folio, false);
3592         spin_unlock_irq(&hugetlb_lock);
3593
3594         rc = hugetlb_vmemmap_restore(h, page);
3595         if (rc) {
3596                 /* Allocation of vmemmmap failed, we can not demote page */
3597                 spin_lock_irq(&hugetlb_lock);
3598                 set_page_refcounted(page);
3599                 add_hugetlb_folio(h, page_folio(page), false);
3600                 return rc;
3601         }
3602
3603         /*
3604          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3605          * sizes as it will not ref count pages.
3606          */
3607         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608
3609         /*
3610          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3611          * Without the mutex, pages added to target hstate could be marked
3612          * as surplus.
3613          *
3614          * Note that we already hold h->resize_lock.  To prevent deadlock,
3615          * use the convention of always taking larger size hstate mutex first.
3616          */
3617         mutex_lock(&target_hstate->resize_lock);
3618         for (i = 0; i < pages_per_huge_page(h);
3619                                 i += pages_per_huge_page(target_hstate)) {
3620                 subpage = nth_page(page, i);
3621                 folio = page_folio(subpage);
3622                 if (hstate_is_gigantic(target_hstate))
3623                         prep_compound_gigantic_folio_for_demote(folio,
3624                                                         target_hstate->order);
3625                 else
3626                         prep_compound_page(subpage, target_hstate->order);
3627                 set_page_private(subpage, 0);
3628                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3629                 free_huge_page(subpage);
3630         }
3631         mutex_unlock(&target_hstate->resize_lock);
3632
3633         spin_lock_irq(&hugetlb_lock);
3634
3635         /*
3636          * Not absolutely necessary, but for consistency update max_huge_pages
3637          * based on pool changes for the demoted page.
3638          */
3639         h->max_huge_pages--;
3640         target_hstate->max_huge_pages +=
3641                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3642
3643         return rc;
3644 }
3645
3646 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3647         __must_hold(&hugetlb_lock)
3648 {
3649         int nr_nodes, node;
3650         struct page *page;
3651
3652         lockdep_assert_held(&hugetlb_lock);
3653
3654         /* We should never get here if no demote order */
3655         if (!h->demote_order) {
3656                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3657                 return -EINVAL;         /* internal error */
3658         }
3659
3660         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3661                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3662                         if (PageHWPoison(page))
3663                                 continue;
3664
3665                         return demote_free_huge_page(h, page);
3666                 }
3667         }
3668
3669         /*
3670          * Only way to get here is if all pages on free lists are poisoned.
3671          * Return -EBUSY so that caller will not retry.
3672          */
3673         return -EBUSY;
3674 }
3675
3676 #define HSTATE_ATTR_RO(_name) \
3677         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3678
3679 #define HSTATE_ATTR_WO(_name) \
3680         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3681
3682 #define HSTATE_ATTR(_name) \
3683         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3684
3685 static struct kobject *hugepages_kobj;
3686 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3687
3688 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3689
3690 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3691 {
3692         int i;
3693
3694         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3695                 if (hstate_kobjs[i] == kobj) {
3696                         if (nidp)
3697                                 *nidp = NUMA_NO_NODE;
3698                         return &hstates[i];
3699                 }
3700
3701         return kobj_to_node_hstate(kobj, nidp);
3702 }
3703
3704 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3705                                         struct kobj_attribute *attr, char *buf)
3706 {
3707         struct hstate *h;
3708         unsigned long nr_huge_pages;
3709         int nid;
3710
3711         h = kobj_to_hstate(kobj, &nid);
3712         if (nid == NUMA_NO_NODE)
3713                 nr_huge_pages = h->nr_huge_pages;
3714         else
3715                 nr_huge_pages = h->nr_huge_pages_node[nid];
3716
3717         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718 }
3719
3720 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3721                                            struct hstate *h, int nid,
3722                                            unsigned long count, size_t len)
3723 {
3724         int err;
3725         nodemask_t nodes_allowed, *n_mask;
3726
3727         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728                 return -EINVAL;
3729
3730         if (nid == NUMA_NO_NODE) {
3731                 /*
3732                  * global hstate attribute
3733                  */
3734                 if (!(obey_mempolicy &&
3735                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3736                         n_mask = &node_states[N_MEMORY];
3737                 else
3738                         n_mask = &nodes_allowed;
3739         } else {
3740                 /*
3741                  * Node specific request.  count adjustment happens in
3742                  * set_max_huge_pages() after acquiring hugetlb_lock.
3743                  */
3744                 init_nodemask_of_node(&nodes_allowed, nid);
3745                 n_mask = &nodes_allowed;
3746         }
3747
3748         err = set_max_huge_pages(h, count, nid, n_mask);
3749
3750         return err ? err : len;
3751 }
3752
3753 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3754                                          struct kobject *kobj, const char *buf,
3755                                          size_t len)
3756 {
3757         struct hstate *h;
3758         unsigned long count;
3759         int nid;
3760         int err;
3761
3762         err = kstrtoul(buf, 10, &count);
3763         if (err)
3764                 return err;
3765
3766         h = kobj_to_hstate(kobj, &nid);
3767         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768 }
3769
3770 static ssize_t nr_hugepages_show(struct kobject *kobj,
3771                                        struct kobj_attribute *attr, char *buf)
3772 {
3773         return nr_hugepages_show_common(kobj, attr, buf);
3774 }
3775
3776 static ssize_t nr_hugepages_store(struct kobject *kobj,
3777                struct kobj_attribute *attr, const char *buf, size_t len)
3778 {
3779         return nr_hugepages_store_common(false, kobj, buf, len);
3780 }
3781 HSTATE_ATTR(nr_hugepages);
3782
3783 #ifdef CONFIG_NUMA
3784
3785 /*
3786  * hstate attribute for optionally mempolicy-based constraint on persistent
3787  * huge page alloc/free.
3788  */
3789 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3790                                            struct kobj_attribute *attr,
3791                                            char *buf)
3792 {
3793         return nr_hugepages_show_common(kobj, attr, buf);
3794 }
3795
3796 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3797                struct kobj_attribute *attr, const char *buf, size_t len)
3798 {
3799         return nr_hugepages_store_common(true, kobj, buf, len);
3800 }
3801 HSTATE_ATTR(nr_hugepages_mempolicy);
3802 #endif
3803
3804
3805 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3806                                         struct kobj_attribute *attr, char *buf)
3807 {
3808         struct hstate *h = kobj_to_hstate(kobj, NULL);
3809         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810 }
3811
3812 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3813                 struct kobj_attribute *attr, const char *buf, size_t count)
3814 {
3815         int err;
3816         unsigned long input;
3817         struct hstate *h = kobj_to_hstate(kobj, NULL);
3818
3819         if (hstate_is_gigantic(h))
3820                 return -EINVAL;
3821
3822         err = kstrtoul(buf, 10, &input);
3823         if (err)
3824                 return err;
3825
3826         spin_lock_irq(&hugetlb_lock);
3827         h->nr_overcommit_huge_pages = input;
3828         spin_unlock_irq(&hugetlb_lock);
3829
3830         return count;
3831 }
3832 HSTATE_ATTR(nr_overcommit_hugepages);
3833
3834 static ssize_t free_hugepages_show(struct kobject *kobj,
3835                                         struct kobj_attribute *attr, char *buf)
3836 {
3837         struct hstate *h;
3838         unsigned long free_huge_pages;
3839         int nid;
3840
3841         h = kobj_to_hstate(kobj, &nid);
3842         if (nid == NUMA_NO_NODE)
3843                 free_huge_pages = h->free_huge_pages;
3844         else
3845                 free_huge_pages = h->free_huge_pages_node[nid];
3846
3847         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3848 }
3849 HSTATE_ATTR_RO(free_hugepages);
3850
3851 static ssize_t resv_hugepages_show(struct kobject *kobj,
3852                                         struct kobj_attribute *attr, char *buf)
3853 {
3854         struct hstate *h = kobj_to_hstate(kobj, NULL);
3855         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3856 }
3857 HSTATE_ATTR_RO(resv_hugepages);
3858
3859 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3860                                         struct kobj_attribute *attr, char *buf)
3861 {
3862         struct hstate *h;
3863         unsigned long surplus_huge_pages;
3864         int nid;
3865
3866         h = kobj_to_hstate(kobj, &nid);
3867         if (nid == NUMA_NO_NODE)
3868                 surplus_huge_pages = h->surplus_huge_pages;
3869         else
3870                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3871
3872         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3873 }
3874 HSTATE_ATTR_RO(surplus_hugepages);
3875
3876 static ssize_t demote_store(struct kobject *kobj,
3877                struct kobj_attribute *attr, const char *buf, size_t len)
3878 {
3879         unsigned long nr_demote;
3880         unsigned long nr_available;
3881         nodemask_t nodes_allowed, *n_mask;
3882         struct hstate *h;
3883         int err;
3884         int nid;
3885
3886         err = kstrtoul(buf, 10, &nr_demote);
3887         if (err)
3888                 return err;
3889         h = kobj_to_hstate(kobj, &nid);
3890
3891         if (nid != NUMA_NO_NODE) {
3892                 init_nodemask_of_node(&nodes_allowed, nid);
3893                 n_mask = &nodes_allowed;
3894         } else {
3895                 n_mask = &node_states[N_MEMORY];
3896         }
3897
3898         /* Synchronize with other sysfs operations modifying huge pages */
3899         mutex_lock(&h->resize_lock);
3900         spin_lock_irq(&hugetlb_lock);
3901
3902         while (nr_demote) {
3903                 /*
3904                  * Check for available pages to demote each time thorough the
3905                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3906                  */
3907                 if (nid != NUMA_NO_NODE)
3908                         nr_available = h->free_huge_pages_node[nid];
3909                 else
3910                         nr_available = h->free_huge_pages;
3911                 nr_available -= h->resv_huge_pages;
3912                 if (!nr_available)
3913                         break;
3914
3915                 err = demote_pool_huge_page(h, n_mask);
3916                 if (err)
3917                         break;
3918
3919                 nr_demote--;
3920         }
3921
3922         spin_unlock_irq(&hugetlb_lock);
3923         mutex_unlock(&h->resize_lock);
3924
3925         if (err)
3926                 return err;
3927         return len;
3928 }
3929 HSTATE_ATTR_WO(demote);
3930
3931 static ssize_t demote_size_show(struct kobject *kobj,
3932                                         struct kobj_attribute *attr, char *buf)
3933 {
3934         struct hstate *h = kobj_to_hstate(kobj, NULL);
3935         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3936
3937         return sysfs_emit(buf, "%lukB\n", demote_size);
3938 }
3939
3940 static ssize_t demote_size_store(struct kobject *kobj,
3941                                         struct kobj_attribute *attr,
3942                                         const char *buf, size_t count)
3943 {
3944         struct hstate *h, *demote_hstate;
3945         unsigned long demote_size;
3946         unsigned int demote_order;
3947
3948         demote_size = (unsigned long)memparse(buf, NULL);
3949
3950         demote_hstate = size_to_hstate(demote_size);
3951         if (!demote_hstate)
3952                 return -EINVAL;
3953         demote_order = demote_hstate->order;
3954         if (demote_order < HUGETLB_PAGE_ORDER)
3955                 return -EINVAL;
3956
3957         /* demote order must be smaller than hstate order */
3958         h = kobj_to_hstate(kobj, NULL);
3959         if (demote_order >= h->order)
3960                 return -EINVAL;
3961
3962         /* resize_lock synchronizes access to demote size and writes */
3963         mutex_lock(&h->resize_lock);
3964         h->demote_order = demote_order;
3965         mutex_unlock(&h->resize_lock);
3966
3967         return count;
3968 }
3969 HSTATE_ATTR(demote_size);
3970
3971 static struct attribute *hstate_attrs[] = {
3972         &nr_hugepages_attr.attr,
3973         &nr_overcommit_hugepages_attr.attr,
3974         &free_hugepages_attr.attr,
3975         &resv_hugepages_attr.attr,
3976         &surplus_hugepages_attr.attr,
3977 #ifdef CONFIG_NUMA
3978         &nr_hugepages_mempolicy_attr.attr,
3979 #endif
3980         NULL,
3981 };
3982
3983 static const struct attribute_group hstate_attr_group = {
3984         .attrs = hstate_attrs,
3985 };
3986
3987 static struct attribute *hstate_demote_attrs[] = {
3988         &demote_size_attr.attr,
3989         &demote_attr.attr,
3990         NULL,
3991 };
3992
3993 static const struct attribute_group hstate_demote_attr_group = {
3994         .attrs = hstate_demote_attrs,
3995 };
3996
3997 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3998                                     struct kobject **hstate_kobjs,
3999                                     const struct attribute_group *hstate_attr_group)
4000 {
4001         int retval;
4002         int hi = hstate_index(h);
4003
4004         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4005         if (!hstate_kobjs[hi])
4006                 return -ENOMEM;
4007
4008         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4009         if (retval) {
4010                 kobject_put(hstate_kobjs[hi]);
4011                 hstate_kobjs[hi] = NULL;
4012                 return retval;
4013         }
4014
4015         if (h->demote_order) {
4016                 retval = sysfs_create_group(hstate_kobjs[hi],
4017                                             &hstate_demote_attr_group);
4018                 if (retval) {
4019                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4020                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4021                         kobject_put(hstate_kobjs[hi]);
4022                         hstate_kobjs[hi] = NULL;
4023                         return retval;
4024                 }
4025         }
4026
4027         return 0;
4028 }
4029
4030 #ifdef CONFIG_NUMA
4031 static bool hugetlb_sysfs_initialized __ro_after_init;
4032
4033 /*
4034  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4035  * with node devices in node_devices[] using a parallel array.  The array
4036  * index of a node device or _hstate == node id.
4037  * This is here to avoid any static dependency of the node device driver, in
4038  * the base kernel, on the hugetlb module.
4039  */
4040 struct node_hstate {
4041         struct kobject          *hugepages_kobj;
4042         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4043 };
4044 static struct node_hstate node_hstates[MAX_NUMNODES];
4045
4046 /*
4047  * A subset of global hstate attributes for node devices
4048  */
4049 static struct attribute *per_node_hstate_attrs[] = {
4050         &nr_hugepages_attr.attr,
4051         &free_hugepages_attr.attr,
4052         &surplus_hugepages_attr.attr,
4053         NULL,
4054 };
4055
4056 static const struct attribute_group per_node_hstate_attr_group = {
4057         .attrs = per_node_hstate_attrs,
4058 };
4059
4060 /*
4061  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4062  * Returns node id via non-NULL nidp.
4063  */
4064 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4065 {
4066         int nid;
4067
4068         for (nid = 0; nid < nr_node_ids; nid++) {
4069                 struct node_hstate *nhs = &node_hstates[nid];
4070                 int i;
4071                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4072                         if (nhs->hstate_kobjs[i] == kobj) {
4073                                 if (nidp)
4074                                         *nidp = nid;
4075                                 return &hstates[i];
4076                         }
4077         }
4078
4079         BUG();
4080         return NULL;
4081 }
4082
4083 /*
4084  * Unregister hstate attributes from a single node device.
4085  * No-op if no hstate attributes attached.
