1 // SPDX-License-Identifier: GPL-2.0
3 * Common Block IO controller cgroup interface
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
57 bool blkcg_debug_stats = false;
59 #define BLKG_DESTROY_BATCH_SIZE 64
62 * Lockless lists for tracking IO stats update
64 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
65 * There are multiple blkg's (one for each block device) attached to each
66 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
67 * but it doesn't know which blkg has the updated stats. If there are many
68 * block devices in a system, the cost of iterating all the blkg's to flush
69 * out the IO stats can be high. To reduce such overhead, a set of percpu
70 * lockless lists (lhead) per blkcg are used to track the set of recently
71 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
72 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
73 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
74 * References to blkg are gotten and then put back in the process to
75 * protect against blkg removal.
77 * Return: 0 if successful or -ENOMEM if allocation fails.
79 static int init_blkcg_llists(struct blkcg *blkcg)
83 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
87 for_each_possible_cpu(cpu)
88 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 * blkcg_css - find the current css
95 * Find the css associated with either the kthread or the current task.
96 * This may return a dying css, so it is up to the caller to use tryget logic
97 * to confirm it is alive and well.
99 static struct cgroup_subsys_state *blkcg_css(void)
101 struct cgroup_subsys_state *css;
103 css = kthread_blkcg();
106 return task_css(current, io_cgrp_id);
109 static bool blkcg_policy_enabled(struct request_queue *q,
110 const struct blkcg_policy *pol)
112 return pol && test_bit(pol->plid, q->blkcg_pols);
115 static void blkg_free_workfn(struct work_struct *work)
117 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 struct request_queue *q = blkg->q;
123 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
124 * in order to make sure pd_free_fn() is called in order, the deletion
125 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
126 * blkcg_mutex is used to synchronize blkg_free_workfn() and
127 * blkcg_deactivate_policy().
129 mutex_lock(&q->blkcg_mutex);
130 for (i = 0; i < BLKCG_MAX_POLS; i++)
132 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
134 blkg_put(blkg->parent);
135 list_del_init(&blkg->q_node);
136 mutex_unlock(&q->blkcg_mutex);
139 free_percpu(blkg->iostat_cpu);
140 percpu_ref_exit(&blkg->refcnt);
145 * blkg_free - free a blkg
146 * @blkg: blkg to free
148 * Free @blkg which may be partially allocated.
150 static void blkg_free(struct blkcg_gq *blkg)
156 * Both ->pd_free_fn() and request queue's release handler may
157 * sleep, so free us by scheduling one work func
159 INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 schedule_work(&blkg->free_work);
163 static void __blkg_release(struct rcu_head *rcu)
165 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
167 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
168 WARN_ON(!bio_list_empty(&blkg->async_bios));
171 /* release the blkcg and parent blkg refs this blkg has been holding */
172 css_put(&blkg->blkcg->css);
177 * A group is RCU protected, but having an rcu lock does not mean that one
178 * can access all the fields of blkg and assume these are valid. For
179 * example, don't try to follow throtl_data and request queue links.
181 * Having a reference to blkg under an rcu allows accesses to only values
182 * local to groups like group stats and group rate limits.
184 static void blkg_release(struct percpu_ref *ref)
186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
188 call_rcu(&blkg->rcu_head, __blkg_release);
191 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
192 static struct workqueue_struct *blkcg_punt_bio_wq;
194 static void blkg_async_bio_workfn(struct work_struct *work)
196 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
198 struct bio_list bios = BIO_EMPTY_LIST;
200 struct blk_plug plug;
201 bool need_plug = false;
203 /* as long as there are pending bios, @blkg can't go away */
204 spin_lock(&blkg->async_bio_lock);
205 bio_list_merge(&bios, &blkg->async_bios);
206 bio_list_init(&blkg->async_bios);
207 spin_unlock(&blkg->async_bio_lock);
209 /* start plug only when bio_list contains at least 2 bios */
210 if (bios.head && bios.head->bi_next) {
212 blk_start_plug(&plug);
214 while ((bio = bio_list_pop(&bios)))
217 blk_finish_plug(&plug);
221 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
222 * lead to priority inversions as the kthread can be trapped waiting for that
223 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
224 * a dedicated per-blkcg work item to avoid such priority inversions.
226 void blkcg_punt_bio_submit(struct bio *bio)
228 struct blkcg_gq *blkg = bio->bi_blkg;
231 spin_lock(&blkg->async_bio_lock);
232 bio_list_add(&blkg->async_bios, bio);
233 spin_unlock(&blkg->async_bio_lock);
234 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
236 /* never bounce for the root cgroup */
240 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
242 static int __init blkcg_punt_bio_init(void)
244 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
245 WQ_MEM_RECLAIM | WQ_FREEZABLE |
246 WQ_UNBOUND | WQ_SYSFS, 0);
247 if (!blkcg_punt_bio_wq)
251 subsys_initcall(blkcg_punt_bio_init);
252 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
255 * bio_blkcg_css - return the blkcg CSS associated with a bio
258 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
259 * associated. Callers are expected to either handle %NULL or know association
260 * has been done prior to calling this.
262 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
264 if (!bio || !bio->bi_blkg)
266 return &bio->bi_blkg->blkcg->css;
268 EXPORT_SYMBOL_GPL(bio_blkcg_css);
271 * blkcg_parent - get the parent of a blkcg
272 * @blkcg: blkcg of interest
274 * Return the parent blkcg of @blkcg. Can be called anytime.
276 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
278 return css_to_blkcg(blkcg->css.parent);
282 * blkg_alloc - allocate a blkg
283 * @blkcg: block cgroup the new blkg is associated with
284 * @disk: gendisk the new blkg is associated with
285 * @gfp_mask: allocation mask to use
287 * Allocate a new blkg assocating @blkcg and @q.
