Steady state detection: enhance reporting of results, change memory allocation point
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned int val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned int plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned int **output,
139 unsigned int *maxv, unsigned int *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned int *ovals = NULL;
145 int is_last;
146
147 *minv = -1U;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int len, j = 0, minv, maxv;
205 unsigned int *ovals;
206 int is_last, per_line, scale_down;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len)
211 goto out;
212
213 /*
214 * We default to usecs, but if the value range is such that we
215 * should scale down to msecs, do that.
216 */
217 if (minv > 2000 && maxv > 99999) {
218 scale_down = 1;
219 log_buf(out, " clat percentiles (msec):\n |");
220 } else {
221 scale_down = 0;
222 log_buf(out, " clat percentiles (usec):\n |");
223 }
224
225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226 per_line = (80 - 7) / (precision + 14);
227
228 for (j = 0; j < len; j++) {
229 char fbuf[16], *ptr = fbuf;
230
231 /* for formatting */
232 if (j != 0 && (j % per_line) == 0)
233 log_buf(out, " |");
234
235 /* end of the list */
236 is_last = (j == len - 1);
237
238 if (plist[j].u.f < 10.0)
239 ptr += sprintf(fbuf, " ");
240
241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243 if (scale_down)
244 ovals[j] = (ovals[j] + 999) / 1000;
245
246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248 if (is_last)
249 break;
250
251 if ((j % per_line) == per_line - 1) /* for formatting */
252 log_buf(out, "\n");
253 }
254
255out:
256 if (ovals)
257 free(ovals);
258}
259
260int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261 double *mean, double *dev)
262{
263 double n = (double) is->samples;
264
265 if (n == 0)
266 return 0;
267
268 *min = is->min_val;
269 *max = is->max_val;
270 *mean = is->mean.u.f;
271
272 if (n > 1.0)
273 *dev = sqrt(is->S.u.f / (n - 1.0));
274 else
275 *dev = 0;
276
277 return 1;
278}
279
280void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281{
282 char *p1, *p2, *p3, *p4;
283 const char *str[] = { " READ", " WRITE" , " TRIM"};
284 int i;
285
286 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289 const int i2p = is_power_of_2(rs->kb_base);
290
291 if (!rs->max_run[i])
292 continue;
293
294 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300 " mint=%llumsec, maxt=%llumsec\n",
301 rs->unified_rw_rep ? " MIXED" : str[i],
302 p1, p2, p3, p4,
303 (unsigned long long) rs->min_run[i],
304 (unsigned long long) rs->max_run[i]);
305
306 free(p1);
307 free(p2);
308 free(p3);
309 free(p4);
310 }
311}
312
313void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314{
315 int i;
316
317 /*
318 * Do depth distribution calculations
319 */
320 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321 if (total) {
322 io_u_dist[i] = (double) map[i] / (double) total;
323 io_u_dist[i] *= 100.0;
324 if (io_u_dist[i] < 0.1 && map[i])
325 io_u_dist[i] = 0.1;
326 } else
327 io_u_dist[i] = 0.0;
328 }
329}
330
331static void stat_calc_lat(struct thread_stat *ts, double *dst,
332 unsigned int *src, int nr)
333{
334 unsigned long total = ddir_rw_sum(ts->total_io_u);
335 int i;
336
337 /*
338 * Do latency distribution calculations
339 */
340 for (i = 0; i < nr; i++) {
341 if (total) {
342 dst[i] = (double) src[i] / (double) total;
343 dst[i] *= 100.0;
344 if (dst[i] < 0.01 && src[i])
345 dst[i] = 0.01;
346 } else
347 dst[i] = 0.0;
348 }
349}
350
351void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352{
353 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354}
355
356void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357{
358 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359}
360
361static void display_lat(const char *name, unsigned long min, unsigned long max,
362 double mean, double dev, struct buf_output *out)
363{
364 const char *base = "(usec)";
365 char *minp, *maxp;
366
367 if (!usec_to_msec(&min, &max, &mean, &dev))
368 base = "(msec)";
369
370 minp = num2str(min, 6, 1, 0, 0);
371 maxp = num2str(max, 6, 1, 0, 0);
372
373 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
374 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376 free(minp);
377 free(maxp);
378}
379
380static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381 int ddir, struct buf_output *out)
382{
383 const char *str[] = { "read ", "write", "trim" };
384 unsigned long min, max, runt;
385 unsigned long long bw, iops;
386 double mean, dev;
387 char *io_p, *bw_p, *iops_p;
388 int i2p;
389
390 assert(ddir_rw(ddir));
391
392 if (!ts->runtime[ddir])
393 return;
394
395 i2p = is_power_of_2(rs->kb_base);
396 runt = ts->runtime[ddir];
397
398 bw = (1000 * ts->io_bytes[ddir]) / runt;
399 io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400 bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403 iops_p = num2str(iops, 6, 1, 0, 0);
404
405 log_buf(out, " %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406 rs->unified_rw_rep ? "mixed" : str[ddir],
407 io_p, bw_p, iops_p,
408 (unsigned long long) ts->runtime[ddir]);
409
410 free(io_p);
411 free(bw_p);
412 free(iops_p);
413
414 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415 display_lat("slat", min, max, mean, dev, out);
416 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417 display_lat("clat", min, max, mean, dev, out);
418 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419 display_lat(" lat", min, max, mean, dev, out);
420
421 if (ts->clat_percentiles) {
422 show_clat_percentiles(ts->io_u_plat[ddir],
423 ts->clat_stat[ddir].samples,
424 ts->percentile_list,
425 ts->percentile_precision, out);
426 }
427 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431 if (rs->unit_base == 1) {
432 min *= 8.0;
433 max *= 8.0;
434 mean *= 8.0;
435 dev *= 8.0;
436 }
437
438 if (rs->agg[ddir]) {
439 p_of_agg = mean * 100 / (double) rs->agg[ddir];
440 if (p_of_agg > 100.0)
441 p_of_agg = 100.0;
442 }
443
444 if (mean > fkb_base * fkb_base) {
445 min /= fkb_base;
446 max /= fkb_base;
447 mean /= fkb_base;
448 dev /= fkb_base;
449 bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450 }
451
452 log_buf(out, " bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453 " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454 p_of_agg, mean, dev);
455 }
456}
457
458static int show_lat(double *io_u_lat, int nr, const char **ranges,
459 const char *msg, struct buf_output *out)
460{
461 int new_line = 1, i, line = 0, shown = 0;
462
463 for (i = 0; i < nr; i++) {
464 if (io_u_lat[i] <= 0.0)
465 continue;
466 shown = 1;
467 if (new_line) {
468 if (line)
469 log_buf(out, "\n");
470 log_buf(out, " lat (%s) : ", msg);
471 new_line = 0;
472 line = 0;
473 }
474 if (line)
475 log_buf(out, ", ");
476 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477 line++;
478 if (line == 5)
479 new_line = 1;
480 }
481
482 if (shown)
483 log_buf(out, "\n");
484
485 return shown;
486}
487
488static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489{
490 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491 "250=", "500=", "750=", "1000=", };
492
493 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494}
495
496static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497{
498 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499 "250=", "500=", "750=", "1000=", "2000=",
500 ">=2000=", };
501
502 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503}
504
505static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506{
507 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510 stat_calc_lat_u(ts, io_u_lat_u);
511 stat_calc_lat_m(ts, io_u_lat_m);
512
513 show_lat_u(io_u_lat_u, out);
514 show_lat_m(io_u_lat_m, out);
515}
516
517static int block_state_category(int block_state)
518{
519 switch (block_state) {
520 case BLOCK_STATE_UNINIT:
521 return 0;
522 case BLOCK_STATE_TRIMMED:
523 case BLOCK_STATE_WRITTEN:
524 return 1;
525 case BLOCK_STATE_WRITE_FAILURE:
526 case BLOCK_STATE_TRIM_FAILURE:
527 return 2;
528 default:
529 /* Silence compile warning on some BSDs and have a return */
530 assert(0);
531 return -1;
532 }
533}
534
535static int compare_block_infos(const void *bs1, const void *bs2)
536{
537 uint32_t block1 = *(uint32_t *)bs1;
538 uint32_t block2 = *(uint32_t *)bs2;
539 int state1 = BLOCK_INFO_STATE(block1);
540 int state2 = BLOCK_INFO_STATE(block2);
541 int bscat1 = block_state_category(state1);
542 int bscat2 = block_state_category(state2);
543 int cycles1 = BLOCK_INFO_TRIMS(block1);
544 int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546 if (bscat1 < bscat2)
547 return -1;
548 if (bscat1 > bscat2)
549 return 1;
550
551 if (cycles1 < cycles2)
552 return -1;
553 if (cycles1 > cycles2)
554 return 1;
555
556 if (state1 < state2)
557 return -1;
558 if (state1 > state2)
559 return 1;
560
561 assert(block1 == block2);
562 return 0;
563}
564
565static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566 fio_fp64_t *plist, unsigned int **percentiles,
567 unsigned int *types)
568{
569 int len = 0;
570 int i, nr_uninit;
571
572 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575 len++;
576
577 if (!len)
578 return 0;
579
580 /*
581 * Sort the percentile list. Note that it may already be sorted if
582 * we are using the default values, but since it's a short list this
583 * isn't a worry. Also note that this does not work for NaN values.