4086  */
4087 void hugetlb_unregister_node(struct node *node)
4088 {
4089         struct hstate *h;
4090         struct node_hstate *nhs = &node_hstates[node->dev.id];
4091
4092         if (!nhs->hugepages_kobj)
4093                 return;         /* no hstate attributes */
4094
4095         for_each_hstate(h) {
4096                 int idx = hstate_index(h);
4097                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4098
4099                 if (!hstate_kobj)
4100                         continue;
4101                 if (h->demote_order)
4102                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4103                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4104                 kobject_put(hstate_kobj);
4105                 nhs->hstate_kobjs[idx] = NULL;
4106         }
4107
4108         kobject_put(nhs->hugepages_kobj);
4109         nhs->hugepages_kobj = NULL;
4110 }
4111
4112
4113 /*
4114  * Register hstate attributes for a single node device.
4115  * No-op if attributes already registered.
4116  */
4117 void hugetlb_register_node(struct node *node)
4118 {
4119         struct hstate *h;
4120         struct node_hstate *nhs = &node_hstates[node->dev.id];
4121         int err;
4122
4123         if (!hugetlb_sysfs_initialized)
4124                 return;
4125
4126         if (nhs->hugepages_kobj)
4127                 return;         /* already allocated */
4128
4129         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4130                                                         &node->dev.kobj);
4131         if (!nhs->hugepages_kobj)
4132                 return;
4133
4134         for_each_hstate(h) {
4135                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4136                                                 nhs->hstate_kobjs,
4137                                                 &per_node_hstate_attr_group);
4138                 if (err) {
4139                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4140                                 h->name, node->dev.id);
4141                         hugetlb_unregister_node(node);
4142                         break;
4143                 }
4144         }
4145 }
4146
4147 /*
4148  * hugetlb init time:  register hstate attributes for all registered node
4149  * devices of nodes that have memory.  All on-line nodes should have
4150  * registered their associated device by this time.
4151  */
4152 static void __init hugetlb_register_all_nodes(void)
4153 {
4154         int nid;
4155
4156         for_each_online_node(nid)
4157                 hugetlb_register_node(node_devices[nid]);
4158 }
4159 #else   /* !CONFIG_NUMA */
4160
4161 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4162 {
4163         BUG();
4164         if (nidp)
4165                 *nidp = -1;
4166         return NULL;
4167 }
4168
4169 static void hugetlb_register_all_nodes(void) { }
4170
4171 #endif
4172
4173 #ifdef CONFIG_CMA
4174 static void __init hugetlb_cma_check(void);
4175 #else
4176 static inline __init void hugetlb_cma_check(void)
4177 {
4178 }
4179 #endif
4180
4181 static void __init hugetlb_sysfs_init(void)
4182 {
4183         struct hstate *h;
4184         int err;
4185
4186         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4187         if (!hugepages_kobj)
4188                 return;
4189
4190         for_each_hstate(h) {
4191                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4192                                          hstate_kobjs, &hstate_attr_group);
4193                 if (err)
4194                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4195         }
4196
4197 #ifdef CONFIG_NUMA
4198         hugetlb_sysfs_initialized = true;
4199 #endif
4200         hugetlb_register_all_nodes();
4201 }
4202
4203 static int __init hugetlb_init(void)
4204 {
4205         int i;
4206
4207         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208                         __NR_HPAGEFLAGS);
4209
4210         if (!hugepages_supported()) {
4211                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4212                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4213                 return 0;
4214         }
4215
4216         /*
4217          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4218          * architectures depend on setup being done here.
4219          */
4220         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4221         if (!parsed_default_hugepagesz) {
4222                 /*
4223                  * If we did not parse a default huge page size, set
4224                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4225                  * number of huge pages for this default size was implicitly
4226                  * specified, set that here as well.
4227                  * Note that the implicit setting will overwrite an explicit
4228                  * setting.  A warning will be printed in this case.
4229                  */
4230                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4231                 if (default_hstate_max_huge_pages) {
4232                         if (default_hstate.max_huge_pages) {
4233                                 char buf[32];
4234
4235                                 string_get_size(huge_page_size(&default_hstate),
4236                                         1, STRING_UNITS_2, buf, 32);
4237                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4238                                         default_hstate.max_huge_pages, buf);
4239                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4240                                         default_hstate_max_huge_pages);
4241                         }
4242                         default_hstate.max_huge_pages =
4243                                 default_hstate_max_huge_pages;
4244
4245                         for_each_online_node(i)
4246                                 default_hstate.max_huge_pages_node[i] =
4247                                         default_hugepages_in_node[i];
4248                 }
4249         }
4250
4251         hugetlb_cma_check();
4252         hugetlb_init_hstates();
4253         gather_bootmem_prealloc();
4254         report_hugepages();
4255
4256         hugetlb_sysfs_init();
4257         hugetlb_cgroup_file_init();
4258
4259 #ifdef CONFIG_SMP
4260         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4261 #else
4262         num_fault_mutexes = 1;
4263 #endif
4264         hugetlb_fault_mutex_table =
4265                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4266                               GFP_KERNEL);
4267         BUG_ON(!hugetlb_fault_mutex_table);
4268
4269         for (i = 0; i < num_fault_mutexes; i++)
4270                 mutex_init(&hugetlb_fault_mutex_table[i]);
4271         return 0;
4272 }
4273 subsys_initcall(hugetlb_init);
4274
4275 /* Overwritten by architectures with more huge page sizes */
4276 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4277 {
4278         return size == HPAGE_SIZE;
4279 }
4280
4281 void __init hugetlb_add_hstate(unsigned int order)
4282 {
4283         struct hstate *h;
4284         unsigned long i;
4285
4286         if (size_to_hstate(PAGE_SIZE << order)) {
4287                 return;
4288         }
4289         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4290         BUG_ON(order == 0);
4291         h = &hstates[hugetlb_max_hstate++];
4292         mutex_init(&h->resize_lock);
4293         h->order = order;
4294         h->mask = ~(huge_page_size(h) - 1);
4295         for (i = 0; i < MAX_NUMNODES; ++i)
4296                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4297         INIT_LIST_HEAD(&h->hugepage_activelist);
4298         h->next_nid_to_alloc = first_memory_node;
4299         h->next_nid_to_free = first_memory_node;
4300         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4301                                         huge_page_size(h)/SZ_1K);
4302
4303         parsed_hstate = h;
4304 }
4305
4306 bool __init __weak hugetlb_node_alloc_supported(void)
4307 {
4308         return true;
4309 }
4310
4311 static void __init hugepages_clear_pages_in_node(void)
4312 {
4313         if (!hugetlb_max_hstate) {
4314                 default_hstate_max_huge_pages = 0;
4315                 memset(default_hugepages_in_node, 0,
4316                         sizeof(default_hugepages_in_node));
4317         } else {
4318                 parsed_hstate->max_huge_pages = 0;
4319                 memset(parsed_hstate->max_huge_pages_node, 0,
4320                         sizeof(parsed_hstate->max_huge_pages_node));
4321         }
4322 }
4323
4324 /*
4325  * hugepages command line processing
4326  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4327  * specification.  If not, ignore the hugepages value.  hugepages can also
4328  * be the first huge page command line  option in which case it implicitly
4329  * specifies the number of huge pages for the default size.
4330  */
4331 static int __init hugepages_setup(char *s)
4332 {
4333         unsigned long *mhp;
4334         static unsigned long *last_mhp;
4335         int node = NUMA_NO_NODE;
4336         int count;
4337         unsigned long tmp;
4338         char *p = s;
4339
4340         if (!parsed_valid_hugepagesz) {
4341                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4342                 parsed_valid_hugepagesz = true;
4343                 return 1;
4344         }
4345
4346         /*
4347          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4348          * yet, so this hugepages= parameter goes to the "default hstate".
4349          * Otherwise, it goes with the previously parsed hugepagesz or
4350          * default_hugepagesz.
4351          */
4352         else if (!hugetlb_max_hstate)
4353                 mhp = &default_hstate_max_huge_pages;
4354         else
4355                 mhp = &parsed_hstate->max_huge_pages;
4356
4357         if (mhp == last_mhp) {
4358                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359                 return 1;
4360         }
4361
4362         while (*p) {
4363                 count = 0;
4364                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4365                         goto invalid;
4366                 /* Parameter is node format */
4367                 if (p[count] == ':') {
4368                         if (!hugetlb_node_alloc_supported()) {
4369                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370                                 return 1;
4371                         }
4372                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4373                                 goto invalid;
4374                         node = array_index_nospec(tmp, MAX_NUMNODES);
4375                         p += count + 1;
4376                         /* Parse hugepages */
4377                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378                                 goto invalid;
4379                         if (!hugetlb_max_hstate)
4380                                 default_hugepages_in_node[node] = tmp;
4381                         else
4382                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4383                         *mhp += tmp;
4384                         /* Go to parse next node*/
4385                         if (p[count] == ',')
4386                                 p += count + 1;
4387                         else
4388                                 break;
4389                 } else {
4390                         if (p != s)
4391                                 goto invalid;
4392                         *mhp = tmp;
4393                         break;
4394                 }
4395         }
4396
4397         /*
4398          * Global state is always initialized later in hugetlb_init.
4399          * But we need to allocate gigantic hstates here early to still
4400          * use the bootmem allocator.
4401          */
4402         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4403                 hugetlb_hstate_alloc_pages(parsed_hstate);
4404
4405         last_mhp = mhp;
4406
4407         return 1;
4408
4409 invalid:
4410         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4411         hugepages_clear_pages_in_node();
4412         return 1;
4413 }
4414 __setup("hugepages=", hugepages_setup);
4415
4416 /*
4417  * hugepagesz command line processing
4418  * A specific huge page size can only be specified once with hugepagesz.
4419  * hugepagesz is followed by hugepages on the command line.  The global
4420  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4421  * hugepagesz argument was valid.
4422  */
4423 static int __init hugepagesz_setup(char *s)
4424 {
4425         unsigned long size;
4426         struct hstate *h;
4427
4428         parsed_valid_hugepagesz = false;
4429         size = (unsigned long)memparse(s, NULL);
4430
4431         if (!arch_hugetlb_valid_size(size)) {
4432                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4433                 return 1;
4434         }
4435
4436         h = size_to_hstate(size);
4437         if (h) {
4438                 /*
4439                  * hstate for this size already exists.  This is normally
4440                  * an error, but is allowed if the existing hstate is the
4441                  * default hstate.  More specifically, it is only allowed if
4442                  * the number of huge pages for the default hstate was not
4443                  * previously specified.
4444                  */
4445                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4446                     default_hstate.max_huge_pages) {
4447                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4448                         return 1;
4449                 }
4450
4451                 /*
4452                  * No need to call hugetlb_add_hstate() as hstate already
4453                  * exists.  But, do set parsed_hstate so that a following
4454                  * hugepages= parameter will be applied to this hstate.
4455                  */
4456                 parsed_hstate = h;
4457                 parsed_valid_hugepagesz = true;
4458                 return 1;
4459         }
4460
4461         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4462         parsed_valid_hugepagesz = true;
4463         return 1;
4464 }
4465 __setup("hugepagesz=", hugepagesz_setup);
4466
4467 /*
4468  * default_hugepagesz command line input
4469  * Only one instance of default_hugepagesz allowed on command line.
4470  */
4471 static int __init default_hugepagesz_setup(char *s)
4472 {
4473         unsigned long size;
4474         int i;
4475
4476         parsed_valid_hugepagesz = false;
4477         if (parsed_default_hugepagesz) {
4478                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4479                 return 1;
4480         }
4481
4482         size = (unsigned long)memparse(s, NULL);
4483
4484         if (!arch_hugetlb_valid_size(size)) {
4485                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4486                 return 1;
4487         }
4488
4489         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4490         parsed_valid_hugepagesz = true;
4491         parsed_default_hugepagesz = true;
4492         default_hstate_idx = hstate_index(size_to_hstate(size));
4493
4494         /*
4495          * The number of default huge pages (for this size) could have been
4496          * specified as the first hugetlb parameter: hugepages=X.  If so,
4497          * then default_hstate_max_huge_pages is set.  If the default huge
4498          * page size is gigantic (>= MAX_ORDER), then the pages must be
4499          * allocated here from bootmem allocator.
4500          */
4501         if (default_hstate_max_huge_pages) {
4502                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4503                 for_each_online_node(i)
4504                         default_hstate.max_huge_pages_node[i] =
4505                                 default_hugepages_in_node[i];
4506                 if (hstate_is_gigantic(&default_hstate))
4507                         hugetlb_hstate_alloc_pages(&default_hstate);
4508                 default_hstate_max_huge_pages = 0;
4509         }
4510
4511         return 1;
4512 }
4513 __setup("default_hugepagesz=", default_hugepagesz_setup);
4514
4515 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516 {
4517 #ifdef CONFIG_NUMA
4518         struct mempolicy *mpol = get_task_policy(current);
4519
4520         /*
4521          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4522          * (from policy_nodemask) specifically for hugetlb case
4523          */
4524         if (mpol->mode == MPOL_BIND &&
4525                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4526                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4527                 return &mpol->nodes;
4528 #endif
4529         return NULL;
4530 }
4531
4532 static unsigned int allowed_mems_nr(struct hstate *h)
4533 {
4534         int node;
4535         unsigned int nr = 0;
4536         nodemask_t *mbind_nodemask;
4537         unsigned int *array = h->free_huge_pages_node;
4538         gfp_t gfp_mask = htlb_alloc_mask(h);
4539
4540         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4541         for_each_node_mask(node, cpuset_current_mems_allowed) {
4542                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4543                         nr += array[node];
4544         }
4545
4546         return nr;
4547 }
4548
4549 #ifdef CONFIG_SYSCTL
4550 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4551                                           void *buffer, size_t *length,
4552                                           loff_t *ppos, unsigned long *out)
4553 {
4554         struct ctl_table dup_table;
4555
4556         /*
4557          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4558          * can duplicate the @table and alter the duplicate of it.
