engines/io_uring: don't set CQSIZE clamp unconditionally
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18#include "oslib/asprintf.h"
19
20#ifdef WIN32
21#define LOG_MSEC_SLACK 2
22#else
23#define LOG_MSEC_SLACK 1
24#endif
25
26struct fio_sem *stat_sem;
27
28void clear_rusage_stat(struct thread_data *td)
29{
30 struct thread_stat *ts = &td->ts;
31
32 fio_getrusage(&td->ru_start);
33 ts->usr_time = ts->sys_time = 0;
34 ts->ctx = 0;
35 ts->minf = ts->majf = 0;
36}
37
38void update_rusage_stat(struct thread_data *td)
39{
40 struct thread_stat *ts = &td->ts;
41
42 fio_getrusage(&td->ru_end);
43 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44 &td->ru_end.ru_utime);
45 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46 &td->ru_end.ru_stime);
47 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53}
54
55/*
56 * Given a latency, return the index of the corresponding bucket in
57 * the structure tracking percentiles.
58 *
59 * (1) find the group (and error bits) that the value (latency)
60 * belongs to by looking at its MSB. (2) find the bucket number in the
61 * group by looking at the index bits.
62 *
63 */
64static unsigned int plat_val_to_idx(unsigned long long val)
65{
66 unsigned int msb, error_bits, base, offset, idx;
67
68 /* Find MSB starting from bit 0 */
69 if (val == 0)
70 msb = 0;
71 else
72 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74 /*
75 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76 * all bits of the sample as index
77 */
78 if (msb <= FIO_IO_U_PLAT_BITS)
79 return val;
80
81 /* Compute the number of error bits to discard*/
82 error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84 /* Compute the number of buckets before the group */
85 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87 /*
88 * Discard the error bits and apply the mask to find the
89 * index for the buckets in the group
90 */
91 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93 /* Make sure the index does not exceed (array size - 1) */
94 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97 return idx;
98}
99
100/*
101 * Convert the given index of the bucket array to the value
102 * represented by the bucket
103 */
104static unsigned long long plat_idx_to_val(unsigned int idx)
105{
106 unsigned int error_bits;
107 unsigned long long k, base;
108
109 assert(idx < FIO_IO_U_PLAT_NR);
110
111 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112 * all bits of the sample as index */
113 if (idx < (FIO_IO_U_PLAT_VAL << 1))
114 return idx;
115
116 /* Find the group and compute the minimum value of that group */
117 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120 /* Find its bucket number of the group */
121 k = idx % FIO_IO_U_PLAT_VAL;
122
123 /* Return the mean of the range of the bucket */
124 return base + ((k + 0.5) * (1 << error_bits));
125}
126
127static int double_cmp(const void *a, const void *b)
128{
129 const fio_fp64_t fa = *(const fio_fp64_t *) a;
130 const fio_fp64_t fb = *(const fio_fp64_t *) b;
131 int cmp = 0;
132
133 if (fa.u.f > fb.u.f)
134 cmp = 1;
135 else if (fa.u.f < fb.u.f)
136 cmp = -1;
137
138 return cmp;
139}
140
141unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142 fio_fp64_t *plist, unsigned long long **output,
143 unsigned long long *maxv, unsigned long long *minv)
144{
145 unsigned long long sum = 0;
146 unsigned int len, i, j = 0;
147 unsigned long long *ovals = NULL;
148 bool is_last;
149
150 *minv = -1ULL;
151 *maxv = 0;
152
153 len = 0;
154 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155 len++;
156
157 if (!len)
158 return 0;
159
160 /*
161 * Sort the percentile list. Note that it may already be sorted if
162 * we are using the default values, but since it's a short list this
163 * isn't a worry. Also note that this does not work for NaN values.
164 */
165 if (len > 1)
166 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168 ovals = malloc(len * sizeof(*ovals));
169 if (!ovals)
170 return 0;
171
172 /*
173 * Calculate bucket values, note down max and min values
174 */
175 is_last = false;
176 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177 sum += io_u_plat[i];
178 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179 assert(plist[j].u.f <= 100.0);
180
181 ovals[j] = plat_idx_to_val(i);
182 if (ovals[j] < *minv)
183 *minv = ovals[j];
184 if (ovals[j] > *maxv)
185 *maxv = ovals[j];
186
187 is_last = (j == len - 1) != 0;
188 if (is_last)
189 break;
190
191 j++;
192 }
193 }
194
195 if (!is_last)
196 log_err("fio: error calculating latency percentiles\n");
197
198 *output = ovals;
199 return len;
200}
201
202/*
203 * Find and display the p-th percentile of clat
204 */
205static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206 fio_fp64_t *plist, unsigned int precision,
207 const char *pre, struct buf_output *out)
208{
209 unsigned int divisor, len, i, j = 0;
210 unsigned long long minv, maxv;
211 unsigned long long *ovals;
212 int per_line, scale_down, time_width;
213 bool is_last;
214 char fmt[32];
215
216 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217 if (!len || !ovals)
218 return;
219
220 /*
221 * We default to nsecs, but if the value range is such that we
222 * should scale down to usecs or msecs, do that.
223 */
224 if (minv > 2000000 && maxv > 99999999ULL) {
225 scale_down = 2;
226 divisor = 1000000;
227 log_buf(out, " %s percentiles (msec):\n |", pre);
228 } else if (minv > 2000 && maxv > 99999) {
229 scale_down = 1;
230 divisor = 1000;
231 log_buf(out, " %s percentiles (usec):\n |", pre);
232 } else {
233 scale_down = 0;
234 divisor = 1;
235 log_buf(out, " %s percentiles (nsec):\n |", pre);
236 }
237
238
239 time_width = max(5, (int) (log10(maxv / divisor) + 1));
240 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241 precision, time_width);
242 /* fmt will be something like " %5.2fth=[%4llu]%c" */
243 per_line = (80 - 7) / (precision + 10 + time_width);
244
245 for (j = 0; j < len; j++) {
246 /* for formatting */
247 if (j != 0 && (j % per_line) == 0)
248 log_buf(out, " |");
249
250 /* end of the list */
251 is_last = (j == len - 1) != 0;
252
253 for (i = 0; i < scale_down; i++)
254 ovals[j] = (ovals[j] + 999) / 1000;
255
256 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258 if (is_last)
259 break;
260
261 if ((j % per_line) == per_line - 1) /* for formatting */
262 log_buf(out, "\n");
263 }
264
265 free(ovals);
266}
267
268bool calc_lat(struct io_stat *is, unsigned long long *min,
269 unsigned long long *max, double *mean, double *dev)
270{
271 double n = (double) is->samples;
272
273 if (n == 0)
274 return false;
275
276 *min = is->min_val;
277 *max = is->max_val;
278 *mean = is->mean.u.f;
279
280 if (n > 1.0)
281 *dev = sqrt(is->S.u.f / (n - 1.0));
282 else
283 *dev = 0;
284
285 return true;
286}
287
288void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out)
289{
290 char *io, *agg, *min, *max;
291 char *ioalt, *aggalt, *minalt, *maxalt;
292 uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
293 uint64_t min_run = -1, max_run = 0;
294 const int i2p = is_power_of_2(rs->kb_base);
295 int i;
296
297 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
298 if (!rs->max_run[i])
299 continue;
300 io_mix += rs->iobytes[i];
301 agg_mix += rs->agg[i];
302 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
303 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
304 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
305 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
306 }
307 io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
308 ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
309 agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
310 aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
311 min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
312 minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
313 max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
314 maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
315 log_buf(out, " MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
316 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
317 (unsigned long long) min_run,
318 (unsigned long long) max_run);
319 free(io);
320 free(agg);
321 free(min);
322 free(max);
323 free(ioalt);
324 free(aggalt);
325 free(minalt);
326 free(maxalt);
327}
328
329void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
330{
331 char *io, *agg, *min, *max;
332 char *ioalt, *aggalt, *minalt, *maxalt;
333 const char *str[] = { " READ", " WRITE" , " TRIM"};
334 int i;
335
336 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
337
338 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
339 const int i2p = is_power_of_2(rs->kb_base);
340
341 if (!rs->max_run[i])
342 continue;
343
344 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
345 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
346 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
347 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
348 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
349 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
350 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
351 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
352 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
353 (rs->unified_rw_rep == UNIFIED_MIXED) ? " MIXED" : str[i],
354 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
355 (unsigned long long) rs->min_run[i],
356 (unsigned long long) rs->max_run[i]);
357
358 free(io);
359 free(agg);
360 free(min);
361 free(max);
362 free(ioalt);
363 free(aggalt);
364 free(minalt);
365 free(maxalt);
366 }
367
368 /* Need to aggregate statisitics to show mixed values */
369 if (rs->unified_rw_rep == UNIFIED_BOTH)
370 show_mixed_group_stats(rs, out);
371}
372
373void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
374{
375 int i;
376
377 /*
378 * Do depth distribution calculations
379 */
380 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
381 if (total) {
382 io_u_dist[i] = (double) map[i] / (double) total;
383 io_u_dist[i] *= 100.0;
384 if (io_u_dist[i] < 0.1 && map[i])
385 io_u_dist[i] = 0.1;
386 } else
387 io_u_dist[i] = 0.0;
388 }
389}
390
391static void stat_calc_lat(struct thread_stat *ts, double *dst,
392 uint64_t *src, int nr)
393{
394 unsigned long total = ddir_rw_sum(ts->total_io_u);
395 int i;
396
397 /*
398 * Do latency distribution calculations
399 */
400 for (i = 0; i < nr; i++) {
401 if (total) {
402 dst[i] = (double) src[i] / (double) total;
403 dst[i] *= 100.0;
404 if (dst[i] < 0.01 && src[i])
405 dst[i] = 0.01;
406 } else
407 dst[i] = 0.0;
408 }
409}
410
411/*
412 * To keep the terse format unaltered, add all of the ns latency
413 * buckets to the first us latency bucket
414 */
415static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
416{
417 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
418 int i;
419
420 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
421
422 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
423 ntotal += ts->io_u_lat_n[i];
424
425 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
426}
427
428void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
429{
430 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
431}
432
433void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
434{
435 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
436}
437
438void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
439{
440 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
441}
442
443static void display_lat(const char *name, unsigned long long min,
444 unsigned long long max, double mean, double dev,
445 struct buf_output *out)
446{
447 const char *base = "(nsec)";
448 char *minp, *maxp;
449
450 if (nsec_to_msec(&min, &max, &mean, &dev))
451 base = "(msec)";
452 else if (nsec_to_usec(&min, &max, &mean, &dev))
453 base = "(usec)";
454
455 minp = num2str(min, 6, 1, 0, N2S_NONE);
456 maxp = num2str(max, 6, 1, 0, N2S_NONE);
457
458 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
459 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460
461 free(minp);
462 free(maxp);
463}
464
465static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
466{
467 double p_of_agg = 100.0;
468 if (rs && rs->agg[ddir] > 1024) {
469 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
470
471 if (p_of_agg > 100.0)
472 p_of_agg = 100.0;
473 }
474 return p_of_agg;
475}
476
477static void show_mixed_ddir_status(struct group_run_stats *rs,
478 struct thread_stat *ts,
479 struct buf_output *out)
480{
481 unsigned long runt;
482 unsigned long long min, max, bw, iops;
483 double mean, dev;
484 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
485 struct thread_stat *ts_lcl;
486 int i2p;
487 int ddir = 0;
488
489 /*
490 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
491 * Trims (ddir = 2) */
492 ts_lcl = malloc(sizeof(struct thread_stat));
493 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
494 /* calculate mixed stats */
495 ts_lcl->unified_rw_rep = UNIFIED_MIXED;
496 init_thread_stat_min_vals(ts_lcl);
497
498 sum_thread_stats(ts_lcl, ts, 1);
499
500 assert(ddir_rw(ddir));
501
502 if (!ts_lcl->runtime[ddir]) {
503 free(ts_lcl);
504 return;
505 }
506
507 i2p = is_power_of_2(rs->kb_base);
508 runt = ts_lcl->runtime[ddir];
509
510 bw = (1000 * ts_lcl->io_bytes[ddir]) / runt;