584 */
585 if (len > 1)
586 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588 nr_uninit = 0;
589 /* Start only after the uninit entries end */
590 for (nr_uninit = 0;
591 nr_uninit < nr_block_infos
592 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593 nr_uninit ++)
594 ;
595
596 if (nr_uninit == nr_block_infos)
597 return 0;
598
599 *percentiles = calloc(len, sizeof(**percentiles));
600
601 for (i = 0; i < len; i++) {
602 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603 + nr_uninit;
604 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605 }
606
607 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608 for (i = 0; i < nr_block_infos; i++)
609 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611 return len;
612}
613
614static const char *block_state_names[] = {
615 [BLOCK_STATE_UNINIT] = "unwritten",
616 [BLOCK_STATE_TRIMMED] = "trimmed",
617 [BLOCK_STATE_WRITTEN] = "written",
618 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620};
621
622static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623 fio_fp64_t *plist, struct buf_output *out)
624{
625 int len, pos, i;
626 unsigned int *percentiles = NULL;
627 unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630 &percentiles, block_state_counts);
631
632 log_buf(out, " block lifetime percentiles :\n |");
633 pos = 0;
634 for (i = 0; i < len; i++) {
635 uint32_t block_info = percentiles[i];
636#define LINE_LENGTH 75
637 char str[LINE_LENGTH];
638 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639 plist[i].u.f, block_info,
640 i == len - 1 ? '\n' : ',');
641 assert(strln < LINE_LENGTH);
642 if (pos + strln > LINE_LENGTH) {
643 pos = 0;
644 log_buf(out, "\n |");
645 }
646 log_buf(out, "%s", str);
647 pos += strln;
648#undef LINE_LENGTH
649 }
650 if (percentiles)
651 free(percentiles);
652
653 log_buf(out, " states :");
654 for (i = 0; i < BLOCK_STATE_COUNT; i++)
655 log_buf(out, " %s=%u%c",
656 block_state_names[i], block_state_counts[i],
657 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658}
659
660static void show_thread_status_normal(struct thread_stat *ts,
661 struct group_run_stats *rs,
662 struct buf_output *out)
663{
664 double usr_cpu, sys_cpu;
665 unsigned long runtime;
666 double io_u_dist[FIO_IO_U_MAP_NR];
667 time_t time_p;
668 char time_buf[32];
669
670 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
671 return;
672
673 time(&time_p);
674 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
675
676 if (!ts->error) {
677 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
678 ts->name, ts->groupid, ts->members,
679 ts->error, (int) ts->pid, time_buf);
680 } else {
681 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
682 ts->name, ts->groupid, ts->members,
683 ts->error, ts->verror, (int) ts->pid,
684 time_buf);
685 }
686
687 if (strlen(ts->description))
688 log_buf(out, " Description : [%s]\n", ts->description);
689
690 if (ts->io_bytes[DDIR_READ])
691 show_ddir_status(rs, ts, DDIR_READ, out);
692 if (ts->io_bytes[DDIR_WRITE])
693 show_ddir_status(rs, ts, DDIR_WRITE, out);
694 if (ts->io_bytes[DDIR_TRIM])
695 show_ddir_status(rs, ts, DDIR_TRIM, out);
696
697 show_latencies(ts, out);
698
699 runtime = ts->total_run_time;
700 if (runtime) {
701 double runt = (double) runtime;
702
703 usr_cpu = (double) ts->usr_time * 100 / runt;
704 sys_cpu = (double) ts->sys_time * 100 / runt;
705 } else {
706 usr_cpu = 0;
707 sys_cpu = 0;
708 }
709
710 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
711 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
712 (unsigned long long) ts->ctx,
713 (unsigned long long) ts->majf,
714 (unsigned long long) ts->minf);
715
716 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
717 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
718 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
719 io_u_dist[1], io_u_dist[2],
720 io_u_dist[3], io_u_dist[4],
721 io_u_dist[5], io_u_dist[6]);
722
723 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
724 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
725 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
726 io_u_dist[1], io_u_dist[2],
727 io_u_dist[3], io_u_dist[4],
728 io_u_dist[5], io_u_dist[6]);
729 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
730 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
731 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
732 io_u_dist[1], io_u_dist[2],
733 io_u_dist[3], io_u_dist[4],
734 io_u_dist[5], io_u_dist[6]);
735 log_buf(out, " issued : total=r=%llu/w=%llu/d=%llu,"
736 " short=r=%llu/w=%llu/d=%llu,"
737 " drop=r=%llu/w=%llu/d=%llu\n",
738 (unsigned long long) ts->total_io_u[0],
739 (unsigned long long) ts->total_io_u[1],
740 (unsigned long long) ts->total_io_u[2],
741 (unsigned long long) ts->short_io_u[0],
742 (unsigned long long) ts->short_io_u[1],
743 (unsigned long long) ts->short_io_u[2],
744 (unsigned long long) ts->drop_io_u[0],
745 (unsigned long long) ts->drop_io_u[1],
746 (unsigned long long) ts->drop_io_u[2]);
747 if (ts->continue_on_error) {
748 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
749 (unsigned long long)ts->total_err_count,
750 ts->first_error,
751 strerror(ts->first_error));
752 }
753 if (ts->latency_depth) {
754 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
755 (unsigned long long)ts->latency_target,
756 (unsigned long long)ts->latency_window,
757 ts->latency_percentile.u.f,
758 ts->latency_depth);
759 }
760
761 if (ts->nr_block_infos)
762 show_block_infos(ts->nr_block_infos, ts->block_infos,
763 ts->percentile_list, out);
764}
765
766static void show_ddir_status_terse(struct thread_stat *ts,
767 struct group_run_stats *rs, int ddir,
768 struct buf_output *out)
769{
770 unsigned long min, max;
771 unsigned long long bw, iops;
772 unsigned int *ovals = NULL;
773 double mean, dev;
774 unsigned int len, minv, maxv;
775 int i;
776
777 assert(ddir_rw(ddir));
778
779 iops = bw = 0;
780 if (ts->runtime[ddir]) {
781 uint64_t runt = ts->runtime[ddir];
782
783 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
784 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
785 }
786
787 log_buf(out, ";%llu;%llu;%llu;%llu",
788 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
789 (unsigned long long) ts->runtime[ddir]);
790
791 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
792 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
793 else
794 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
795
796 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
797 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
798 else
799 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
800
801 if (ts->clat_percentiles) {
802 len = calc_clat_percentiles(ts->io_u_plat[ddir],
803 ts->clat_stat[ddir].samples,
804 ts->percentile_list, &ovals, &maxv,
805 &minv);
806 } else
807 len = 0;
808
809 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
810 if (i >= len) {
811 log_buf(out, ";0%%=0");
812 continue;
813 }
814 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
815 }
816
817 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
818 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
819 else
820 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
821
822 if (ovals)
823 free(ovals);
824
825 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
826 double p_of_agg = 100.0;
827
828 if (rs->agg[ddir]) {
829 p_of_agg = mean * 100 / (double) rs->agg[ddir];
830 if (p_of_agg > 100.0)
831 p_of_agg = 100.0;
832 }
833
834 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
835 } else
836 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
837}
838
839static void add_ddir_status_json(struct thread_stat *ts,
840 struct group_run_stats *rs, int ddir, struct json_object *parent)
841{
842 unsigned long min, max;
843 unsigned long long bw;
844 unsigned int *ovals = NULL;
845 double mean, dev, iops;
846 unsigned int len, minv, maxv;
847 int i;
848 const char *ddirname[] = {"read", "write", "trim"};
