stat: clean up calc_clat_percentiles
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18
19#define LOG_MSEC_SLACK 1
20
21struct fio_sem *stat_sem;
22
23void clear_rusage_stat(struct thread_data *td)
24{
25 struct thread_stat *ts = &td->ts;
26
27 fio_getrusage(&td->ru_start);
28 ts->usr_time = ts->sys_time = 0;
29 ts->ctx = 0;
30 ts->minf = ts->majf = 0;
31}
32
33void update_rusage_stat(struct thread_data *td)
34{
35 struct thread_stat *ts = &td->ts;
36
37 fio_getrusage(&td->ru_end);
38 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39 &td->ru_end.ru_utime);
40 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41 &td->ru_end.ru_stime);
42 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48}
49
50/*
51 * Given a latency, return the index of the corresponding bucket in
52 * the structure tracking percentiles.
53 *
54 * (1) find the group (and error bits) that the value (latency)
55 * belongs to by looking at its MSB. (2) find the bucket number in the
56 * group by looking at the index bits.
57 *
58 */
59static unsigned int plat_val_to_idx(unsigned long long val)
60{
61 unsigned int msb, error_bits, base, offset, idx;
62
63 /* Find MSB starting from bit 0 */
64 if (val == 0)
65 msb = 0;
66 else
67 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69 /*
70 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71 * all bits of the sample as index
72 */
73 if (msb <= FIO_IO_U_PLAT_BITS)
74 return val;
75
76 /* Compute the number of error bits to discard*/
77 error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79 /* Compute the number of buckets before the group */
80 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82 /*
83 * Discard the error bits and apply the mask to find the
84 * index for the buckets in the group
85 */
86 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88 /* Make sure the index does not exceed (array size - 1) */
89 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92 return idx;
93}
94
95/*
96 * Convert the given index of the bucket array to the value
97 * represented by the bucket
98 */
99static unsigned long long plat_idx_to_val(unsigned int idx)
100{
101 unsigned int error_bits;
102 unsigned long long k, base;
103
104 assert(idx < FIO_IO_U_PLAT_NR);
105
106 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107 * all bits of the sample as index */
108 if (idx < (FIO_IO_U_PLAT_VAL << 1))
109 return idx;
110
111 /* Find the group and compute the minimum value of that group */
112 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115 /* Find its bucket number of the group */
116 k = idx % FIO_IO_U_PLAT_VAL;
117
118 /* Return the mean of the range of the bucket */
119 return base + ((k + 0.5) * (1 << error_bits));
120}
121
122static int double_cmp(const void *a, const void *b)
123{
124 const fio_fp64_t fa = *(const fio_fp64_t *) a;
125 const fio_fp64_t fb = *(const fio_fp64_t *) b;
126 int cmp = 0;
127
128 if (fa.u.f > fb.u.f)
129 cmp = 1;
130 else if (fa.u.f < fb.u.f)
131 cmp = -1;
132
133 return cmp;
134}
135
136unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137 fio_fp64_t *plist, unsigned long long **output,
138 unsigned long long *maxv, unsigned long long *minv)
139{
140 unsigned long long sum = 0;
141 unsigned int len, i, j = 0;
142 unsigned long long *ovals = NULL;
143 bool is_last;
144
145 *minv = -1ULL;
146 *maxv = 0;
147
148 len = 0;
149 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
150 len++;
151
152 if (!len)
153 return 0;
154
155 /*
156 * Sort the percentile list. Note that it may already be sorted if
157 * we are using the default values, but since it's a short list this
158 * isn't a worry. Also note that this does not work for NaN values.