4559          */
4560         dup_table = *table;
4561         dup_table.data = out;
4562
4563         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564 }
4565
4566 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4567                          struct ctl_table *table, int write,
4568                          void *buffer, size_t *length, loff_t *ppos)
4569 {
4570         struct hstate *h = &default_hstate;
4571         unsigned long tmp = h->max_huge_pages;
4572         int ret;
4573
4574         if (!hugepages_supported())
4575                 return -EOPNOTSUPP;
4576
4577         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578                                              &tmp);
4579         if (ret)
4580                 goto out;
4581
4582         if (write)
4583                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4584                                                   NUMA_NO_NODE, tmp, *length);
4585 out:
4586         return ret;
4587 }
4588
4589 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4590                           void *buffer, size_t *length, loff_t *ppos)
4591 {
4592
4593         return hugetlb_sysctl_handler_common(false, table, write,
4594                                                         buffer, length, ppos);
4595 }
4596
4597 #ifdef CONFIG_NUMA
4598 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4599                           void *buffer, size_t *length, loff_t *ppos)
4600 {
4601         return hugetlb_sysctl_handler_common(true, table, write,
4602                                                         buffer, length, ppos);
4603 }
4604 #endif /* CONFIG_NUMA */
4605
4606 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4607                 void *buffer, size_t *length, loff_t *ppos)
4608 {
4609         struct hstate *h = &default_hstate;
4610         unsigned long tmp;
4611         int ret;
4612
4613         if (!hugepages_supported())
4614                 return -EOPNOTSUPP;
4615
4616         tmp = h->nr_overcommit_huge_pages;
4617
4618         if (write && hstate_is_gigantic(h))
4619                 return -EINVAL;
4620
4621         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622                                              &tmp);
4623         if (ret)
4624                 goto out;
4625
4626         if (write) {
4627                 spin_lock_irq(&hugetlb_lock);
4628                 h->nr_overcommit_huge_pages = tmp;
4629                 spin_unlock_irq(&hugetlb_lock);
4630         }
4631 out:
4632         return ret;
4633 }
4634
4635 #endif /* CONFIG_SYSCTL */
4636
4637 void hugetlb_report_meminfo(struct seq_file *m)
4638 {
4639         struct hstate *h;
4640         unsigned long total = 0;
4641
4642         if (!hugepages_supported())
4643                 return;
4644
4645         for_each_hstate(h) {
4646                 unsigned long count = h->nr_huge_pages;
4647
4648                 total += huge_page_size(h) * count;
4649
4650                 if (h == &default_hstate)
4651                         seq_printf(m,
4652                                    "HugePages_Total:   %5lu\n"
4653                                    "HugePages_Free:    %5lu\n"
4654                                    "HugePages_Rsvd:    %5lu\n"
4655                                    "HugePages_Surp:    %5lu\n"
4656                                    "Hugepagesize:   %8lu kB\n",
4657                                    count,
4658                                    h->free_huge_pages,
4659                                    h->resv_huge_pages,
4660                                    h->surplus_huge_pages,
4661                                    huge_page_size(h) / SZ_1K);
4662         }
4663
4664         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4665 }
4666
4667 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4668 {
4669         struct hstate *h = &default_hstate;
4670
4671         if (!hugepages_supported())
4672                 return 0;
4673
4674         return sysfs_emit_at(buf, len,
4675                              "Node %d HugePages_Total: %5u\n"
4676                              "Node %d HugePages_Free:  %5u\n"
4677                              "Node %d HugePages_Surp:  %5u\n",
4678                              nid, h->nr_huge_pages_node[nid],
4679                              nid, h->free_huge_pages_node[nid],
4680                              nid, h->surplus_huge_pages_node[nid]);
4681 }
4682
4683 void hugetlb_show_meminfo_node(int nid)
4684 {
4685         struct hstate *h;
4686
4687         if (!hugepages_supported())
4688                 return;
4689
4690         for_each_hstate(h)
4691                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4692                         nid,
4693                         h->nr_huge_pages_node[nid],
4694                         h->free_huge_pages_node[nid],
4695                         h->surplus_huge_pages_node[nid],
4696                         huge_page_size(h) / SZ_1K);
4697 }
4698
4699 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4700 {
4701         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4702                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703 }
4704
4705 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4706 unsigned long hugetlb_total_pages(void)
4707 {
4708         struct hstate *h;
4709         unsigned long nr_total_pages = 0;
4710
4711         for_each_hstate(h)
4712                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4713         return nr_total_pages;
4714 }
4715
4716 static int hugetlb_acct_memory(struct hstate *h, long delta)
4717 {
4718         int ret = -ENOMEM;
4719
4720         if (!delta)
4721                 return 0;
4722
4723         spin_lock_irq(&hugetlb_lock);
4724         /*
4725          * When cpuset is configured, it breaks the strict hugetlb page
4726          * reservation as the accounting is done on a global variable. Such
4727          * reservation is completely rubbish in the presence of cpuset because
4728          * the reservation is not checked against page availability for the
4729          * current cpuset. Application can still potentially OOM'ed by kernel
4730          * with lack of free htlb page in cpuset that the task is in.
4731          * Attempt to enforce strict accounting with cpuset is almost
4732          * impossible (or too ugly) because cpuset is too fluid that
4733          * task or memory node can be dynamically moved between cpusets.
4734          *
4735          * The change of semantics for shared hugetlb mapping with cpuset is
4736          * undesirable. However, in order to preserve some of the semantics,
4737          * we fall back to check against current free page availability as
4738          * a best attempt and hopefully to minimize the impact of changing
4739          * semantics that cpuset has.
4740          *
4741          * Apart from cpuset, we also have memory policy mechanism that
4742          * also determines from which node the kernel will allocate memory
4743          * in a NUMA system. So similar to cpuset, we also should consider
4744          * the memory policy of the current task. Similar to the description
4745          * above.
4746          */
4747         if (delta > 0) {
4748                 if (gather_surplus_pages(h, delta) < 0)
4749                         goto out;
4750
4751                 if (delta > allowed_mems_nr(h)) {
4752                         return_unused_surplus_pages(h, delta);
4753                         goto out;
4754                 }
4755         }
4756
4757         ret = 0;
4758         if (delta < 0)
4759                 return_unused_surplus_pages(h, (unsigned long) -delta);
4760
4761 out:
4762         spin_unlock_irq(&hugetlb_lock);
4763         return ret;
4764 }
4765
4766 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4767 {
4768         struct resv_map *resv = vma_resv_map(vma);
4769
4770         /*
4771          * HPAGE_RESV_OWNER indicates a private mapping.
4772          * This new VMA should share its siblings reservation map if present.
4773          * The VMA will only ever have a valid reservation map pointer where
4774          * it is being copied for another still existing VMA.  As that VMA
4775          * has a reference to the reservation map it cannot disappear until
4776          * after this open call completes.  It is therefore safe to take a
4777          * new reference here without additional locking.
4778          */
4779         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4780                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4781                 kref_get(&resv->refs);
4782         }
4783
4784         /*
4785          * vma_lock structure for sharable mappings is vma specific.
4786          * Clear old pointer (if copied via vm_area_dup) and allocate
4787          * new structure.  Before clearing, make sure vma_lock is not
4788          * for this vma.
4789          */
4790         if (vma->vm_flags & VM_MAYSHARE) {
4791                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792
4793                 if (vma_lock) {
4794                         if (vma_lock->vma != vma) {
4795                                 vma->vm_private_data = NULL;
4796                                 hugetlb_vma_lock_alloc(vma);
4797                         } else
4798                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4799                 } else
4800                         hugetlb_vma_lock_alloc(vma);
4801         }
4802 }
4803
4804 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4805 {
4806         struct hstate *h = hstate_vma(vma);
4807         struct resv_map *resv;
4808         struct hugepage_subpool *spool = subpool_vma(vma);
4809         unsigned long reserve, start, end;
4810         long gbl_reserve;
4811
4812         hugetlb_vma_lock_free(vma);
4813
4814         resv = vma_resv_map(vma);
4815         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816                 return;
4817
4818         start = vma_hugecache_offset(h, vma, vma->vm_start);
4819         end = vma_hugecache_offset(h, vma, vma->vm_end);
4820
4821         reserve = (end - start) - region_count(resv, start, end);
4822         hugetlb_cgroup_uncharge_counter(resv, start, end);
4823         if (reserve) {
4824                 /*
4825                  * Decrement reserve counts.  The global reserve count may be
4826                  * adjusted if the subpool has a minimum size.
4827                  */
4828                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4829                 hugetlb_acct_memory(h, -gbl_reserve);
4830         }
4831
4832         kref_put(&resv->refs, resv_map_release);
4833 }
4834
4835 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4836 {
4837         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4838                 return -EINVAL;
4839
4840         /*
4841          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4842          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4843          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4844          */
4845         if (addr & ~PUD_MASK) {
4846                 /*
4847                  * hugetlb_vm_op_split is called right before we attempt to
4848                  * split the VMA. We will need to unshare PMDs in the old and
4849                  * new VMAs, so let's unshare before we split.
4850                  */
4851                 unsigned long floor = addr & PUD_MASK;
4852                 unsigned long ceil = floor + PUD_SIZE;
4853
4854                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4855                         hugetlb_unshare_pmds(vma, floor, ceil);
4856         }
4857
4858         return 0;
4859 }
4860
4861 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4862 {
4863         return huge_page_size(hstate_vma(vma));
4864 }
4865
4866 /*
4867  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4868  * handle_mm_fault() to try to instantiate regular-sized pages in the
4869  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4870  * this far.
4871  */
4872 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4873 {
4874         BUG();
4875         return 0;
4876 }
4877
4878 /*
4879  * When a new function is introduced to vm_operations_struct and added
4880  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4881  * This is because under System V memory model, mappings created via
4882  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4883  * their original vm_ops are overwritten with shm_vm_ops.
4884  */
4885 const struct vm_operations_struct hugetlb_vm_ops = {
4886         .fault = hugetlb_vm_op_fault,
4887         .open = hugetlb_vm_op_open,
4888         .close = hugetlb_vm_op_close,
4889         .may_split = hugetlb_vm_op_split,
4890         .pagesize = hugetlb_vm_op_pagesize,
4891 };
4892
4893 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4894                                 int writable)
4895 {
4896         pte_t entry;
4897         unsigned int shift = huge_page_shift(hstate_vma(vma));
4898
4899         if (writable) {
4900                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4901                                          vma->vm_page_prot)));
4902         } else {
4903                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4904                                            vma->vm_page_prot));
4905         }
4906         entry = pte_mkyoung(entry);
4907         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4908
4909         return entry;
4910 }
4911
4912 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4913                                    unsigned long address, pte_t *ptep)
4914 {
4915         pte_t entry;
4916
4917         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4918         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4919                 update_mmu_cache(vma, address, ptep);
4920 }
4921
4922 bool is_hugetlb_entry_migration(pte_t pte)
4923 {
4924         swp_entry_t swp;
4925
4926         if (huge_pte_none(pte) || pte_present(pte))
4927                 return false;
4928         swp = pte_to_swp_entry(pte);
4929         if (is_migration_entry(swp))
4930                 return true;
4931         else
4932                 return false;
4933 }
4934
4935 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4936 {
4937         swp_entry_t swp;
4938
4939         if (huge_pte_none(pte) || pte_present(pte))
4940                 return false;
4941         swp = pte_to_swp_entry(pte);
4942         if (is_hwpoison_entry(swp))
4943                 return true;
4944         else
4945                 return false;
4946 }
4947
4948 static void
4949 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4950                      struct page *new_page)
4951 {
4952         __SetPageUptodate(new_page);
4953         hugepage_add_new_anon_rmap(new_page, vma, addr);
4954         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4955         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4956         SetHPageMigratable(new_page);
4957 }
4958
4959 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4960                             struct vm_area_struct *dst_vma,
4961                             struct vm_area_struct *src_vma)
4962 {
4963         pte_t *src_pte, *dst_pte, entry;
4964         struct page *ptepage;
4965         unsigned long addr;
4966         bool cow = is_cow_mapping(src_vma->vm_flags);
4967         struct hstate *h = hstate_vma(src_vma);
4968         unsigned long sz = huge_page_size(h);
4969         unsigned long npages = pages_per_huge_page(h);
4970         struct mmu_notifier_range range;
4971         unsigned long last_addr_mask;
4972         int ret = 0;
4973
4974         if (cow) {
4975                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4976                                         src_vma->vm_start,
4977                                         src_vma->vm_end);
4978                 mmu_notifier_invalidate_range_start(&range);
4979                 mmap_assert_write_locked(src);
4980                 raw_write_seqcount_begin(&src->write_protect_seq);
4981         } else {
4982                 /*
4983                  * For shared mappings the vma lock must be held before
4984                  * calling huge_pte_offset in the src vma. Otherwise, the
4985                  * returned ptep could go away if part of a shared pmd and
4986                  * another thread calls huge_pmd_unshare.
4987                  */
4988                 hugetlb_vma_lock_read(src_vma);
4989         }
4990
4991         last_addr_mask = hugetlb_mask_last_page(h);
4992         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4993                 spinlock_t *src_ptl, *dst_ptl;
4994                 src_pte = huge_pte_offset(src, addr, sz);
4995                 if (!src_pte) {
4996                         addr |= last_addr_mask;
4997                         continue;
4998                 }
4999                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5000                 if (!dst_pte) {
5001                         ret = -ENOMEM;
5002                         break;
5003                 }
5004
5005                 /*
5006                  * If the pagetables are shared don't copy or take references.
5007                  *
5008                  * dst_pte == src_pte is the common case of src/dest sharing.
5009                  * However, src could have 'unshared' and dst shares with
5010                  * another vma. So page_count of ptep page is checked instead
5011                  * to reliably determine whether pte is shared.
5012                  */
5013                 if (page_count(virt_to_page(dst_pte)) > 1) {
5014                         addr |= last_addr_mask;
5015                         continue;
5016                 }
5017
5018                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5019                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5020                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5021                 entry = huge_ptep_get(src_pte);
5022 again:
5023                 if (huge_pte_none(entry)) {
5024                         /*
5025                          * Skip if src entry none.
5026                          */
5027                         ;
5028                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5029                         bool uffd_wp = huge_pte_uffd_wp(entry);
5030
5031                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5032                                 entry = huge_pte_clear_uffd_wp(entry);
5033                         set_huge_pte_at(dst, addr, dst_pte, entry);
5034                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5035                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5036                         bool uffd_wp = huge_pte_uffd_wp(entry);
5037
5038                         if (!is_readable_migration_entry(swp_entry) && cow) {
5039                                 /*
5040                                  * COW mappings require pages in both
5041                                  * parent and child to be set to read.
5042                                  */
5043                                 swp_entry = make_readable_migration_entry(
5044                                                         swp_offset(swp_entry));
5045                                 entry = swp_entry_to_pte(swp_entry);
5046                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5047                                         entry = huge_pte_mkuffd_wp(entry);
5048                                 set_huge_pte_at(src, addr, src_pte, entry);
5049                         }
5050                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5051                                 entry = huge_pte_clear_uffd_wp(entry);
5052                         set_huge_pte_at(dst, addr, dst_pte, entry);
5053                 } else if (unlikely(is_pte_marker(entry))) {
5054                         /*
5055                          * We copy the pte marker only if the dst vma has
5056                          * uffd-wp enabled.
5057                          */
5058                         if (userfaultfd_wp(dst_vma))
5059                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5060                 } else {
5061                         entry = huge_ptep_get(src_pte);
5062                         ptepage = pte_page(entry);
5063                         get_page(ptepage);
5064
5065                         /*
5066                          * Failing to duplicate the anon rmap is a rare case
5067                          * where we see pinned hugetlb pages while they're
5068                          * prone to COW. We need to do the COW earlier during
5069                          * fork.
5070                          *
5071                          * When pre-allocating the page or copying data, we
5072                          * need to be without the pgtable locks since we could
5073                          * sleep during the process.
5074                          */
5075                         if (!PageAnon(ptepage)) {
5076                                 page_dup_file_rmap(ptepage, true);
5077                         } else if (page_try_dup_anon_rmap(ptepage, true,
5078                                                           src_vma)) {
5079                                 pte_t src_pte_old = entry;
5080                                 struct page *new;
5081
5082                                 spin_unlock(src_ptl);
5083                                 spin_unlock(dst_ptl);
5084                                 /* Do not use reserve as it's private owned */
5085                                 new = alloc_huge_page(dst_vma, addr, 1);
5086                                 if (IS_ERR(new)) {
5087                                         put_page(ptepage);
5088                                         ret = PTR_ERR(new);
5089                                         break;
5090                                 }
5091                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
5092                                                     npages);
5093                                 put_page(ptepage);
5094
5095                                 /* Install the new huge page if src pte stable */
5096                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5097                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5098                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5099                                 entry = huge_ptep_get(src_pte);
5100                                 if (!pte_same(src_pte_old, entry)) {
5101                                         restore_reserve_on_error(h, dst_vma, addr,
5102                                                                 new);
5103                                         put_page(new);
5104                                         /* huge_ptep of dst_pte won't change as in child */
5105                                         goto again;
5106                                 }
5107                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5108                                 spin_unlock(src_ptl);
5109                                 spin_unlock(dst_ptl);
5110                                 continue;
5111                         }
5112
5113                         if (cow) {
5114                                 /*
5115                                  * No need to notify as we are downgrading page
5116                                  * table protection not changing it to point
5117                                  * to a new page.