849 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
850 char buf[120];
851 double p_of_agg = 100.0;
852
853 assert(ddir_rw(ddir));
854
855 if (ts->unified_rw_rep && ddir != DDIR_READ)
856 return;
857
858 dir_object = json_create_object();
859 json_object_add_value_object(parent,
860 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
861
862 bw = 0;
863 iops = 0.0;
864 if (ts->runtime[ddir]) {
865 uint64_t runt = ts->runtime[ddir];
866
867 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
868 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
869 }
870
871 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
872 json_object_add_value_int(dir_object, "bw", bw);
873 json_object_add_value_float(dir_object, "iops", iops);
874 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
875 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
876 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
877 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
878
879 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
880 min = max = 0;
881 mean = dev = 0.0;
882 }
883 tmp_object = json_create_object();
884 json_object_add_value_object(dir_object, "slat", tmp_object);
885 json_object_add_value_int(tmp_object, "min", min);
886 json_object_add_value_int(tmp_object, "max", max);
887 json_object_add_value_float(tmp_object, "mean", mean);
888 json_object_add_value_float(tmp_object, "stddev", dev);
889
890 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
891 min = max = 0;
892 mean = dev = 0.0;
893 }
894 tmp_object = json_create_object();
895 json_object_add_value_object(dir_object, "clat", tmp_object);
896 json_object_add_value_int(tmp_object, "min", min);
897 json_object_add_value_int(tmp_object, "max", max);
898 json_object_add_value_float(tmp_object, "mean", mean);
899 json_object_add_value_float(tmp_object, "stddev", dev);
900
901 if (ts->clat_percentiles) {
902 len = calc_clat_percentiles(ts->io_u_plat[ddir],
903 ts->clat_stat[ddir].samples,
904 ts->percentile_list, &ovals, &maxv,
905 &minv);
906 } else
907 len = 0;
908
909 percentile_object = json_create_object();
910 json_object_add_value_object(tmp_object, "percentile", percentile_object);
911 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
912 if (i >= len) {
913 json_object_add_value_int(percentile_object, "0.00", 0);
914 continue;
915 }
916 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
917 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
918 }
919
920 if (output_format & FIO_OUTPUT_JSON_PLUS) {
921 clat_bins_object = json_create_object();
922 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
923 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
924 snprintf(buf, sizeof(buf), "%d", i);
925 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
926 }
927 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
928 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
929 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
930 }
931
932 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
933 min = max = 0;
934 mean = dev = 0.0;
935 }
936 tmp_object = json_create_object();
937 json_object_add_value_object(dir_object, "lat", tmp_object);
938 json_object_add_value_int(tmp_object, "min", min);
939 json_object_add_value_int(tmp_object, "max", max);
940 json_object_add_value_float(tmp_object, "mean", mean);
941 json_object_add_value_float(tmp_object, "stddev", dev);
942 if (ovals)
943 free(ovals);
944
945 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
946 if (rs->agg[ddir]) {
947 p_of_agg = mean * 100 / (double) rs->agg[ddir];
948 if (p_of_agg > 100.0)
949 p_of_agg = 100.0;
950 }
951 } else {
952 min = max = 0;
953 p_of_agg = mean = dev = 0.0;
954 }
955 json_object_add_value_int(dir_object, "bw_min", min);
956 json_object_add_value_int(dir_object, "bw_max", max);
957 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
958 json_object_add_value_float(dir_object, "bw_mean", mean);
959 json_object_add_value_float(dir_object, "bw_dev", dev);
960}
961
962static void show_thread_status_terse_v2(struct thread_stat *ts,
963 struct group_run_stats *rs,
964 struct buf_output *out)
965{
966 double io_u_dist[FIO_IO_U_MAP_NR];
967 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
968 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
969 double usr_cpu, sys_cpu;
970 int i;
971
972 /* General Info */
973 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
974 /* Log Read Status */
975 show_ddir_status_terse(ts, rs, DDIR_READ, out);
976 /* Log Write Status */
977 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
978 /* Log Trim Status */
979 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
980
981 /* CPU Usage */
982 if (ts->total_run_time) {
983 double runt = (double) ts->total_run_time;
984
985 usr_cpu = (double) ts->usr_time * 100 / runt;
986 sys_cpu = (double) ts->sys_time * 100 / runt;
987 } else {
988 usr_cpu = 0;
989 sys_cpu = 0;
990 }
991
992 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
993 (unsigned long long) ts->ctx,
994 (unsigned long long) ts->majf,
995 (unsigned long long) ts->minf);
996
997 /* Calc % distribution of IO depths, usecond, msecond latency */
998 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
999 stat_calc_lat_u(ts, io_u_lat_u);
1000 stat_calc_lat_m(ts, io_u_lat_m);
1001
1002 /* Only show fixed 7 I/O depth levels*/
1003 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1004 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1005 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1006
1007 /* Microsecond latency */
1008 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1009 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1010 /* Millisecond latency */
1011 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1012 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1013 /* Additional output if continue_on_error set - default off*/
1014 if (ts->continue_on_error)
1015 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1016 log_buf(out, "\n");
1017
1018 /* Additional output if description is set */
1019 if (strlen(ts->description))
1020 log_buf(out, ";%s", ts->description);
1021
1022 log_buf(out, "\n");
1023}
1024
1025static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1026 struct group_run_stats *rs, int ver,
1027 struct buf_output *out)
1028{
1029 double io_u_dist[FIO_IO_U_MAP_NR];
1030 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1031 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1032 double usr_cpu, sys_cpu;
1033 int i;
1034
1035 /* General Info */
1036 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1037 ts->name, ts->groupid, ts->error);
1038 /* Log Read Status */
1039 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1040 /* Log Write Status */
1041 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1042 /* Log Trim Status */
1043 if (ver == 4)
1044 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1045
1046 /* CPU Usage */
1047 if (ts->total_run_time) {
1048 double runt = (double) ts->total_run_time;
1049
1050 usr_cpu = (double) ts->usr_time * 100 / runt;
1051 sys_cpu = (double) ts->sys_time * 100 / runt;
1052 } else {
1053 usr_cpu = 0;
1054 sys_cpu = 0;
1055 }
1056
1057 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1058 (unsigned long long) ts->ctx,
1059 (unsigned long long) ts->majf,
1060 (unsigned long long) ts->minf);
1061
1062 /* Calc % distribution of IO depths, usecond, msecond latency */
1063 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1064 stat_calc_lat_u(ts, io_u_lat_u);
1065 stat_calc_lat_m(ts, io_u_lat_m);
1066
1067 /* Only show fixed 7 I/O depth levels*/
1068 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1069 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1070 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1071
1072 /* Microsecond latency */
1073 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1074 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1075 /* Millisecond latency */