289 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
292 struct blkcg_gq *blkg;
295 /* alloc and init base part */
296 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
299 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
301 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
302 if (!blkg->iostat_cpu)
303 goto out_exit_refcnt;
304 if (!blk_get_queue(disk->queue))
305 goto out_free_iostat;
307 blkg->q = disk->queue;
308 INIT_LIST_HEAD(&blkg->q_node);
310 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
311 spin_lock_init(&blkg->async_bio_lock);
312 bio_list_init(&blkg->async_bios);
313 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
316 u64_stats_init(&blkg->iostat.sync);
317 for_each_possible_cpu(cpu) {
318 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
319 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
322 for (i = 0; i < BLKCG_MAX_POLS; i++) {
323 struct blkcg_policy *pol = blkcg_policy[i];
324 struct blkg_policy_data *pd;
326 if (!blkcg_policy_enabled(disk->queue, pol))
329 /* alloc per-policy data and attach it to blkg */
330 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
344 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
345 blk_put_queue(disk->queue);
347 free_percpu(blkg->iostat_cpu);
349 percpu_ref_exit(&blkg->refcnt);
356 * If @new_blkg is %NULL, this function tries to allocate a new one as
357 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
359 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
360 struct blkcg_gq *new_blkg)
362 struct blkcg_gq *blkg;
365 lockdep_assert_held(&disk->queue->queue_lock);
367 /* request_queue is dying, do not create/recreate a blkg */
368 if (blk_queue_dying(disk->queue)) {
373 /* blkg holds a reference to blkcg */
374 if (!css_tryget_online(&blkcg->css)) {
381 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
382 if (unlikely(!new_blkg)) {
390 if (blkcg_parent(blkcg)) {
391 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
392 if (WARN_ON_ONCE(!blkg->parent)) {
396 blkg_get(blkg->parent);
399 /* invoke per-policy init */
400 for (i = 0; i < BLKCG_MAX_POLS; i++) {
401 struct blkcg_policy *pol = blkcg_policy[i];
403 if (blkg->pd[i] && pol->pd_init_fn)
404 pol->pd_init_fn(blkg->pd[i]);
408 spin_lock(&blkcg->lock);
409 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
411 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
412 list_add(&blkg->q_node, &disk->queue->blkg_list);
414 for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 struct blkcg_policy *pol = blkcg_policy[i];
418 if (pol->pd_online_fn)
419 pol->pd_online_fn(blkg->pd[i]);
420 blkg->pd[i]->online = true;
425 spin_unlock(&blkcg->lock);
430 /* @blkg failed fully initialized, use the usual release path */
435 css_put(&blkcg->css);
443 * blkg_lookup_create - lookup blkg, try to create one if not there
444 * @blkcg: blkcg of interest
445 * @disk: gendisk of interest
447 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
448 * create one. blkg creation is performed recursively from blkcg_root such
449 * that all non-root blkg's have access to the parent blkg. This function
450 * should be called under RCU read lock and takes @disk->queue->queue_lock.
452 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
455 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
456 struct gendisk *disk)
458 struct request_queue *q = disk->queue;
459 struct blkcg_gq *blkg;
462 WARN_ON_ONCE(!rcu_read_lock_held());
464 blkg = blkg_lookup(blkcg, q);
468 spin_lock_irqsave(&q->queue_lock, flags);
469 blkg = blkg_lookup(blkcg, q);
471 if (blkcg != &blkcg_root &&
472 blkg != rcu_dereference(blkcg->blkg_hint))
473 rcu_assign_pointer(blkcg->blkg_hint, blkg);
478 * Create blkgs walking down from blkcg_root to @blkcg, so that all
479 * non-root blkgs have access to their parents. Returns the closest
480 * blkg to the intended blkg should blkg_create() fail.
483 struct blkcg *pos = blkcg;
484 struct blkcg *parent = blkcg_parent(blkcg);
485 struct blkcg_gq *ret_blkg = q->root_blkg;
488 blkg = blkg_lookup(parent, q);
490 /* remember closest blkg */
495 parent = blkcg_parent(parent);
498 blkg = blkg_create(pos, disk, NULL);
508 spin_unlock_irqrestore(&q->queue_lock, flags);
512 static void blkg_destroy(struct blkcg_gq *blkg)
514 struct blkcg *blkcg = blkg->blkcg;
517 lockdep_assert_held(&blkg->q->queue_lock);
518 lockdep_assert_held(&blkcg->lock);
521 * blkg stays on the queue list until blkg_free_workfn(), see details in
522 * blkg_free_workfn(), hence this function can be called from
523 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
524 * blkg_free_workfn().
526 if (hlist_unhashed(&blkg->blkcg_node))
529 for (i = 0; i < BLKCG_MAX_POLS; i++) {
530 struct blkcg_policy *pol = blkcg_policy[i];
532 if (blkg->pd[i] && blkg->pd[i]->online) {
533 blkg->pd[i]->online = false;
534 if (pol->pd_offline_fn)
535 pol->pd_offline_fn(blkg->pd[i]);
539 blkg->online = false;
541 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
542 hlist_del_init_rcu(&blkg->blkcg_node);
545 * Both setting lookup hint to and clearing it from @blkg are done
546 * under queue_lock. If it's not pointing to @blkg now, it never
547 * will. Hint assignment itself can race safely.
549 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
550 rcu_assign_pointer(blkcg->blkg_hint, NULL);
553 * Put the reference taken at the time of creation so that when all
554 * queues are gone, group can be destroyed.
556 percpu_ref_kill(&blkg->refcnt);
559 static void blkg_destroy_all(struct gendisk *disk)
561 struct request_queue *q = disk->queue;
562 struct blkcg_gq *blkg, *n;
563 int count = BLKG_DESTROY_BATCH_SIZE;
566 spin_lock_irq(&q->queue_lock);
567 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
568 struct blkcg *blkcg = blkg->blkcg;
570 if (hlist_unhashed(&blkg->blkcg_node))
573 spin_lock(&blkcg->lock);
575 spin_unlock(&blkcg->lock);
578 * in order to avoid holding the spin lock for too long, release
579 * it when a batch of blkgs are destroyed.