5118                                  *
5119                                  * See Documentation/mm/mmu_notifier.rst
5120                                  */
5121                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5122                                 entry = huge_pte_wrprotect(entry);
5123                         }
5124
5125                         set_huge_pte_at(dst, addr, dst_pte, entry);
5126                         hugetlb_count_add(npages, dst);
5127                 }
5128                 spin_unlock(src_ptl);
5129                 spin_unlock(dst_ptl);
5130         }
5131
5132         if (cow) {
5133                 raw_write_seqcount_end(&src->write_protect_seq);
5134                 mmu_notifier_invalidate_range_end(&range);
5135         } else {
5136                 hugetlb_vma_unlock_read(src_vma);
5137         }
5138
5139         return ret;
5140 }
5141
5142 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5143                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5144 {
5145         struct hstate *h = hstate_vma(vma);
5146         struct mm_struct *mm = vma->vm_mm;
5147         spinlock_t *src_ptl, *dst_ptl;
5148         pte_t pte;
5149
5150         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5151         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5152
5153         /*
5154          * We don't have to worry about the ordering of src and dst ptlocks
5155          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5156          */
5157         if (src_ptl != dst_ptl)
5158                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5159
5160         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5161         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5162
5163         if (src_ptl != dst_ptl)
5164                 spin_unlock(src_ptl);
5165         spin_unlock(dst_ptl);
5166 }
5167
5168 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5169                              struct vm_area_struct *new_vma,
5170                              unsigned long old_addr, unsigned long new_addr,
5171                              unsigned long len)
5172 {
5173         struct hstate *h = hstate_vma(vma);
5174         struct address_space *mapping = vma->vm_file->f_mapping;
5175         unsigned long sz = huge_page_size(h);
5176         struct mm_struct *mm = vma->vm_mm;
5177         unsigned long old_end = old_addr + len;
5178         unsigned long last_addr_mask;
5179         pte_t *src_pte, *dst_pte;
5180         struct mmu_notifier_range range;
5181         bool shared_pmd = false;
5182
5183         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5184                                 old_end);
5185         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5186         /*
5187          * In case of shared PMDs, we should cover the maximum possible
5188          * range.
5189          */
5190         flush_cache_range(vma, range.start, range.end);
5191
5192         mmu_notifier_invalidate_range_start(&range);
5193         last_addr_mask = hugetlb_mask_last_page(h);
5194         /* Prevent race with file truncation */
5195         hugetlb_vma_lock_write(vma);
5196         i_mmap_lock_write(mapping);
5197         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5198                 src_pte = huge_pte_offset(mm, old_addr, sz);
5199                 if (!src_pte) {
5200                         old_addr |= last_addr_mask;
5201                         new_addr |= last_addr_mask;
5202                         continue;
5203                 }
5204                 if (huge_pte_none(huge_ptep_get(src_pte)))
5205                         continue;
5206
5207                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5208                         shared_pmd = true;
5209                         old_addr |= last_addr_mask;
5210                         new_addr |= last_addr_mask;
5211                         continue;
5212                 }
5213
5214                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5215                 if (!dst_pte)
5216                         break;
5217
5218                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5219         }
5220
5221         if (shared_pmd)
5222                 flush_tlb_range(vma, range.start, range.end);
5223         else
5224                 flush_tlb_range(vma, old_end - len, old_end);
5225         mmu_notifier_invalidate_range_end(&range);
5226         i_mmap_unlock_write(mapping);
5227         hugetlb_vma_unlock_write(vma);
5228
5229         return len + old_addr - old_end;
5230 }
5231
5232 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5233                                    unsigned long start, unsigned long end,
5234                                    struct page *ref_page, zap_flags_t zap_flags)
5235 {
5236         struct mm_struct *mm = vma->vm_mm;
5237         unsigned long address;
5238         pte_t *ptep;
5239         pte_t pte;
5240         spinlock_t *ptl;
5241         struct page *page;
5242         struct hstate *h = hstate_vma(vma);
5243         unsigned long sz = huge_page_size(h);
5244         unsigned long last_addr_mask;
5245         bool force_flush = false;
5246
5247         WARN_ON(!is_vm_hugetlb_page(vma));
5248         BUG_ON(start & ~huge_page_mask(h));
5249         BUG_ON(end & ~huge_page_mask(h));
5250
5251         /*
5252          * This is a hugetlb vma, all the pte entries should point
5253          * to huge page.
5254          */
5255         tlb_change_page_size(tlb, sz);
5256         tlb_start_vma(tlb, vma);
5257
5258         last_addr_mask = hugetlb_mask_last_page(h);
5259         address = start;
5260         for (; address < end; address += sz) {
5261                 ptep = huge_pte_offset(mm, address, sz);
5262                 if (!ptep) {
5263                         address |= last_addr_mask;
5264                         continue;
5265                 }
5266
5267                 ptl = huge_pte_lock(h, mm, ptep);
5268                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5269                         spin_unlock(ptl);
5270                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5271                         force_flush = true;
5272                         address |= last_addr_mask;
5273                         continue;
5274                 }
5275
5276                 pte = huge_ptep_get(ptep);
5277                 if (huge_pte_none(pte)) {
5278                         spin_unlock(ptl);
5279                         continue;
5280                 }
5281
5282                 /*
5283                  * Migrating hugepage or HWPoisoned hugepage is already
5284                  * unmapped and its refcount is dropped, so just clear pte here.
5285                  */
5286                 if (unlikely(!pte_present(pte))) {
5287                         /*
5288                          * If the pte was wr-protected by uffd-wp in any of the
5289                          * swap forms, meanwhile the caller does not want to
5290                          * drop the uffd-wp bit in this zap, then replace the
5291                          * pte with a marker.
5292                          */
5293                         if (pte_swp_uffd_wp_any(pte) &&
5294                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5295                                 set_huge_pte_at(mm, address, ptep,
5296                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5297                         else
5298                                 huge_pte_clear(mm, address, ptep, sz);
5299                         spin_unlock(ptl);
5300                         continue;
5301                 }
5302
5303                 page = pte_page(pte);
5304                 /*
5305                  * If a reference page is supplied, it is because a specific
5306                  * page is being unmapped, not a range. Ensure the page we
5307                  * are about to unmap is the actual page of interest.
5308                  */
5309                 if (ref_page) {
5310                         if (page != ref_page) {
5311                                 spin_unlock(ptl);
5312                                 continue;
5313                         }
5314                         /*
5315                          * Mark the VMA as having unmapped its page so that
5316                          * future faults in this VMA will fail rather than
5317                          * looking like data was lost
5318                          */
5319                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5320                 }
5321
5322                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5323                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5324                 if (huge_pte_dirty(pte))
5325                         set_page_dirty(page);
5326                 /* Leave a uffd-wp pte marker if needed */
5327                 if (huge_pte_uffd_wp(pte) &&
5328                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5329                         set_huge_pte_at(mm, address, ptep,
5330                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5331                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5332                 page_remove_rmap(page, vma, true);
5333
5334                 spin_unlock(ptl);
5335                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5336                 /*
5337                  * Bail out after unmapping reference page if supplied
5338                  */
5339                 if (ref_page)
5340                         break;
5341         }
5342         tlb_end_vma(tlb, vma);
5343
5344         /*
5345          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5346          * could defer the flush until now, since by holding i_mmap_rwsem we
5347          * guaranteed that the last refernece would not be dropped. But we must
5348          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5349          * dropped and the last reference to the shared PMDs page might be
5350          * dropped as well.
5351          *
5352          * In theory we could defer the freeing of the PMD pages as well, but
5353          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5354          * detect sharing, so we cannot defer the release of the page either.
5355          * Instead, do flush now.
5356          */
5357         if (force_flush)
5358                 tlb_flush_mmu_tlbonly(tlb);
5359 }
5360
5361 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5362                           struct vm_area_struct *vma, unsigned long start,
5363                           unsigned long end, struct page *ref_page,
5364                           zap_flags_t zap_flags)
5365 {
5366         hugetlb_vma_lock_write(vma);
5367         i_mmap_lock_write(vma->vm_file->f_mapping);
5368
5369         /* mmu notification performed in caller */
5370         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5371
5372         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5373                 /*
5374                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5375                  * When the vma_lock is freed, this makes the vma ineligible
5376                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5377                  * pmd sharing.  This is important as page tables for this
5378                  * unmapped range will be asynchrously deleted.  If the page
5379                  * tables are shared, there will be issues when accessed by
5380                  * someone else.
5381                  */
5382                 __hugetlb_vma_unlock_write_free(vma);
5383                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5384         } else {
5385                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5386                 hugetlb_vma_unlock_write(vma);
5387         }
5388 }
5389
5390 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5391                           unsigned long end, struct page *ref_page,
5392                           zap_flags_t zap_flags)
5393 {
5394         struct mmu_notifier_range range;
5395         struct mmu_gather tlb;
5396
5397         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5398                                 start, end);
5399         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5400         mmu_notifier_invalidate_range_start(&range);
5401         tlb_gather_mmu(&tlb, vma->vm_mm);
5402
5403         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5404
5405         mmu_notifier_invalidate_range_end(&range);
5406         tlb_finish_mmu(&tlb);
5407 }
5408
5409 /*
5410  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5411  * mapping it owns the reserve page for. The intention is to unmap the page
5412  * from other VMAs and let the children be SIGKILLed if they are faulting the
5413  * same region.
5414  */
5415 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5416                               struct page *page, unsigned long address)
5417 {
5418         struct hstate *h = hstate_vma(vma);
5419         struct vm_area_struct *iter_vma;
5420         struct address_space *mapping;
5421         pgoff_t pgoff;
5422
5423         /*
5424          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5425          * from page cache lookup which is in HPAGE_SIZE units.
5426          */
5427         address = address & huge_page_mask(h);
5428         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5429                         vma->vm_pgoff;
5430         mapping = vma->vm_file->f_mapping;
5431
5432         /*
5433          * Take the mapping lock for the duration of the table walk. As
5434          * this mapping should be shared between all the VMAs,
5435          * __unmap_hugepage_range() is called as the lock is already held
5436          */
5437         i_mmap_lock_write(mapping);
5438         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5439                 /* Do not unmap the current VMA */
5440                 if (iter_vma == vma)
5441                         continue;
5442
5443                 /*
5444                  * Shared VMAs have their own reserves and do not affect
5445                  * MAP_PRIVATE accounting but it is possible that a shared
5446                  * VMA is using the same page so check and skip such VMAs.
5447                  */
5448                 if (iter_vma->vm_flags & VM_MAYSHARE)
5449                         continue;
5450
5451                 /*
5452                  * Unmap the page from other VMAs without their own reserves.
5453                  * They get marked to be SIGKILLed if they fault in these
5454                  * areas. This is because a future no-page fault on this VMA
5455                  * could insert a zeroed page instead of the data existing
5456                  * from the time of fork. This would look like data corruption
5457                  */
5458                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5459                         unmap_hugepage_range(iter_vma, address,
5460                                              address + huge_page_size(h), page, 0);
5461         }
5462         i_mmap_unlock_write(mapping);
5463 }
5464
5465 /*
5466  * hugetlb_wp() should be called with page lock of the original hugepage held.
5467  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5468  * cannot race with other handlers or page migration.
5469  * Keep the pte_same checks anyway to make transition from the mutex easier.
5470  */
5471 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5472                        unsigned long address, pte_t *ptep, unsigned int flags,
5473                        struct page *pagecache_page, spinlock_t *ptl)
5474 {
5475         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5476         pte_t pte;
5477         struct hstate *h = hstate_vma(vma);
5478         struct page *old_page, *new_page;
5479         int outside_reserve = 0;
5480         vm_fault_t ret = 0;
5481         unsigned long haddr = address & huge_page_mask(h);
5482         struct mmu_notifier_range range;
5483
5484         /*
5485          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5486          * PTE mapped R/O such as maybe_mkwrite() would do.
5487          */
5488         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5489                 return VM_FAULT_SIGSEGV;
5490
5491         /* Let's take out MAP_SHARED mappings first. */
5492         if (vma->vm_flags & VM_MAYSHARE) {
5493                 set_huge_ptep_writable(vma, haddr, ptep);
5494                 return 0;
5495         }
5496
5497         pte = huge_ptep_get(ptep);
5498         old_page = pte_page(pte);
5499
5500         delayacct_wpcopy_start();
5501
5502 retry_avoidcopy:
5503         /*
5504          * If no-one else is actually using this page, we're the exclusive
5505          * owner and can reuse this page.
5506          */
5507         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5508                 if (!PageAnonExclusive(old_page))
5509                         page_move_anon_rmap(old_page, vma);
5510                 if (likely(!unshare))
5511                         set_huge_ptep_writable(vma, haddr, ptep);
5512
5513                 delayacct_wpcopy_end();
5514                 return 0;
5515         }
5516         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5517                        old_page);
5518
5519         /*
5520          * If the process that created a MAP_PRIVATE mapping is about to
5521          * perform a COW due to a shared page count, attempt to satisfy
5522          * the allocation without using the existing reserves. The pagecache
5523          * page is used to determine if the reserve at this address was
5524          * consumed or not. If reserves were used, a partial faulted mapping
5525          * at the time of fork() could consume its reserves on COW instead
5526          * of the full address range.
5527          */
5528         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5529                         old_page != pagecache_page)
5530                 outside_reserve = 1;
5531
5532         get_page(old_page);
5533
5534         /*
5535          * Drop page table lock as buddy allocator may be called. It will
5536          * be acquired again before returning to the caller, as expected.
5537          */
5538         spin_unlock(ptl);
5539         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5540
5541         if (IS_ERR(new_page)) {
5542                 /*
5543                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5544                  * it is due to references held by a child and an insufficient
5545                  * huge page pool. To guarantee the original mappers
5546                  * reliability, unmap the page from child processes. The child
5547                  * may get SIGKILLed if it later faults.
5548                  */
5549                 if (outside_reserve) {
5550                         struct address_space *mapping = vma->vm_file->f_mapping;
5551                         pgoff_t idx;
5552                         u32 hash;
5553
5554                         put_page(old_page);
5555                         /*
5556                          * Drop hugetlb_fault_mutex and vma_lock before
5557                          * unmapping.  unmapping needs to hold vma_lock
5558                          * in write mode.  Dropping vma_lock in read mode
5559                          * here is OK as COW mappings do not interact with
5560                          * PMD sharing.
5561                          *
5562                          * Reacquire both after unmap operation.
5563                          */
5564                         idx = vma_hugecache_offset(h, vma, haddr);
5565                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5566                         hugetlb_vma_unlock_read(vma);
5567                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5568
5569                         unmap_ref_private(mm, vma, old_page, haddr);
5570
5571                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5572                         hugetlb_vma_lock_read(vma);
5573                         spin_lock(ptl);
5574                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5575                         if (likely(ptep &&
5576                                    pte_same(huge_ptep_get(ptep), pte)))
5577                                 goto retry_avoidcopy;
5578                         /*
5579                          * race occurs while re-acquiring page table
5580                          * lock, and our job is done.
5581                          */
5582                         delayacct_wpcopy_end();
5583                         return 0;
5584                 }
5585
5586                 ret = vmf_error(PTR_ERR(new_page));
5587                 goto out_release_old;
5588         }
5589
5590         /*
5591          * When the original hugepage is shared one, it does not have
5592          * anon_vma prepared.