1076 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1077 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1078
1079 /* disk util stats, if any */
1080 show_disk_util(1, NULL, out);
1081
1082 /* Additional output if continue_on_error set - default off*/
1083 if (ts->continue_on_error)
1084 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1085
1086 /* Additional output if description is set */
1087 if (strlen(ts->description))
1088 log_buf(out, ";%s", ts->description);
1089
1090 log_buf(out, "\n");
1091}
1092
1093void json_add_job_opts(struct json_object *root, const char *name,
1094 struct flist_head *opt_list, bool num_jobs)
1095{
1096 struct json_object *dir_object;
1097 struct flist_head *entry;
1098 struct print_option *p;
1099
1100 if (flist_empty(opt_list))
1101 return;
1102
1103 dir_object = json_create_object();
1104 json_object_add_value_object(root, name, dir_object);
1105
1106 flist_for_each(entry, opt_list) {
1107 const char *pos = "";
1108
1109 p = flist_entry(entry, struct print_option, list);
1110 if (!num_jobs && !strcmp(p->name, "numjobs"))
1111 continue;
1112 if (p->value)
1113 pos = p->value;
1114 json_object_add_value_string(dir_object, p->name, pos);
1115 }
1116}
1117
1118static struct json_object *show_thread_status_json(struct thread_stat *ts,
1119 struct group_run_stats *rs,
1120 struct flist_head *opt_list)
1121{
1122 struct json_object *root, *tmp;
1123 struct jobs_eta *je;
1124 double io_u_dist[FIO_IO_U_MAP_NR];
1125 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1126 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1127 double usr_cpu, sys_cpu;
1128 int i;
1129 size_t size;
1130
1131 root = json_create_object();
1132 json_object_add_value_string(root, "jobname", ts->name);
1133 json_object_add_value_int(root, "groupid", ts->groupid);
1134 json_object_add_value_int(root, "error", ts->error);
1135
1136 /* ETA Info */
1137 je = get_jobs_eta(true, &size);
1138 if (je) {
1139 json_object_add_value_int(root, "eta", je->eta_sec);
1140 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1141 }
1142
1143 if (opt_list)
1144 json_add_job_opts(root, "job options", opt_list, true);
1145
1146 add_ddir_status_json(ts, rs, DDIR_READ, root);
1147 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1148 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1149
1150 /* CPU Usage */
1151 if (ts->total_run_time) {
1152 double runt = (double) ts->total_run_time;
1153
1154 usr_cpu = (double) ts->usr_time * 100 / runt;
1155 sys_cpu = (double) ts->sys_time * 100 / runt;
1156 } else {
1157 usr_cpu = 0;
1158 sys_cpu = 0;
1159 }
1160 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1161 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1162 json_object_add_value_int(root, "ctx", ts->ctx);
1163 json_object_add_value_int(root, "majf", ts->majf);
1164 json_object_add_value_int(root, "minf", ts->minf);
1165
1166
1167 /* Calc % distribution of IO depths, usecond, msecond latency */
1168 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1169 stat_calc_lat_u(ts, io_u_lat_u);
1170 stat_calc_lat_m(ts, io_u_lat_m);
1171
1172 tmp = json_create_object();
1173 json_object_add_value_object(root, "iodepth_level", tmp);
1174 /* Only show fixed 7 I/O depth levels*/
1175 for (i = 0; i < 7; i++) {
1176 char name[20];
1177 if (i < 6)
1178 snprintf(name, 20, "%d", 1 << i);
1179 else
1180 snprintf(name, 20, ">=%d", 1 << i);
1181 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1182 }
1183
1184 tmp = json_create_object();
1185 json_object_add_value_object(root, "latency_us", tmp);
1186 /* Microsecond latency */
1187 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1188 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1189 "250", "500", "750", "1000", };
1190 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1191 }
1192 /* Millisecond latency */
1193 tmp = json_create_object();
1194 json_object_add_value_object(root, "latency_ms", tmp);
1195 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1196 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1197 "250", "500", "750", "1000", "2000",
1198 ">=2000", };
1199 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1200 }
1201
1202 /* Additional output if continue_on_error set - default off*/
1203 if (ts->continue_on_error) {
1204 json_object_add_value_int(root, "total_err", ts->total_err_count);
1205 json_object_add_value_int(root, "first_error", ts->first_error);
1206 }
1207
1208 if (ts->latency_depth) {
1209 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1210 json_object_add_value_int(root, "latency_target", ts->latency_target);
1211 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1212 json_object_add_value_int(root, "latency_window", ts->latency_window);
1213 }
1214
1215 /* Additional output if description is set */
1216 if (strlen(ts->description))
1217 json_object_add_value_string(root, "desc", ts->description);
1218
1219 if (ts->nr_block_infos) {
1220 /* Block error histogram and types */
1221 int len;
1222 unsigned int *percentiles = NULL;
1223 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1224
1225 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1226 ts->percentile_list,
1227 &percentiles, block_state_counts);
1228
1229 if (len) {
1230 struct json_object *block, *percentile_object, *states;
1231 int state;
1232 block = json_create_object();
1233 json_object_add_value_object(root, "block", block);
1234
1235 percentile_object = json_create_object();
1236 json_object_add_value_object(block, "percentiles",
1237 percentile_object);
1238 for (i = 0; i < len; i++) {
1239 char buf[20];
1240 snprintf(buf, sizeof(buf), "%f",
1241 ts->percentile_list[i].u.f);
1242 json_object_add_value_int(percentile_object,
1243 (const char *)buf,
1244 percentiles[i]);
1245 }
1246
1247 states = json_create_object();
1248 json_object_add_value_object(block, "states", states);
1249 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1250 json_object_add_value_int(states,
1251 block_state_names[state],
1252 block_state_counts[state]);
1253 }
1254 free(percentiles);
1255 }
1256 }
1257
1258 /* steady state detection; move this behind json+? */
1259 if (ts->ss) {
1260 struct json_object *data;
1261 struct json_array *iops, *bw;
1262 struct steadystate_data *ss = ts->ss;
1263 double mean_iops = 0.0, mean_bw = 0.0;
1264 int i, x;
1265 char ss_option[64];
1266
1267 snprintf(ss_option, sizeof(ss_option), "%s%s:%f%s",
1268 ss->check_iops ? "iops" : "bw",
1269 ss->check_slope ? "_slope" : "",
1270 (float) ss->limit,
1271 ss->pct ? "%" : "");
1272
1273 tmp = json_create_object();
1274 json_object_add_value_object(root, "steadystate", tmp);
1275 json_object_add_value_string(tmp, "ss", ss_option);
1276 json_object_add_value_int(tmp, "duration", (int)ss->dur);
1277 json_object_add_value_int(tmp, "steadystate_ramptime", ss->ramp_time / 1000000L);
1278 json_object_add_value_int(tmp, "attained", ss->attained);
1279 json_object_add_value_float(tmp, "criterion", ss->pct ? ss->criterion / 100 : ss->criterion);
1280 json_object_add_value_float(tmp, "max_deviation", ss->deviation);
1281 json_object_add_value_float(tmp, "slope", ss->slope);
1282
1283 data = json_create_object();
1284 json_object_add_value_object(tmp, "data", data);
1285 bw = json_create_array();
1286 iops = json_create_array();
1287 json_object_add_value_array(data, "iops", iops);
1288 json_object_add_value_array(data, "bw", bw);
1289 for (i = 0; i < ss->dur; i++) {
1290 x = (ss->head + i) % ss->dur;
1291 mean_bw += (double) ss->bw_data[x];
1292 mean_iops += (double) ss->iops_data[x];
1293 json_array_add_value_int(bw, ss->bw_data[x]);
1294 json_array_add_value_int(iops, ss->iops_data[x]);
1295 }
1296 mean_bw /= ss->dur;
1297 mean_iops /= ss->dur;
1298 json_object_add_value_float(data, "bw_mean", mean_bw);
1299 json_object_add_value_float(data, "iops_mean", mean_iops);
1300 }
1301
1302 return root;
1303}
1304
1305static void show_thread_status_terse(struct thread_stat *ts,
1306 struct group_run_stats *rs,