159 */
160 if (len > 1)
161 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
162
163 ovals = malloc(len * sizeof(*ovals));
164 if (!ovals)
165 return 0;
166
167 /*
168 * Calculate bucket values, note down max and min values
169 */
170 is_last = false;
171 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
172 sum += io_u_plat[i];
173 while (sum >= (plist[j].u.f / 100.0 * nr)) {
174 assert(plist[j].u.f <= 100.0);
175
176 ovals[j] = plat_idx_to_val(i);
177 if (ovals[j] < *minv)
178 *minv = ovals[j];
179 if (ovals[j] > *maxv)
180 *maxv = ovals[j];
181
182 is_last = (j == len - 1) != 0;
183 if (is_last)
184 break;
185
186 j++;
187 }
188 }
189
190 *output = ovals;
191 return len;
192}
193
194/*
195 * Find and display the p-th percentile of clat
196 */
197static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
198 fio_fp64_t *plist, unsigned int precision,
199 const char *pre, struct buf_output *out)
200{
201 unsigned int divisor, len, i, j = 0;
202 unsigned long long minv, maxv;
203 unsigned long long *ovals;
204 int per_line, scale_down, time_width;
205 bool is_last;
206 char fmt[32];
207
208 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
209 if (!len || !ovals)
210 goto out;
211
212 /*
213 * We default to nsecs, but if the value range is such that we
214 * should scale down to usecs or msecs, do that.
215 */
216 if (minv > 2000000 && maxv > 99999999ULL) {
217 scale_down = 2;
218 divisor = 1000000;
219 log_buf(out, " %s percentiles (msec):\n |", pre);
220 } else if (minv > 2000 && maxv > 99999) {
221 scale_down = 1;
222 divisor = 1000;
223 log_buf(out, " %s percentiles (usec):\n |", pre);
224 } else {
225 scale_down = 0;
226 divisor = 1;
227 log_buf(out, " %s percentiles (nsec):\n |", pre);
228 }
229
230
231 time_width = max(5, (int) (log10(maxv / divisor) + 1));
232 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
233 precision, time_width);
234 /* fmt will be something like " %5.2fth=[%4llu]%c" */
235 per_line = (80 - 7) / (precision + 10 + time_width);
236
237 for (j = 0; j < len; j++) {
238 /* for formatting */
239 if (j != 0 && (j % per_line) == 0)
240 log_buf(out, " |");
241
242 /* end of the list */
243 is_last = (j == len - 1) != 0;
244
245 for (i = 0; i < scale_down; i++)
246 ovals[j] = (ovals[j] + 999) / 1000;
247
248 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
249
250 if (is_last)
251 break;
252
253 if ((j % per_line) == per_line - 1) /* for formatting */
254 log_buf(out, "\n");
255 }
256
257out:
258 if (ovals)
259 free(ovals);
260}
261
262bool calc_lat(struct io_stat *is, unsigned long long *min,
263 unsigned long long *max, double *mean, double *dev)
264{
265 double n = (double) is->samples;
266
267 if (n == 0)
268 return false;
269
270 *min = is->min_val;
271 *max = is->max_val;
272 *mean = is->mean.u.f;
273
274 if (n > 1.0)
275 *dev = sqrt(is->S.u.f / (n - 1.0));
276 else
277 *dev = 0;
278
279 return true;
280}
281
282void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
283{
284 char *io, *agg, *min, *max;
285 char *ioalt, *aggalt, *minalt, *maxalt;
286 const char *str[] = { " READ", " WRITE" , " TRIM"};
287 int i;
288
289 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
290
291 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
292 const int i2p = is_power_of_2(rs->kb_base);
293
294 if (!rs->max_run[i])
295 continue;
296
297 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
298 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
299 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
300 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
301 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
302 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
303 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
304 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
306 rs->unified_rw_rep ? " MIXED" : str[i],
307 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
308 (unsigned long long) rs->min_run[i],
309 (unsigned long long) rs->max_run[i]);
310
311 free(io);
312 free(agg);
313 free(min);
314 free(max);
315 free(ioalt);
316 free(aggalt);
317 free(minalt);
318 free(maxalt);
319 }
320}
321
322void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
323{
324 int i;
325
326 /*
327 * Do depth distribution calculations
328 */
329 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
330 if (total) {
331 io_u_dist[i] = (double) map[i] / (double) total;
332 io_u_dist[i] *= 100.0;
333 if (io_u_dist[i] < 0.1 && map[i])
334 io_u_dist[i] = 0.1;
335 } else
336 io_u_dist[i] = 0.0;
337 }
338}
339
340static void stat_calc_lat(struct thread_stat *ts, double *dst,