5593          */
5594         if (unlikely(anon_vma_prepare(vma))) {
5595                 ret = VM_FAULT_OOM;
5596                 goto out_release_all;
5597         }
5598
5599         copy_user_huge_page(new_page, old_page, address, vma,
5600                             pages_per_huge_page(h));
5601         __SetPageUptodate(new_page);
5602
5603         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5604                                 haddr + huge_page_size(h));
5605         mmu_notifier_invalidate_range_start(&range);
5606
5607         /*
5608          * Retake the page table lock to check for racing updates
5609          * before the page tables are altered
5610          */
5611         spin_lock(ptl);
5612         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5613         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5614                 /* Break COW or unshare */
5615                 huge_ptep_clear_flush(vma, haddr, ptep);
5616                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5617                 page_remove_rmap(old_page, vma, true);
5618                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5619                 set_huge_pte_at(mm, haddr, ptep,
5620                                 make_huge_pte(vma, new_page, !unshare));
5621                 SetHPageMigratable(new_page);
5622                 /* Make the old page be freed below */
5623                 new_page = old_page;
5624         }
5625         spin_unlock(ptl);
5626         mmu_notifier_invalidate_range_end(&range);
5627 out_release_all:
5628         /*
5629          * No restore in case of successful pagetable update (Break COW or
5630          * unshare)
5631          */
5632         if (new_page != old_page)
5633                 restore_reserve_on_error(h, vma, haddr, new_page);
5634         put_page(new_page);
5635 out_release_old:
5636         put_page(old_page);
5637
5638         spin_lock(ptl); /* Caller expects lock to be held */
5639
5640         delayacct_wpcopy_end();
5641         return ret;
5642 }
5643
5644 /*
5645  * Return whether there is a pagecache page to back given address within VMA.
5646  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5647  */
5648 static bool hugetlbfs_pagecache_present(struct hstate *h,
5649                         struct vm_area_struct *vma, unsigned long address)
5650 {
5651         struct address_space *mapping;
5652         pgoff_t idx;
5653         struct page *page;
5654
5655         mapping = vma->vm_file->f_mapping;
5656         idx = vma_hugecache_offset(h, vma, address);
5657
5658         page = find_get_page(mapping, idx);
5659         if (page)
5660                 put_page(page);
5661         return page != NULL;
5662 }
5663
5664 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5665                            pgoff_t idx)
5666 {
5667         struct folio *folio = page_folio(page);
5668         struct inode *inode = mapping->host;
5669         struct hstate *h = hstate_inode(inode);
5670         int err;
5671
5672         __folio_set_locked(folio);
5673         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5674
5675         if (unlikely(err)) {
5676                 __folio_clear_locked(folio);
5677                 return err;
5678         }
5679         ClearHPageRestoreReserve(page);
5680
5681         /*
5682          * mark folio dirty so that it will not be removed from cache/file
5683          * by non-hugetlbfs specific code paths.
5684          */
5685         folio_mark_dirty(folio);
5686
5687         spin_lock(&inode->i_lock);
5688         inode->i_blocks += blocks_per_huge_page(h);
5689         spin_unlock(&inode->i_lock);
5690         return 0;
5691 }
5692
5693 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5694                                                   struct address_space *mapping,
5695                                                   pgoff_t idx,
5696                                                   unsigned int flags,
5697                                                   unsigned long haddr,
5698                                                   unsigned long addr,
5699                                                   unsigned long reason)
5700 {
5701         u32 hash;
5702         struct vm_fault vmf = {
5703                 .vma = vma,
5704                 .address = haddr,
5705                 .real_address = addr,
5706                 .flags = flags,
5707
5708                 /*
5709                  * Hard to debug if it ends up being
5710                  * used by a callee that assumes
5711                  * something about the other
5712                  * uninitialized fields... same as in
5713                  * memory.c
5714                  */
5715         };
5716
5717         /*
5718          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5719          * userfault. Also mmap_lock could be dropped due to handling
5720          * userfault, any vma operation should be careful from here.
5721          */
5722         hugetlb_vma_unlock_read(vma);
5723         hash = hugetlb_fault_mutex_hash(mapping, idx);
5724         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5725         return handle_userfault(&vmf, reason);
5726 }
5727
5728 /*
5729  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5730  * false if pte changed or is changing.
5731  */
5732 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5733                                pte_t *ptep, pte_t old_pte)
5734 {
5735         spinlock_t *ptl;
5736         bool same;
5737
5738         ptl = huge_pte_lock(h, mm, ptep);
5739         same = pte_same(huge_ptep_get(ptep), old_pte);
5740         spin_unlock(ptl);
5741
5742         return same;
5743 }
5744
5745 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5746                         struct vm_area_struct *vma,
5747                         struct address_space *mapping, pgoff_t idx,
5748                         unsigned long address, pte_t *ptep,
5749                         pte_t old_pte, unsigned int flags)
5750 {
5751         struct hstate *h = hstate_vma(vma);
5752         vm_fault_t ret = VM_FAULT_SIGBUS;
5753         int anon_rmap = 0;
5754         unsigned long size;
5755         struct page *page;
5756         pte_t new_pte;
5757         spinlock_t *ptl;
5758         unsigned long haddr = address & huge_page_mask(h);
5759         bool new_page, new_pagecache_page = false;
5760         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5761
5762         /*
5763          * Currently, we are forced to kill the process in the event the
5764          * original mapper has unmapped pages from the child due to a failed
5765          * COW/unsharing. Warn that such a situation has occurred as it may not
5766          * be obvious.
5767          */
5768         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5769                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5770                            current->pid);
5771                 goto out;
5772         }
5773
5774         /*
5775          * Use page lock to guard against racing truncation
5776          * before we get page_table_lock.
5777          */
5778         new_page = false;
5779         page = find_lock_page(mapping, idx);
5780         if (!page) {
5781                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5782                 if (idx >= size)
5783                         goto out;
5784                 /* Check for page in userfault range */
5785                 if (userfaultfd_missing(vma)) {
5786                         /*
5787                          * Since hugetlb_no_page() was examining pte
5788                          * without pgtable lock, we need to re-test under
5789                          * lock because the pte may not be stable and could
5790                          * have changed from under us.  Try to detect
5791                          * either changed or during-changing ptes and retry
5792                          * properly when needed.
5793                          *
5794                          * Note that userfaultfd is actually fine with
5795                          * false positives (e.g. caused by pte changed),
5796                          * but not wrong logical events (e.g. caused by
5797                          * reading a pte during changing).  The latter can
5798                          * confuse the userspace, so the strictness is very
5799                          * much preferred.  E.g., MISSING event should
5800                          * never happen on the page after UFFDIO_COPY has
5801                          * correctly installed the page and returned.
5802                          */
5803                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5804                                 ret = 0;
5805                                 goto out;
5806                         }
5807
5808                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5809                                                         haddr, address,
5810                                                         VM_UFFD_MISSING);
5811                 }
5812
5813                 page = alloc_huge_page(vma, haddr, 0);
5814                 if (IS_ERR(page)) {
5815                         /*
5816                          * Returning error will result in faulting task being
5817                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5818                          * tasks from racing to fault in the same page which
5819                          * could result in false unable to allocate errors.
5820                          * Page migration does not take the fault mutex, but
5821                          * does a clear then write of pte's under page table
5822                          * lock.  Page fault code could race with migration,
5823                          * notice the clear pte and try to allocate a page
5824                          * here.  Before returning error, get ptl and make
5825                          * sure there really is no pte entry.
5826                          */
5827                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5828                                 ret = vmf_error(PTR_ERR(page));
5829                         else
5830                                 ret = 0;
5831                         goto out;
5832                 }
5833                 clear_huge_page(page, address, pages_per_huge_page(h));
5834                 __SetPageUptodate(page);
5835                 new_page = true;
5836
5837                 if (vma->vm_flags & VM_MAYSHARE) {
5838                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5839                         if (err) {
5840                                 /*
5841                                  * err can't be -EEXIST which implies someone
5842                                  * else consumed the reservation since hugetlb
5843                                  * fault mutex is held when add a hugetlb page
5844                                  * to the page cache. So it's safe to call
5845                                  * restore_reserve_on_error() here.
5846                                  */
5847                                 restore_reserve_on_error(h, vma, haddr, page);
5848                                 put_page(page);
5849                                 goto out;
5850                         }
5851                         new_pagecache_page = true;
5852                 } else {
5853                         lock_page(page);
5854                         if (unlikely(anon_vma_prepare(vma))) {
5855                                 ret = VM_FAULT_OOM;
5856                                 goto backout_unlocked;
5857                         }
5858                         anon_rmap = 1;
5859                 }
5860         } else {
5861                 /*
5862                  * If memory error occurs between mmap() and fault, some process
5863                  * don't have hwpoisoned swap entry for errored virtual address.
5864                  * So we need to block hugepage fault by PG_hwpoison bit check.
5865                  */
5866                 if (unlikely(PageHWPoison(page))) {
5867                         ret = VM_FAULT_HWPOISON_LARGE |
5868                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5869                         goto backout_unlocked;
5870                 }
5871
5872                 /* Check for page in userfault range. */
5873                 if (userfaultfd_minor(vma)) {
5874                         unlock_page(page);
5875                         put_page(page);
5876                         /* See comment in userfaultfd_missing() block above */
5877                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5878                                 ret = 0;
5879                                 goto out;
5880                         }
5881                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5882                                                         haddr, address,
5883                                                         VM_UFFD_MINOR);
5884                 }
5885         }
5886
5887         /*
5888          * If we are going to COW a private mapping later, we examine the
5889          * pending reservations for this page now. This will ensure that
5890          * any allocations necessary to record that reservation occur outside
5891          * the spinlock.
5892          */
5893         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5894                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5895                         ret = VM_FAULT_OOM;
5896                         goto backout_unlocked;
5897                 }
5898                 /* Just decrements count, does not deallocate */
5899                 vma_end_reservation(h, vma, haddr);
5900         }
5901
5902         ptl = huge_pte_lock(h, mm, ptep);
5903         ret = 0;
5904         /* If pte changed from under us, retry */
5905         if (!pte_same(huge_ptep_get(ptep), old_pte))
5906                 goto backout;
5907
5908         if (anon_rmap)
5909                 hugepage_add_new_anon_rmap(page, vma, haddr);
5910         else
5911                 page_dup_file_rmap(page, true);
5912         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5913                                 && (vma->vm_flags & VM_SHARED)));
5914         /*
5915          * If this pte was previously wr-protected, keep it wr-protected even
5916          * if populated.
5917          */
5918         if (unlikely(pte_marker_uffd_wp(old_pte)))
5919                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5920         set_huge_pte_at(mm, haddr, ptep, new_pte);
5921
5922         hugetlb_count_add(pages_per_huge_page(h), mm);
5923         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5924                 /* Optimization, do the COW without a second fault */
5925                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5926         }
5927
5928         spin_unlock(ptl);
5929
5930         /*
5931          * Only set HPageMigratable in newly allocated pages.  Existing pages
5932          * found in the pagecache may not have HPageMigratableset if they have
5933          * been isolated for migration.
5934          */
5935         if (new_page)
5936                 SetHPageMigratable(page);
5937
5938         unlock_page(page);
5939 out:
5940         hugetlb_vma_unlock_read(vma);
5941         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5942         return ret;
5943
5944 backout:
5945         spin_unlock(ptl);
5946 backout_unlocked:
5947         if (new_page && !new_pagecache_page)
5948                 restore_reserve_on_error(h, vma, haddr, page);
5949
5950         unlock_page(page);
5951         put_page(page);
5952         goto out;
5953 }
5954
5955 #ifdef CONFIG_SMP
5956 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5957 {
5958         unsigned long key[2];
5959         u32 hash;
5960
5961         key[0] = (unsigned long) mapping;
5962         key[1] = idx;
5963
5964         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5965
5966         return hash & (num_fault_mutexes - 1);
5967 }
5968 #else
5969 /*
5970  * For uniprocessor systems we always use a single mutex, so just
5971  * return 0 and avoid the hashing overhead.
5972  */
5973 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5974 {
5975         return 0;
5976 }
5977 #endif
5978
5979 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5980                         unsigned long address, unsigned int flags)
5981 {
5982         pte_t *ptep, entry;
5983         spinlock_t *ptl;
5984         vm_fault_t ret;
5985         u32 hash;
5986         pgoff_t idx;
5987         struct page *page = NULL;
5988         struct page *pagecache_page = NULL;
5989         struct hstate *h = hstate_vma(vma);
5990         struct address_space *mapping;
5991         int need_wait_lock = 0;
5992         unsigned long haddr = address & huge_page_mask(h);
5993
5994         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5995         if (ptep) {
5996                 /*
5997                  * Since we hold no locks, ptep could be stale.  That is
5998                  * OK as we are only making decisions based on content and
5999                  * not actually modifying content here.
6000                  */
6001                 entry = huge_ptep_get(ptep);
6002                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6003                         migration_entry_wait_huge(vma, ptep);
6004                         return 0;
6005                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6006                         return VM_FAULT_HWPOISON_LARGE |
6007                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6008         }
6009
6010         /*
6011          * Serialize hugepage allocation and instantiation, so that we don't
6012          * get spurious allocation failures if two CPUs race to instantiate
6013          * the same page in the page cache.
6014          */
6015         mapping = vma->vm_file->f_mapping;
6016         idx = vma_hugecache_offset(h, vma, haddr);
6017         hash = hugetlb_fault_mutex_hash(mapping, idx);
6018         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6019
6020         /*
6021          * Acquire vma lock before calling huge_pte_alloc and hold
6022          * until finished with ptep.  This prevents huge_pmd_unshare from
6023          * being called elsewhere and making the ptep no longer valid.
6024          *
6025          * ptep could have already be assigned via huge_pte_offset.  That
6026          * is OK, as huge_pte_alloc will return the same value unless
6027          * something has changed.
6028          */
6029         hugetlb_vma_lock_read(vma);
6030         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6031         if (!ptep) {
6032                 hugetlb_vma_unlock_read(vma);
6033                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6034                 return VM_FAULT_OOM;
6035         }
6036
6037         entry = huge_ptep_get(ptep);
6038         /* PTE markers should be handled the same way as none pte */
6039         if (huge_pte_none_mostly(entry))
6040                 /*
6041                  * hugetlb_no_page will drop vma lock and hugetlb fault
6042                  * mutex internally, which make us return immediately.
6043                  */
6044                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6045                                       entry, flags);
6046
6047         ret = 0;
6048
6049         /*
6050          * entry could be a migration/hwpoison entry at this point, so this
6051          * check prevents the kernel from going below assuming that we have
6052          * an active hugepage in pagecache. This goto expects the 2nd page
6053          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6054          * properly handle it.
6055          */
6056         if (!pte_present(entry))
6057                 goto out_mutex;
6058
6059         /*
6060          * If we are going to COW/unshare the mapping later, we examine the
6061          * pending reservations for this page now. This will ensure that any
6062          * allocations necessary to record that reservation occur outside the
6063          * spinlock. Also lookup the pagecache page now as it is used to
6064          * determine if a reservation has been consumed.