511 io_p = num2str(ts_lcl->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
512 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
513 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
514
515 iops = (1000 * ts_lcl->total_io_u[ddir]) / runt;
516 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
517
518 log_buf(out, " mixed: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
519 iops_p, bw_p, bw_p_alt, io_p,
520 (unsigned long long) ts_lcl->runtime[ddir],
521 post_st ? : "");
522
523 free(post_st);
524 free(io_p);
525 free(bw_p);
526 free(bw_p_alt);
527 free(iops_p);
528
529 if (calc_lat(&ts_lcl->slat_stat[ddir], &min, &max, &mean, &dev))
530 display_lat("slat", min, max, mean, dev, out);
531 if (calc_lat(&ts_lcl->clat_stat[ddir], &min, &max, &mean, &dev))
532 display_lat("clat", min, max, mean, dev, out);
533 if (calc_lat(&ts_lcl->lat_stat[ddir], &min, &max, &mean, &dev))
534 display_lat(" lat", min, max, mean, dev, out);
535 if (calc_lat(&ts_lcl->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
536 display_lat(ts_lcl->lat_percentiles ? "high prio_lat" : "high prio_clat",
537 min, max, mean, dev, out);
538 if (calc_lat(&ts_lcl->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
539 display_lat(ts_lcl->lat_percentiles ? "low prio_lat" : "low prio_clat",
540 min, max, mean, dev, out);
541 }
542
543 if (ts->slat_percentiles && ts_lcl->slat_stat[ddir].samples > 0)
544 show_clat_percentiles(ts_lcl->io_u_plat[FIO_SLAT][ddir],
545 ts_lcl->slat_stat[ddir].samples,
546 ts->percentile_list,
547 ts->percentile_precision, "slat", out);
548 if (ts->clat_percentiles && ts_lcl->clat_stat[ddir].samples > 0)
549 show_clat_percentiles(ts_lcl->io_u_plat[FIO_CLAT][ddir],
550 ts_lcl->clat_stat[ddir].samples,
551 ts->percentile_list,
552 ts->percentile_precision, "clat", out);
553 if (ts->lat_percentiles && ts_lcl->lat_stat[ddir].samples > 0)
554 show_clat_percentiles(ts_lcl->io_u_plat[FIO_LAT][ddir],
555 ts_lcl->lat_stat[ddir].samples,
556 ts->percentile_list,
557 ts->percentile_precision, "lat", out);
558
559 if (ts->clat_percentiles || ts->lat_percentiles) {
560 const char *name = ts->lat_percentiles ? "lat" : "clat";
561 char prio_name[32];
562 uint64_t samples;
563
564 if (ts->lat_percentiles)
565 samples = ts_lcl->lat_stat[ddir].samples;
566 else
567 samples = ts_lcl->clat_stat[ddir].samples;
568
569 /* Only print if high and low priority stats were collected */
570 if (ts_lcl->clat_high_prio_stat[ddir].samples > 0 &&
571 ts_lcl->clat_low_prio_stat[ddir].samples > 0) {
572 sprintf(prio_name, "high prio (%.2f%%) %s",
573 100. * (double) ts_lcl->clat_high_prio_stat[ddir].samples / (double) samples,
574 name);
575 show_clat_percentiles(ts_lcl->io_u_plat_high_prio[ddir],
576 ts_lcl->clat_high_prio_stat[ddir].samples,
577 ts->percentile_list,
578 ts->percentile_precision, prio_name, out);
579
580 sprintf(prio_name, "low prio (%.2f%%) %s",
581 100. * (double) ts_lcl->clat_low_prio_stat[ddir].samples / (double) samples,
582 name);
583 show_clat_percentiles(ts_lcl->io_u_plat_low_prio[ddir],
584 ts_lcl->clat_low_prio_stat[ddir].samples,
585 ts->percentile_list,
586 ts->percentile_precision, prio_name, out);
587 }
588 }
589
590 if (calc_lat(&ts_lcl->bw_stat[ddir], &min, &max, &mean, &dev)) {
591 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
592 const char *bw_str;
593
594 if ((rs->unit_base == 1) && i2p)
595 bw_str = "Kibit";
596 else if (rs->unit_base == 1)
597 bw_str = "kbit";
598 else if (i2p)
599 bw_str = "KiB";
600 else
601 bw_str = "kB";
602
603 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
604
605 if (rs->unit_base == 1) {
606 min *= 8.0;
607 max *= 8.0;
608 mean *= 8.0;
609 dev *= 8.0;
610 }
611
612 if (mean > fkb_base * fkb_base) {
613 min /= fkb_base;
614 max /= fkb_base;
615 mean /= fkb_base;
616 dev /= fkb_base;
617 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
618 }
619
620 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
621 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
622 bw_str, min, max, p_of_agg, mean, dev,
623 (&ts_lcl->bw_stat[ddir])->samples);
624 }
625 if (calc_lat(&ts_lcl->iops_stat[ddir], &min, &max, &mean, &dev)) {
626 log_buf(out, " iops : min=%5llu, max=%5llu, "
627 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
628 min, max, mean, dev, (&ts_lcl->iops_stat[ddir])->samples);
629 }
630
631 free(ts_lcl);
632}
633
634static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
635 int ddir, struct buf_output *out)
636{
637 unsigned long runt;
638 unsigned long long min, max, bw, iops;
639 double mean, dev;
640 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
641 int i2p;
642
643 if (ddir_sync(ddir)) {
644 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
645 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
646 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
647 show_clat_percentiles(ts->io_u_sync_plat,
648 ts->sync_stat.samples,
649 ts->percentile_list,
650 ts->percentile_precision,
651 io_ddir_name(ddir), out);
652 }
653 return;
654 }
655
656 assert(ddir_rw(ddir));
657
658 if (!ts->runtime[ddir])
659 return;
660
661 i2p = is_power_of_2(rs->kb_base);
662 runt = ts->runtime[ddir];
663
664 bw = (1000 * ts->io_bytes[ddir]) / runt;
665 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
666 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
667 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
668
669 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
670 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
671 if (ddir == DDIR_WRITE)
672 post_st = zbd_write_status(ts);
673 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
674 uint64_t total;
675 double hit;
676
677 total = ts->cachehit + ts->cachemiss;
678 hit = (double) ts->cachehit / (double) total;
679 hit *= 100.0;
680 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
681 post_st = NULL;
682 }
683
684 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
685 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
686 iops_p, bw_p, bw_p_alt, io_p,
687 (unsigned long long) ts->runtime[ddir],
688 post_st ? : "");
689
690 free(post_st);
691 free(io_p);
692 free(bw_p);
693 free(bw_p_alt);
694 free(iops_p);
695
696 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
697 display_lat("slat", min, max, mean, dev, out);
698 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
699 display_lat("clat", min, max, mean, dev, out);
700 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
701 display_lat(" lat", min, max, mean, dev, out);
702 if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
703 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
704 min, max, mean, dev, out);
705 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
706 display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
707 min, max, mean, dev, out);
708 }
709
710 if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
711 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
712 ts->slat_stat[ddir].samples,
713 ts->percentile_list,
714 ts->percentile_precision, "slat", out);
715 if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
716 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
717 ts->clat_stat[ddir].samples,
718 ts->percentile_list,
719 ts->percentile_precision, "clat", out);
720 if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
721 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
722 ts->lat_stat[ddir].samples,
723 ts->percentile_list,
724 ts->percentile_precision, "lat", out);
725
726 if (ts->clat_percentiles || ts->lat_percentiles) {
727 const char *name = ts->lat_percentiles ? "lat" : "clat";
728 char prio_name[32];
729 uint64_t samples;
730
731 if (ts->lat_percentiles)
732 samples = ts->lat_stat[ddir].samples;
733 else
734 samples = ts->clat_stat[ddir].samples;
735
736 /* Only print this if some high and low priority stats were collected */
737 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
738 ts->clat_low_prio_stat[ddir].samples > 0)
739 {
740 sprintf(prio_name, "high prio (%.2f%%) %s",
741 100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
742 name);
743 show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
744 ts->clat_high_prio_stat[ddir].samples,
745 ts->percentile_list,
746 ts->percentile_precision, prio_name, out);
747
748 sprintf(prio_name, "low prio (%.2f%%) %s",
749 100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
750 name);
751 show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
752 ts->clat_low_prio_stat[ddir].samples,
753 ts->percentile_list,
754 ts->percentile_precision, prio_name, out);
755 }
756 }
757
758 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
759 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
760 const char *bw_str;
761
762 if ((rs->unit_base == 1) && i2p)
763 bw_str = "Kibit";
764 else if (rs->unit_base == 1)
765 bw_str = "kbit";
766 else if (i2p)
767 bw_str = "KiB";
768 else
769 bw_str = "kB";
770
771 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
772
773 if (rs->unit_base == 1) {
774 min *= 8.0;
775 max *= 8.0;
776 mean *= 8.0;
777 dev *= 8.0;
778 }
779
780 if (mean > fkb_base * fkb_base) {
781 min /= fkb_base;
782 max /= fkb_base;
783 mean /= fkb_base;
784 dev /= fkb_base;
785 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
786 }
787
788 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
789 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
790 bw_str, min, max, p_of_agg, mean, dev,
791 (&ts->bw_stat[ddir])->samples);
792 }
793 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
794 log_buf(out, " iops : min=%5llu, max=%5llu, "
795 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
796 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
797 }
798}
799
800static bool show_lat(double *io_u_lat, int nr, const char **ranges,
801 const char *msg, struct buf_output *out)
802{
803 bool new_line = true, shown = false;
804 int i, line = 0;
805
806 for (i = 0; i < nr; i++) {
807 if (io_u_lat[i] <= 0.0)
808 continue;
809 shown = true;
810 if (new_line) {
811 if (line)
812 log_buf(out, "\n");
813 log_buf(out, " lat (%s) : ", msg);
814 new_line = false;
815 line = 0;
816 }
817 if (line)
818 log_buf(out, ", ");
819 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
820 line++;
821 if (line == 5)
822 new_line = true;
823 }
824
825 if (shown)
826 log_buf(out, "\n");
827
828 return true;
829}
830
831static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
832{
833 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
834 "250=", "500=", "750=", "1000=", };
835
836 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
837}
838
839static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
840{
841 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
842 "250=", "500=", "750=", "1000=", };
843
844 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
845}
846
847static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
848{
849 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
850 "250=", "500=", "750=", "1000=", "2000=",
851 ">=2000=", };
852
853 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
854}
855
856static void show_latencies(struct thread_stat *ts, struct buf_output *out)
857{
858 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
859 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
860 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
861
862 stat_calc_lat_n(ts, io_u_lat_n);
863 stat_calc_lat_u(ts, io_u_lat_u);
864 stat_calc_lat_m(ts, io_u_lat_m);
865
866 show_lat_n(io_u_lat_n, out);
867 show_lat_u(io_u_lat_u, out);
868 show_lat_m(io_u_lat_m, out);
869}
870
871static int block_state_category(int block_state)
872{
873 switch (block_state) {
874 case BLOCK_STATE_UNINIT:
875 return 0;
876 case BLOCK_STATE_TRIMMED:
877 case BLOCK_STATE_WRITTEN:
878 return 1;
879 case BLOCK_STATE_WRITE_FAILURE:
880 case BLOCK_STATE_TRIM_FAILURE:
881 return 2;
882 default:
883 /* Silence compile warning on some BSDs and have a return */
884 assert(0);
885 return -1;
886 }
887}
888
889static int compare_block_infos(const void *bs1, const void *bs2)
890{
891 uint64_t block1 = *(uint64_t *)bs1;
892 uint64_t block2 = *(uint64_t *)bs2;
893 int state1 = BLOCK_INFO_STATE(block1);
894 int state2 = BLOCK_INFO_STATE(block2);
895 int bscat1 = block_state_category(state1);
896 int bscat2 = block_state_category(state2);
897 int cycles1 = BLOCK_INFO_TRIMS(block1);
898 int cycles2 = BLOCK_INFO_TRIMS(block2);
899
900 if (bscat1 < bscat2)
901 return -1;
902 if (bscat1 > bscat2)
903 return 1;
904
905 if (cycles1 < cycles2)
906 return -1;
907 if (cycles1 > cycles2)
908 return 1;
909
910 if (state1 < state2)
911 return -1;
912 if (state1 > state2)
913 return 1;
914
915 assert(block1 == block2);
916 return 0;
917}
918
919static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
920 fio_fp64_t *plist, unsigned int **percentiles,
921 unsigned int *types)
922{
923 int len = 0;
924 int i, nr_uninit;
925
926 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
927
928 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
929 len++;
930
931 if (!len)
932 return 0;
933
934 /*
935 * Sort the percentile list. Note that it may already be sorted if
936 * we are using the default values, but since it's a short list this
937 * isn't a worry. Also note that this does not work for NaN values.