1307 struct buf_output *out)
1308{
1309 if (terse_version == 2)
1310 show_thread_status_terse_v2(ts, rs, out);
1311 else if (terse_version == 3 || terse_version == 4)
1312 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1313 else
1314 log_err("fio: bad terse version!? %d\n", terse_version);
1315}
1316
1317struct json_object *show_thread_status(struct thread_stat *ts,
1318 struct group_run_stats *rs,
1319 struct flist_head *opt_list,
1320 struct buf_output *out)
1321{
1322 struct json_object *ret = NULL;
1323
1324 if (output_format & FIO_OUTPUT_TERSE)
1325 show_thread_status_terse(ts, rs, out);
1326 if (output_format & FIO_OUTPUT_JSON)
1327 ret = show_thread_status_json(ts, rs, opt_list);
1328 if (output_format & FIO_OUTPUT_NORMAL)
1329 show_thread_status_normal(ts, rs, out);
1330
1331 return ret;
1332}
1333
1334static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1335{
1336 double mean, S;
1337
1338 if (src->samples == 0)
1339 return;
1340
1341 dst->min_val = min(dst->min_val, src->min_val);
1342 dst->max_val = max(dst->max_val, src->max_val);
1343
1344 /*
1345 * Compute new mean and S after the merge
1346 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1347 * #Parallel_algorithm>
1348 */
1349 if (first) {
1350 mean = src->mean.u.f;
1351 S = src->S.u.f;
1352 } else {
1353 double delta = src->mean.u.f - dst->mean.u.f;
1354
1355 mean = ((src->mean.u.f * src->samples) +
1356 (dst->mean.u.f * dst->samples)) /
1357 (dst->samples + src->samples);
1358
1359 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1360 (dst->samples * src->samples) /
1361 (dst->samples + src->samples);
1362 }
1363
1364 dst->samples += src->samples;
1365 dst->mean.u.f = mean;
1366 dst->S.u.f = S;
1367}
1368
1369void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1370{
1371 int i;
1372
1373 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1374 if (dst->max_run[i] < src->max_run[i])
1375 dst->max_run[i] = src->max_run[i];
1376 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1377 dst->min_run[i] = src->min_run[i];
1378 if (dst->max_bw[i] < src->max_bw[i])
1379 dst->max_bw[i] = src->max_bw[i];
1380 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1381 dst->min_bw[i] = src->min_bw[i];
1382
1383 dst->io_kb[i] += src->io_kb[i];
1384 dst->agg[i] += src->agg[i];
1385 }
1386
1387 if (!dst->kb_base)
1388 dst->kb_base = src->kb_base;
1389 if (!dst->unit_base)
1390 dst->unit_base = src->unit_base;
1391}
1392
1393void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1394 bool first)
1395{
1396 int l, k;
1397
1398 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1399 if (!dst->unified_rw_rep) {
1400 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1401 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1402 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1403 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1404
1405 dst->io_bytes[l] += src->io_bytes[l];
1406
1407 if (dst->runtime[l] < src->runtime[l])
1408 dst->runtime[l] = src->runtime[l];
1409 } else {
1410 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1411 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1412 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1413 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1414
1415 dst->io_bytes[0] += src->io_bytes[l];
1416
1417 if (dst->runtime[0] < src->runtime[l])
1418 dst->runtime[0] = src->runtime[l];
1419
1420 /*
1421 * We're summing to the same destination, so override
1422 * 'first' after the first iteration of the loop
1423 */
1424 first = false;
1425 }
1426 }
1427
1428 dst->usr_time += src->usr_time;
1429 dst->sys_time += src->sys_time;
1430 dst->ctx += src->ctx;
1431 dst->majf += src->majf;
1432 dst->minf += src->minf;
1433
1434 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1435 dst->io_u_map[k] += src->io_u_map[k];
1436 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1437 dst->io_u_submit[k] += src->io_u_submit[k];
1438 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1439 dst->io_u_complete[k] += src->io_u_complete[k];
1440 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1441 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1442 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1443 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1444
1445 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1446 if (!dst->unified_rw_rep) {
1447 dst->total_io_u[k] += src->total_io_u[k];
1448 dst->short_io_u[k] += src->short_io_u[k];
1449 dst->drop_io_u[k] += src->drop_io_u[k];
1450 } else {
1451 dst->total_io_u[0] += src->total_io_u[k];
1452 dst->short_io_u[0] += src->short_io_u[k];
1453 dst->drop_io_u[0] += src->drop_io_u[k];
1454 }
1455 }
1456
1457 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1458 int m;
1459
1460 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1461 if (!dst->unified_rw_rep)
1462 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1463 else
1464 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1465 }
1466 }
1467
1468 dst->total_run_time += src->total_run_time;
1469 dst->total_submit += src->total_submit;
1470 dst->total_complete += src->total_complete;
1471}
1472
1473void init_group_run_stat(struct group_run_stats *gs)
1474{
1475 int i;
1476 memset(gs, 0, sizeof(*gs));
1477
1478 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1479 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1480}
1481
1482void init_thread_stat(struct thread_stat *ts)
1483{
1484 int j;
1485
1486 memset(ts, 0, sizeof(*ts));
1487
1488 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1489 ts->lat_stat[j].min_val = -1UL;
1490 ts->clat_stat[j].min_val = -1UL;
1491 ts->slat_stat[j].min_val = -1UL;
1492 ts->bw_stat[j].min_val = -1UL;
1493 }
1494 ts->groupid = -1;
1495}
1496
1497void __show_run_stats(void)
1498{
1499 struct group_run_stats *runstats, *rs;
1500 struct thread_data *td;
1501 struct thread_stat *threadstats, *ts;
1502 int i, j, k, nr_ts, last_ts, idx;
1503 int kb_base_warned = 0;
1504 int unit_base_warned = 0;
1505 struct json_object *root = NULL;
1506 struct json_array *array = NULL;
1507 struct buf_output output[FIO_OUTPUT_NR];
1508 struct flist_head **opt_lists;
1509
1510 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1511
1512 for (i = 0; i < groupid + 1; i++)
1513 init_group_run_stat(&runstats[i]);
1514
1515 /*
1516 * find out how many threads stats we need. if group reporting isn't
1517 * enabled, it's one-per-td.
1518 */
1519 nr_ts = 0;
1520 last_ts = -1;
1521 for_each_td(td, i) {
1522 if (!td->o.group_reporting) {
1523 nr_ts++;
1524 continue;
1525 }
1526 if (last_ts == td->groupid)
1527 continue;
1528
1529 last_ts = td->groupid;
1530 nr_ts++;
1531 }
1532
1533 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1534 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1535
1536 for (i = 0; i < nr_ts; i++) {
1537 init_thread_stat(&threadstats[i]);
1538 opt_lists[i] = NULL;
1539 }
1540
1541 j = 0;
1542 last_ts = -1;
1543 idx = 0;
1544 for_each_td(td, i) {
1545 if (idx && (!td->o.group_reporting ||
1546 (td->o.group_reporting && last_ts != td->groupid))) {
1547 idx = 0;
1548 j++;
1549 }
1550
1551 last_ts = td->groupid;
1552
1553 ts = &threadstats[j];
1554
1555 ts->clat_percentiles = td->o.clat_percentiles;
1556 ts->percentile_precision = td->o.percentile_precision;
1557 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1558 opt_lists[j] = &td->opt_list;
1559
1560 idx++;
1561 ts->members++;
1562
1563 if (ts->groupid == -1) {
1564 /*
1565 * These are per-group shared already
1566 */
1567 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1568 if (td->o.description)
1569 strncpy(ts->description, td->o.description,
1570 FIO_JOBDESC_SIZE - 1);
1571 else
1572 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1573
1574 /*
1575 * If multiple entries in this group, this is
1576 * the first member.
1577 */
1578 ts->thread_number = td->thread_number;
1579 ts->groupid = td->groupid;
1580
1581 /*
1582 * first pid in group, not very useful...