341 uint64_t *src, int nr)
342{
343 unsigned long total = ddir_rw_sum(ts->total_io_u);
344 int i;
345
346 /*
347 * Do latency distribution calculations
348 */
349 for (i = 0; i < nr; i++) {
350 if (total) {
351 dst[i] = (double) src[i] / (double) total;
352 dst[i] *= 100.0;
353 if (dst[i] < 0.01 && src[i])
354 dst[i] = 0.01;
355 } else
356 dst[i] = 0.0;
357 }
358}
359
360/*
361 * To keep the terse format unaltered, add all of the ns latency
362 * buckets to the first us latency bucket
363 */
364static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
365{
366 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
367 int i;
368
369 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
370
371 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
372 ntotal += ts->io_u_lat_n[i];
373
374 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
375}
376
377void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
378{
379 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
380}
381
382void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
383{
384 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
385}
386
387void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
388{
389 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
390}
391
392static void display_lat(const char *name, unsigned long long min,
393 unsigned long long max, double mean, double dev,
394 struct buf_output *out)
395{
396 const char *base = "(nsec)";
397 char *minp, *maxp;
398
399 if (nsec_to_msec(&min, &max, &mean, &dev))
400 base = "(msec)";
401 else if (nsec_to_usec(&min, &max, &mean, &dev))
402 base = "(usec)";
403
404 minp = num2str(min, 6, 1, 0, N2S_NONE);
405 maxp = num2str(max, 6, 1, 0, N2S_NONE);
406
407 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
408 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
409
410 free(minp);
411 free(maxp);
412}
413
414static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
415 int ddir, struct buf_output *out)
416{
417 unsigned long runt;
418 unsigned long long min, max, bw, iops;
419 double mean, dev;
420 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
421 int i2p;
422
423 if (ddir_sync(ddir)) {
424 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
425 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
426 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
427 show_clat_percentiles(ts->io_u_sync_plat,
428 ts->sync_stat.samples,
429 ts->percentile_list,
430 ts->percentile_precision,
431 io_ddir_name(ddir), out);
432 }
433 return;
434 }
435
436 assert(ddir_rw(ddir));
437
438 if (!ts->runtime[ddir])
439 return;
440
441 i2p = is_power_of_2(rs->kb_base);
442 runt = ts->runtime[ddir];
443
444 bw = (1000 * ts->io_bytes[ddir]) / runt;
445 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
446 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
447 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
448
449 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
450 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
451 if (ddir == DDIR_WRITE)
452 post_st = zbd_write_status(ts);
453 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
454 uint64_t total;
455 double hit;
456
457 total = ts->cachehit + ts->cachemiss;
458 hit = (double) ts->cachehit / (double) total;
459 hit *= 100.0;
460 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
461 post_st = NULL;
462 }
463
464 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
465 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
466 iops_p, bw_p, bw_p_alt, io_p,
467 (unsigned long long) ts->runtime[ddir],
468 post_st ? : "");
469
470 free(post_st);
471 free(io_p);
472 free(bw_p);
473 free(bw_p_alt);
474 free(iops_p);
475
476 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
477 display_lat("slat", min, max, mean, dev, out);
478 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
479 display_lat("clat", min, max, mean, dev, out);
480 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
481 display_lat(" lat", min, max, mean, dev, out);
482
483 if (ts->clat_percentiles || ts->lat_percentiles) {
484 const char *name = ts->clat_percentiles ? "clat" : " lat";
485 uint64_t samples;
486
487 if (ts->clat_percentiles)
488 samples = ts->clat_stat[ddir].samples;
489 else
490 samples = ts->lat_stat[ddir].samples;
491
492 show_clat_percentiles(ts->io_u_plat[ddir],
493 samples,
494 ts->percentile_list,
495 ts->percentile_precision, name, out);
496 }
497 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
498 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
499 const char *bw_str;
500
501 if ((rs->unit_base == 1) && i2p)