938 */
939 if (len > 1)
940 qsort(plist, len, sizeof(plist[0]), double_cmp);
941
942 /* Start only after the uninit entries end */
943 for (nr_uninit = 0;
944 nr_uninit < nr_block_infos
945 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
946 nr_uninit ++)
947 ;
948
949 if (nr_uninit == nr_block_infos)
950 return 0;
951
952 *percentiles = calloc(len, sizeof(**percentiles));
953
954 for (i = 0; i < len; i++) {
955 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
956 + nr_uninit;
957 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
958 }
959
960 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
961 for (i = 0; i < nr_block_infos; i++)
962 types[BLOCK_INFO_STATE(block_infos[i])]++;
963
964 return len;
965}
966
967static const char *block_state_names[] = {
968 [BLOCK_STATE_UNINIT] = "unwritten",
969 [BLOCK_STATE_TRIMMED] = "trimmed",
970 [BLOCK_STATE_WRITTEN] = "written",
971 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
972 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
973};
974
975static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
976 fio_fp64_t *plist, struct buf_output *out)
977{
978 int len, pos, i;
979 unsigned int *percentiles = NULL;
980 unsigned int block_state_counts[BLOCK_STATE_COUNT];
981
982 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
983 &percentiles, block_state_counts);
984
985 log_buf(out, " block lifetime percentiles :\n |");
986 pos = 0;
987 for (i = 0; i < len; i++) {
988 uint32_t block_info = percentiles[i];
989#define LINE_LENGTH 75
990 char str[LINE_LENGTH];
991 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
992 plist[i].u.f, block_info,
993 i == len - 1 ? '\n' : ',');
994 assert(strln < LINE_LENGTH);
995 if (pos + strln > LINE_LENGTH) {
996 pos = 0;
997 log_buf(out, "\n |");
998 }
999 log_buf(out, "%s", str);
1000 pos += strln;
1001#undef LINE_LENGTH
1002 }
1003 if (percentiles)
1004 free(percentiles);
1005
1006 log_buf(out, " states :");
1007 for (i = 0; i < BLOCK_STATE_COUNT; i++)
1008 log_buf(out, " %s=%u%c",
1009 block_state_names[i], block_state_counts[i],
1010 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
1011}
1012
1013static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
1014{
1015 char *p1, *p1alt, *p2;
1016 unsigned long long bw_mean, iops_mean;
1017 const int i2p = is_power_of_2(ts->kb_base);
1018
1019 if (!ts->ss_dur)
1020 return;
1021
1022 bw_mean = steadystate_bw_mean(ts);
1023 iops_mean = steadystate_iops_mean(ts);
1024
1025 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
1026 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
1027 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
1028
1029 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
1030 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
1031 p1, p1alt, p2,
1032 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1033 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
1034 ts->ss_criterion.u.f,
1035 ts->ss_state & FIO_SS_PCT ? "%" : "");
1036
1037 free(p1);
1038 free(p1alt);
1039 free(p2);
1040}
1041
1042static void show_agg_stats(struct disk_util_agg *agg, int terse,
1043 struct buf_output *out)
1044{
1045 if (!agg->slavecount)
1046 return;
1047
1048 if (!terse) {
1049 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
1050 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
1051 "aggrutil=%3.2f%%",
1052 (unsigned long long) agg->ios[0] / agg->slavecount,
1053 (unsigned long long) agg->ios[1] / agg->slavecount,
1054 (unsigned long long) agg->merges[0] / agg->slavecount,
1055 (unsigned long long) agg->merges[1] / agg->slavecount,
1056 (unsigned long long) agg->ticks[0] / agg->slavecount,
1057 (unsigned long long) agg->ticks[1] / agg->slavecount,
1058 (unsigned long long) agg->time_in_queue / agg->slavecount,
1059 agg->max_util.u.f);
1060 } else {
1061 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1062 (unsigned long long) agg->ios[0] / agg->slavecount,
1063 (unsigned long long) agg->ios[1] / agg->slavecount,
1064 (unsigned long long) agg->merges[0] / agg->slavecount,
1065 (unsigned long long) agg->merges[1] / agg->slavecount,
1066 (unsigned long long) agg->ticks[0] / agg->slavecount,
1067 (unsigned long long) agg->ticks[1] / agg->slavecount,
1068 (unsigned long long) agg->time_in_queue / agg->slavecount,
1069 agg->max_util.u.f);
1070 }
1071}
1072
1073static void aggregate_slaves_stats(struct disk_util *masterdu)
1074{
1075 struct disk_util_agg *agg = &masterdu->agg;
1076 struct disk_util_stat *dus;
1077 struct flist_head *entry;
1078 struct disk_util *slavedu;
1079 double util;
1080
1081 flist_for_each(entry, &masterdu->slaves) {
1082 slavedu = flist_entry(entry, struct disk_util, slavelist);
1083 dus = &slavedu->dus;
1084 agg->ios[0] += dus->s.ios[0];
1085 agg->ios[1] += dus->s.ios[1];
1086 agg->merges[0] += dus->s.merges[0];
1087 agg->merges[1] += dus->s.merges[1];
1088 agg->sectors[0] += dus->s.sectors[0];
1089 agg->sectors[1] += dus->s.sectors[1];
1090 agg->ticks[0] += dus->s.ticks[0];
1091 agg->ticks[1] += dus->s.ticks[1];
1092 agg->time_in_queue += dus->s.time_in_queue;
1093 agg->slavecount++;
1094
1095 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1096 /* System utilization is the utilization of the
1097 * component with the highest utilization.
1098 */
1099 if (util > agg->max_util.u.f)
1100 agg->max_util.u.f = util;
1101
1102 }
1103
1104 if (agg->max_util.u.f > 100.0)
1105 agg->max_util.u.f = 100.0;
1106}
1107
1108void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1109 int terse, struct buf_output *out)
1110{
1111 double util = 0;
1112
1113 if (dus->s.msec)
1114 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1115 if (util > 100.0)
1116 util = 100.0;
1117
1118 if (!terse) {
1119 if (agg->slavecount)
1120 log_buf(out, " ");
1121
1122 log_buf(out, " %s: ios=%llu/%llu, merge=%llu/%llu, "
1123 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1124 dus->name,
1125 (unsigned long long) dus->s.ios[0],
1126 (unsigned long long) dus->s.ios[1],
1127 (unsigned long long) dus->s.merges[0],
1128 (unsigned long long) dus->s.merges[1],
1129 (unsigned long long) dus->s.ticks[0],
1130 (unsigned long long) dus->s.ticks[1],
1131 (unsigned long long) dus->s.time_in_queue,
1132 util);
1133 } else {
1134 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1135 dus->name,
1136 (unsigned long long) dus->s.ios[0],
1137 (unsigned long long) dus->s.ios[1],
1138 (unsigned long long) dus->s.merges[0],
1139 (unsigned long long) dus->s.merges[1],
1140 (unsigned long long) dus->s.ticks[0],
1141 (unsigned long long) dus->s.ticks[1],
1142 (unsigned long long) dus->s.time_in_queue,
1143 util);
1144 }
1145
1146 /*
1147 * If the device has slaves, aggregate the stats for
1148 * those slave devices also.
1149 */
1150 show_agg_stats(agg, terse, out);
1151
1152 if (!terse)
1153 log_buf(out, "\n");
1154}
1155
1156void json_array_add_disk_util(struct disk_util_stat *dus,
1157 struct disk_util_agg *agg, struct json_array *array)
1158{
1159 struct json_object *obj;
1160 double util = 0;
1161
1162 if (dus->s.msec)
1163 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1164 if (util > 100.0)
1165 util = 100.0;
1166
1167 obj = json_create_object();
1168 json_array_add_value_object(array, obj);
1169
1170 json_object_add_value_string(obj, "name", (const char *)dus->name);
1171 json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1172 json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1173 json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1174 json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1175 json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1176 json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1177 json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1178 json_object_add_value_float(obj, "util", util);
1179
1180 /*
1181 * If the device has slaves, aggregate the stats for
1182 * those slave devices also.
1183 */
1184 if (!agg->slavecount)
1185 return;
1186 json_object_add_value_int(obj, "aggr_read_ios",
1187 agg->ios[0] / agg->slavecount);
1188 json_object_add_value_int(obj, "aggr_write_ios",
1189 agg->ios[1] / agg->slavecount);
1190 json_object_add_value_int(obj, "aggr_read_merges",
1191 agg->merges[0] / agg->slavecount);
1192 json_object_add_value_int(obj, "aggr_write_merge",
1193 agg->merges[1] / agg->slavecount);
1194 json_object_add_value_int(obj, "aggr_read_ticks",
1195 agg->ticks[0] / agg->slavecount);
1196 json_object_add_value_int(obj, "aggr_write_ticks",
1197 agg->ticks[1] / agg->slavecount);
1198 json_object_add_value_int(obj, "aggr_in_queue",
1199 agg->time_in_queue / agg->slavecount);
1200 json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1201}
1202
1203static void json_object_add_disk_utils(struct json_object *obj,
1204 struct flist_head *head)
1205{
1206 struct json_array *array = json_create_array();
1207 struct flist_head *entry;
1208 struct disk_util *du;
1209
1210 json_object_add_value_array(obj, "disk_util", array);
1211
1212 flist_for_each(entry, head) {
1213 du = flist_entry(entry, struct disk_util, list);
1214
1215 aggregate_slaves_stats(du);
1216 json_array_add_disk_util(&du->dus, &du->agg, array);
1217 }
1218}
1219
1220void show_disk_util(int terse, struct json_object *parent,
1221 struct buf_output *out)
1222{
1223 struct flist_head *entry;
1224 struct disk_util *du;
1225 bool do_json;
1226
1227 if (!is_running_backend())
1228 return;
1229
1230 if (flist_empty(&disk_list))
1231 return;
1232
1233 if ((output_format & FIO_OUTPUT_JSON) && parent)
1234 do_json = true;
1235 else
1236 do_json = false;
1237
1238 if (!terse && !do_json)
1239 log_buf(out, "\nDisk stats (read/write):\n");
1240
1241 if (do_json) {
1242 json_object_add_disk_utils(parent, &disk_list);
1243 } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1244 flist_for_each(entry, &disk_list) {
1245 du = flist_entry(entry, struct disk_util, list);
1246
1247 aggregate_slaves_stats(du);
1248 print_disk_util(&du->dus, &du->agg, terse, out);
1249 }
1250 }
1251}
1252
1253static void show_thread_status_normal(struct thread_stat *ts,
1254 struct group_run_stats *rs,
1255 struct buf_output *out)
1256{
1257 double usr_cpu, sys_cpu;
1258 unsigned long runtime;
1259 double io_u_dist[FIO_IO_U_MAP_NR];
1260 time_t time_p;
1261 char time_buf[32];
1262
1263 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1264 return;
1265
1266 memset(time_buf, 0, sizeof(time_buf));
1267
1268 time(&time_p);
1269 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1270
1271 if (!ts->error) {
1272 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1273 ts->name, ts->groupid, ts->members,
1274 ts->error, (int) ts->pid, time_buf);
1275 } else {
1276 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1277 ts->name, ts->groupid, ts->members,
1278 ts->error, ts->verror, (int) ts->pid,
1279 time_buf);
1280 }
1281
1282 if (strlen(ts->description))
1283 log_buf(out, " Description : [%s]\n", ts->description);
1284
1285 for_each_rw_ddir(ddir) {
1286 if (ts->io_bytes[ddir])
1287 show_ddir_status(rs, ts, ddir, out);
1288 }
1289
1290 if (ts->unified_rw_rep == UNIFIED_BOTH)
1291 show_mixed_ddir_status(rs, ts, out);
1292
1293 show_latencies(ts, out);
1294
1295 if (ts->sync_stat.samples)
1296 show_ddir_status(rs, ts, DDIR_SYNC, out);
1297
1298 runtime = ts->total_run_time;
1299 if (runtime) {
1300 double runt = (double) runtime;
1301
1302 usr_cpu = (double) ts->usr_time * 100 / runt;
1303 sys_cpu = (double) ts->sys_time * 100 / runt;
1304 } else {
1305 usr_cpu = 0;
1306 sys_cpu = 0;
1307 }
1308
1309 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1310 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1311 (unsigned long long) ts->ctx,
1312 (unsigned long long) ts->majf,
1313 (unsigned long long) ts->minf);
1314
1315 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1316 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1317 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1318 io_u_dist[1], io_u_dist[2],
1319 io_u_dist[3], io_u_dist[4],
1320 io_u_dist[5], io_u_dist[6]);
1321
1322 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1323 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1324 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1325 io_u_dist[1], io_u_dist[2],
1326 io_u_dist[3], io_u_dist[4],
1327 io_u_dist[5], io_u_dist[6]);
1328 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1329 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1330 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1331 io_u_dist[1], io_u_dist[2],
1332 io_u_dist[3], io_u_dist[4],
1333 io_u_dist[5], io_u_dist[6]);
1334 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
1335 " short=%llu,%llu,%llu,0"
1336 " dropped=%llu,%llu,%llu,0\n",
1337 (unsigned long long) ts->total_io_u[0],
1338 (unsigned long long) ts->total_io_u[1],
1339 (unsigned long long) ts->total_io_u[2],