582 count = BLKG_DESTROY_BATCH_SIZE;
583 spin_unlock_irq(&q->queue_lock);
590 spin_unlock_irq(&q->queue_lock);
593 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
594 struct cftype *cftype, u64 val)
596 struct blkcg *blkcg = css_to_blkcg(css);
597 struct blkcg_gq *blkg;
600 mutex_lock(&blkcg_pol_mutex);
601 spin_lock_irq(&blkcg->lock);
604 * Note that stat reset is racy - it doesn't synchronize against
605 * stat updates. This is a debug feature which shouldn't exist
606 * anyway. If you get hit by a race, retry.
608 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
609 for_each_possible_cpu(cpu) {
610 struct blkg_iostat_set *bis =
611 per_cpu_ptr(blkg->iostat_cpu, cpu);
612 memset(bis, 0, sizeof(*bis));
614 /* Re-initialize the cleared blkg_iostat_set */
615 u64_stats_init(&bis->sync);
618 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
619 u64_stats_init(&blkg->iostat.sync);
621 for (i = 0; i < BLKCG_MAX_POLS; i++) {
622 struct blkcg_policy *pol = blkcg_policy[i];
624 if (blkg->pd[i] && pol->pd_reset_stats_fn)
625 pol->pd_reset_stats_fn(blkg->pd[i]);
629 spin_unlock_irq(&blkcg->lock);
630 mutex_unlock(&blkcg_pol_mutex);
634 const char *blkg_dev_name(struct blkcg_gq *blkg)
638 return bdi_dev_name(blkg->q->disk->bdi);
642 * blkcg_print_blkgs - helper for printing per-blkg data
643 * @sf: seq_file to print to
644 * @blkcg: blkcg of interest
645 * @prfill: fill function to print out a blkg
646 * @pol: policy in question
647 * @data: data to be passed to @prfill
648 * @show_total: to print out sum of prfill return values or not
650 * This function invokes @prfill on each blkg of @blkcg if pd for the
651 * policy specified by @pol exists. @prfill is invoked with @sf, the
652 * policy data and @data and the matching queue lock held. If @show_total
653 * is %true, the sum of the return values from @prfill is printed with
654 * "Total" label at the end.
656 * This is to be used to construct print functions for
657 * cftype->read_seq_string method.
659 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
660 u64 (*prfill)(struct seq_file *,
661 struct blkg_policy_data *, int),
662 const struct blkcg_policy *pol, int data,
665 struct blkcg_gq *blkg;
669 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
670 spin_lock_irq(&blkg->q->queue_lock);
671 if (blkcg_policy_enabled(blkg->q, pol))
672 total += prfill(sf, blkg->pd[pol->plid], data);
673 spin_unlock_irq(&blkg->q->queue_lock);
678 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
680 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
683 * __blkg_prfill_u64 - prfill helper for a single u64 value
684 * @sf: seq_file to print to
685 * @pd: policy private data of interest
688 * Print @v to @sf for the device associated with @pd.
690 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
692 const char *dname = blkg_dev_name(pd->blkg);
697 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
700 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
703 * blkg_conf_init - initialize a blkg_conf_ctx
704 * @ctx: blkg_conf_ctx to initialize
705 * @input: input string
707 * Initialize @ctx which can be used to parse blkg config input string @input.
708 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
709 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
711 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
713 *ctx = (struct blkg_conf_ctx){ .input = input };
715 EXPORT_SYMBOL_GPL(blkg_conf_init);
718 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
719 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
721 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
722 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
723 * set to point past the device node prefix.
725 * This function may be called multiple times on @ctx and the extra calls become
726 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
727 * explicitly if bdev access is needed without resolving the blkcg / policy part
728 * of @ctx->input. Returns -errno on error.
730 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
732 char *input = ctx->input;
733 unsigned int major, minor;
734 struct block_device *bdev;
740 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
744 if (!isspace(*input))
746 input = skip_spaces(input);
748 bdev = blkdev_get_no_open(MKDEV(major, minor));
751 if (bdev_is_partition(bdev)) {
752 blkdev_put_no_open(bdev);
756 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
757 if (!disk_live(bdev->bd_disk)) {
758 blkdev_put_no_open(bdev);
759 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
769 * blkg_conf_prep - parse and prepare for per-blkg config update
770 * @blkcg: target block cgroup
771 * @pol: target policy
772 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
774 * Parse per-blkg config update from @ctx->input and initialize @ctx
775 * accordingly. On success, @ctx->body points to the part of @ctx->input
776 * following MAJ:MIN, @ctx->bdev points to the target block device and
777 * @ctx->blkg to the blkg being configured.
779 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
780 * function returns with queue lock held and must be followed by
783 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
784 struct blkg_conf_ctx *ctx)
785 __acquires(&bdev->bd_queue->queue_lock)
787 struct gendisk *disk;
788 struct request_queue *q;
789 struct blkcg_gq *blkg;
792 ret = blkg_conf_open_bdev(ctx);
796 disk = ctx->bdev->bd_disk;
800 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
801 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
803 ret = blk_queue_enter(q, 0);
807 spin_lock_irq(&q->queue_lock);
809 if (!blkcg_policy_enabled(q, pol)) {
814 blkg = blkg_lookup(blkcg, q);
819 * Create blkgs walking down from blkcg_root to @blkcg, so that all
820 * non-root blkgs have access to their parents.
823 struct blkcg *pos = blkcg;
824 struct blkcg *parent;
825 struct blkcg_gq *new_blkg;
827 parent = blkcg_parent(blkcg);
828 while (parent && !blkg_lookup(parent, q)) {
830 parent = blkcg_parent(parent);
833 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
834 spin_unlock_irq(&q->queue_lock);
836 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
837 if (unlikely(!new_blkg)) {
839 goto fail_exit_queue;
842 if (radix_tree_preload(GFP_KERNEL)) {
845 goto fail_exit_queue;
848 spin_lock_irq(&q->queue_lock);
850 if (!blkcg_policy_enabled(q, pol)) {
856 blkg = blkg_lookup(pos, q);
860 blkg = blkg_create(pos, disk, new_blkg);
867 radix_tree_preload_end();
878 radix_tree_preload_end();
880 spin_unlock_irq(&q->queue_lock);
885 * If queue was bypassing, we should retry. Do so after a
886 * short msleep(). It isn't strictly necessary but queue
887 * can be bypassing for some time and it's always nice to
888 * avoid busy looping.