502 bw_str = "Kibit";
503 else if (rs->unit_base == 1)
504 bw_str = "kbit";
505 else if (i2p)
506 bw_str = "KiB";
507 else
508 bw_str = "kB";
509
510 if (rs->agg[ddir]) {
511 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
512 if (p_of_agg > 100.0)
513 p_of_agg = 100.0;
514 }
515
516 if (rs->unit_base == 1) {
517 min *= 8.0;
518 max *= 8.0;
519 mean *= 8.0;
520 dev *= 8.0;
521 }
522
523 if (mean > fkb_base * fkb_base) {
524 min /= fkb_base;
525 max /= fkb_base;
526 mean /= fkb_base;
527 dev /= fkb_base;
528 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
529 }
530
531 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
532 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
533 bw_str, min, max, p_of_agg, mean, dev,
534 (&ts->bw_stat[ddir])->samples);
535 }
536 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
537 log_buf(out, " iops : min=%5llu, max=%5llu, "
538 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
539 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
540 }
541}
542
543static bool show_lat(double *io_u_lat, int nr, const char **ranges,
544 const char *msg, struct buf_output *out)
545{
546 bool new_line = true, shown = false;
547 int i, line = 0;
548
549 for (i = 0; i < nr; i++) {
550 if (io_u_lat[i] <= 0.0)
551 continue;
552 shown = true;
553 if (new_line) {
554 if (line)
555 log_buf(out, "\n");
556 log_buf(out, " lat (%s) : ", msg);
557 new_line = false;
558 line = 0;
559 }
560 if (line)
561 log_buf(out, ", ");
562 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
563 line++;
564 if (line == 5)
565 new_line = true;
566 }
567
568 if (shown)
569 log_buf(out, "\n");
570
571 return true;
572}
573
574static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
575{
576 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
577 "250=", "500=", "750=", "1000=", };
578
579 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
580}
581
582static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
583{
584 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
585 "250=", "500=", "750=", "1000=", };
586
587 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
588}
589
590static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
591{
592 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
593 "250=", "500=", "750=", "1000=", "2000=",
594 ">=2000=", };
595
596 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
597}
598
599static void show_latencies(struct thread_stat *ts, struct buf_output *out)
600{
601 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
602 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
603 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
604
605 stat_calc_lat_n(ts, io_u_lat_n);
606 stat_calc_lat_u(ts, io_u_lat_u);
607 stat_calc_lat_m(ts, io_u_lat_m);
608
609 show_lat_n(io_u_lat_n, out);
610 show_lat_u(io_u_lat_u, out);
611 show_lat_m(io_u_lat_m, out);
612}
613
614static int block_state_category(int block_state)
615{
616 switch (block_state) {
617 case BLOCK_STATE_UNINIT:
618 return 0;
619 case BLOCK_STATE_TRIMMED:
620 case BLOCK_STATE_WRITTEN:
621 return 1;
622 case BLOCK_STATE_WRITE_FAILURE:
623 case BLOCK_STATE_TRIM_FAILURE:
624 return 2;
625 default:
626 /* Silence compile warning on some BSDs and have a return */
627 assert(0);
628 return -1;
629 }
630}
631
632static int compare_block_infos(const void *bs1, const void *bs2)
633{
634 uint64_t block1 = *(uint64_t *)bs1;
635 uint64_t block2 = *(uint64_t *)bs2;
636 int state1 = BLOCK_INFO_STATE(block1);
637 int state2 = BLOCK_INFO_STATE(block2);
638 int bscat1 = block_state_category(state1);
639 int bscat2 = block_state_category(state2);
640 int cycles1 = BLOCK_INFO_TRIMS(block1);
641 int cycles2 = BLOCK_INFO_TRIMS(block2);
642
643 if (bscat1 < bscat2)
644 return -1;
645 if (bscat1 > bscat2)
646 return 1;
647
648 if (cycles1 < cycles2)
649 return -1;
650 if (cycles1 > cycles2)
651 return 1;
652
653 if (state1 < state2)
654 return -1;
655 if (state1 > state2)
656 return 1;
657
658 assert(block1 == block2);
659 return 0;
660}
661
662static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
663 fio_fp64_t *plist, unsigned int **percentiles,
664 unsigned int *types)
665{
666 int len = 0;
667 int i, nr_uninit;
668
669 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
670
671 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
672 len++;
673
674 if (!len)
675 return 0;
676
677 /*
678 * Sort the percentile list. Note that it may already be sorted if
679 * we are using the default values, but since it's a short list this
680 * isn't a worry. Also note that this does not work for NaN values.