1340 (unsigned long long) ts->total_io_u[3],
1341 (unsigned long long) ts->short_io_u[0],
1342 (unsigned long long) ts->short_io_u[1],
1343 (unsigned long long) ts->short_io_u[2],
1344 (unsigned long long) ts->drop_io_u[0],
1345 (unsigned long long) ts->drop_io_u[1],
1346 (unsigned long long) ts->drop_io_u[2]);
1347 if (ts->continue_on_error) {
1348 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
1349 (unsigned long long)ts->total_err_count,
1350 ts->first_error,
1351 strerror(ts->first_error));
1352 }
1353 if (ts->latency_depth) {
1354 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1355 (unsigned long long)ts->latency_target,
1356 (unsigned long long)ts->latency_window,
1357 ts->latency_percentile.u.f,
1358 ts->latency_depth);
1359 }
1360
1361 if (ts->nr_block_infos)
1362 show_block_infos(ts->nr_block_infos, ts->block_infos,
1363 ts->percentile_list, out);
1364
1365 if (ts->ss_dur)
1366 show_ss_normal(ts, out);
1367}
1368
1369static void show_ddir_status_terse(struct thread_stat *ts,
1370 struct group_run_stats *rs, int ddir,
1371 int ver, struct buf_output *out)
1372{
1373 unsigned long long min, max, minv, maxv, bw, iops;
1374 unsigned long long *ovals = NULL;
1375 double mean, dev;
1376 unsigned int len;
1377 int i, bw_stat;
1378
1379 assert(ddir_rw(ddir));
1380
1381 iops = bw = 0;
1382 if (ts->runtime[ddir]) {
1383 uint64_t runt = ts->runtime[ddir];
1384
1385 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1386 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1387 }
1388
1389 log_buf(out, ";%llu;%llu;%llu;%llu",
1390 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1391 (unsigned long long) ts->runtime[ddir]);
1392
1393 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1394 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1395 else
1396 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1397
1398 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1399 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1400 else
1401 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1402
1403 if (ts->lat_percentiles) {
1404 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1405 ts->lat_stat[ddir].samples,
1406 ts->percentile_list, &ovals, &maxv,
1407 &minv);
1408 } else if (ts->clat_percentiles) {
1409 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1410 ts->clat_stat[ddir].samples,
1411 ts->percentile_list, &ovals, &maxv,
1412 &minv);
1413 } else {
1414 len = 0;
1415 }
1416
1417 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1418 if (i >= len) {
1419 log_buf(out, ";0%%=0");
1420 continue;
1421 }
1422 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1423 }
1424
1425 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1426 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1427 else
1428 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1429
1430 free(ovals);
1431
1432 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1433 if (bw_stat) {
1434 double p_of_agg = 100.0;
1435
1436 if (rs->agg[ddir]) {
1437 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1438 if (p_of_agg > 100.0)
1439 p_of_agg = 100.0;
1440 }
1441
1442 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1443 } else {
1444 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1445 }
1446
1447 if (ver == 5) {
1448 if (bw_stat)
1449 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1450 else
1451 log_buf(out, ";%lu", 0UL);
1452
1453 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1454 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1455 mean, dev, (&ts->iops_stat[ddir])->samples);
1456 else
1457 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1458 }
1459}
1460
1461static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1462 struct group_run_stats *rs,
1463 int ver, struct buf_output *out)
1464{
1465 struct thread_stat *ts_lcl;
1466
1467 /*
1468 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1469 * Trims (ddir = 2)
1470 */
1471 ts_lcl = malloc(sizeof(struct thread_stat));
1472 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1473 /* calculate mixed stats */
1474 ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1475 init_thread_stat_min_vals(ts_lcl);
1476 ts_lcl->lat_percentiles = ts->lat_percentiles;
1477 ts_lcl->clat_percentiles = ts->clat_percentiles;
1478 ts_lcl->slat_percentiles = ts->slat_percentiles;
1479 ts_lcl->percentile_precision = ts->percentile_precision;
1480 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1481
1482 sum_thread_stats(ts_lcl, ts, 1);
1483
1484 /* add the aggregated stats to json parent */
1485 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1486 free(ts_lcl);
1487}
1488
1489static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1490 uint32_t percentiles,
1491 struct io_stat *lat_stat,
1492 uint64_t *io_u_plat)
1493{
1494 char buf[120];
1495 double mean, dev;
1496 unsigned int i, len;
1497 struct json_object *lat_object, *percentile_object, *clat_bins_object;
1498 unsigned long long min, max, maxv, minv, *ovals = NULL;
1499
1500 if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1501 min = max = 0;
1502 mean = dev = 0.0;
1503 }
1504 lat_object = json_create_object();
1505 json_object_add_value_int(lat_object, "min", min);
1506 json_object_add_value_int(lat_object, "max", max);
1507 json_object_add_value_float(lat_object, "mean", mean);
1508 json_object_add_value_float(lat_object, "stddev", dev);
1509 json_object_add_value_int(lat_object, "N", lat_stat->samples);
1510
1511 if (percentiles && lat_stat->samples) {
1512 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1513 ts->percentile_list, &ovals, &maxv, &minv);
1514
1515 if (len > FIO_IO_U_LIST_MAX_LEN)
1516 len = FIO_IO_U_LIST_MAX_LEN;
1517
1518 percentile_object = json_create_object();
1519 json_object_add_value_object(lat_object, "percentile", percentile_object);
1520 for (i = 0; i < len; i++) {
1521 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1522 json_object_add_value_int(percentile_object, buf, ovals[i]);
1523 }
1524 free(ovals);
1525
1526 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1527 clat_bins_object = json_create_object();
1528 json_object_add_value_object(lat_object, "bins", clat_bins_object);
1529
1530 for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1531 if (io_u_plat[i]) {
1532 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1533 json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1534 }
1535 }
1536 }
1537
1538 return lat_object;
1539}
1540
1541static void add_ddir_status_json(struct thread_stat *ts,
1542 struct group_run_stats *rs, int ddir, struct json_object *parent)
1543{
1544 unsigned long long min, max;
1545 unsigned long long bw_bytes, bw;
1546 double mean, dev, iops;
1547 struct json_object *dir_object, *tmp_object;
1548 double p_of_agg = 100.0;
1549
1550 assert(ddir_rw(ddir) || ddir_sync(ddir));
1551
1552 if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1553 return;
1554
1555 dir_object = json_create_object();
1556 json_object_add_value_object(parent,
1557 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1558
1559 if (ddir_rw(ddir)) {
1560 bw_bytes = 0;
1561 bw = 0;
1562 iops = 0.0;
1563 if (ts->runtime[ddir]) {
1564 uint64_t runt = ts->runtime[ddir];
1565
1566 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1567 bw = bw_bytes / 1024; /* KiB/s */
1568 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1569 }
1570
1571 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1572 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1573 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1574 json_object_add_value_int(dir_object, "bw", bw);
1575 json_object_add_value_float(dir_object, "iops", iops);
1576 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1577 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1578 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1579 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1580
1581 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1582 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1583 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1584
1585 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1586 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1587 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1588
1589 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1590 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1591 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1592 } else {
1593 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1594 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1595 &ts->sync_stat, ts->io_u_sync_plat);
1596 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1597 }
1598
1599 if (!ddir_rw(ddir))
1600 return;
1601
1602 /* Only print PRIO latencies if some high priority samples were gathered */
1603 if (ts->clat_high_prio_stat[ddir].samples > 0) {
1604 const char *high, *low;
1605
1606 if (ts->lat_percentiles) {
1607 high = "lat_high_prio";
1608 low = "lat_low_prio";
1609 } else {
1610 high = "clat_high_prio";
1611 low = "clat_low_prio";
1612 }
1613
1614 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1615 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1616 json_object_add_value_object(dir_object, high, tmp_object);
1617
1618 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1619 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1620 json_object_add_value_object(dir_object, low, tmp_object);
1621 }
1622
1623 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1624 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1625 } else {
1626 min = max = 0;
1627 p_of_agg = mean = dev = 0.0;
1628 }
1629
1630 json_object_add_value_int(dir_object, "bw_min", min);
1631 json_object_add_value_int(dir_object, "bw_max", max);
1632 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1633 json_object_add_value_float(dir_object, "bw_mean", mean);
1634 json_object_add_value_float(dir_object, "bw_dev", dev);
1635 json_object_add_value_int(dir_object, "bw_samples",
1636 (&ts->bw_stat[ddir])->samples);
1637
1638 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1639 min = max = 0;
1640 mean = dev = 0.0;
1641 }
1642 json_object_add_value_int(dir_object, "iops_min", min);
1643 json_object_add_value_int(dir_object, "iops_max", max);
1644 json_object_add_value_float(dir_object, "iops_mean", mean);
1645 json_object_add_value_float(dir_object, "iops_stddev", dev);
1646 json_object_add_value_int(dir_object, "iops_samples",
1647 (&ts->iops_stat[ddir])->samples);
1648
1649 if (ts->cachehit + ts->cachemiss) {
1650 uint64_t total;
1651 double hit;
1652
1653 total = ts->cachehit + ts->cachemiss;
1654 hit = (double) ts->cachehit / (double) total;
1655 hit *= 100.0;
1656 json_object_add_value_float(dir_object, "cachehit", hit);
1657 }
1658}
1659
1660static void add_mixed_ddir_status_json(struct thread_stat *ts,
1661 struct group_run_stats *rs, struct json_object *parent)
1662{
1663 struct thread_stat *ts_lcl;
1664
1665 /*
1666 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1667 * Trims (ddir = 2)
1668 */
1669 ts_lcl = malloc(sizeof(struct thread_stat));
1670 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1671 /* calculate mixed stats */
1672 ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1673 init_thread_stat_min_vals(ts_lcl);
1674 ts_lcl->lat_percentiles = ts->lat_percentiles;
1675 ts_lcl->clat_percentiles = ts->clat_percentiles;
1676 ts_lcl->slat_percentiles = ts->slat_percentiles;
1677 ts_lcl->percentile_precision = ts->percentile_precision;
1678 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1679
1680 sum_thread_stats(ts_lcl, ts, 1);
1681
1682 /* add the aggregated stats to json parent */
1683 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1684 free(ts_lcl);
1685}
1686
1687static void show_thread_status_terse_all(struct thread_stat *ts,
1688 struct group_run_stats *rs, int ver,
1689 struct buf_output *out)
1690{
1691 double io_u_dist[FIO_IO_U_MAP_NR];
1692 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1693 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1694 double usr_cpu, sys_cpu;
1695 int i;
1696
1697 /* General Info */
1698 if (ver == 2)
1699 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1700 else
1701 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1702 ts->name, ts->groupid, ts->error);
1703
1704 /* Log Read Status, or mixed if unified_rw_rep = 1 */
1705 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1706 if (ts->unified_rw_rep != UNIFIED_MIXED) {
1707 /* Log Write Status */
1708 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1709 /* Log Trim Status */
1710 if (ver == 2 || ver == 4 || ver == 5)
1711 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1712 }
1713 if (ts->unified_rw_rep == UNIFIED_BOTH)