892 ret = restart_syscall();
896 EXPORT_SYMBOL_GPL(blkg_conf_prep);
899 * blkg_conf_exit - clean up per-blkg config update
900 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
902 * Clean up after per-blkg config update. This function must be called on all
903 * blkg_conf_ctx's initialized with blkg_conf_init().
905 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
906 __releases(&ctx->bdev->bd_queue->queue_lock)
907 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
910 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
915 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
916 blkdev_put_no_open(ctx->bdev);
921 EXPORT_SYMBOL_GPL(blkg_conf_exit);
923 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
927 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
928 dst->bytes[i] = src->bytes[i];
929 dst->ios[i] = src->ios[i];
933 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
937 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
938 dst->bytes[i] += src->bytes[i];
939 dst->ios[i] += src->ios[i];
943 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
947 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
948 dst->bytes[i] -= src->bytes[i];
949 dst->ios[i] -= src->ios[i];
953 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
954 struct blkg_iostat *last)
956 struct blkg_iostat delta;
959 /* propagate percpu delta to global */
960 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
961 blkg_iostat_set(&delta, cur);
962 blkg_iostat_sub(&delta, last);
963 blkg_iostat_add(&blkg->iostat.cur, &delta);
964 blkg_iostat_add(last, &delta);
965 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
968 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
970 struct blkcg *blkcg = css_to_blkcg(css);
971 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
972 struct llist_node *lnode;
973 struct blkg_iostat_set *bisc, *next_bisc;
975 /* Root-level stats are sourced from system-wide IO stats */
976 if (!cgroup_parent(css->cgroup))
981 lnode = llist_del_all(lhead);
986 * Iterate only the iostat_cpu's queued in the lockless list.
988 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
989 struct blkcg_gq *blkg = bisc->blkg;
990 struct blkcg_gq *parent = blkg->parent;
991 struct blkg_iostat cur;
994 WRITE_ONCE(bisc->lqueued, false);
996 /* fetch the current per-cpu values */
998 seq = u64_stats_fetch_begin(&bisc->sync);
999 blkg_iostat_set(&cur, &bisc->cur);
1000 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1002 blkcg_iostat_update(blkg, &cur, &bisc->last);
1004 /* propagate global delta to parent (unless that's root) */
1005 if (parent && parent->parent)
1006 blkcg_iostat_update(parent, &blkg->iostat.cur,
1007 &blkg->iostat.last);
1008 percpu_ref_put(&blkg->refcnt);
1016 * We source root cgroup stats from the system-wide stats to avoid
1017 * tracking the same information twice and incurring overhead when no
1018 * cgroups are defined. For that reason, cgroup_rstat_flush in
1019 * blkcg_print_stat does not actually fill out the iostat in the root
1020 * cgroup's blkcg_gq.
1022 * However, we would like to re-use the printing code between the root and
1023 * non-root cgroups to the extent possible. For that reason, we simulate
1024 * flushing the root cgroup's stats by explicitly filling in the iostat
1025 * with disk level statistics.
1027 static void blkcg_fill_root_iostats(void)
1029 struct class_dev_iter iter;
1032 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1033 while ((dev = class_dev_iter_next(&iter))) {
1034 struct block_device *bdev = dev_to_bdev(dev);
1035 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1036 struct blkg_iostat tmp;
1038 unsigned long flags;
1040 memset(&tmp, 0, sizeof(tmp));
1041 for_each_possible_cpu(cpu) {
1042 struct disk_stats *cpu_dkstats;
1044 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1045 tmp.ios[BLKG_IOSTAT_READ] +=
1046 cpu_dkstats->ios[STAT_READ];
1047 tmp.ios[BLKG_IOSTAT_WRITE] +=
1048 cpu_dkstats->ios[STAT_WRITE];
1049 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1050 cpu_dkstats->ios[STAT_DISCARD];
1051 // convert sectors to bytes
1052 tmp.bytes[BLKG_IOSTAT_READ] +=
1053 cpu_dkstats->sectors[STAT_READ] << 9;
1054 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1055 cpu_dkstats->sectors[STAT_WRITE] << 9;
1056 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1057 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1060 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1061 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1062 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1066 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1068 struct blkg_iostat_set *bis = &blkg->iostat;
1069 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1077 dname = blkg_dev_name(blkg);
1081 seq_printf(s, "%s ", dname);
1084 seq = u64_stats_fetch_begin(&bis->sync);
1086 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1087 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1088 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1089 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1090 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1091 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1092 } while (u64_stats_fetch_retry(&bis->sync, seq));
1094 if (rbytes || wbytes || rios || wios) {
1095 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1096 rbytes, wbytes, rios, wios,
1100 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1101 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1102 atomic_read(&blkg->use_delay),
1103 atomic64_read(&blkg->delay_nsec));
1106 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1107 struct blkcg_policy *pol = blkcg_policy[i];
1109 if (!blkg->pd[i] || !pol->pd_stat_fn)
1112 pol->pd_stat_fn(blkg->pd[i], s);
1118 static int blkcg_print_stat(struct seq_file *sf, void *v)
1120 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1121 struct blkcg_gq *blkg;
1123 if (!seq_css(sf)->parent)
1124 blkcg_fill_root_iostats();
1126 cgroup_rstat_flush(blkcg->css.cgroup);
1129 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1130 spin_lock_irq(&blkg->q->queue_lock);
1131 blkcg_print_one_stat(blkg, sf);
1132 spin_unlock_irq(&blkg->q->queue_lock);
1138 static struct cftype blkcg_files[] = {
1141 .seq_show = blkcg_print_stat,
1146 static struct cftype blkcg_legacy_files[] = {
1148 .name = "reset_stats",
1149 .write_u64 = blkcg_reset_stats,
1154 #ifdef CONFIG_CGROUP_WRITEBACK
1155 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1157 return &css_to_blkcg(css)->cgwb_list;
1162 * blkcg destruction is a three-stage process.