6065          */
6066         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6067             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6068                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6069                         ret = VM_FAULT_OOM;
6070                         goto out_mutex;
6071                 }
6072                 /* Just decrements count, does not deallocate */
6073                 vma_end_reservation(h, vma, haddr);
6074
6075                 pagecache_page = find_lock_page(mapping, idx);
6076         }
6077
6078         ptl = huge_pte_lock(h, mm, ptep);
6079
6080         /* Check for a racing update before calling hugetlb_wp() */
6081         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6082                 goto out_ptl;
6083
6084         /* Handle userfault-wp first, before trying to lock more pages */
6085         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6086             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6087                 struct vm_fault vmf = {
6088                         .vma = vma,
6089                         .address = haddr,
6090                         .real_address = address,
6091                         .flags = flags,
6092                 };
6093
6094                 spin_unlock(ptl);
6095                 if (pagecache_page) {
6096                         unlock_page(pagecache_page);
6097                         put_page(pagecache_page);
6098                 }
6099                 hugetlb_vma_unlock_read(vma);
6100                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6101                 return handle_userfault(&vmf, VM_UFFD_WP);
6102         }
6103
6104         /*
6105          * hugetlb_wp() requires page locks of pte_page(entry) and
6106          * pagecache_page, so here we need take the former one
6107          * when page != pagecache_page or !pagecache_page.
6108          */
6109         page = pte_page(entry);
6110         if (page != pagecache_page)
6111                 if (!trylock_page(page)) {
6112                         need_wait_lock = 1;
6113                         goto out_ptl;
6114                 }
6115
6116         get_page(page);
6117
6118         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6119                 if (!huge_pte_write(entry)) {
6120                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6121                                          pagecache_page, ptl);
6122                         goto out_put_page;
6123                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6124                         entry = huge_pte_mkdirty(entry);
6125                 }
6126         }
6127         entry = pte_mkyoung(entry);
6128         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6129                                                 flags & FAULT_FLAG_WRITE))
6130                 update_mmu_cache(vma, haddr, ptep);
6131 out_put_page:
6132         if (page != pagecache_page)
6133                 unlock_page(page);
6134         put_page(page);
6135 out_ptl:
6136         spin_unlock(ptl);
6137
6138         if (pagecache_page) {
6139                 unlock_page(pagecache_page);
6140                 put_page(pagecache_page);
6141         }
6142 out_mutex:
6143         hugetlb_vma_unlock_read(vma);
6144         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6145         /*
6146          * Generally it's safe to hold refcount during waiting page lock. But
6147          * here we just wait to defer the next page fault to avoid busy loop and
6148          * the page is not used after unlocked before returning from the current
6149          * page fault. So we are safe from accessing freed page, even if we wait
6150          * here without taking refcount.
6151          */
6152         if (need_wait_lock)
6153                 wait_on_page_locked(page);
6154         return ret;
6155 }
6156
6157 #ifdef CONFIG_USERFAULTFD
6158 /*
6159  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6160  * modifications for huge pages.
6161  */
6162 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6163                             pte_t *dst_pte,
6164                             struct vm_area_struct *dst_vma,
6165                             unsigned long dst_addr,
6166                             unsigned long src_addr,
6167                             enum mcopy_atomic_mode mode,
6168                             struct page **pagep,
6169                             bool wp_copy)
6170 {
6171         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6172         struct hstate *h = hstate_vma(dst_vma);
6173         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6174         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6175         unsigned long size;
6176         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6177         pte_t _dst_pte;
6178         spinlock_t *ptl;
6179         int ret = -ENOMEM;
6180         struct page *page;
6181         int writable;
6182         bool page_in_pagecache = false;
6183
6184         if (is_continue) {
6185                 ret = -EFAULT;
6186                 page = find_lock_page(mapping, idx);
6187                 if (!page)
6188                         goto out;
6189                 page_in_pagecache = true;
6190         } else if (!*pagep) {
6191                 /* If a page already exists, then it's UFFDIO_COPY for
6192                  * a non-missing case. Return -EEXIST.
6193                  */
6194                 if (vm_shared &&
6195                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6196                         ret = -EEXIST;
6197                         goto out;
6198                 }
6199
6200                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6201                 if (IS_ERR(page)) {
6202                         ret = -ENOMEM;
6203                         goto out;
6204                 }
6205
6206                 ret = copy_huge_page_from_user(page,
6207                                                 (const void __user *) src_addr,
6208                                                 pages_per_huge_page(h), false);
6209
6210                 /* fallback to copy_from_user outside mmap_lock */
6211                 if (unlikely(ret)) {
6212                         ret = -ENOENT;
6213                         /* Free the allocated page which may have
6214                          * consumed a reservation.
6215                          */
6216                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6217                         put_page(page);
6218
6219                         /* Allocate a temporary page to hold the copied
6220                          * contents.
6221                          */
6222                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6223                         if (!page) {
6224                                 ret = -ENOMEM;
6225                                 goto out;
6226                         }
6227                         *pagep = page;
6228                         /* Set the outparam pagep and return to the caller to
6229                          * copy the contents outside the lock. Don't free the
6230                          * page.
6231                          */
6232                         goto out;
6233                 }
6234         } else {
6235                 if (vm_shared &&
6236                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6237                         put_page(*pagep);
6238                         ret = -EEXIST;
6239                         *pagep = NULL;
6240                         goto out;
6241                 }
6242
6243                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6244                 if (IS_ERR(page)) {
6245                         put_page(*pagep);
6246                         ret = -ENOMEM;
6247                         *pagep = NULL;
6248                         goto out;
6249                 }
6250                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6251                                     pages_per_huge_page(h));
6252                 put_page(*pagep);
6253                 *pagep = NULL;
6254         }
6255
6256         /*
6257          * The memory barrier inside __SetPageUptodate makes sure that
6258          * preceding stores to the page contents become visible before
6259          * the set_pte_at() write.
6260          */
6261         __SetPageUptodate(page);
6262
6263         /* Add shared, newly allocated pages to the page cache. */
6264         if (vm_shared && !is_continue) {
6265                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6266                 ret = -EFAULT;
6267                 if (idx >= size)
6268                         goto out_release_nounlock;
6269
6270                 /*
6271                  * Serialization between remove_inode_hugepages() and
6272                  * hugetlb_add_to_page_cache() below happens through the
6273                  * hugetlb_fault_mutex_table that here must be hold by
6274                  * the caller.
6275                  */
6276                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6277                 if (ret)
6278                         goto out_release_nounlock;
6279                 page_in_pagecache = true;
6280         }
6281
6282         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6283
6284         ret = -EIO;
6285         if (PageHWPoison(page))
6286                 goto out_release_unlock;
6287
6288         /*
6289          * We allow to overwrite a pte marker: consider when both MISSING|WP
6290          * registered, we firstly wr-protect a none pte which has no page cache
6291          * page backing it, then access the page.
6292          */
6293         ret = -EEXIST;
6294         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6295                 goto out_release_unlock;
6296
6297         if (page_in_pagecache)
6298                 page_dup_file_rmap(page, true);
6299         else
6300                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6301
6302         /*
6303          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6304          * with wp flag set, don't set pte write bit.
6305          */
6306         if (wp_copy || (is_continue && !vm_shared))
6307                 writable = 0;
6308         else
6309                 writable = dst_vma->vm_flags & VM_WRITE;
6310
6311         _dst_pte = make_huge_pte(dst_vma, page, writable);
6312         /*
6313          * Always mark UFFDIO_COPY page dirty; note that this may not be
6314          * extremely important for hugetlbfs for now since swapping is not
6315          * supported, but we should still be clear in that this page cannot be
6316          * thrown away at will, even if write bit not set.
6317          */
6318         _dst_pte = huge_pte_mkdirty(_dst_pte);
6319         _dst_pte = pte_mkyoung(_dst_pte);
6320
6321         if (wp_copy)
6322                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6323
6324         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6325
6326         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6327
6328         /* No need to invalidate - it was non-present before */
6329         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6330
6331         spin_unlock(ptl);
6332         if (!is_continue)
6333                 SetHPageMigratable(page);
6334         if (vm_shared || is_continue)
6335                 unlock_page(page);
6336         ret = 0;
6337 out:
6338         return ret;
6339 out_release_unlock:
6340         spin_unlock(ptl);
6341         if (vm_shared || is_continue)
6342                 unlock_page(page);
6343 out_release_nounlock:
6344         if (!page_in_pagecache)
6345                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6346         put_page(page);
6347         goto out;
6348 }
6349 #endif /* CONFIG_USERFAULTFD */
6350
6351 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6352                                  int refs, struct page **pages,
6353                                  struct vm_area_struct **vmas)
6354 {
6355         int nr;
6356
6357         for (nr = 0; nr < refs; nr++) {
6358                 if (likely(pages))
6359                         pages[nr] = nth_page(page, nr);
6360                 if (vmas)
6361                         vmas[nr] = vma;
6362         }
6363 }
6364
6365 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6366                                                unsigned int flags, pte_t *pte,
6367                                                bool *unshare)
6368 {
6369         pte_t pteval = huge_ptep_get(pte);
6370
6371         *unshare = false;
6372         if (is_swap_pte(pteval))
6373                 return true;
6374         if (huge_pte_write(pteval))
6375                 return false;
6376         if (flags & FOLL_WRITE)
6377                 return true;
6378         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6379                 *unshare = true;
6380                 return true;
6381         }
6382         return false;
6383 }
6384
6385 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6386                                 unsigned long address, unsigned int flags)
6387 {
6388         struct hstate *h = hstate_vma(vma);
6389         struct mm_struct *mm = vma->vm_mm;
6390         unsigned long haddr = address & huge_page_mask(h);
6391         struct page *page = NULL;
6392         spinlock_t *ptl;
6393         pte_t *pte, entry;
6394
6395         /*
6396          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6397          * follow_hugetlb_page().
6398          */
6399         if (WARN_ON_ONCE(flags & FOLL_PIN))
6400                 return NULL;
6401
6402 retry:
6403         pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6404         if (!pte)
6405                 return NULL;
6406
6407         ptl = huge_pte_lock(h, mm, pte);
6408         entry = huge_ptep_get(pte);
6409         if (pte_present(entry)) {
6410                 page = pte_page(entry) +
6411                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6412                 /*
6413                  * Note that page may be a sub-page, and with vmemmap
6414                  * optimizations the page struct may be read only.
6415                  * try_grab_page() will increase the ref count on the
6416                  * head page, so this will be OK.
6417                  *
6418                  * try_grab_page() should always be able to get the page here,
6419                  * because we hold the ptl lock and have verified pte_present().
6420                  */
6421                 if (try_grab_page(page, flags)) {
6422                         page = NULL;
6423                         goto out;
6424                 }
6425         } else {
6426                 if (is_hugetlb_entry_migration(entry)) {
6427                         spin_unlock(ptl);
6428                         __migration_entry_wait_huge(pte, ptl);
6429                         goto retry;
6430                 }
6431                 /*
6432                  * hwpoisoned entry is treated as no_page_table in
6433                  * follow_page_mask().
6434                  */
6435         }
6436 out:
6437         spin_unlock(ptl);
6438         return page;
6439 }
6440
6441 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6442                          struct page **pages, struct vm_area_struct **vmas,
6443                          unsigned long *position, unsigned long *nr_pages,
6444                          long i, unsigned int flags, int *locked)
6445 {
6446         unsigned long pfn_offset;
6447         unsigned long vaddr = *position;
6448         unsigned long remainder = *nr_pages;
6449         struct hstate *h = hstate_vma(vma);
6450         int err = -EFAULT, refs;
6451
6452         while (vaddr < vma->vm_end && remainder) {
6453                 pte_t *pte;
6454                 spinlock_t *ptl = NULL;
6455                 bool unshare = false;
6456                 int absent;
6457                 struct page *page;
6458
6459                 /*
6460                  * If we have a pending SIGKILL, don't keep faulting pages and
6461                  * potentially allocating memory.
6462                  */
6463                 if (fatal_signal_pending(current)) {
6464                         remainder = 0;
6465                         break;
6466                 }
6467
6468                 /*
6469                  * Some archs (sparc64, sh*) have multiple pte_ts to
6470                  * each hugepage.  We have to make sure we get the
6471                  * first, for the page indexing below to work.
6472                  *
6473                  * Note that page table lock is not held when pte is null.
6474                  */
6475                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6476                                       huge_page_size(h));
6477                 if (pte)
6478                         ptl = huge_pte_lock(h, mm, pte);
6479                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6480
6481                 /*
6482                  * When coredumping, it suits get_dump_page if we just return
6483                  * an error where there's an empty slot with no huge pagecache
6484                  * to back it.  This way, we avoid allocating a hugepage, and
6485                  * the sparse dumpfile avoids allocating disk blocks, but its
6486                  * huge holes still show up with zeroes where they need to be.
6487                  */
6488                 if (absent && (flags & FOLL_DUMP) &&
6489                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6490                         if (pte)
6491                                 spin_unlock(ptl);
6492                         remainder = 0;
6493                         break;
6494                 }
6495
6496                 /*
6497                  * We need call hugetlb_fault for both hugepages under migration
6498                  * (in which case hugetlb_fault waits for the migration,) and
6499                  * hwpoisoned hugepages (in which case we need to prevent the
6500                  * caller from accessing to them.) In order to do this, we use
6501                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6502                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6503                  * both cases, and because we can't follow correct pages
6504                  * directly from any kind of swap entries.
6505                  */
6506                 if (absent ||
6507                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6508                         vm_fault_t ret;
6509                         unsigned int fault_flags = 0;
6510
6511                         if (pte)
6512                                 spin_unlock(ptl);
6513                         if (flags & FOLL_WRITE)
6514                                 fault_flags |= FAULT_FLAG_WRITE;
6515                         else if (unshare)
6516                                 fault_flags |= FAULT_FLAG_UNSHARE;
6517                         if (locked) {
6518                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6519                                         FAULT_FLAG_KILLABLE;
6520                                 if (flags & FOLL_INTERRUPTIBLE)
6521                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6522                         }
6523                         if (flags & FOLL_NOWAIT)
6524                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6525                                         FAULT_FLAG_RETRY_NOWAIT;
6526                         if (flags & FOLL_TRIED) {
6527                                 /*
6528                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6529                                  * FAULT_FLAG_TRIED can co-exist
6530                                  */
6531                                 fault_flags |= FAULT_FLAG_TRIED;
6532                         }
6533                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6534                         if (ret & VM_FAULT_ERROR) {
6535                                 err = vm_fault_to_errno(ret, flags);
6536                                 remainder = 0;
6537                                 break;
6538                         }
6539                         if (ret & VM_FAULT_RETRY) {
6540                                 if (locked &&
6541                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6542                                         *locked = 0;
6543                                 *nr_pages = 0;
6544                                 /*
6545                                  * VM_FAULT_RETRY must not return an
6546                                  * error, it will return zero
6547                                  * instead.
6548                                  *
6549                                  * No need to update "position" as the
6550                                  * caller will not check it after
6551                                  * *nr_pages is set to 0.
6552                                  */
6553                                 return i;
6554                         }
6555                         continue;
6556                 }
6557
6558                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6559                 page = pte_page(huge_ptep_get(pte));
6560
6561                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6562                                !PageAnonExclusive(page), page);
6563
6564                 /*
6565                  * If subpage information not requested, update counters
6566                  * and skip the same_page loop below.