1714 show_mixed_ddir_status_terse(ts, rs, ver, out);
1715 /* CPU Usage */
1716 if (ts->total_run_time) {
1717 double runt = (double) ts->total_run_time;
1718
1719 usr_cpu = (double) ts->usr_time * 100 / runt;
1720 sys_cpu = (double) ts->sys_time * 100 / runt;
1721 } else {
1722 usr_cpu = 0;
1723 sys_cpu = 0;
1724 }
1725
1726 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1727 (unsigned long long) ts->ctx,
1728 (unsigned long long) ts->majf,
1729 (unsigned long long) ts->minf);
1730
1731 /* Calc % distribution of IO depths, usecond, msecond latency */
1732 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1733 stat_calc_lat_nu(ts, io_u_lat_u);
1734 stat_calc_lat_m(ts, io_u_lat_m);
1735
1736 /* Only show fixed 7 I/O depth levels*/
1737 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1738 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1739 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1740
1741 /* Microsecond latency */
1742 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1743 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1744 /* Millisecond latency */
1745 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1746 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1747
1748 /* disk util stats, if any */
1749 if (ver >= 3 && is_running_backend())
1750 show_disk_util(1, NULL, out);
1751
1752 /* Additional output if continue_on_error set - default off*/
1753 if (ts->continue_on_error)
1754 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1755
1756 /* Additional output if description is set */
1757 if (strlen(ts->description)) {
1758 if (ver == 2)
1759 log_buf(out, "\n");
1760 log_buf(out, ";%s", ts->description);
1761 }
1762
1763 log_buf(out, "\n");
1764}
1765
1766static void json_add_job_opts(struct json_object *root, const char *name,
1767 struct flist_head *opt_list)
1768{
1769 struct json_object *dir_object;
1770 struct flist_head *entry;
1771 struct print_option *p;
1772
1773 if (flist_empty(opt_list))
1774 return;
1775
1776 dir_object = json_create_object();
1777 json_object_add_value_object(root, name, dir_object);
1778
1779 flist_for_each(entry, opt_list) {
1780 p = flist_entry(entry, struct print_option, list);
1781 json_object_add_value_string(dir_object, p->name, p->value);
1782 }
1783}
1784
1785static struct json_object *show_thread_status_json(struct thread_stat *ts,
1786 struct group_run_stats *rs,
1787 struct flist_head *opt_list)
1788{
1789 struct json_object *root, *tmp;
1790 struct jobs_eta *je;
1791 double io_u_dist[FIO_IO_U_MAP_NR];
1792 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1793 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1794 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1795 double usr_cpu, sys_cpu;
1796 int i;
1797 size_t size;
1798
1799 root = json_create_object();
1800 json_object_add_value_string(root, "jobname", ts->name);
1801 json_object_add_value_int(root, "groupid", ts->groupid);
1802 json_object_add_value_int(root, "error", ts->error);
1803
1804 /* ETA Info */
1805 je = get_jobs_eta(true, &size);
1806 if (je) {
1807 json_object_add_value_int(root, "eta", je->eta_sec);
1808 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1809 }
1810
1811 if (opt_list)
1812 json_add_job_opts(root, "job options", opt_list);
1813
1814 add_ddir_status_json(ts, rs, DDIR_READ, root);
1815 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1816 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1817 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1818
1819 if (ts->unified_rw_rep == UNIFIED_BOTH)
1820 add_mixed_ddir_status_json(ts, rs, root);
1821
1822 /* CPU Usage */
1823 if (ts->total_run_time) {
1824 double runt = (double) ts->total_run_time;
1825
1826 usr_cpu = (double) ts->usr_time * 100 / runt;
1827 sys_cpu = (double) ts->sys_time * 100 / runt;
1828 } else {
1829 usr_cpu = 0;
1830 sys_cpu = 0;
1831 }
1832 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1833 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1834 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1835 json_object_add_value_int(root, "ctx", ts->ctx);
1836 json_object_add_value_int(root, "majf", ts->majf);
1837 json_object_add_value_int(root, "minf", ts->minf);
1838
1839 /* Calc % distribution of IO depths */
1840 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1841 tmp = json_create_object();
1842 json_object_add_value_object(root, "iodepth_level", tmp);
1843 /* Only show fixed 7 I/O depth levels*/
1844 for (i = 0; i < 7; i++) {
1845 char name[20];
1846 if (i < 6)
1847 snprintf(name, 20, "%d", 1 << i);
1848 else
1849 snprintf(name, 20, ">=%d", 1 << i);
1850 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1851 }
1852
1853 /* Calc % distribution of submit IO depths */
1854 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1855 tmp = json_create_object();
1856 json_object_add_value_object(root, "iodepth_submit", tmp);
1857 /* Only show fixed 7 I/O depth levels*/
1858 for (i = 0; i < 7; i++) {
1859 char name[20];
1860 if (i == 0)
1861 snprintf(name, 20, "0");
1862 else if (i < 6)
1863 snprintf(name, 20, "%d", 1 << (i+1));
1864 else
1865 snprintf(name, 20, ">=%d", 1 << i);
1866 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1867 }
1868
1869 /* Calc % distribution of completion IO depths */
1870 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1871 tmp = json_create_object();
1872 json_object_add_value_object(root, "iodepth_complete", tmp);
1873 /* Only show fixed 7 I/O depth levels*/
1874 for (i = 0; i < 7; i++) {
1875 char name[20];
1876 if (i == 0)
1877 snprintf(name, 20, "0");
1878 else if (i < 6)
1879 snprintf(name, 20, "%d", 1 << (i+1));
1880 else
1881 snprintf(name, 20, ">=%d", 1 << i);
1882 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1883 }
1884
1885 /* Calc % distribution of nsecond, usecond, msecond latency */
1886 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1887 stat_calc_lat_n(ts, io_u_lat_n);
1888 stat_calc_lat_u(ts, io_u_lat_u);
1889 stat_calc_lat_m(ts, io_u_lat_m);
1890
1891 /* Nanosecond latency */
1892 tmp = json_create_object();
1893 json_object_add_value_object(root, "latency_ns", tmp);
1894 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1895 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1896 "250", "500", "750", "1000", };
1897 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1898 }
1899 /* Microsecond latency */
1900 tmp = json_create_object();
1901 json_object_add_value_object(root, "latency_us", tmp);
1902 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1903 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1904 "250", "500", "750", "1000", };
1905 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1906 }
1907 /* Millisecond latency */
1908 tmp = json_create_object();
1909 json_object_add_value_object(root, "latency_ms", tmp);
1910 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1911 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1912 "250", "500", "750", "1000", "2000",
1913 ">=2000", };
1914 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1915 }
1916
1917 /* Additional output if continue_on_error set - default off*/
1918 if (ts->continue_on_error) {
1919 json_object_add_value_int(root, "total_err", ts->total_err_count);
1920 json_object_add_value_int(root, "first_error", ts->first_error);
1921 }
1922
1923 if (ts->latency_depth) {
1924 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1925 json_object_add_value_int(root, "latency_target", ts->latency_target);
1926 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1927 json_object_add_value_int(root, "latency_window", ts->latency_window);
1928 }
1929
1930 /* Additional output if description is set */
1931 if (strlen(ts->description))
1932 json_object_add_value_string(root, "desc", ts->description);
1933
1934 if (ts->nr_block_infos) {
1935 /* Block error histogram and types */
1936 int len;
1937 unsigned int *percentiles = NULL;
1938 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1939
1940 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1941 ts->percentile_list,
1942 &percentiles, block_state_counts);
1943
1944 if (len) {
1945 struct json_object *block, *percentile_object, *states;
1946 int state;
1947 block = json_create_object();
1948 json_object_add_value_object(root, "block", block);
1949
1950 percentile_object = json_create_object();
1951 json_object_add_value_object(block, "percentiles",
1952 percentile_object);
1953 for (i = 0; i < len; i++) {
1954 char buf[20];
1955 snprintf(buf, sizeof(buf), "%f",
1956 ts->percentile_list[i].u.f);
1957 json_object_add_value_int(percentile_object,
1958 buf,
1959 percentiles[i]);
1960 }
1961
1962 states = json_create_object();
1963 json_object_add_value_object(block, "states", states);
1964 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1965 json_object_add_value_int(states,
1966 block_state_names[state],
1967 block_state_counts[state]);
1968 }
1969 free(percentiles);
1970 }
1971 }
1972
1973 if (ts->ss_dur) {
1974 struct json_object *data;
1975 struct json_array *iops, *bw;
1976 int j, k, l;
1977 char ss_buf[64];
1978
1979 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1980 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1981 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1982 (float) ts->ss_limit.u.f,
1983 ts->ss_state & FIO_SS_PCT ? "%" : "");
1984
1985 tmp = json_create_object();
1986 json_object_add_value_object(root, "steadystate", tmp);
1987 json_object_add_value_string(tmp, "ss", ss_buf);
1988 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1989 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1990
1991 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1992 ts->ss_state & FIO_SS_PCT ? "%" : "");
1993 json_object_add_value_string(tmp, "criterion", ss_buf);
1994 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1995 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1996
1997 data = json_create_object();
1998 json_object_add_value_object(tmp, "data", data);
1999 bw = json_create_array();
2000 iops = json_create_array();
2001
2002 /*
2003 ** if ss was attained or the buffer is not full,
2004 ** ss->head points to the first element in the list.
2005 ** otherwise it actually points to the second element
2006 ** in the list
2007 */
2008 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
2009 j = ts->ss_head;
2010 else
2011 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
2012 for (l = 0; l < ts->ss_dur; l++) {
2013 k = (j + l) % ts->ss_dur;
2014 json_array_add_value_int(bw, ts->ss_bw_data[k]);
2015 json_array_add_value_int(iops, ts->ss_iops_data[k]);
2016 }
2017 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
2018 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
2019 json_object_add_value_array(data, "iops", iops);
2020 json_object_add_value_array(data, "bw", bw);
2021 }
2022
2023 return root;
2024}
2025
2026static void show_thread_status_terse(struct thread_stat *ts,
2027 struct group_run_stats *rs,
2028 struct buf_output *out)
2029{
2030 if (terse_version >= 2 && terse_version <= 5)
2031 show_thread_status_terse_all(ts, rs, terse_version, out);
2032 else
2033 log_err("fio: bad terse version!? %d\n", terse_version);
2034}
2035
2036struct json_object *show_thread_status(struct thread_stat *ts,
2037 struct group_run_stats *rs,
2038 struct flist_head *opt_list,
2039 struct buf_output *out)
2040{
2041 struct json_object *ret = NULL;
2042
2043 if (output_format & FIO_OUTPUT_TERSE)
2044 show_thread_status_terse(ts, rs, out);
2045 if (output_format & FIO_OUTPUT_JSON)
2046 ret = show_thread_status_json(ts, rs, opt_list);
2047 if (output_format & FIO_OUTPUT_NORMAL)
2048 show_thread_status_normal(ts, rs, out);
2049
2050 return ret;
2051}
2052
2053static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
2054{
2055 double mean, S;
2056
2057 dst->min_val = min(dst->min_val, src->min_val);
2058 dst->max_val = max(dst->max_val, src->max_val);
2059
2060 /*
2061 * Compute new mean and S after the merge
2062 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
2063 * #Parallel_algorithm>
2064 */
2065 if (first) {
2066 mean = src->mean.u.f;
2067 S = src->S.u.f;
2068 } else {
2069 double delta = src->mean.u.f - dst->mean.u.f;
2070
2071 mean = ((src->mean.u.f * src->samples) +
2072 (dst->mean.u.f * dst->samples)) /
2073 (dst->samples + src->samples);
2074
2075 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
2076 (dst->samples * src->samples) /
2077 (dst->samples + src->samples);
2078 }
2079
2080 dst->samples += src->samples;
2081 dst->mean.u.f = mean;
2082 dst->S.u.f = S;
2083
2084}
2085
2086/*
2087 * We sum two kinds of stats - one that is time based, in which case we
2088 * apply the proper summing technique, and then one that is iops/bw
2089 * numbers. For group_reporting, we should just add those up, not make
2090 * them the mean of everything.