1164 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1165 * which offlines writeback. Here we tie the next stage of blkg destruction
1166 * to the completion of writeback associated with the blkcg. This lets us
1167 * avoid punting potentially large amounts of outstanding writeback to root
1168 * while maintaining any ongoing policies. The next stage is triggered when
1169 * the nr_cgwbs count goes to zero.
1171 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1172 * and handles the destruction of blkgs. Here the css reference held by
1173 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1174 * This work may occur in cgwb_release_workfn() on the cgwb_release
1175 * workqueue. Any submitted ios that fail to get the blkg ref will be
1176 * punted to the root_blkg.
1178 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1179 * This finally frees the blkcg.
1183 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1184 * @blkcg: blkcg of interest
1186 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1187 * is nested inside q lock, this function performs reverse double lock dancing.
1188 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1189 * blkcg_css_free to eventually be called.
1191 * This is the blkcg counterpart of ioc_release_fn().
1193 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1197 spin_lock_irq(&blkcg->lock);
1199 while (!hlist_empty(&blkcg->blkg_list)) {
1200 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1201 struct blkcg_gq, blkcg_node);
1202 struct request_queue *q = blkg->q;
1204 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1206 * Given that the system can accumulate a huge number
1207 * of blkgs in pathological cases, check to see if we
1208 * need to rescheduling to avoid softlockup.
1210 spin_unlock_irq(&blkcg->lock);
1212 spin_lock_irq(&blkcg->lock);
1217 spin_unlock(&q->queue_lock);
1220 spin_unlock_irq(&blkcg->lock);
1224 * blkcg_pin_online - pin online state
1225 * @blkcg_css: blkcg of interest
1227 * While pinned, a blkcg is kept online. This is primarily used to
1228 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1229 * while an associated cgwb is still active.
1231 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1233 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1237 * blkcg_unpin_online - unpin online state
1238 * @blkcg_css: blkcg of interest
1240 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1241 * that blkg doesn't go offline while an associated cgwb is still active.
1242 * When this count goes to zero, all active cgwbs have finished so the
1243 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1245 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1247 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1250 if (!refcount_dec_and_test(&blkcg->online_pin))
1252 blkcg_destroy_blkgs(blkcg);
1253 blkcg = blkcg_parent(blkcg);
1258 * blkcg_css_offline - cgroup css_offline callback
1259 * @css: css of interest
1261 * This function is called when @css is about to go away. Here the cgwbs are
1262 * offlined first and only once writeback associated with the blkcg has
1263 * finished do we start step 2 (see above).
1265 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1267 /* this prevents anyone from attaching or migrating to this blkcg */
1268 wb_blkcg_offline(css);
1270 /* put the base online pin allowing step 2 to be triggered */
1271 blkcg_unpin_online(css);
1274 static void blkcg_css_free(struct cgroup_subsys_state *css)
1276 struct blkcg *blkcg = css_to_blkcg(css);
1279 mutex_lock(&blkcg_pol_mutex);
1281 list_del(&blkcg->all_blkcgs_node);
1283 for (i = 0; i < BLKCG_MAX_POLS; i++)
1285 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1287 mutex_unlock(&blkcg_pol_mutex);
1289 free_percpu(blkcg->lhead);
1293 static struct cgroup_subsys_state *
1294 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1296 struct blkcg *blkcg;
1299 mutex_lock(&blkcg_pol_mutex);
1302 blkcg = &blkcg_root;
1304 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1309 if (init_blkcg_llists(blkcg))
1312 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1313 struct blkcg_policy *pol = blkcg_policy[i];
1314 struct blkcg_policy_data *cpd;
1317 * If the policy hasn't been attached yet, wait for it
1318 * to be attached before doing anything else. Otherwise,
1319 * check if the policy requires any specific per-cgroup
1320 * data: if it does, allocate and initialize it.
1322 if (!pol || !pol->cpd_alloc_fn)
1325 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1329 blkcg->cpd[i] = cpd;
1334 spin_lock_init(&blkcg->lock);
1335 refcount_set(&blkcg->online_pin, 1);
1336 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1337 INIT_HLIST_HEAD(&blkcg->blkg_list);
1338 #ifdef CONFIG_CGROUP_WRITEBACK
1339 INIT_LIST_HEAD(&blkcg->cgwb_list);
1341 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1343 mutex_unlock(&blkcg_pol_mutex);
1347 for (i--; i >= 0; i--)
1349 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1350 free_percpu(blkcg->lhead);
1352 if (blkcg != &blkcg_root)
1355 mutex_unlock(&blkcg_pol_mutex);
1356 return ERR_PTR(-ENOMEM);
1359 static int blkcg_css_online(struct cgroup_subsys_state *css)
1361 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1364 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1365 * don't go offline while cgwbs are still active on them. Pin the
1366 * parent so that offline always happens towards the root.