1583 */
1584 ts->pid = td->pid;
1585
1586 ts->kb_base = td->o.kb_base;
1587 ts->unit_base = td->o.unit_base;
1588 ts->unified_rw_rep = td->o.unified_rw_rep;
1589 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1590 log_info("fio: kb_base differs for jobs in group, using"
1591 " %u as the base\n", ts->kb_base);
1592 kb_base_warned = 1;
1593 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1594 log_info("fio: unit_base differs for jobs in group, using"
1595 " %u as the base\n", ts->unit_base);
1596 unit_base_warned = 1;
1597 }
1598
1599 ts->continue_on_error = td->o.continue_on_error;
1600 ts->total_err_count += td->total_err_count;
1601 ts->first_error = td->first_error;
1602 if (!ts->error) {
1603 if (!td->error && td->o.continue_on_error &&
1604 td->first_error) {
1605 ts->error = td->first_error;
1606 ts->verror[sizeof(ts->verror) - 1] = '\0';
1607 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1608 } else if (td->error) {
1609 ts->error = td->error;
1610 ts->verror[sizeof(ts->verror) - 1] = '\0';
1611 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1612 }
1613 }
1614
1615 ts->latency_depth = td->latency_qd;
1616 ts->latency_target = td->o.latency_target;
1617 ts->latency_percentile = td->o.latency_percentile;
1618 ts->latency_window = td->o.latency_window;
1619
1620 ts->nr_block_infos = td->ts.nr_block_infos;
1621 for (k = 0; k < ts->nr_block_infos; k++)
1622 ts->block_infos[k] = td->ts.block_infos[k];
1623
1624 sum_thread_stats(ts, &td->ts, idx == 1);
1625
1626 if (td->o.ss_dur)
1627 ts->ss = &td->ss;
1628 else
1629 ts->ss = NULL;
1630 }
1631
1632 for (i = 0; i < nr_ts; i++) {
1633 unsigned long long bw;
1634
1635 ts = &threadstats[i];
1636 if (ts->groupid == -1)
1637 continue;
1638 rs = &runstats[ts->groupid];
1639 rs->kb_base = ts->kb_base;
1640 rs->unit_base = ts->unit_base;
1641 rs->unified_rw_rep += ts->unified_rw_rep;
1642
1643 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1644 if (!ts->runtime[j])
1645 continue;
1646 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1647 rs->min_run[j] = ts->runtime[j];
1648 if (ts->runtime[j] > rs->max_run[j])
1649 rs->max_run[j] = ts->runtime[j];
1650
1651 bw = 0;
1652 if (ts->runtime[j]) {
1653 unsigned long runt = ts->runtime[j];
1654 unsigned long long kb;
1655
1656 kb = ts->io_bytes[j] / rs->kb_base;
1657 bw = kb * 1000 / runt;
1658 }
1659 if (bw < rs->min_bw[j])
1660 rs->min_bw[j] = bw;
1661 if (bw > rs->max_bw[j])
1662 rs->max_bw[j] = bw;
1663
1664 rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1665 }
1666 }
1667
1668 for (i = 0; i < groupid + 1; i++) {
1669 int ddir;
1670
1671 rs = &runstats[i];
1672
1673 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1674 if (rs->max_run[ddir])
1675 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1676 rs->max_run[ddir];
1677 }
1678 }
1679
1680 for (i = 0; i < FIO_OUTPUT_NR; i++)
1681 buf_output_init(&output[i]);
1682
1683 /*
1684 * don't overwrite last signal output
1685 */
1686 if (output_format & FIO_OUTPUT_NORMAL)
1687 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1688 if (output_format & FIO_OUTPUT_JSON) {
1689 struct thread_data *global;
1690 char time_buf[32];
1691 struct timeval now;
1692 unsigned long long ms_since_epoch;
1693
1694 gettimeofday(&now, NULL);
1695 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1696 (unsigned long long)(now.tv_usec) / 1000;
1697
1698 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1699 sizeof(time_buf));
1700 time_buf[strlen(time_buf) - 1] = '\0';
1701
1702 root = json_create_object();
1703 json_object_add_value_string(root, "fio version", fio_version_string);
1704 json_object_add_value_int(root, "timestamp", now.tv_sec);
1705 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1706 json_object_add_value_string(root, "time", time_buf);
1707 global = get_global_options();
1708 json_add_job_opts(root, "global options", &global->opt_list, false);
1709 array = json_create_array();
1710 json_object_add_value_array(root, "jobs", array);
1711 }
1712
1713 if (is_backend)
1714 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1715
1716 for (i = 0; i < nr_ts; i++) {
1717 ts = &threadstats[i];
1718 rs = &runstats[ts->groupid];
1719
1720 if (is_backend) {
1721 fio_server_send_job_options(opt_lists[i], i);
1722 fio_server_send_ts(ts, rs);
1723 } else {
1724 if (output_format & FIO_OUTPUT_TERSE)
1725 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1726 if (output_format & FIO_OUTPUT_JSON) {
1727 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1728 json_array_add_value_object(array, tmp);
1729 }
1730 if (output_format & FIO_OUTPUT_NORMAL)
1731 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1732 }
1733 }
1734 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1735 /* disk util stats, if any */
1736 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1737
1738 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1739
1740 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1741 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1742 json_free_object(root);
1743 }
1744
1745 for (i = 0; i < groupid + 1; i++) {
1746 rs = &runstats[i];
1747
1748 rs->groupid = i;
1749 if (is_backend)
1750 fio_server_send_gs(rs);
1751 else if (output_format & FIO_OUTPUT_NORMAL)
1752 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1753 }
1754
1755 if (is_backend)
1756 fio_server_send_du();
1757 else if (output_format & FIO_OUTPUT_NORMAL) {
1758 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1759 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1760 }
1761
1762 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1763 buf_output_flush(&output[i]);
1764 buf_output_free(&output[i]);
1765 }
1766
1767 log_info_flush();
1768 free(runstats);
1769 free(threadstats);
1770 free(opt_lists);
1771}
1772
1773void show_run_stats(void)
1774{
1775 fio_mutex_down(stat_mutex);
1776 __show_run_stats();
1777 fio_mutex_up(stat_mutex);
1778}
1779
1780void __show_running_run_stats(void)
1781{
1782 struct thread_data *td;
1783 unsigned long long *rt;
1784 struct timeval tv;
1785 int i;
1786
1787 fio_mutex_down(stat_mutex);
1788
1789 rt = malloc(thread_number * sizeof(unsigned long long));
1790 fio_gettime(&tv, NULL);
1791
1792 for_each_td(td, i) {
1793 td->update_rusage = 1;
1794 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1795 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1796 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1797 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1798
1799 rt[i] = mtime_since(&td->start, &tv);
1800 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1801 td->ts.runtime[DDIR_READ] += rt[i];
1802 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1803 td->ts.runtime[DDIR_WRITE] += rt[i];
1804 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1805 td->ts.runtime[DDIR_TRIM] += rt[i];
1806 }
1807
1808 for_each_td(td, i) {
1809 if (td->runstate >= TD_EXITED)
1810 continue;
1811 if (td->rusage_sem) {
1812 td->update_rusage = 1;
1813 fio_mutex_down(td->rusage_sem);
1814 }
1815 td->update_rusage = 0;
1816 }
1817
1818 __show_run_stats();
1819
1820 for_each_td(td, i) {
1821 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1822 td->ts.runtime[DDIR_READ] -= rt[i];
1823 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1824 td->ts.runtime[DDIR_WRITE] -= rt[i];
1825 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1826 td->ts.runtime[DDIR_TRIM] -= rt[i];
1827 }
1828
1829 free(rt);
1830 fio_mutex_up(stat_mutex);
1831}
1832
1833static int status_interval_init;
1834static struct timeval status_time;
1835static int status_file_disabled;
1836
1837#define FIO_STATUS_FILE "fio-dump-status"
1838
1839static int check_status_file(void)
1840{
1841 struct stat sb;
1842 const char *temp_dir;
1843 char fio_status_file_path[PATH_MAX];
1844
1845 if (status_file_disabled)
1846 return 0;
1847
1848 temp_dir = getenv("TMPDIR");
1849 if (temp_dir == NULL) {
1850 temp_dir = getenv("TEMP");
1851 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1852 temp_dir = NULL;
1853 }
1854 if (temp_dir == NULL)
1855 temp_dir = "/tmp";
1856
1857 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1858
1859 if (stat(fio_status_file_path, &sb))
1860 return 0;
1861
1862 if (unlink(fio_status_file_path) < 0) {
1863 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1864 strerror(errno));
1865 log_err("fio: disabling status file updates\n");
1866 status_file_disabled = 1;
1867 }
1868
1869 return 1;
1870}
1871
1872void check_for_running_stats(void)
1873{
1874 if (status_interval) {
1875 if (!status_interval_init) {
1876 fio_gettime(&status_time, NULL);
1877 status_interval_init = 1;
1878 } else if (mtime_since_now(&status_time) >= status_interval) {
1879 show_running_run_stats();
1880 fio_gettime(&status_time, NULL);
1881 return;
1882 }
1883 }
1884 if (check_status_file()) {
1885 show_running_run_stats();
1886 return;
1887 }
1888}
1889
1890static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1891{
1892 double val = data;
1893 double delta;
1894
1895 if (data > is->max_val)
1896 is->max_val = data;
1897 if (data < is->min_val)
1898 is->min_val = data;
1899
1900 delta = val - is->mean.u.f;
1901 if (delta) {
1902 is->mean.u.f += delta / (is->samples + 1.0);
1903 is->S.u.f += delta * (val - is->mean.u.f);
1904 }
1905
1906 is->samples++;
1907}
1908
1909/*
1910 * Return a struct io_logs, which is added to the tail of the log
1911 * list for 'iolog'.