2091 */
2092static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
2093 bool pure_sum)
2094{
2095 if (src->samples == 0)
2096 return;
2097
2098 if (!pure_sum) {
2099 __sum_stat(dst, src, first);
2100 return;
2101 }
2102
2103 if (first) {
2104 dst->min_val = src->min_val;
2105 dst->max_val = src->max_val;
2106 dst->samples = src->samples;
2107 dst->mean.u.f = src->mean.u.f;
2108 dst->S.u.f = src->S.u.f;
2109 } else {
2110 dst->min_val += src->min_val;
2111 dst->max_val += src->max_val;
2112 dst->samples += src->samples;
2113 dst->mean.u.f += src->mean.u.f;
2114 dst->S.u.f += src->S.u.f;
2115 }
2116}
2117
2118void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2119{
2120 int i;
2121
2122 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2123 if (dst->max_run[i] < src->max_run[i])
2124 dst->max_run[i] = src->max_run[i];
2125 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2126 dst->min_run[i] = src->min_run[i];
2127 if (dst->max_bw[i] < src->max_bw[i])
2128 dst->max_bw[i] = src->max_bw[i];
2129 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2130 dst->min_bw[i] = src->min_bw[i];
2131
2132 dst->iobytes[i] += src->iobytes[i];
2133 dst->agg[i] += src->agg[i];
2134 }
2135
2136 if (!dst->kb_base)
2137 dst->kb_base = src->kb_base;
2138 if (!dst->unit_base)
2139 dst->unit_base = src->unit_base;
2140 if (!dst->sig_figs)
2141 dst->sig_figs = src->sig_figs;
2142}
2143
2144void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
2145 bool first)
2146{
2147 int k, l, m;
2148
2149 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
2150
2151 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2152 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2153 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
2154 sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
2155 sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
2156 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
2157 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
2158 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
2159 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
2160
2161 dst->io_bytes[l] += src->io_bytes[l];
2162
2163 if (dst->runtime[l] < src->runtime[l])
2164 dst->runtime[l] = src->runtime[l];
2165 } else {
2166 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
2167 sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
2168 sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
2169 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
2170 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
2171 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
2172 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
2173
2174 dst->io_bytes[0] += src->io_bytes[l];
2175
2176 if (dst->runtime[0] < src->runtime[l])
2177 dst->runtime[0] = src->runtime[l];
2178
2179 /*
2180 * We're summing to the same destination, so override
2181 * 'first' after the first iteration of the loop
2182 */
2183 first = false;
2184 }
2185 }
2186
2187 dst->usr_time += src->usr_time;
2188 dst->sys_time += src->sys_time;
2189 dst->ctx += src->ctx;
2190 dst->majf += src->majf;
2191 dst->minf += src->minf;
2192
2193 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2194 dst->io_u_map[k] += src->io_u_map[k];
2195 dst->io_u_submit[k] += src->io_u_submit[k];
2196 dst->io_u_complete[k] += src->io_u_complete[k];
2197 }
2198
2199 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2200 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2201 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2202 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2203 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2204 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2205
2206 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2207 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2208 dst->total_io_u[k] += src->total_io_u[k];
2209 dst->short_io_u[k] += src->short_io_u[k];
2210 dst->drop_io_u[k] += src->drop_io_u[k];
2211 } else {
2212 dst->total_io_u[0] += src->total_io_u[k];
2213 dst->short_io_u[0] += src->short_io_u[k];
2214 dst->drop_io_u[0] += src->drop_io_u[k];
2215 }
2216 }
2217
2218 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2219
2220 for (k = 0; k < FIO_LAT_CNT; k++)
2221 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2222 for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2223 if (dst->unified_rw_rep != UNIFIED_MIXED)
2224 dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2225 else
2226 dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2227
2228 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2229 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2230
2231 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2232 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2233 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2234 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2235 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2236 } else {
2237 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2238 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2239 }
2240
2241 }
2242 }
2243
2244 dst->total_run_time += src->total_run_time;
2245 dst->total_submit += src->total_submit;
2246 dst->total_complete += src->total_complete;
2247 dst->nr_zone_resets += src->nr_zone_resets;
2248 dst->cachehit += src->cachehit;
2249 dst->cachemiss += src->cachemiss;
2250}
2251
2252void init_group_run_stat(struct group_run_stats *gs)
2253{
2254 int i;
2255 memset(gs, 0, sizeof(*gs));
2256
2257 for (i = 0; i < DDIR_RWDIR_CNT; i++)
2258 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2259}
2260
2261void init_thread_stat_min_vals(struct thread_stat *ts)
2262{
2263 int i;
2264
2265 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2266 ts->clat_stat[i].min_val = ULONG_MAX;
2267 ts->slat_stat[i].min_val = ULONG_MAX;
2268 ts->lat_stat[i].min_val = ULONG_MAX;
2269 ts->bw_stat[i].min_val = ULONG_MAX;
2270 ts->iops_stat[i].min_val = ULONG_MAX;
2271 ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2272 ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2273 }
2274 ts->sync_stat.min_val = ULONG_MAX;
2275}
2276
2277void init_thread_stat(struct thread_stat *ts)
2278{
2279 memset(ts, 0, sizeof(*ts));
2280
2281 init_thread_stat_min_vals(ts);
2282 ts->groupid = -1;
2283}
2284
2285void __show_run_stats(void)
2286{
2287 struct group_run_stats *runstats, *rs;
2288 struct thread_data *td;
2289 struct thread_stat *threadstats, *ts;
2290 int i, j, k, nr_ts, last_ts, idx;
2291 bool kb_base_warned = false;
2292 bool unit_base_warned = false;
2293 struct json_object *root = NULL;
2294 struct json_array *array = NULL;
2295 struct buf_output output[FIO_OUTPUT_NR];
2296 struct flist_head **opt_lists;
2297
2298 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2299
2300 for (i = 0; i < groupid + 1; i++)
2301 init_group_run_stat(&runstats[i]);
2302
2303 /*
2304 * find out how many threads stats we need. if group reporting isn't
2305 * enabled, it's one-per-td.
2306 */
2307 nr_ts = 0;
2308 last_ts = -1;
2309 for_each_td(td, i) {
2310 if (!td->o.group_reporting) {
2311 nr_ts++;
2312 continue;
2313 }
2314 if (last_ts == td->groupid)
2315 continue;
2316 if (!td->o.stats)
2317 continue;
2318
2319 last_ts = td->groupid;
2320 nr_ts++;
2321 }
2322
2323 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2324 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2325
2326 for (i = 0; i < nr_ts; i++) {
2327 init_thread_stat(&threadstats[i]);
2328 opt_lists[i] = NULL;
2329 }
2330
2331 j = 0;
2332 last_ts = -1;
2333 idx = 0;
2334 for_each_td(td, i) {
2335 if (!td->o.stats)
2336 continue;
2337 if (idx && (!td->o.group_reporting ||
2338 (td->o.group_reporting && last_ts != td->groupid))) {
2339 idx = 0;
2340 j++;
2341 }
2342
2343 last_ts = td->groupid;
2344
2345 ts = &threadstats[j];
2346
2347 ts->clat_percentiles = td->o.clat_percentiles;
2348 ts->lat_percentiles = td->o.lat_percentiles;
2349 ts->slat_percentiles = td->o.slat_percentiles;
2350 ts->percentile_precision = td->o.percentile_precision;
2351 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2352 opt_lists[j] = &td->opt_list;
2353
2354 idx++;
2355 ts->members++;
2356
2357 if (ts->groupid == -1) {
2358 /*
2359 * These are per-group shared already
2360 */
2361 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2362 if (td->o.description)
2363 snprintf(ts->description,
2364 sizeof(ts->description), "%s",
2365 td->o.description);
2366 else
2367 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2368
2369 /*
2370 * If multiple entries in this group, this is
2371 * the first member.
2372 */
2373 ts->thread_number = td->thread_number;
2374 ts->groupid = td->groupid;
2375
2376 /*
2377 * first pid in group, not very useful...
2378 */
2379 ts->pid = td->pid;
2380
2381 ts->kb_base = td->o.kb_base;
2382 ts->unit_base = td->o.unit_base;
2383 ts->sig_figs = td->o.sig_figs;
2384 ts->unified_rw_rep = td->o.unified_rw_rep;
2385 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2386 log_info("fio: kb_base differs for jobs in group, using"
2387 " %u as the base\n", ts->kb_base);
2388 kb_base_warned = true;
2389 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2390 log_info("fio: unit_base differs for jobs in group, using"
2391 " %u as the base\n", ts->unit_base);
2392 unit_base_warned = true;
2393 }
2394
2395 ts->continue_on_error = td->o.continue_on_error;
2396 ts->total_err_count += td->total_err_count;
2397 ts->first_error = td->first_error;
2398 if (!ts->error) {
2399 if (!td->error && td->o.continue_on_error &&
2400 td->first_error) {
2401 ts->error = td->first_error;
2402 snprintf(ts->verror, sizeof(ts->verror), "%s",
2403 td->verror);
2404 } else if (td->error) {
2405 ts->error = td->error;
2406 snprintf(ts->verror, sizeof(ts->verror), "%s",
2407 td->verror);
2408 }
2409 }
2410
2411 ts->latency_depth = td->latency_qd;
2412 ts->latency_target = td->o.latency_target;
2413 ts->latency_percentile = td->o.latency_percentile;
2414 ts->latency_window = td->o.latency_window;
2415
2416 ts->nr_block_infos = td->ts.nr_block_infos;
2417 for (k = 0; k < ts->nr_block_infos; k++)
2418 ts->block_infos[k] = td->ts.block_infos[k];
2419
2420 sum_thread_stats(ts, &td->ts, idx == 1);
2421
2422 if (td->o.ss_dur) {
2423 ts->ss_state = td->ss.state;
2424 ts->ss_dur = td->ss.dur;
2425 ts->ss_head = td->ss.head;
2426 ts->ss_bw_data = td->ss.bw_data;
2427 ts->ss_iops_data = td->ss.iops_data;
2428 ts->ss_limit.u.f = td->ss.limit;
2429 ts->ss_slope.u.f = td->ss.slope;
2430 ts->ss_deviation.u.f = td->ss.deviation;
2431 ts->ss_criterion.u.f = td->ss.criterion;
2432 }
2433 else
2434 ts->ss_dur = ts->ss_state = 0;
2435 }
2436
2437 for (i = 0; i < nr_ts; i++) {
2438 unsigned long long bw;
2439
2440 ts = &threadstats[i];
2441 if (ts->groupid == -1)
2442 continue;
2443 rs = &runstats[ts->groupid];
2444 rs->kb_base = ts->kb_base;
2445 rs->unit_base = ts->unit_base;
2446 rs->sig_figs = ts->sig_figs;
2447 rs->unified_rw_rep |= ts->unified_rw_rep;
2448
2449 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2450 if (!ts->runtime[j])
2451 continue;
2452 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2453 rs->min_run[j] = ts->runtime[j];
2454 if (ts->runtime[j] > rs->max_run[j])
2455 rs->max_run[j] = ts->runtime[j];
2456
2457 bw = 0;
2458 if (ts->runtime[j])
2459 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2460 if (bw < rs->min_bw[j])
2461 rs->min_bw[j] = bw;
2462 if (bw > rs->max_bw[j])
2463 rs->max_bw[j] = bw;
2464
2465 rs->iobytes[j] += ts->io_bytes[j];
2466 }
2467 }
2468
2469 for (i = 0; i < groupid + 1; i++) {
2470 int ddir;
2471
2472 rs = &runstats[i];
2473
2474 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2475 if (rs->max_run[ddir])
2476 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2477 rs->max_run[ddir];
2478 }
2479 }
2480
2481 for (i = 0; i < FIO_OUTPUT_NR; i++)
2482 buf_output_init(&output[i]);
2483
2484 /*
2485 * don't overwrite last signal output
2486 */
2487 if (output_format & FIO_OUTPUT_NORMAL)
2488 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2489 if (output_format & FIO_OUTPUT_JSON) {
2490 struct thread_data *global;
2491 char time_buf[32];
2492 struct timeval now;
2493 unsigned long long ms_since_epoch;
2494 time_t tv_sec;
2495
2496 gettimeofday(&now, NULL);
2497 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2498 (unsigned long long)(now.tv_usec) / 1000;
2499
2500 tv_sec = now.tv_sec;
2501 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2502 if (time_buf[strlen(time_buf) - 1] == '\n')
2503 time_buf[strlen(time_buf) - 1] = '\0';
2504
2505 root = json_create_object();
2506 json_object_add_value_string(root, "fio version", fio_version_string);
2507 json_object_add_value_int(root, "timestamp", now.tv_sec);
2508 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2509 json_object_add_value_string(root, "time", time_buf);
2510 global = get_global_options();
2511 json_add_job_opts(root, "global options", &global->opt_list);
2512 array = json_create_array();
2513 json_object_add_value_array(root, "jobs", array);
2514 }
2515
2516 if (is_backend)
2517 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2518
2519 for (i = 0; i < nr_ts; i++) {
2520 ts = &threadstats[i];
2521 rs = &runstats[ts->groupid];
2522
2523 if (is_backend) {
2524 fio_server_send_job_options(opt_lists[i], i);
2525 fio_server_send_ts(ts, rs);
2526 } else {
2527 if (output_format & FIO_OUTPUT_TERSE)
2528 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2529 if (output_format & FIO_OUTPUT_JSON) {
2530 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2531 json_array_add_value_object(array, tmp);
2532 }
2533 if (output_format & FIO_OUTPUT_NORMAL)
2534 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2535 }
2536 }
2537 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2538 /* disk util stats, if any */
2539 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2540
2541 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2542
2543 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2544 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2545 json_free_object(root);
2546 }
2547
2548 for (i = 0; i < groupid + 1; i++) {
2549 rs = &runstats[i];
2550
2551 rs->groupid = i;
2552 if (is_backend)
2553 fio_server_send_gs(rs);
2554 else if (output_format & FIO_OUTPUT_NORMAL)
2555 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2556 }
2557
2558 if (is_backend)
2559 fio_server_send_du();
2560 else if (output_format & FIO_OUTPUT_NORMAL) {
2561 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2562 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2563 }
2564
2565 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2566 struct buf_output *out = &output[i];
2567
2568 log_info_buf(out->buf, out->buflen);
2569 buf_output_free(out);
2570 }
2571
2572 fio_idle_prof_cleanup();
2573
2574 log_info_flush();
2575 free(runstats);
2576 free(threadstats);
2577 free(opt_lists);
2578}
2579
2580int __show_running_run_stats(void)
2581{
2582 struct thread_data *td;
2583 unsigned long long *rt;
2584 struct timespec ts;
2585 int i;
2586
2587 fio_sem_down(stat_sem);
2588
2589 rt = malloc(thread_number * sizeof(unsigned long long));
2590 fio_gettime(&ts, NULL);
2591
2592 for_each_td(td, i) {
2593 td->update_rusage = 1;
2594 for_each_rw_ddir(ddir) {
2595 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2596 }
2597 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2598
2599 rt[i] = mtime_since(&td->start, &ts);
2600 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2601 td->ts.runtime[DDIR_READ] += rt[i];
2602 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2603 td->ts.runtime[DDIR_WRITE] += rt[i];
2604 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2605 td->ts.runtime[DDIR_TRIM] += rt[i];
2606 }
2607
2608 for_each_td(td, i) {
2609 if (td->runstate >= TD_EXITED)
2610 continue;
2611 if (td->rusage_sem) {
2612 td->update_rusage = 1;
2613 fio_sem_down(td->rusage_sem);
2614 }
2615 td->update_rusage = 0;
2616 }
2617
2618 __show_run_stats();
2619
2620 for_each_td(td, i) {
2621 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2622 td->ts.runtime[DDIR_READ] -= rt[i];
2623 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2624 td->ts.runtime[DDIR_WRITE] -= rt[i];
2625 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2626 td->ts.runtime[DDIR_TRIM] -= rt[i];
2627 }
2628
2629 free(rt);
2630 fio_sem_up(stat_sem);
2631
2632 return 0;
2633}
2634
2635static bool status_file_disabled;
2636
2637#define FIO_STATUS_FILE "fio-dump-status"
2638
2639static int check_status_file(void)
2640{
2641 struct stat sb;
2642 const char *temp_dir;
2643 char fio_status_file_path[PATH_MAX];
2644
2645 if (status_file_disabled)
2646 return 0;
2647
2648 temp_dir = getenv("TMPDIR");
2649 if (temp_dir == NULL) {
2650 temp_dir = getenv("TEMP");
2651 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2652 temp_dir = NULL;
2653 }
2654 if (temp_dir == NULL)
2655 temp_dir = "/tmp";
2656#ifdef __COVERITY__
2657 __coverity_tainted_data_sanitize__(temp_dir);
2658#endif
2659
2660 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2661
2662 if (stat(fio_status_file_path, &sb))
2663 return 0;
2664
2665 if (unlink(fio_status_file_path) < 0) {
2666 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2667 strerror(errno));
2668 log_err("fio: disabling status file updates\n");
2669 status_file_disabled = true;
2670 }
2671
2672 return 1;
2673}
2674
2675void check_for_running_stats(void)
2676{
2677 if (check_status_file()) {
2678 show_running_run_stats();
2679 return;
2680 }
2681}
2682
2683static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2684{
2685 double val = data;
2686 double delta;
2687
2688 if (data > is->max_val)
2689 is->max_val = data;
2690 if (data < is->min_val)
2691 is->min_val = data;
2692
2693 delta = val - is->mean.u.f;
2694 if (delta) {
2695 is->mean.u.f += delta / (is->samples + 1.0);
2696 is->S.u.f += delta * (val - is->mean.u.f);
2697 }
2698
2699 is->samples++;
2700}
2701
2702/*
2703 * Return a struct io_logs, which is added to the tail of the log
2704 * list for 'iolog'.