1369 blkcg_pin_online(&parent->css);
1373 int blkcg_init_disk(struct gendisk *disk)
1375 struct request_queue *q = disk->queue;
1376 struct blkcg_gq *new_blkg, *blkg;
1380 INIT_LIST_HEAD(&q->blkg_list);
1381 mutex_init(&q->blkcg_mutex);
1383 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1387 preloaded = !radix_tree_preload(GFP_KERNEL);
1389 /* Make sure the root blkg exists. */
1390 /* spin_lock_irq can serve as RCU read-side critical section. */
1391 spin_lock_irq(&q->queue_lock);
1392 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1395 q->root_blkg = blkg;
1396 spin_unlock_irq(&q->queue_lock);
1399 radix_tree_preload_end();
1401 ret = blk_ioprio_init(disk);
1403 goto err_destroy_all;
1405 ret = blk_throtl_init(disk);
1407 goto err_ioprio_exit;
1412 blk_ioprio_exit(disk);
1414 blkg_destroy_all(disk);
1417 spin_unlock_irq(&q->queue_lock);
1419 radix_tree_preload_end();
1420 return PTR_ERR(blkg);
1423 void blkcg_exit_disk(struct gendisk *disk)
1425 blkg_destroy_all(disk);
1426 blk_throtl_exit(disk);
1429 static void blkcg_exit(struct task_struct *tsk)
1431 if (tsk->throttle_disk)
1432 put_disk(tsk->throttle_disk);
1433 tsk->throttle_disk = NULL;
1436 struct cgroup_subsys io_cgrp_subsys = {
1437 .css_alloc = blkcg_css_alloc,
1438 .css_online = blkcg_css_online,
1439 .css_offline = blkcg_css_offline,
1440 .css_free = blkcg_css_free,
1441 .css_rstat_flush = blkcg_rstat_flush,
1442 .dfl_cftypes = blkcg_files,
1443 .legacy_cftypes = blkcg_legacy_files,
1444 .legacy_name = "blkio",
1448 * This ensures that, if available, memcg is automatically enabled
1449 * together on the default hierarchy so that the owner cgroup can
1450 * be retrieved from writeback pages.
1452 .depends_on = 1 << memory_cgrp_id,
1455 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1458 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1459 * @disk: gendisk of interest
1460 * @pol: blkcg policy to activate
1462 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1463 * bypass mode to populate its blkgs with policy_data for @pol.
1465 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1466 * from IO path. Update of each blkg is protected by both queue and blkcg
1467 * locks so that holding either lock and testing blkcg_policy_enabled() is
1468 * always enough for dereferencing policy data.
1470 * The caller is responsible for synchronizing [de]activations and policy
1471 * [un]registerations. Returns 0 on success, -errno on failure.
1473 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1475 struct request_queue *q = disk->queue;
1476 struct blkg_policy_data *pd_prealloc = NULL;
1477 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1480 if (blkcg_policy_enabled(q, pol))
1484 blk_mq_freeze_queue(q);
1486 spin_lock_irq(&q->queue_lock);
1488 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1489 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1490 struct blkg_policy_data *pd;
1492 if (blkg->pd[pol->plid])
1495 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1496 if (blkg == pinned_blkg) {
1500 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1501 GFP_NOWAIT | __GFP_NOWARN);
1506 * GFP_NOWAIT failed. Free the existing one and
1507 * prealloc for @blkg w/ GFP_KERNEL.
1510 blkg_put(pinned_blkg);
1514 spin_unlock_irq(&q->queue_lock);
1517 pol->pd_free_fn(pd_prealloc);
1518 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1526 blkg->pd[pol->plid] = pd;
1528 pd->plid = pol->plid;
1532 /* all allocated, init in the same order */
1533 if (pol->pd_init_fn)
1534 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1535 pol->pd_init_fn(blkg->pd[pol->plid]);
1537 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1538 if (pol->pd_online_fn)
1539 pol->pd_online_fn(blkg->pd[pol->plid]);
1540 blkg->pd[pol->plid]->online = true;
1543 __set_bit(pol->plid, q->blkcg_pols);
1546 spin_unlock_irq(&q->queue_lock);
1549 blk_mq_unfreeze_queue(q);
1551 blkg_put(pinned_blkg);
1553 pol->pd_free_fn(pd_prealloc);
1557 /* alloc failed, nothing's initialized yet, free everything */
1558 spin_lock_irq(&q->queue_lock);
1559 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1560 struct blkcg *blkcg = blkg->blkcg;
1562 spin_lock(&blkcg->lock);
1563 if (blkg->pd[pol->plid]) {
1564 pol->pd_free_fn(blkg->pd[pol->plid]);
1565 blkg->pd[pol->plid] = NULL;
1567 spin_unlock(&blkcg->lock);
1569 spin_unlock_irq(&q->queue_lock);
1573 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1576 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1577 * @disk: gendisk of interest
1578 * @pol: blkcg policy to deactivate
1580 * Deactivate @pol on @disk. Follows the same synchronization rules as
1581 * blkcg_activate_policy().
1583 void blkcg_deactivate_policy(struct gendisk *disk,
1584 const struct blkcg_policy *pol)
1586 struct request_queue *q = disk->queue;
1587 struct blkcg_gq *blkg;
1589 if (!blkcg_policy_enabled(q, pol))
1593 blk_mq_freeze_queue(q);
1595 mutex_lock(&q->blkcg_mutex);
1596 spin_lock_irq(&q->queue_lock);
1598 __clear_bit(pol->plid, q->blkcg_pols);
1600 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1601 struct blkcg *blkcg = blkg->blkcg;
1603 spin_lock(&blkcg->lock);
1604 if (blkg->pd[pol->plid]) {
1605 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1606 pol->pd_offline_fn(blkg->pd[pol->plid]);
1607 pol->pd_free_fn(blkg->pd[pol->plid]);
1608 blkg->pd[pol->plid] = NULL;
1610 spin_unlock(&blkcg->lock);
1613 spin_unlock_irq(&q->queue_lock);
1614 mutex_unlock(&q->blkcg_mutex);
1617 blk_mq_unfreeze_queue(q);
1619 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1621 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1623 struct blkcg *blkcg;
1625 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1626 if (blkcg->cpd[pol->plid]) {
1627 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1628 blkcg->cpd[pol->plid] = NULL;
1634 * blkcg_policy_register - register a blkcg policy
1635 * @pol: blkcg policy to register
1637 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1638 * successful registration. Returns 0 on success and -errno on failure.