1912 */
1913static struct io_logs *get_new_log(struct io_log *iolog)
1914{
1915 size_t new_size, new_samples;
1916 struct io_logs *cur_log;
1917
1918 /*
1919 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1920 * forever
1921 */
1922 if (!iolog->cur_log_max)
1923 new_samples = DEF_LOG_ENTRIES;
1924 else {
1925 new_samples = iolog->cur_log_max * 2;
1926 if (new_samples > MAX_LOG_ENTRIES)
1927 new_samples = MAX_LOG_ENTRIES;
1928 }
1929
1930 new_size = new_samples * log_entry_sz(iolog);
1931
1932 cur_log = smalloc(sizeof(*cur_log));
1933 if (cur_log) {
1934 INIT_FLIST_HEAD(&cur_log->list);
1935 cur_log->log = malloc(new_size);
1936 if (cur_log->log) {
1937 cur_log->nr_samples = 0;
1938 cur_log->max_samples = new_samples;
1939 flist_add_tail(&cur_log->list, &iolog->io_logs);
1940 iolog->cur_log_max = new_samples;
1941 return cur_log;
1942 }
1943 sfree(cur_log);
1944 }
1945
1946 return NULL;
1947}
1948
1949/*
1950 * Add and return a new log chunk, or return current log if big enough
1951 */
1952static struct io_logs *regrow_log(struct io_log *iolog)
1953{
1954 struct io_logs *cur_log;
1955 int i;
1956
1957 if (!iolog || iolog->disabled)
1958 goto disable;
1959
1960 cur_log = iolog_cur_log(iolog);
1961 if (!cur_log) {
1962 cur_log = get_new_log(iolog);
1963 if (!cur_log)
1964 return NULL;
1965 }
1966
1967 if (cur_log->nr_samples < cur_log->max_samples)
1968 return cur_log;
1969
1970 /*
1971 * No room for a new sample. If we're compressing on the fly, flush
1972 * out the current chunk
1973 */
1974 if (iolog->log_gz) {
1975 if (iolog_cur_flush(iolog, cur_log)) {
1976 log_err("fio: failed flushing iolog! Will stop logging.\n");
1977 return NULL;
1978 }
1979 }
1980
1981 /*
1982 * Get a new log array, and add to our list
1983 */
1984 cur_log = get_new_log(iolog);
1985 if (!cur_log) {
1986 log_err("fio: failed extending iolog! Will stop logging.\n");
1987 return NULL;
1988 }
1989
1990 if (!iolog->pending || !iolog->pending->nr_samples)
1991 return cur_log;
1992
1993 /*
1994 * Flush pending items to new log
1995 */
1996 for (i = 0; i < iolog->pending->nr_samples; i++) {
1997 struct io_sample *src, *dst;
1998
1999 src = get_sample(iolog, iolog->pending, i);
2000 dst = get_sample(iolog, cur_log, i);
2001 memcpy(dst, src, log_entry_sz(iolog));
2002 }
2003 cur_log->nr_samples = iolog->pending->nr_samples;
2004
2005 iolog->pending->nr_samples = 0;
2006 return cur_log;
2007disable:
2008 if (iolog)
2009 iolog->disabled = true;
2010 return NULL;
2011}
2012
2013void regrow_logs(struct thread_data *td)
2014{
2015 regrow_log(td->slat_log);
2016 regrow_log(td->clat_log);
2017 regrow_log(td->clat_hist_log);
2018 regrow_log(td->lat_log);
2019 regrow_log(td->bw_log);
2020 regrow_log(td->iops_log);
2021 td->flags &= ~TD_F_REGROW_LOGS;
2022}
2023
2024static struct io_logs *get_cur_log(struct io_log *iolog)
2025{
2026 struct io_logs *cur_log;
2027
2028 cur_log = iolog_cur_log(iolog);
2029 if (!cur_log) {
2030 cur_log = get_new_log(iolog);
2031 if (!cur_log)
2032 return NULL;
2033 }
2034
2035 if (cur_log->nr_samples < cur_log->max_samples)
2036 return cur_log;
2037
2038 /*
2039 * Out of space. If we're in IO offload mode, or we're not doing
2040 * per unit logging (hence logging happens outside of the IO thread
2041 * as well), add a new log chunk inline. If we're doing inline
2042 * submissions, flag 'td' as needing a log regrow and we'll take
2043 * care of it on the submission side.
2044 */
2045 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2046 !per_unit_log(iolog))
2047 return regrow_log(iolog);
2048
2049 iolog->td->flags |= TD_F_REGROW_LOGS;
2050 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2051 return iolog->pending;
2052}
2053
2054static void __add_log_sample(struct io_log *iolog, unsigned long val,
2055 enum fio_ddir ddir, unsigned int bs,
2056 unsigned long t, uint64_t offset)
2057{
2058 struct io_logs *cur_log;
2059
2060 if (iolog->disabled)
2061 return;
2062 if (flist_empty(&iolog->io_logs))
2063 iolog->avg_last = t;
2064
2065 cur_log = get_cur_log(iolog);
2066 if (cur_log) {
2067 struct io_sample *s;
2068
2069 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2070
2071 s->val = val;
2072 s->time = t;
2073 io_sample_set_ddir(iolog, s, ddir);
2074 s->bs = bs;
2075
2076 if (iolog->log_offset) {
2077 struct io_sample_offset *so = (void *) s;
2078
2079 so->offset = offset;
2080 }
2081
2082 cur_log->nr_samples++;
2083 return;
2084 }
2085
2086 iolog->disabled = true;
2087}
2088
2089static inline void reset_io_stat(struct io_stat *ios)
2090{
2091 ios->max_val = ios->min_val = ios->samples = 0;
2092 ios->mean.u.f = ios->S.u.f = 0;
2093}
2094
2095void reset_io_stats(struct thread_data *td)
2096{
2097 struct thread_stat *ts = &td->ts;
2098 int i, j;
2099
2100 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2101 reset_io_stat(&ts->clat_stat[i]);
2102 reset_io_stat(&ts->slat_stat[i]);
2103 reset_io_stat(&ts->lat_stat[i]);
2104 reset_io_stat(&ts->bw_stat[i]);
2105 reset_io_stat(&ts->iops_stat[i]);
2106
2107 ts->io_bytes[i] = 0;
2108 ts->runtime[i] = 0;
2109
2110 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2111 ts->io_u_plat[i][j] = 0;
2112 }
2113
2114 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2115 ts->io_u_map[i] = 0;
2116 ts->io_u_submit[i] = 0;
2117 ts->io_u_complete[i] = 0;
2118 ts->io_u_lat_u[i] = 0;
2119 ts->io_u_lat_m[i] = 0;
2120 ts->total_submit = 0;
2121 ts->total_complete = 0;
2122 }
2123
2124 for (i = 0; i < 3; i++) {
2125 ts->total_io_u[i] = 0;
2126 ts->short_io_u[i] = 0;
2127 ts->drop_io_u[i] = 0;
2128 }
2129}
2130
2131static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2132 unsigned long elapsed, bool log_max)
2133{
2134 /*
2135 * Note an entry in the log. Use the mean from the logged samples,
2136 * making sure to properly round up. Only write a log entry if we
2137 * had actual samples done.
2138 */
2139 if (iolog->avg_window[ddir].samples) {
2140 unsigned long val;
2141
2142 if (log_max)
2143 val = iolog->avg_window[ddir].max_val;
2144 else
2145 val = iolog->avg_window[ddir].mean.u.f + 0.50;
2146
2147 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2148 }
2149
2150 reset_io_stat(&iolog->avg_window[ddir]);
2151}
2152
2153static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2154 bool log_max)
2155{
2156 int ddir;
2157
2158 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2159 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2160}
2161
2162static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2163 unsigned long val, enum fio_ddir ddir,
2164 unsigned int bs, uint64_t offset)
2165{
2166 unsigned long elapsed, this_window;
2167
2168 if (!ddir_rw(ddir))
2169 return 0;
2170
2171 elapsed = mtime_since_now(&td->epoch);
2172
2173 /*
2174 * If no time averaging, just add the log sample.
2175 */
2176 if (!iolog->avg_msec) {
2177 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2178 return 0;
2179 }
2180
2181 /*
2182 * Add the sample. If the time period has passed, then
2183 * add that entry to the log and clear.
2184 */
2185 add_stat_sample(&iolog->avg_window[ddir], val);
2186
2187 /*
2188 * If period hasn't passed, adding the above sample is all we
2189 * need to do.