681 */
682 if (len > 1)
683 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
684
685 /* Start only after the uninit entries end */
686 for (nr_uninit = 0;
687 nr_uninit < nr_block_infos
688 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
689 nr_uninit ++)
690 ;
691
692 if (nr_uninit == nr_block_infos)
693 return 0;
694
695 *percentiles = calloc(len, sizeof(**percentiles));
696
697 for (i = 0; i < len; i++) {
698 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
699 + nr_uninit;
700 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
701 }
702
703 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
704 for (i = 0; i < nr_block_infos; i++)
705 types[BLOCK_INFO_STATE(block_infos[i])]++;
706
707 return len;
708}
709
710static const char *block_state_names[] = {
711 [BLOCK_STATE_UNINIT] = "unwritten",
712 [BLOCK_STATE_TRIMMED] = "trimmed",
713 [BLOCK_STATE_WRITTEN] = "written",
714 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
715 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
716};
717
718static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
719 fio_fp64_t *plist, struct buf_output *out)
720{
721 int len, pos, i;
722 unsigned int *percentiles = NULL;
723 unsigned int block_state_counts[BLOCK_STATE_COUNT];
724
725 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
726 &percentiles, block_state_counts);
727
728 log_buf(out, " block lifetime percentiles :\n |");
729 pos = 0;
730 for (i = 0; i < len; i++) {
731 uint32_t block_info = percentiles[i];
732#define LINE_LENGTH 75
733 char str[LINE_LENGTH];
734 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
735 plist[i].u.f, block_info,
736 i == len - 1 ? '\n' : ',');
737 assert(strln < LINE_LENGTH);
738 if (pos + strln > LINE_LENGTH) {
739 pos = 0;
740 log_buf(out, "\n |");
741 }
742 log_buf(out, "%s", str);
743 pos += strln;
744#undef LINE_LENGTH
745 }
746 if (percentiles)
747 free(percentiles);
748
749 log_buf(out, " states :");
750 for (i = 0; i < BLOCK_STATE_COUNT; i++)
751 log_buf(out, " %s=%u%c",
752 block_state_names[i], block_state_counts[i],
753 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
754}
755
756static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
757{
758 char *p1, *p1alt, *p2;
759 unsigned long long bw_mean, iops_mean;
760 const int i2p = is_power_of_2(ts->kb_base);
761
762 if (!ts->ss_dur)
763 return;
764
765 bw_mean = steadystate_bw_mean(ts);
766 iops_mean = steadystate_iops_mean(ts);
767
768 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
769 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
770 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
771
772 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
773 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
774 p1, p1alt, p2,
775 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
776 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
777 ts->ss_criterion.u.f,
778 ts->ss_state & FIO_SS_PCT ? "%" : "");
779
780 free(p1);
781 free(p1alt);
782 free(p2);
783}
784
785static void show_thread_status_normal(struct thread_stat *ts,
786 struct group_run_stats *rs,
787 struct buf_output *out)
788{
789 double usr_cpu, sys_cpu;
790 unsigned long runtime;
791 double io_u_dist[FIO_IO_U_MAP_NR];
792 time_t time_p;
793 char time_buf[32];
794
795 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
796 return;
797
798 memset(time_buf, 0, sizeof(time_buf));
799
800 time(&time_p);
801 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
802
803 if (!ts->error) {
804 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
805 ts->name, ts->groupid, ts->members,
806 ts->error, (int) ts->pid, time_buf);
807 } else {
808 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
809 ts->name, ts->groupid, ts->members,
810 ts->error, ts->verror, (int) ts->pid,
811 time_buf);
812 }
813
814 if (strlen(ts->description))
815 log_buf(out, " Description : [%s]\n", ts->description);
816
817 if (ts->io_bytes[DDIR_READ])
818 show_ddir_status(rs, ts, DDIR_READ, out);
819 if (ts->io_bytes[DDIR_WRITE])
820 show_ddir_status(rs, ts, DDIR_WRITE, out);
821 if (ts->io_bytes[DDIR_TRIM])
822 show_ddir_status(rs, ts, DDIR_TRIM, out);
823
824 show_latencies(ts, out);
825
826 if (ts->sync_stat.samples)
827 show_ddir_status(rs, ts, DDIR_SYNC, out);
828
829 runtime = ts->total_run_time;
830 if (runtime) {
831 double runt = (double) runtime;
832
833 usr_cpu = (double) ts->usr_time * 100 / runt;
834 sys_cpu = (double) ts->sys_time * 100 / runt;
835 } else {
836 usr_cpu = 0;
837 sys_cpu = 0;
838 }
839
840 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
841 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
842 (unsigned long long) ts->ctx,
843 (unsigned long long) ts->majf,
844 (unsigned long long) ts->minf);
845