1640 int blkcg_policy_register(struct blkcg_policy *pol)
1642 struct blkcg *blkcg;
1645 mutex_lock(&blkcg_pol_register_mutex);
1646 mutex_lock(&blkcg_pol_mutex);
1648 /* find an empty slot */
1650 for (i = 0; i < BLKCG_MAX_POLS; i++)
1651 if (!blkcg_policy[i])
1653 if (i >= BLKCG_MAX_POLS) {
1654 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1658 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1659 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1660 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1665 blkcg_policy[pol->plid] = pol;
1667 /* allocate and install cpd's */
1668 if (pol->cpd_alloc_fn) {
1669 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1670 struct blkcg_policy_data *cpd;
1672 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1676 blkcg->cpd[pol->plid] = cpd;
1678 cpd->plid = pol->plid;
1682 mutex_unlock(&blkcg_pol_mutex);
1684 /* everything is in place, add intf files for the new policy */
1685 if (pol->dfl_cftypes)
1686 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1688 if (pol->legacy_cftypes)
1689 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1690 pol->legacy_cftypes));
1691 mutex_unlock(&blkcg_pol_register_mutex);
1695 if (pol->cpd_free_fn)
1696 blkcg_free_all_cpd(pol);
1698 blkcg_policy[pol->plid] = NULL;
1700 mutex_unlock(&blkcg_pol_mutex);
1701 mutex_unlock(&blkcg_pol_register_mutex);
1704 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1707 * blkcg_policy_unregister - unregister a blkcg policy
1708 * @pol: blkcg policy to unregister
1710 * Undo blkcg_policy_register(@pol). Might sleep.
1712 void blkcg_policy_unregister(struct blkcg_policy *pol)
1714 mutex_lock(&blkcg_pol_register_mutex);
1716 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1719 /* kill the intf files first */
1720 if (pol->dfl_cftypes)
1721 cgroup_rm_cftypes(pol->dfl_cftypes);
1722 if (pol->legacy_cftypes)
1723 cgroup_rm_cftypes(pol->legacy_cftypes);
1725 /* remove cpds and unregister */
1726 mutex_lock(&blkcg_pol_mutex);
1728 if (pol->cpd_free_fn)
1729 blkcg_free_all_cpd(pol);
1731 blkcg_policy[pol->plid] = NULL;
1733 mutex_unlock(&blkcg_pol_mutex);
1735 mutex_unlock(&blkcg_pol_register_mutex);
1737 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1740 * Scale the accumulated delay based on how long it has been since we updated
1741 * the delay. We only call this when we are adding delay, in case it's been a
1742 * while since we added delay, and when we are checking to see if we need to
1743 * delay a task, to account for any delays that may have occurred.
1745 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1747 u64 old = atomic64_read(&blkg->delay_start);
1749 /* negative use_delay means no scaling, see blkcg_set_delay() */
1750 if (atomic_read(&blkg->use_delay) < 0)
1754 * We only want to scale down every second. The idea here is that we
1755 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1756 * time window. We only want to throttle tasks for recent delay that
1757 * has occurred, in 1 second time windows since that's the maximum
1758 * things can be throttled. We save the current delay window in
1759 * blkg->last_delay so we know what amount is still left to be charged
1760 * to the blkg from this point onward. blkg->last_use keeps track of
1761 * the use_delay counter. The idea is if we're unthrottling the blkg we
1762 * are ok with whatever is happening now, and we can take away more of
1763 * the accumulated delay as we've already throttled enough that
1764 * everybody is happy with their IO latencies.
1766 if (time_before64(old + NSEC_PER_SEC, now) &&
1767 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1768 u64 cur = atomic64_read(&blkg->delay_nsec);
1769 u64 sub = min_t(u64, blkg->last_delay, now - old);
1770 int cur_use = atomic_read(&blkg->use_delay);
1773 * We've been unthrottled, subtract a larger chunk of our
1774 * accumulated delay.
1776 if (cur_use < blkg->last_use)
1777 sub = max_t(u64, sub, blkg->last_delay >> 1);
1780 * This shouldn't happen, but handle it anyway. Our delay_nsec
1781 * should only ever be growing except here where we subtract out
1782 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1783 * rather not end up with negative numbers.
1785 if (unlikely(cur < sub)) {
1786 atomic64_set(&blkg->delay_nsec, 0);
1787 blkg->last_delay = 0;
1789 atomic64_sub(sub, &blkg->delay_nsec);
1790 blkg->last_delay = cur - sub;
1792 blkg->last_use = cur_use;
1797 * This is called when we want to actually walk up the hierarchy and check to
1798 * see if we need to throttle, and then actually throttle if there is some
1799 * accumulated delay. This should only be called upon return to user space so
1800 * we're not holding some lock that would induce a priority inversion.
1802 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1804 unsigned long pflags;
1806 u64 now = ktime_to_ns(ktime_get());
1811 while (blkg->parent) {
1812 int use_delay = atomic_read(&blkg->use_delay);
1817 blkcg_scale_delay(blkg, now);
1818 this_delay = atomic64_read(&blkg->delay_nsec);
1819 if (this_delay > delay_nsec) {
1820 delay_nsec = this_delay;
1821 clamp = use_delay > 0;
1824 blkg = blkg->parent;
1831 * Let's not sleep for all eternity if we've amassed a huge delay.
1832 * Swapping or metadata IO can accumulate 10's of seconds worth of
1833 * delay, and we want userspace to be able to do _something_ so cap the
1834 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1835 * tasks will be delayed for 0.25 second for every syscall. If
1836 * blkcg_set_delay() was used as indicated by negative use_delay, the
1837 * caller is responsible for regulating the range.
1840 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1843 psi_memstall_enter(&pflags);
1845 exp = ktime_add_ns(now, delay_nsec);
1846 tok = io_schedule_prepare();
1848 __set_current_state(TASK_KILLABLE);
1849 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1851 } while (!fatal_signal_pending(current));
1852 io_schedule_finish(tok);
1855 psi_memstall_leave(&pflags);
1859 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1861 * This is only called if we've been marked with set_notify_resume(). Obviously
1862 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1863 * check to see if current->throttle_disk is set and if not this doesn't do
1864 * anything. This should only ever be called by the resume code, it's not meant
1865 * to be called by people willy-nilly as it will actually do the work to
1866 * throttle the task if it is setup for throttling.