6567                  */
6568                 if (!pages && !vmas && !pfn_offset &&
6569                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6570                     (remainder >= pages_per_huge_page(h))) {
6571                         vaddr += huge_page_size(h);
6572                         remainder -= pages_per_huge_page(h);
6573                         i += pages_per_huge_page(h);
6574                         spin_unlock(ptl);
6575                         continue;
6576                 }
6577
6578                 /* vaddr may not be aligned to PAGE_SIZE */
6579                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6580                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6581
6582                 if (pages || vmas)
6583                         record_subpages_vmas(nth_page(page, pfn_offset),
6584                                              vma, refs,
6585                                              likely(pages) ? pages + i : NULL,
6586                                              vmas ? vmas + i : NULL);
6587
6588                 if (pages) {
6589                         /*
6590                          * try_grab_folio() should always succeed here,
6591                          * because: a) we hold the ptl lock, and b) we've just
6592                          * checked that the huge page is present in the page
6593                          * tables. If the huge page is present, then the tail
6594                          * pages must also be present. The ptl prevents the
6595                          * head page and tail pages from being rearranged in
6596                          * any way. As this is hugetlb, the pages will never
6597                          * be p2pdma or not longterm pinable. So this page
6598                          * must be available at this point, unless the page
6599                          * refcount overflowed:
6600                          */
6601                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6602                                                          flags))) {
6603                                 spin_unlock(ptl);
6604                                 remainder = 0;
6605                                 err = -ENOMEM;
6606                                 break;
6607                         }
6608                 }
6609
6610                 vaddr += (refs << PAGE_SHIFT);
6611                 remainder -= refs;
6612                 i += refs;
6613
6614                 spin_unlock(ptl);
6615         }
6616         *nr_pages = remainder;
6617         /*
6618          * setting position is actually required only if remainder is
6619          * not zero but it's faster not to add a "if (remainder)"
6620          * branch.
6621          */
6622         *position = vaddr;
6623
6624         return i ? i : err;
6625 }
6626
6627 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6628                 unsigned long address, unsigned long end,
6629                 pgprot_t newprot, unsigned long cp_flags)
6630 {
6631         struct mm_struct *mm = vma->vm_mm;
6632         unsigned long start = address;
6633         pte_t *ptep;
6634         pte_t pte;
6635         struct hstate *h = hstate_vma(vma);
6636         unsigned long pages = 0, psize = huge_page_size(h);
6637         bool shared_pmd = false;
6638         struct mmu_notifier_range range;
6639         unsigned long last_addr_mask;
6640         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6641         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6642
6643         /*
6644          * In the case of shared PMDs, the area to flush could be beyond
6645          * start/end.  Set range.start/range.end to cover the maximum possible
6646          * range if PMD sharing is possible.
6647          */
6648         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6649                                 0, vma, mm, start, end);
6650         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6651
6652         BUG_ON(address >= end);
6653         flush_cache_range(vma, range.start, range.end);
6654
6655         mmu_notifier_invalidate_range_start(&range);
6656         hugetlb_vma_lock_write(vma);
6657         i_mmap_lock_write(vma->vm_file->f_mapping);
6658         last_addr_mask = hugetlb_mask_last_page(h);
6659         for (; address < end; address += psize) {
6660                 spinlock_t *ptl;
6661                 ptep = huge_pte_offset(mm, address, psize);
6662                 if (!ptep) {
6663                         if (!uffd_wp) {
6664                                 address |= last_addr_mask;
6665                                 continue;
6666                         }
6667                         /*
6668                          * Userfaultfd wr-protect requires pgtable
6669                          * pre-allocations to install pte markers.
6670                          */
6671                         ptep = huge_pte_alloc(mm, vma, address, psize);
6672                         if (!ptep)
6673                                 break;
6674                 }
6675                 ptl = huge_pte_lock(h, mm, ptep);
6676                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6677                         /*
6678                          * When uffd-wp is enabled on the vma, unshare
6679                          * shouldn't happen at all.  Warn about it if it
6680                          * happened due to some reason.
6681                          */
6682                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6683                         pages++;
6684                         spin_unlock(ptl);
6685                         shared_pmd = true;
6686                         address |= last_addr_mask;
6687                         continue;
6688                 }
6689                 pte = huge_ptep_get(ptep);
6690                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6691                         /* Nothing to do. */
6692                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6693                         swp_entry_t entry = pte_to_swp_entry(pte);
6694                         struct page *page = pfn_swap_entry_to_page(entry);
6695                         pte_t newpte = pte;
6696
6697                         if (is_writable_migration_entry(entry)) {
6698                                 if (PageAnon(page))
6699                                         entry = make_readable_exclusive_migration_entry(
6700                                                                 swp_offset(entry));
6701                                 else
6702                                         entry = make_readable_migration_entry(
6703                                                                 swp_offset(entry));
6704                                 newpte = swp_entry_to_pte(entry);
6705                                 pages++;
6706                         }
6707
6708                         if (uffd_wp)
6709                                 newpte = pte_swp_mkuffd_wp(newpte);
6710                         else if (uffd_wp_resolve)
6711                                 newpte = pte_swp_clear_uffd_wp(newpte);
6712                         if (!pte_same(pte, newpte))
6713                                 set_huge_pte_at(mm, address, ptep, newpte);
6714                 } else if (unlikely(is_pte_marker(pte))) {
6715                         /* No other markers apply for now. */
6716                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6717                         if (uffd_wp_resolve)
6718                                 /* Safe to modify directly (non-present->none). */
6719                                 huge_pte_clear(mm, address, ptep, psize);
6720                 } else if (!huge_pte_none(pte)) {
6721                         pte_t old_pte;
6722                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6723
6724                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6725                         pte = huge_pte_modify(old_pte, newprot);
6726                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6727                         if (uffd_wp)
6728                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6729                         else if (uffd_wp_resolve)
6730                                 pte = huge_pte_clear_uffd_wp(pte);
6731                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6732                         pages++;
6733                 } else {
6734                         /* None pte */
6735                         if (unlikely(uffd_wp))
6736                                 /* Safe to modify directly (none->non-present). */
6737                                 set_huge_pte_at(mm, address, ptep,
6738                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6739                 }
6740                 spin_unlock(ptl);
6741         }
6742         /*
6743          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6744          * may have cleared our pud entry and done put_page on the page table:
6745          * once we release i_mmap_rwsem, another task can do the final put_page
6746          * and that page table be reused and filled with junk.  If we actually
6747          * did unshare a page of pmds, flush the range corresponding to the pud.
6748          */
6749         if (shared_pmd)
6750                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6751         else
6752                 flush_hugetlb_tlb_range(vma, start, end);
6753         /*
6754          * No need to call mmu_notifier_invalidate_range() we are downgrading
6755          * page table protection not changing it to point to a new page.
6756          *
6757          * See Documentation/mm/mmu_notifier.rst
6758          */
6759         i_mmap_unlock_write(vma->vm_file->f_mapping);
6760         hugetlb_vma_unlock_write(vma);
6761         mmu_notifier_invalidate_range_end(&range);
6762
6763         return pages << h->order;
6764 }
6765
6766 /* Return true if reservation was successful, false otherwise.  */
6767 bool hugetlb_reserve_pages(struct inode *inode,
6768                                         long from, long to,
6769                                         struct vm_area_struct *vma,
6770                                         vm_flags_t vm_flags)
6771 {
6772         long chg, add = -1;
6773         struct hstate *h = hstate_inode(inode);
6774         struct hugepage_subpool *spool = subpool_inode(inode);
6775         struct resv_map *resv_map;
6776         struct hugetlb_cgroup *h_cg = NULL;
6777         long gbl_reserve, regions_needed = 0;
6778
6779         /* This should never happen */
6780         if (from > to) {
6781                 VM_WARN(1, "%s called with a negative range\n", __func__);
6782                 return false;
6783         }
6784
6785         /*
6786          * vma specific semaphore used for pmd sharing and fault/truncation
6787          * synchronization
6788          */
6789         hugetlb_vma_lock_alloc(vma);
6790
6791         /*
6792          * Only apply hugepage reservation if asked. At fault time, an
6793          * attempt will be made for VM_NORESERVE to allocate a page
6794          * without using reserves
6795          */
6796         if (vm_flags & VM_NORESERVE)
6797                 return true;
6798
6799         /*
6800          * Shared mappings base their reservation on the number of pages that
6801          * are already allocated on behalf of the file. Private mappings need
6802          * to reserve the full area even if read-only as mprotect() may be
6803          * called to make the mapping read-write. Assume !vma is a shm mapping
6804          */
6805         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6806                 /*
6807                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6808                  * called for inodes for which resv_maps were created (see
6809                  * hugetlbfs_get_inode).
6810                  */
6811                 resv_map = inode_resv_map(inode);
6812
6813                 chg = region_chg(resv_map, from, to, &regions_needed);
6814         } else {
6815                 /* Private mapping. */
6816                 resv_map = resv_map_alloc();
6817                 if (!resv_map)
6818                         goto out_err;
6819
6820                 chg = to - from;
6821
6822                 set_vma_resv_map(vma, resv_map);
6823                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6824         }
6825
6826         if (chg < 0)
6827                 goto out_err;
6828
6829         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6830                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6831                 goto out_err;
6832
6833         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6834                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6835                  * of the resv_map.
6836                  */
6837                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6838         }
6839
6840         /*
6841          * There must be enough pages in the subpool for the mapping. If
6842          * the subpool has a minimum size, there may be some global
6843          * reservations already in place (gbl_reserve).
6844          */
6845         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6846         if (gbl_reserve < 0)
6847                 goto out_uncharge_cgroup;
6848
6849         /*
6850          * Check enough hugepages are available for the reservation.
6851          * Hand the pages back to the subpool if there are not
6852          */
6853         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6854                 goto out_put_pages;
6855
6856         /*
6857          * Account for the reservations made. Shared mappings record regions
6858          * that have reservations as they are shared by multiple VMAs.
6859          * When the last VMA disappears, the region map says how much
6860          * the reservation was and the page cache tells how much of
6861          * the reservation was consumed. Private mappings are per-VMA and
6862          * only the consumed reservations are tracked. When the VMA
6863          * disappears, the original reservation is the VMA size and the
6864          * consumed reservations are stored in the map. Hence, nothing
6865          * else has to be done for private mappings here
6866          */
6867         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6868                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6869
6870                 if (unlikely(add < 0)) {
6871                         hugetlb_acct_memory(h, -gbl_reserve);
6872                         goto out_put_pages;
6873                 } else if (unlikely(chg > add)) {
6874                         /*
6875                          * pages in this range were added to the reserve
6876                          * map between region_chg and region_add.  This
6877                          * indicates a race with alloc_huge_page.  Adjust
6878                          * the subpool and reserve counts modified above
6879                          * based on the difference.
6880                          */
6881                         long rsv_adjust;
6882
6883                         /*
6884                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6885                          * reference to h_cg->css. See comment below for detail.
6886                          */
6887                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6888                                 hstate_index(h),
6889                                 (chg - add) * pages_per_huge_page(h), h_cg);
6890
6891                         rsv_adjust = hugepage_subpool_put_pages(spool,
6892                                                                 chg - add);
6893                         hugetlb_acct_memory(h, -rsv_adjust);
6894                 } else if (h_cg) {
6895                         /*
6896                          * The file_regions will hold their own reference to
6897                          * h_cg->css. So we should release the reference held
6898                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6899                          * done.
6900                          */
6901                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6902                 }
6903         }
6904         return true;
6905
6906 out_put_pages:
6907         /* put back original number of pages, chg */
6908         (void)hugepage_subpool_put_pages(spool, chg);
6909 out_uncharge_cgroup:
6910         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6911                                             chg * pages_per_huge_page(h), h_cg);
6912 out_err:
6913         hugetlb_vma_lock_free(vma);
6914         if (!vma || vma->vm_flags & VM_MAYSHARE)
6915                 /* Only call region_abort if the region_chg succeeded but the
6916                  * region_add failed or didn't run.
6917                  */
6918                 if (chg >= 0 && add < 0)
6919                         region_abort(resv_map, from, to, regions_needed);
6920         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6921                 kref_put(&resv_map->refs, resv_map_release);
6922         return false;
6923 }
6924
6925 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6926                                                                 long freed)
6927 {
6928         struct hstate *h = hstate_inode(inode);
6929         struct resv_map *resv_map = inode_resv_map(inode);
6930         long chg = 0;
6931         struct hugepage_subpool *spool = subpool_inode(inode);
6932         long gbl_reserve;
6933
6934         /*
6935          * Since this routine can be called in the evict inode path for all
6936          * hugetlbfs inodes, resv_map could be NULL.
6937          */
6938         if (resv_map) {
6939                 chg = region_del(resv_map, start, end);
6940                 /*
6941                  * region_del() can fail in the rare case where a region
6942                  * must be split and another region descriptor can not be
6943                  * allocated.  If end == LONG_MAX, it will not fail.
6944                  */
6945                 if (chg < 0)
6946                         return chg;
6947         }
6948
6949         spin_lock(&inode->i_lock);
6950         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6951         spin_unlock(&inode->i_lock);
6952
6953         /*
6954          * If the subpool has a minimum size, the number of global
6955          * reservations to be released may be adjusted.
6956          *
6957          * Note that !resv_map implies freed == 0. So (chg - freed)
6958          * won't go negative.
6959          */
6960         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6961         hugetlb_acct_memory(h, -gbl_reserve);
6962
6963         return 0;
6964 }
6965
6966 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6967 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6968                                 struct vm_area_struct *vma,
6969                                 unsigned long addr, pgoff_t idx)
6970 {
6971         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6972                                 svma->vm_start;
6973         unsigned long sbase = saddr & PUD_MASK;
6974         unsigned long s_end = sbase + PUD_SIZE;
6975
6976         /* Allow segments to share if only one is marked locked */
6977         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6978         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6979
6980         /*
6981          * match the virtual addresses, permission and the alignment of the
6982          * page table page.
6983          *
6984          * Also, vma_lock (vm_private_data) is required for sharing.
6985          */
6986         if (pmd_index(addr) != pmd_index(saddr) ||
6987             vm_flags != svm_flags ||
6988             !range_in_vma(svma, sbase, s_end) ||
6989             !svma->vm_private_data)
6990                 return 0;
6991
6992         return saddr;
6993 }
6994
6995 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6996 {
6997         unsigned long start = addr & PUD_MASK;
6998         unsigned long end = start + PUD_SIZE;
6999
7000 #ifdef CONFIG_USERFAULTFD
7001         if (uffd_disable_huge_pmd_share(vma))
7002                 return false;
7003 #endif
7004         /*
7005          * check on proper vm_flags and page table alignment
7006          */
7007         if (!(vma->vm_flags & VM_MAYSHARE))
7008                 return false;
7009         if (!vma->vm_private_data)      /* vma lock required for sharing */
7010                 return false;
7011         if (!range_in_vma(vma, start, end))
7012                 return false;
7013         return true;
7014 }
7015
7016 /*
7017  * Determine if start,end range within vma could be mapped by shared pmd.
7018  * If yes, adjust start and end to cover range associated with possible
7019  * shared pmd mappings.
7020  */
7021 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7022                                 unsigned long *start, unsigned long *end)
7023 {
7024         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7025                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7026
7027         /*
7028          * vma needs to span at least one aligned PUD size, and the range
7029          * must be at least partially within in.
7030          */
7031         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7032                 (*end <= v_start) || (*start >= v_end))
7033                 return;
7034
7035         /* Extend the range to be PUD aligned for a worst case scenario */
7036         if (*start > v_start)
7037                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7038
7039         if (*end < v_end)
7040                 *end = ALIGN(*end, PUD_SIZE);
7041 }
7042
7043 /*
7044  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7045  * and returns the corresponding pte. While this is not necessary for the
7046  * !shared pmd case because we can allocate the pmd later as well, it makes the
7047  * code much cleaner. pmd allocation is essential for the shared case because
7048  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7049  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7050  * bad pmd for sharing.