2705 */
2706static struct io_logs *get_new_log(struct io_log *iolog)
2707{
2708 size_t new_samples;
2709 struct io_logs *cur_log;
2710
2711 /*
2712 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2713 * forever
2714 */
2715 if (!iolog->cur_log_max) {
2716 new_samples = iolog->td->o.log_entries;
2717 } else {
2718 new_samples = iolog->cur_log_max * 2;
2719 if (new_samples > MAX_LOG_ENTRIES)
2720 new_samples = MAX_LOG_ENTRIES;
2721 }
2722
2723 cur_log = smalloc(sizeof(*cur_log));
2724 if (cur_log) {
2725 INIT_FLIST_HEAD(&cur_log->list);
2726 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2727 if (cur_log->log) {
2728 cur_log->nr_samples = 0;
2729 cur_log->max_samples = new_samples;
2730 flist_add_tail(&cur_log->list, &iolog->io_logs);
2731 iolog->cur_log_max = new_samples;
2732 return cur_log;
2733 }
2734 sfree(cur_log);
2735 }
2736
2737 return NULL;
2738}
2739
2740/*
2741 * Add and return a new log chunk, or return current log if big enough
2742 */
2743static struct io_logs *regrow_log(struct io_log *iolog)
2744{
2745 struct io_logs *cur_log;
2746 int i;
2747
2748 if (!iolog || iolog->disabled)
2749 goto disable;
2750
2751 cur_log = iolog_cur_log(iolog);
2752 if (!cur_log) {
2753 cur_log = get_new_log(iolog);
2754 if (!cur_log)
2755 return NULL;
2756 }
2757
2758 if (cur_log->nr_samples < cur_log->max_samples)
2759 return cur_log;
2760
2761 /*
2762 * No room for a new sample. If we're compressing on the fly, flush
2763 * out the current chunk
2764 */
2765 if (iolog->log_gz) {
2766 if (iolog_cur_flush(iolog, cur_log)) {
2767 log_err("fio: failed flushing iolog! Will stop logging.\n");
2768 return NULL;
2769 }
2770 }
2771
2772 /*
2773 * Get a new log array, and add to our list
2774 */
2775 cur_log = get_new_log(iolog);
2776 if (!cur_log) {
2777 log_err("fio: failed extending iolog! Will stop logging.\n");
2778 return NULL;
2779 }
2780
2781 if (!iolog->pending || !iolog->pending->nr_samples)
2782 return cur_log;
2783
2784 /*
2785 * Flush pending items to new log
2786 */
2787 for (i = 0; i < iolog->pending->nr_samples; i++) {
2788 struct io_sample *src, *dst;
2789
2790 src = get_sample(iolog, iolog->pending, i);
2791 dst = get_sample(iolog, cur_log, i);
2792 memcpy(dst, src, log_entry_sz(iolog));
2793 }
2794 cur_log->nr_samples = iolog->pending->nr_samples;
2795
2796 iolog->pending->nr_samples = 0;
2797 return cur_log;
2798disable:
2799 if (iolog)
2800 iolog->disabled = true;
2801 return NULL;
2802}
2803
2804void regrow_logs(struct thread_data *td)
2805{
2806 regrow_log(td->slat_log);
2807 regrow_log(td->clat_log);
2808 regrow_log(td->clat_hist_log);
2809 regrow_log(td->lat_log);
2810 regrow_log(td->bw_log);
2811 regrow_log(td->iops_log);
2812 td->flags &= ~TD_F_REGROW_LOGS;
2813}
2814
2815void regrow_agg_logs(void)
2816{
2817 enum fio_ddir ddir;
2818
2819 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2820 regrow_log(agg_io_log[ddir]);
2821}
2822
2823static struct io_logs *get_cur_log(struct io_log *iolog)
2824{
2825 struct io_logs *cur_log;
2826
2827 cur_log = iolog_cur_log(iolog);
2828 if (!cur_log) {
2829 cur_log = get_new_log(iolog);
2830 if (!cur_log)
2831 return NULL;
2832 }
2833
2834 if (cur_log->nr_samples < cur_log->max_samples)
2835 return cur_log;
2836
2837 /*
2838 * Out of space. If we're in IO offload mode, or we're not doing
2839 * per unit logging (hence logging happens outside of the IO thread
2840 * as well), add a new log chunk inline. If we're doing inline
2841 * submissions, flag 'td' as needing a log regrow and we'll take
2842 * care of it on the submission side.
2843 */
2844 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2845 !per_unit_log(iolog))
2846 return regrow_log(iolog);
2847
2848 if (iolog->td)
2849 iolog->td->flags |= TD_F_REGROW_LOGS;
2850 if (iolog->pending)
2851 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2852 return iolog->pending;
2853}
2854
2855static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2856 enum fio_ddir ddir, unsigned long long bs,
2857 unsigned long t, uint64_t offset,
2858 unsigned int priority)
2859{
2860 struct io_logs *cur_log;
2861
2862 if (iolog->disabled)
2863 return;
2864 if (flist_empty(&iolog->io_logs))
2865 iolog->avg_last[ddir] = t;
2866
2867 cur_log = get_cur_log(iolog);
2868 if (cur_log) {
2869 struct io_sample *s;
2870
2871 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2872
2873 s->data = data;
2874 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2875 io_sample_set_ddir(iolog, s, ddir);
2876 s->bs = bs;
2877 s->priority = priority;
2878
2879 if (iolog->log_offset) {
2880 struct io_sample_offset *so = (void *) s;
2881
2882 so->offset = offset;
2883 }
2884
2885 cur_log->nr_samples++;
2886 return;
2887 }
2888
2889 iolog->disabled = true;
2890}
2891
2892static inline void reset_io_stat(struct io_stat *ios)
2893{
2894 ios->min_val = -1ULL;
2895 ios->max_val = ios->samples = 0;
2896 ios->mean.u.f = ios->S.u.f = 0;
2897}
2898
2899void reset_io_stats(struct thread_data *td)
2900{
2901 struct thread_stat *ts = &td->ts;
2902 int i, j, k;
2903
2904 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2905 reset_io_stat(&ts->clat_high_prio_stat[i]);
2906 reset_io_stat(&ts->clat_low_prio_stat[i]);
2907 reset_io_stat(&ts->clat_stat[i]);
2908 reset_io_stat(&ts->slat_stat[i]);
2909 reset_io_stat(&ts->lat_stat[i]);
2910 reset_io_stat(&ts->bw_stat[i]);
2911 reset_io_stat(&ts->iops_stat[i]);
2912
2913 ts->io_bytes[i] = 0;
2914 ts->runtime[i] = 0;
2915 ts->total_io_u[i] = 0;
2916 ts->short_io_u[i] = 0;
2917 ts->drop_io_u[i] = 0;
2918
2919 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2920 ts->io_u_plat_high_prio[i][j] = 0;
2921 ts->io_u_plat_low_prio[i][j] = 0;
2922 if (!i)
2923 ts->io_u_sync_plat[j] = 0;
2924 }
2925 }
2926
2927 for (i = 0; i < FIO_LAT_CNT; i++)
2928 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2929 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2930 ts->io_u_plat[i][j][k] = 0;
2931
2932 ts->total_io_u[DDIR_SYNC] = 0;
2933
2934 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2935 ts->io_u_map[i] = 0;
2936 ts->io_u_submit[i] = 0;
2937 ts->io_u_complete[i] = 0;
2938 }
2939
2940 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2941 ts->io_u_lat_n[i] = 0;
2942 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2943 ts->io_u_lat_u[i] = 0;
2944 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2945 ts->io_u_lat_m[i] = 0;
2946
2947 ts->total_submit = 0;
2948 ts->total_complete = 0;
2949 ts->nr_zone_resets = 0;
2950 ts->cachehit = ts->cachemiss = 0;
2951}
2952
2953static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2954 unsigned long elapsed, bool log_max)
2955{
2956 /*
2957 * Note an entry in the log. Use the mean from the logged samples,
2958 * making sure to properly round up. Only write a log entry if we
2959 * had actual samples done.
2960 */
2961 if (iolog->avg_window[ddir].samples) {
2962 union io_sample_data data;
2963
2964 if (log_max)
2965 data.val = iolog->avg_window[ddir].max_val;
2966 else
2967 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2968
2969 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2970 }
2971
2972 reset_io_stat(&iolog->avg_window[ddir]);
2973}
2974
2975static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2976 bool log_max)
2977{
2978 int ddir;
2979
2980 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2981 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2982}
2983
2984static unsigned long add_log_sample(struct thread_data *td,
2985 struct io_log *iolog,
2986 union io_sample_data data,
2987 enum fio_ddir ddir, unsigned long long bs,
2988 uint64_t offset, unsigned int ioprio)
2989{
2990 unsigned long elapsed, this_window;
2991
2992 if (!ddir_rw(ddir))
2993 return 0;
2994
2995 elapsed = mtime_since_now(&td->epoch);
2996
2997 /*
2998 * If no time averaging, just add the log sample.
2999 */
3000 if (!iolog->avg_msec) {
3001 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3002 ioprio);
3003 return 0;
3004 }
3005
3006 /*
3007 * Add the sample. If the time period has passed, then
3008 * add that entry to the log and clear.
3009 */
3010 add_stat_sample(&iolog->avg_window[ddir], data.val);
3011
3012 /*
3013 * If period hasn't passed, adding the above sample is all we
3014 * need to do.