1868 void blkcg_maybe_throttle_current(void)
1870 struct gendisk *disk = current->throttle_disk;
1871 struct blkcg *blkcg;
1872 struct blkcg_gq *blkg;
1873 bool use_memdelay = current->use_memdelay;
1878 current->throttle_disk = NULL;
1879 current->use_memdelay = false;
1882 blkcg = css_to_blkcg(blkcg_css());
1885 blkg = blkg_lookup(blkcg, disk->queue);
1888 if (!blkg_tryget(blkg))
1892 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1901 * blkcg_schedule_throttle - this task needs to check for throttling
1902 * @disk: disk to throttle
1903 * @use_memdelay: do we charge this to memory delay for PSI
1905 * This is called by the IO controller when we know there's delay accumulated
1906 * for the blkg for this task. We do not pass the blkg because there are places
1907 * we call this that may not have that information, the swapping code for
1908 * instance will only have a block_device at that point. This set's the
1909 * notify_resume for the task to check and see if it requires throttling before
1910 * returning to user space.
1912 * We will only schedule once per syscall. You can call this over and over
1913 * again and it will only do the check once upon return to user space, and only
1914 * throttle once. If the task needs to be throttled again it'll need to be
1915 * re-set at the next time we see the task.
1917 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1919 if (unlikely(current->flags & PF_KTHREAD))
1922 if (current->throttle_disk != disk) {
1923 if (test_bit(GD_DEAD, &disk->state))
1925 get_device(disk_to_dev(disk));
1927 if (current->throttle_disk)
1928 put_disk(current->throttle_disk);
1929 current->throttle_disk = disk;
1933 current->use_memdelay = use_memdelay;
1934 set_notify_resume(current);
1938 * blkcg_add_delay - add delay to this blkg
1939 * @blkg: blkg of interest
1940 * @now: the current time in nanoseconds
1941 * @delta: how many nanoseconds of delay to add
1943 * Charge @delta to the blkg's current delay accumulation. This is used to
1944 * throttle tasks if an IO controller thinks we need more throttling.
1946 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1948 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1950 blkcg_scale_delay(blkg, now);
1951 atomic64_add(delta, &blkg->delay_nsec);
1955 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1959 * As the failure mode here is to walk up the blkg tree, this ensure that the
1960 * blkg->parent pointers are always valid. This returns the blkg that it ended
1961 * up taking a reference on or %NULL if no reference was taken.
1963 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1964 struct cgroup_subsys_state *css)
1966 struct blkcg_gq *blkg, *ret_blkg = NULL;
1969 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1971 if (blkg_tryget(blkg)) {
1975 blkg = blkg->parent;
1983 * bio_associate_blkg_from_css - associate a bio with a specified css
1987 * Associate @bio with the blkg found by combining the css's blkg and the
1988 * request_queue of the @bio. An association failure is handled by walking up
1989 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1990 * and q->root_blkg. This situation only happens when a cgroup is dying and
1991 * then the remaining bios will spill to the closest alive blkg.
1993 * A reference will be taken on the blkg and will be released when @bio is
1996 void bio_associate_blkg_from_css(struct bio *bio,
1997 struct cgroup_subsys_state *css)
2000 blkg_put(bio->bi_blkg);
2002 if (css && css->parent) {
2003 bio->bi_blkg = blkg_tryget_closest(bio, css);
2005 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2006 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2009 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2012 * bio_associate_blkg - associate a bio with a blkg
2015 * Associate @bio with the blkg found from the bio's css and request_queue.
2016 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2017 * already associated, the css is reused and association redone as the
2018 * request_queue may have changed.
2020 void bio_associate_blkg(struct bio *bio)
2022 struct cgroup_subsys_state *css;
2027 css = bio_blkcg_css(bio);
2031 bio_associate_blkg_from_css(bio, css);
2035 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2038 * bio_clone_blkg_association - clone blkg association from src to dst bio
2039 * @dst: destination bio
2042 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2045 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2047 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2049 static int blk_cgroup_io_type(struct bio *bio)
2051 if (op_is_discard(bio->bi_opf))
2052 return BLKG_IOSTAT_DISCARD;
2053 if (op_is_write(bio->bi_opf))
2054 return BLKG_IOSTAT_WRITE;
2055 return BLKG_IOSTAT_READ;
2058 void blk_cgroup_bio_start(struct bio *bio)
2060 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2061 int rwd = blk_cgroup_io_type(bio), cpu;
2062 struct blkg_iostat_set *bis;
2063 unsigned long flags;
2065 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2068 /* Root-level stats are sourced from system-wide IO stats */
2069 if (!cgroup_parent(blkcg->css.cgroup))
2073 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2074 flags = u64_stats_update_begin_irqsave(&bis->sync);
2077 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2078 * bio and we would have already accounted for the size of the bio.
2080 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2081 bio_set_flag(bio, BIO_CGROUP_ACCT);
2082 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2084 bis->cur.ios[rwd]++;
2087 * If the iostat_cpu isn't in a lockless list, put it into the
2088 * list to indicate that a stat update is pending.
2090 if (!READ_ONCE(bis->lqueued)) {
2091 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2093 llist_add(&bis->lnode, lhead);
2094 WRITE_ONCE(bis->lqueued, true);
2095 percpu_ref_get(&bis->blkg->refcnt);
2098 u64_stats_update_end_irqrestore(&bis->sync, flags);
2099 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2103 bool blk_cgroup_congested(void)
2105 struct cgroup_subsys_state *css;
2109 for (css = blkcg_css(); css; css = css->parent) {
2110 if (atomic_read(&css->cgroup->congestion_count)) {
2119 module_param(blkcg_debug_stats, bool, 0644);
2120 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");