2190 */
2191 this_window = elapsed - iolog->avg_last;
2192 if (elapsed < iolog->avg_last)
2193 return iolog->avg_last - elapsed;
2194 else if (this_window < iolog->avg_msec) {
2195 int diff = iolog->avg_msec - this_window;
2196
2197 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2198 return diff;
2199 }
2200
2201 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2202
2203 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2204 return iolog->avg_msec;
2205}
2206
2207void finalize_logs(struct thread_data *td, bool unit_logs)
2208{
2209 unsigned long elapsed;
2210
2211 elapsed = mtime_since_now(&td->epoch);
2212
2213 if (td->clat_log && unit_logs)
2214 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2215 if (td->slat_log && unit_logs)
2216 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2217 if (td->lat_log && unit_logs)
2218 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2219 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2220 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2221 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2222 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2223}
2224
2225void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2226{
2227 struct io_log *iolog;
2228
2229 if (!ddir_rw(ddir))
2230 return;
2231
2232 iolog = agg_io_log[ddir];
2233 __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2234}
2235
2236static void add_clat_percentile_sample(struct thread_stat *ts,
2237 unsigned long usec, enum fio_ddir ddir)
2238{
2239 unsigned int idx = plat_val_to_idx(usec);
2240 assert(idx < FIO_IO_U_PLAT_NR);
2241
2242 ts->io_u_plat[ddir][idx]++;
2243}
2244
2245void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2246 unsigned long usec, unsigned int bs, uint64_t offset)
2247{
2248 unsigned long elapsed, this_window;
2249 struct thread_stat *ts = &td->ts;
2250 struct io_log *iolog = td->clat_hist_log;
2251
2252 td_io_u_lock(td);
2253
2254 add_stat_sample(&ts->clat_stat[ddir], usec);
2255
2256 if (td->clat_log)
2257 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2258
2259 if (ts->clat_percentiles)
2260 add_clat_percentile_sample(ts, usec, ddir);
2261
2262 if (iolog && iolog->hist_msec) {
2263 struct io_hist *hw = &iolog->hist_window[ddir];
2264
2265 hw->samples++;
2266 elapsed = mtime_since_now(&td->epoch);
2267 if (!hw->hist_last)
2268 hw->hist_last = elapsed;
2269 this_window = elapsed - hw->hist_last;
2270
2271 if (this_window >= iolog->hist_msec) {
2272 unsigned int *io_u_plat;
2273 unsigned int *dst;
2274
2275 /*
2276 * Make a byte-for-byte copy of the latency histogram
2277 * stored in td->ts.io_u_plat[ddir], recording it in a
2278 * log sample. Note that the matching call to free() is
2279 * located in iolog.c after printing this sample to the
2280 * log file.
2281 */
2282 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2283 dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2284 memcpy(dst, io_u_plat,
2285 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2286 __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2287 elapsed, offset);
2288
2289 /*
2290 * Update the last time we recorded as being now, minus
2291 * any drift in time we encountered before actually
2292 * making the record.
2293 */
2294 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2295 hw->samples = 0;
2296 }
2297 }
2298
2299 td_io_u_unlock(td);
2300}
2301
2302void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2303 unsigned long usec, unsigned int bs, uint64_t offset)
2304{
2305 struct thread_stat *ts = &td->ts;
2306
2307 if (!ddir_rw(ddir))
2308 return;
2309
2310 td_io_u_lock(td);
2311
2312 add_stat_sample(&ts->slat_stat[ddir], usec);
2313
2314 if (td->slat_log)
2315 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2316
2317 td_io_u_unlock(td);
2318}
2319
2320void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2321 unsigned long usec, unsigned int bs, uint64_t offset)
2322{
2323 struct thread_stat *ts = &td->ts;
2324
2325 if (!ddir_rw(ddir))
2326 return;
2327
2328 td_io_u_lock(td);
2329
2330 add_stat_sample(&ts->lat_stat[ddir], usec);
2331
2332 if (td->lat_log)
2333 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2334
2335 td_io_u_unlock(td);
2336}
2337
2338void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2339 unsigned int bytes, unsigned long spent)
2340{
2341 struct thread_stat *ts = &td->ts;
2342 unsigned long rate;
2343
2344 if (spent)
2345 rate = bytes * 1000 / spent;
2346 else
2347 rate = 0;
2348
2349 td_io_u_lock(td);
2350
2351 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2352
2353 if (td->bw_log)
2354 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2355
2356 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2357 td_io_u_unlock(td);
2358}
2359
2360static int add_bw_samples(struct thread_data *td, struct timeval *t)
2361{
2362 struct thread_stat *ts = &td->ts;
2363 unsigned long spent, rate;
2364 enum fio_ddir ddir;
2365 unsigned int next, next_log;
2366
2367 next_log = td->o.bw_avg_time;
2368
2369 spent = mtime_since(&td->bw_sample_time, t);
2370 if (spent < td->o.bw_avg_time &&
2371 td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2372 return td->o.bw_avg_time - spent;
2373
2374 td_io_u_lock(td);
2375
2376 /*
2377 * Compute both read and write rates for the interval.
2378 */
2379 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2380 uint64_t delta;
2381
2382 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2383 if (!delta)
2384 continue; /* No entries for interval */
2385
2386 if (spent)
2387 rate = delta * 1000 / spent / 1024;
2388 else
2389 rate = 0;
2390
2391 add_stat_sample(&ts->bw_stat[ddir], rate);
2392
2393 if (td->bw_log) {
2394 unsigned int bs = 0;
2395
2396 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2397 bs = td->o.min_bs[ddir];
2398
2399 next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2400 next_log = min(next_log, next);
2401 }
2402
2403 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2404 }
2405
2406 timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2407
2408 td_io_u_unlock(td);
2409
2410 if (spent <= td->o.bw_avg_time)
2411 return min(next_log, td->o.bw_avg_time);
2412
2413 next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2414 return min(next, next_log);
2415}
2416
2417void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2418 unsigned int bytes)
2419{
2420 struct thread_stat *ts = &td->ts;
2421
2422 td_io_u_lock(td);
2423
2424 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2425
2426 if (td->iops_log)
2427 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2428
2429 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2430 td_io_u_unlock(td);
2431}
2432
2433static int add_iops_samples(struct thread_data *td, struct timeval *t)
2434{
2435 struct thread_stat *ts = &td->ts;
2436 unsigned long spent, iops;
2437 enum fio_ddir ddir;
2438 unsigned int next, next_log;
2439
2440 next_log = td->o.iops_avg_time;
2441
2442 spent = mtime_since(&td->iops_sample_time, t);
2443 if (spent < td->o.iops_avg_time &&
2444 td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2445 return td->o.iops_avg_time - spent;
2446
2447 td_io_u_lock(td);
2448
2449 /*
2450 * Compute both read and write rates for the interval.
2451 */
2452 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2453 uint64_t delta;
2454
2455 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2456 if (!delta)
2457 continue; /* No entries for interval */
2458
2459 if (spent)
2460 iops = (delta * 1000) / spent;
2461 else
2462 iops = 0;
2463
2464 add_stat_sample(&ts->iops_stat[ddir], iops);
2465
2466 if (td->iops_log) {
2467 unsigned int bs = 0;
2468
2469 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2470 bs = td->o.min_bs[ddir];
2471
2472 next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2473 next_log = min(next_log, next);
2474 }
2475
2476 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2477 }
2478
2479 timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2480
2481 td_io_u_unlock(td);
2482
2483 if (spent <= td->o.iops_avg_time)
2484 return min(next_log, td->o.iops_avg_time);
2485
2486 next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2487 return min(next, next_log);
2488}
2489
2490/*
2491 * Returns msecs to next event
2492 */
2493int calc_log_samples(void)
2494{
2495 struct thread_data *td;
2496 unsigned int next = ~0U, tmp;
2497 struct timeval now;
2498 int i;
2499
2500 fio_gettime(&now, NULL);
2501
2502 for_each_td(td, i) {
2503 if (in_ramp_time(td) ||
2504 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2505 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2506 continue;
2507 }
2508 if (!per_unit_log(td->bw_log)) {
2509 tmp = add_bw_samples(td, &now);
2510 if (tmp < next)
2511 next = tmp;
2512 }
2513 if (!per_unit_log(td->iops_log)) {
2514 tmp = add_iops_samples(td, &now);
2515 if (tmp < next)
2516 next = tmp;
2517 }
2518 }
2519
2520 return next == ~0U ? 0 : next;
2521}
2522
2523void stat_init(void)
2524{
2525 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2526}
2527
2528void stat_exit(void)
2529{
2530 /*
2531 * When we have the mutex, we know out-of-band access to it
2532 * have ended.
2533 */
2534 fio_mutex_down(stat_mutex);
2535 fio_mutex_remove(stat_mutex);
2536}
2537
2538/*
2539 * Called from signal handler. Wake up status thread.
2540 */
2541void show_running_run_stats(void)
2542{
2543 helper_do_stat();
2544}
2545
2546uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2547{
2548 /* Ignore io_u's which span multiple blocks--they will just get
2549 * inaccurate counts. */
2550 int idx = (io_u->offset - io_u->file->file_offset)
2551 / td->o.bs[DDIR_TRIM];
2552 uint32_t *info = &td->ts.block_infos[idx];
2553 assert(idx < td->ts.nr_block_infos);
2554 return info;
2555}