3015 */
3016 this_window = elapsed - iolog->avg_last[ddir];
3017 if (elapsed < iolog->avg_last[ddir])
3018 return iolog->avg_last[ddir] - elapsed;
3019 else if (this_window < iolog->avg_msec) {
3020 unsigned long diff = iolog->avg_msec - this_window;
3021
3022 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3023 return diff;
3024 }
3025
3026 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3027
3028 iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3029
3030 return iolog->avg_msec;
3031}
3032
3033void finalize_logs(struct thread_data *td, bool unit_logs)
3034{
3035 unsigned long elapsed;
3036
3037 elapsed = mtime_since_now(&td->epoch);
3038
3039 if (td->clat_log && unit_logs)
3040 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3041 if (td->slat_log && unit_logs)
3042 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3043 if (td->lat_log && unit_logs)
3044 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3045 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3046 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3047 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3048 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3049}
3050
3051void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3052 unsigned long long bs)
3053{
3054 struct io_log *iolog;
3055
3056 if (!ddir_rw(ddir))
3057 return;
3058
3059 iolog = agg_io_log[ddir];
3060 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3061}
3062
3063void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3064{
3065 unsigned int idx = plat_val_to_idx(nsec);
3066 assert(idx < FIO_IO_U_PLAT_NR);
3067
3068 ts->io_u_sync_plat[idx]++;
3069 add_stat_sample(&ts->sync_stat, nsec);
3070}
3071
3072static inline void add_lat_percentile_sample(struct thread_stat *ts,
3073 unsigned long long nsec,
3074 enum fio_ddir ddir,
3075 enum fio_lat lat)
3076{
3077 unsigned int idx = plat_val_to_idx(nsec);
3078 assert(idx < FIO_IO_U_PLAT_NR);
3079
3080 ts->io_u_plat[lat][ddir][idx]++;
3081}
3082
3083static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
3084 unsigned long long nsec,
3085 enum fio_ddir ddir,
3086 bool high_prio)
3087{
3088 unsigned int idx = plat_val_to_idx(nsec);
3089
3090 if (!high_prio)
3091 ts->io_u_plat_low_prio[ddir][idx]++;
3092 else
3093 ts->io_u_plat_high_prio[ddir][idx]++;
3094}
3095
3096void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3097 unsigned long long nsec, unsigned long long bs,
3098 uint64_t offset, unsigned int ioprio, bool high_prio)
3099{
3100 const bool needs_lock = td_async_processing(td);
3101 unsigned long elapsed, this_window;
3102 struct thread_stat *ts = &td->ts;
3103 struct io_log *iolog = td->clat_hist_log;
3104
3105 if (needs_lock)
3106 __td_io_u_lock(td);
3107
3108 add_stat_sample(&ts->clat_stat[ddir], nsec);
3109
3110 /*
3111 * When lat_percentiles=1 (default 0), the reported high/low priority
3112 * percentiles and stats are used for describing total latency values,
3113 * even though the variable names themselves start with clat_.
3114 *
3115 * Because of the above definition, add a prio stat sample only when
3116 * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3117 * when lat_percentiles=1.
3118 */
3119 if (!ts->lat_percentiles) {
3120 if (high_prio)
3121 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3122 else
3123 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3124 }
3125
3126 if (td->clat_log)
3127 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3128 offset, ioprio);
3129
3130 if (ts->clat_percentiles) {
3131 /*
3132 * Because of the above definition, add a prio lat percentile
3133 * sample only when lat_percentiles=0. add_lat_sample() will add
3134 * the prio lat percentile sample when lat_percentiles=1.
3135 */
3136 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3137 if (!ts->lat_percentiles)
3138 add_lat_percentile_prio_sample(ts, nsec, ddir,
3139 high_prio);
3140 }
3141
3142 if (iolog && iolog->hist_msec) {
3143 struct io_hist *hw = &iolog->hist_window[ddir];
3144
3145 hw->samples++;
3146 elapsed = mtime_since_now(&td->epoch);
3147 if (!hw->hist_last)
3148 hw->hist_last = elapsed;
3149 this_window = elapsed - hw->hist_last;
3150
3151 if (this_window >= iolog->hist_msec) {
3152 uint64_t *io_u_plat;
3153 struct io_u_plat_entry *dst;
3154
3155 /*
3156 * Make a byte-for-byte copy of the latency histogram
3157 * stored in td->ts.io_u_plat[ddir], recording it in a
3158 * log sample. Note that the matching call to free() is
3159 * located in iolog.c after printing this sample to the
3160 * log file.
3161 */
3162 io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3163 dst = malloc(sizeof(struct io_u_plat_entry));
3164 memcpy(&(dst->io_u_plat), io_u_plat,
3165 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3166 flist_add(&dst->list, &hw->list);
3167 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3168 elapsed, offset, ioprio);
3169
3170 /*
3171 * Update the last time we recorded as being now, minus
3172 * any drift in time we encountered before actually
3173 * making the record.
3174 */
3175 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3176 hw->samples = 0;
3177 }
3178 }
3179
3180 if (needs_lock)
3181 __td_io_u_unlock(td);
3182}
3183
3184void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3185 unsigned long long nsec, unsigned long long bs,
3186 uint64_t offset, unsigned int ioprio)
3187{
3188 const bool needs_lock = td_async_processing(td);
3189 struct thread_stat *ts = &td->ts;
3190
3191 if (!ddir_rw(ddir))
3192 return;
3193
3194 if (needs_lock)
3195 __td_io_u_lock(td);
3196
3197 add_stat_sample(&ts->slat_stat[ddir], nsec);
3198
3199 if (td->slat_log)
3200 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3201 offset, ioprio);
3202
3203 if (ts->slat_percentiles)
3204 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3205
3206 if (needs_lock)
3207 __td_io_u_unlock(td);
3208}
3209
3210void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3211 unsigned long long nsec, unsigned long long bs,
3212 uint64_t offset, unsigned int ioprio, bool high_prio)
3213{
3214 const bool needs_lock = td_async_processing(td);
3215 struct thread_stat *ts = &td->ts;
3216
3217 if (!ddir_rw(ddir))
3218 return;
3219
3220 if (needs_lock)
3221 __td_io_u_lock(td);
3222
3223 add_stat_sample(&ts->lat_stat[ddir], nsec);
3224
3225 if (td->lat_log)
3226 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3227 offset, ioprio);
3228
3229 /*
3230 * When lat_percentiles=1 (default 0), the reported high/low priority
3231 * percentiles and stats are used for describing total latency values,
3232 * even though the variable names themselves start with clat_.
3233 *
3234 * Because of the above definition, add a prio stat and prio lat
3235 * percentile sample only when lat_percentiles=1. add_clat_sample() will
3236 * add the prio stat and prio lat percentile sample when
3237 * lat_percentiles=0.
3238 */
3239 if (ts->lat_percentiles) {
3240 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3241 add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3242 if (high_prio)
3243 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3244 else
3245 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3246
3247 }
3248 if (needs_lock)
3249 __td_io_u_unlock(td);
3250}
3251
3252void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3253 unsigned int bytes, unsigned long long spent)
3254{
3255 const bool needs_lock = td_async_processing(td);
3256 struct thread_stat *ts = &td->ts;
3257 unsigned long rate;
3258
3259 if (spent)
3260 rate = (unsigned long) (bytes * 1000000ULL / spent);
3261 else
3262 rate = 0;
3263
3264 if (needs_lock)
3265 __td_io_u_lock(td);
3266
3267 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3268
3269 if (td->bw_log)
3270 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3271 bytes, io_u->offset, io_u->ioprio);
3272
3273 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3274
3275 if (needs_lock)
3276 __td_io_u_unlock(td);
3277}
3278
3279static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3280 struct timespec *t, unsigned int avg_time,
3281 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3282 struct io_stat *stat, struct io_log *log,
3283 bool is_kb)
3284{
3285 const bool needs_lock = td_async_processing(td);
3286 unsigned long spent, rate;
3287 enum fio_ddir ddir;
3288 unsigned long next, next_log;
3289
3290 next_log = avg_time;
3291
3292 spent = mtime_since(parent_tv, t);
3293 if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3294 return avg_time - spent;
3295
3296 if (needs_lock)
3297 __td_io_u_lock(td);
3298
3299 /*
3300 * Compute both read and write rates for the interval.
3301 */
3302 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3303 uint64_t delta;
3304
3305 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3306 if (!delta)
3307 continue; /* No entries for interval */
3308
3309 if (spent) {
3310 if (is_kb)
3311 rate = delta * 1000 / spent / 1024; /* KiB/s */
3312 else
3313 rate = (delta * 1000) / spent;
3314 } else
3315 rate = 0;
3316
3317 add_stat_sample(&stat[ddir], rate);
3318
3319 if (log) {
3320 unsigned long long bs = 0;
3321
3322 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3323 bs = td->o.min_bs[ddir];
3324
3325 next = add_log_sample(td, log, sample_val(rate), ddir,
3326 bs, 0, 0);
3327 next_log = min(next_log, next);
3328 }
3329
3330 stat_io_bytes[ddir] = this_io_bytes[ddir];
3331 }
3332
3333 *parent_tv = *t;
3334
3335 if (needs_lock)
3336 __td_io_u_unlock(td);
3337
3338 if (spent <= avg_time)
3339 next = avg_time;
3340 else
3341 next = avg_time - (1 + spent - avg_time);
3342
3343 return min(next, next_log);
3344}
3345
3346static int add_bw_samples(struct thread_data *td, struct timespec *t)
3347{
3348 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3349 td->this_io_bytes, td->stat_io_bytes,
3350 td->ts.bw_stat, td->bw_log, true);
3351}
3352
3353void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3354 unsigned int bytes)
3355{
3356 const bool needs_lock = td_async_processing(td);
3357 struct thread_stat *ts = &td->ts;
3358
3359 if (needs_lock)
3360 __td_io_u_lock(td);
3361
3362 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3363
3364 if (td->iops_log)
3365 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3366 bytes, io_u->offset, io_u->ioprio);
3367
3368 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3369
3370 if (needs_lock)
3371 __td_io_u_unlock(td);
3372}
3373
3374static int add_iops_samples(struct thread_data *td, struct timespec *t)
3375{
3376 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3377 td->this_io_blocks, td->stat_io_blocks,
3378 td->ts.iops_stat, td->iops_log, false);
3379}
3380
3381/*
3382 * Returns msecs to next event
3383 */
3384int calc_log_samples(void)
3385{
3386 struct thread_data *td;
3387 unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3388 struct timespec now;
3389 int i;
3390 long elapsed_time = 0;
3391
3392 fio_gettime(&now, NULL);
3393
3394 for_each_td(td, i) {
3395 elapsed_time = mtime_since_now(&td->epoch);
3396
3397 if (!td->o.stats)
3398 continue;
3399 if (in_ramp_time(td) ||
3400 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3401 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3402 continue;
3403 }
3404 if (!td->bw_log ||
3405 (td->bw_log && !per_unit_log(td->bw_log))) {
3406 tmp = add_bw_samples(td, &now);
3407
3408 if (td->bw_log)
3409 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3410 }
3411 if (!td->iops_log ||
3412 (td->iops_log && !per_unit_log(td->iops_log))) {
3413 tmp = add_iops_samples(td, &now);
3414
3415 if (td->iops_log)
3416 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3417 }
3418
3419 if (tmp < next)
3420 next = tmp;
3421 }
3422
3423 /* if log_avg_msec_min has not been changed, set it to 0 */
3424 if (log_avg_msec_min == -1U)
3425 log_avg_msec_min = 0;
3426
3427 if (log_avg_msec_min == 0)
3428 next_mod = elapsed_time;
3429 else
3430 next_mod = elapsed_time % log_avg_msec_min;
3431
3432 /* correction to keep the time on the log avg msec boundary */
3433 next = min(next, (log_avg_msec_min - next_mod));
3434
3435 return next == ~0U ? 0 : next;
3436}
3437
3438void stat_init(void)
3439{
3440 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3441}
3442
3443void stat_exit(void)
3444{
3445 /*
3446 * When we have the mutex, we know out-of-band access to it
3447 * have ended.
3448 */
3449 fio_sem_down(stat_sem);
3450 fio_sem_remove(stat_sem);
3451}
3452
3453/*
3454 * Called from signal handler. Wake up status thread.
3455 */
3456void show_running_run_stats(void)
3457{
3458 helper_do_stat();
3459}
3460
3461uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3462{
3463 /* Ignore io_u's which span multiple blocks--they will just get
3464 * inaccurate counts. */
3465 int idx = (io_u->offset - io_u->file->file_offset)
3466 / td->o.bs[DDIR_TRIM];
3467 uint32_t *info = &td->ts.block_infos[idx];
3468 assert(idx < td->ts.nr_block_infos);
3469 return info;
3470}
3471