7051  */
7052 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7053                       unsigned long addr, pud_t *pud)
7054 {
7055         struct address_space *mapping = vma->vm_file->f_mapping;
7056         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7057                         vma->vm_pgoff;
7058         struct vm_area_struct *svma;
7059         unsigned long saddr;
7060         pte_t *spte = NULL;
7061         pte_t *pte;
7062         spinlock_t *ptl;
7063
7064         i_mmap_lock_read(mapping);
7065         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7066                 if (svma == vma)
7067                         continue;
7068
7069                 saddr = page_table_shareable(svma, vma, addr, idx);
7070                 if (saddr) {
7071                         spte = huge_pte_offset(svma->vm_mm, saddr,
7072                                                vma_mmu_pagesize(svma));
7073                         if (spte) {
7074                                 get_page(virt_to_page(spte));
7075                                 break;
7076                         }
7077                 }
7078         }
7079
7080         if (!spte)
7081                 goto out;
7082
7083         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7084         if (pud_none(*pud)) {
7085                 pud_populate(mm, pud,
7086                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7087                 mm_inc_nr_pmds(mm);
7088         } else {
7089                 put_page(virt_to_page(spte));
7090         }
7091         spin_unlock(ptl);
7092 out:
7093         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7094         i_mmap_unlock_read(mapping);
7095         return pte;
7096 }
7097
7098 /*
7099  * unmap huge page backed by shared pte.
7100  *
7101  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7102  * indicated by page_count > 1, unmap is achieved by clearing pud and
7103  * decrementing the ref count. If count == 1, the pte page is not shared.
7104  *
7105  * Called with page table lock held.
7106  *
7107  * returns: 1 successfully unmapped a shared pte page
7108  *          0 the underlying pte page is not shared, or it is the last user
7109  */
7110 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7111                                         unsigned long addr, pte_t *ptep)
7112 {
7113         pgd_t *pgd = pgd_offset(mm, addr);
7114         p4d_t *p4d = p4d_offset(pgd, addr);
7115         pud_t *pud = pud_offset(p4d, addr);
7116
7117         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7118         hugetlb_vma_assert_locked(vma);
7119         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7120         if (page_count(virt_to_page(ptep)) == 1)
7121                 return 0;
7122
7123         pud_clear(pud);
7124         put_page(virt_to_page(ptep));
7125         mm_dec_nr_pmds(mm);
7126         return 1;
7127 }
7128
7129 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7130
7131 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7132                       unsigned long addr, pud_t *pud)
7133 {
7134         return NULL;
7135 }
7136
7137 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7138                                 unsigned long addr, pte_t *ptep)
7139 {
7140         return 0;
7141 }
7142
7143 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7144                                 unsigned long *start, unsigned long *end)
7145 {
7146 }
7147
7148 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7149 {
7150         return false;
7151 }
7152 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7153
7154 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7155 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7156                         unsigned long addr, unsigned long sz)
7157 {
7158         pgd_t *pgd;
7159         p4d_t *p4d;
7160         pud_t *pud;
7161         pte_t *pte = NULL;
7162
7163         pgd = pgd_offset(mm, addr);
7164         p4d = p4d_alloc(mm, pgd, addr);
7165         if (!p4d)
7166                 return NULL;
7167         pud = pud_alloc(mm, p4d, addr);
7168         if (pud) {
7169                 if (sz == PUD_SIZE) {
7170                         pte = (pte_t *)pud;
7171                 } else {
7172                         BUG_ON(sz != PMD_SIZE);
7173                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7174                                 pte = huge_pmd_share(mm, vma, addr, pud);
7175                         else
7176                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7177                 }
7178         }
7179         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7180
7181         return pte;
7182 }
7183
7184 /*
7185  * huge_pte_offset() - Walk the page table to resolve the hugepage
7186  * entry at address @addr
7187  *
7188  * Return: Pointer to page table entry (PUD or PMD) for
7189  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7190  * size @sz doesn't match the hugepage size at this level of the page
7191  * table.
7192  */
7193 pte_t *huge_pte_offset(struct mm_struct *mm,
7194                        unsigned long addr, unsigned long sz)
7195 {
7196         pgd_t *pgd;
7197         p4d_t *p4d;
7198         pud_t *pud;
7199         pmd_t *pmd;
7200
7201         pgd = pgd_offset(mm, addr);
7202         if (!pgd_present(*pgd))
7203                 return NULL;
7204         p4d = p4d_offset(pgd, addr);
7205         if (!p4d_present(*p4d))
7206                 return NULL;
7207
7208         pud = pud_offset(p4d, addr);
7209         if (sz == PUD_SIZE)
7210                 /* must be pud huge, non-present or none */
7211                 return (pte_t *)pud;
7212         if (!pud_present(*pud))
7213                 return NULL;
7214         /* must have a valid entry and size to go further */
7215
7216         pmd = pmd_offset(pud, addr);
7217         /* must be pmd huge, non-present or none */
7218         return (pte_t *)pmd;
7219 }
7220
7221 /*
7222  * Return a mask that can be used to update an address to the last huge
7223  * page in a page table page mapping size.  Used to skip non-present
7224  * page table entries when linearly scanning address ranges.  Architectures
7225  * with unique huge page to page table relationships can define their own
7226  * version of this routine.
7227  */
7228 unsigned long hugetlb_mask_last_page(struct hstate *h)
7229 {
7230         unsigned long hp_size = huge_page_size(h);
7231
7232         if (hp_size == PUD_SIZE)
7233                 return P4D_SIZE - PUD_SIZE;
7234         else if (hp_size == PMD_SIZE)
7235                 return PUD_SIZE - PMD_SIZE;
7236         else
7237                 return 0UL;
7238 }
7239
7240 #else
7241
7242 /* See description above.  Architectures can provide their own version. */
7243 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7244 {
7245 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7246         if (huge_page_size(h) == PMD_SIZE)
7247                 return PUD_SIZE - PMD_SIZE;
7248 #endif
7249         return 0UL;
7250 }
7251
7252 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7253
7254 /*
7255  * These functions are overwritable if your architecture needs its own
7256  * behavior.
7257  */
7258 int isolate_hugetlb(struct page *page, struct list_head *list)
7259 {
7260         int ret = 0;
7261
7262         spin_lock_irq(&hugetlb_lock);
7263         if (!PageHeadHuge(page) ||
7264             !HPageMigratable(page) ||
7265             !get_page_unless_zero(page)) {
7266                 ret = -EBUSY;
7267                 goto unlock;
7268         }
7269         ClearHPageMigratable(page);
7270         list_move_tail(&page->lru, list);
7271 unlock:
7272         spin_unlock_irq(&hugetlb_lock);
7273         return ret;
7274 }
7275
7276 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7277 {
7278         int ret = 0;
7279
7280         *hugetlb = false;
7281         spin_lock_irq(&hugetlb_lock);
7282         if (PageHeadHuge(page)) {
7283                 *hugetlb = true;
7284                 if (HPageFreed(page))
7285                         ret = 0;
7286                 else if (HPageMigratable(page) || unpoison)
7287                         ret = get_page_unless_zero(page);
7288                 else
7289                         ret = -EBUSY;
7290         }
7291         spin_unlock_irq(&hugetlb_lock);
7292         return ret;
7293 }
7294
7295 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7296                                 bool *migratable_cleared)
7297 {
7298         int ret;
7299
7300         spin_lock_irq(&hugetlb_lock);
7301         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7302         spin_unlock_irq(&hugetlb_lock);
7303         return ret;
7304 }
7305
7306 void putback_active_hugepage(struct page *page)
7307 {
7308         spin_lock_irq(&hugetlb_lock);
7309         SetHPageMigratable(page);
7310         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7311         spin_unlock_irq(&hugetlb_lock);
7312         put_page(page);
7313 }
7314
7315 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7316 {
7317         struct hstate *h = folio_hstate(old_folio);
7318
7319         hugetlb_cgroup_migrate(old_folio, new_folio);
7320         set_page_owner_migrate_reason(&new_folio->page, reason);
7321
7322         /*
7323          * transfer temporary state of the new hugetlb folio. This is
7324          * reverse to other transitions because the newpage is going to
7325          * be final while the old one will be freed so it takes over
7326          * the temporary status.
7327          *
7328          * Also note that we have to transfer the per-node surplus state
7329          * here as well otherwise the global surplus count will not match
7330          * the per-node's.
7331          */
7332         if (folio_test_hugetlb_temporary(new_folio)) {
7333                 int old_nid = folio_nid(old_folio);
7334                 int new_nid = folio_nid(new_folio);
7335
7336                 folio_set_hugetlb_temporary(old_folio);
7337                 folio_clear_hugetlb_temporary(new_folio);
7338
7339
7340                 /*
7341                  * There is no need to transfer the per-node surplus state
7342                  * when we do not cross the node.
7343                  */
7344                 if (new_nid == old_nid)
7345                         return;
7346                 spin_lock_irq(&hugetlb_lock);
7347                 if (h->surplus_huge_pages_node[old_nid]) {
7348                         h->surplus_huge_pages_node[old_nid]--;
7349                         h->surplus_huge_pages_node[new_nid]++;
7350                 }
7351                 spin_unlock_irq(&hugetlb_lock);
7352         }
7353 }
7354
7355 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7356                                    unsigned long start,
7357                                    unsigned long end)
7358 {
7359         struct hstate *h = hstate_vma(vma);
7360         unsigned long sz = huge_page_size(h);
7361         struct mm_struct *mm = vma->vm_mm;
7362         struct mmu_notifier_range range;
7363         unsigned long address;
7364         spinlock_t *ptl;
7365         pte_t *ptep;
7366
7367         if (!(vma->vm_flags & VM_MAYSHARE))
7368                 return;
7369
7370         if (start >= end)
7371                 return;
7372
7373         flush_cache_range(vma, start, end);
7374         /*
7375          * No need to call adjust_range_if_pmd_sharing_possible(), because
7376          * we have already done the PUD_SIZE alignment.
7377          */
7378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7379                                 start, end);
7380         mmu_notifier_invalidate_range_start(&range);
7381         hugetlb_vma_lock_write(vma);
7382         i_mmap_lock_write(vma->vm_file->f_mapping);
7383         for (address = start; address < end; address += PUD_SIZE) {
7384                 ptep = huge_pte_offset(mm, address, sz);
7385                 if (!ptep)
7386                         continue;
7387                 ptl = huge_pte_lock(h, mm, ptep);
7388                 huge_pmd_unshare(mm, vma, address, ptep);
7389                 spin_unlock(ptl);
7390         }
7391         flush_hugetlb_tlb_range(vma, start, end);
7392         i_mmap_unlock_write(vma->vm_file->f_mapping);
7393         hugetlb_vma_unlock_write(vma);
7394         /*
7395          * No need to call mmu_notifier_invalidate_range(), see
7396          * Documentation/mm/mmu_notifier.rst.
7397          */
7398         mmu_notifier_invalidate_range_end(&range);
7399 }
7400
7401 /*
7402  * This function will unconditionally remove all the shared pmd pgtable entries
7403  * within the specific vma for a hugetlbfs memory range.
7404  */
7405 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7406 {
7407         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7408                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7409 }
7410
7411 #ifdef CONFIG_CMA
7412 static bool cma_reserve_called __initdata;
7413
7414 static int __init cmdline_parse_hugetlb_cma(char *p)
7415 {
7416         int nid, count = 0;
7417         unsigned long tmp;
7418         char *s = p;
7419
7420         while (*s) {
7421                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7422                         break;
7423
7424                 if (s[count] == ':') {
7425                         if (tmp >= MAX_NUMNODES)
7426                                 break;
7427                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7428
7429                         s += count + 1;
7430                         tmp = memparse(s, &s);
7431                         hugetlb_cma_size_in_node[nid] = tmp;
7432                         hugetlb_cma_size += tmp;
7433
7434                         /*
7435                          * Skip the separator if have one, otherwise
7436                          * break the parsing.
7437                          */
7438                         if (*s == ',')
7439                                 s++;
7440                         else
7441                                 break;
7442                 } else {
7443                         hugetlb_cma_size = memparse(p, &p);
7444                         break;
7445                 }
7446         }
7447
7448         return 0;
7449 }
7450
7451 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7452
7453 void __init hugetlb_cma_reserve(int order)
7454 {
7455         unsigned long size, reserved, per_node;
7456         bool node_specific_cma_alloc = false;
7457         int nid;
7458
7459         cma_reserve_called = true;
7460
7461         if (!hugetlb_cma_size)
7462                 return;
7463
7464         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7465                 if (hugetlb_cma_size_in_node[nid] == 0)
7466                         continue;
7467
7468                 if (!node_online(nid)) {
7469                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7470                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7471                         hugetlb_cma_size_in_node[nid] = 0;
7472                         continue;
7473                 }
7474
7475                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7476                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7477                                 nid, (PAGE_SIZE << order) / SZ_1M);
7478                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7479                         hugetlb_cma_size_in_node[nid] = 0;
7480                 } else {
7481                         node_specific_cma_alloc = true;
7482                 }
7483         }
7484
7485         /* Validate the CMA size again in case some invalid nodes specified. */
7486         if (!hugetlb_cma_size)
7487                 return;
7488
7489         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7490                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7491                         (PAGE_SIZE << order) / SZ_1M);
7492                 hugetlb_cma_size = 0;
7493                 return;
7494         }
7495
7496         if (!node_specific_cma_alloc) {
7497                 /*
7498                  * If 3 GB area is requested on a machine with 4 numa nodes,
7499                  * let's allocate 1 GB on first three nodes and ignore the last one.
7500                  */
7501                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7502                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7503                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7504         }
7505
7506         reserved = 0;
7507         for_each_online_node(nid) {
7508                 int res;
7509                 char name[CMA_MAX_NAME];
7510
7511                 if (node_specific_cma_alloc) {
7512                         if (hugetlb_cma_size_in_node[nid] == 0)
7513                                 continue;
7514
7515                         size = hugetlb_cma_size_in_node[nid];
7516                 } else {
7517                         size = min(per_node, hugetlb_cma_size - reserved);
7518                 }
7519
7520                 size = round_up(size, PAGE_SIZE << order);
7521
7522                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7523                 /*
7524                  * Note that 'order per bit' is based on smallest size that
7525                  * may be returned to CMA allocator in the case of
7526                  * huge page demotion.
7527                  */
7528                 res = cma_declare_contiguous_nid(0, size, 0,
7529                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7530                                                  0, false, name,
7531                                                  &hugetlb_cma[nid], nid);
7532                 if (res) {
7533                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7534                                 res, nid);
7535                         continue;
7536                 }
7537
7538                 reserved += size;
7539                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7540                         size / SZ_1M, nid);
7541
7542                 if (reserved >= hugetlb_cma_size)
7543                         break;
7544         }
7545
7546         if (!reserved)
7547                 /*
7548                  * hugetlb_cma_size is used to determine if allocations from
7549                  * cma are possible.  Set to zero if no cma regions are set up.
7550                  */
7551                 hugetlb_cma_size = 0;
7552 }
7553
7554 static void __init hugetlb_cma_check(void)
7555 {
7556         if (!hugetlb_cma_size || cma_reserve_called)
7557                 return;
7558
7559         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7560 }
7561
7562 #endif /* CONFIG_CMA */