846 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
847 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
848 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
849 io_u_dist[1], io_u_dist[2],
850 io_u_dist[3], io_u_dist[4],
851 io_u_dist[5], io_u_dist[6]);
852
853 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
854 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
855 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
856 io_u_dist[1], io_u_dist[2],
857 io_u_dist[3], io_u_dist[4],
858 io_u_dist[5], io_u_dist[6]);
859 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
860 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
861 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
862 io_u_dist[1], io_u_dist[2],
863 io_u_dist[3], io_u_dist[4],
864 io_u_dist[5], io_u_dist[6]);
865 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
866 " short=%llu,%llu,%llu,0"
867 " dropped=%llu,%llu,%llu,0\n",
868 (unsigned long long) ts->total_io_u[0],
869 (unsigned long long) ts->total_io_u[1],
870 (unsigned long long) ts->total_io_u[2],
871 (unsigned long long) ts->total_io_u[3],
872 (unsigned long long) ts->short_io_u[0],
873 (unsigned long long) ts->short_io_u[1],
874 (unsigned long long) ts->short_io_u[2],
875 (unsigned long long) ts->drop_io_u[0],
876 (unsigned long long) ts->drop_io_u[1],
877 (unsigned long long) ts->drop_io_u[2]);
878 if (ts->continue_on_error) {
879 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
880 (unsigned long long)ts->total_err_count,
881 ts->first_error,
882 strerror(ts->first_error));
883 }
884 if (ts->latency_depth) {
885 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
886 (unsigned long long)ts->latency_target,
887 (unsigned long long)ts->latency_window,
888 ts->latency_percentile.u.f,
889 ts->latency_depth);
890 }
891
892 if (ts->nr_block_infos)
893 show_block_infos(ts->nr_block_infos, ts->block_infos,
894 ts->percentile_list, out);
895
896 if (ts->ss_dur)
897 show_ss_normal(ts, out);
898}
899
900static void show_ddir_status_terse(struct thread_stat *ts,
901 struct group_run_stats *rs, int ddir,
902 int ver, struct buf_output *out)
903{
904 unsigned long long min, max, minv, maxv, bw, iops;
905 unsigned long long *ovals = NULL;
906 double mean, dev;
907 unsigned int len;
908 int i, bw_stat;
909
910 assert(ddir_rw(ddir));
911
912 iops = bw = 0;
913 if (ts->runtime[ddir]) {
914 uint64_t runt = ts->runtime[ddir];
915
916 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
917 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
918 }
919
920 log_buf(out, ";%llu;%llu;%llu;%llu",
921 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
922 (unsigned long long) ts->runtime[ddir]);
923
924 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
925 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
926 else
927 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
928
929 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
930 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
931 else
932 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
933
934 if (ts->clat_percentiles || ts->lat_percentiles) {
935 len = calc_clat_percentiles(ts->io_u_plat[ddir],
936 ts->clat_stat[ddir].samples,
937 ts->percentile_list, &ovals, &maxv,
938 &minv);
939 } else
940 len = 0;
941
942 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
943 if (i >= len) {
944 log_buf(out, ";0%%=0");
945 continue;
946 }
947 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
948 }
949
950 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
951 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
952 else
953 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
954
955 if (ovals)
956 free(ovals);
957
958 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
959 if (bw_stat) {
960 double p_of_agg = 100.0;
961
962 if (rs->agg[ddir]) {
963 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
964 if (p_of_agg > 100.0)
965 p_of_agg = 100.0;
966 }
967
968 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
969 } else
970 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
971
972 if (ver == 5) {
973 if (bw_stat)
974 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
975 else
976 log_buf(out, ";%lu", 0UL);
977
978 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
979 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
980 mean, dev, (&ts->iops_stat[ddir])->samples);
981 else
982 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
983 }
984}
985
986static void add_ddir_status_json(struct thread_stat *ts,
987 struct group_run_stats *rs, int ddir, struct json_object *parent)
988{
989 unsigned long long min, max, minv, maxv;
990 unsigned long long bw_bytes, bw;
991 unsigned long long *ovals = NULL;
992 double mean, dev, iops;
993 unsigned int len;
994 int i;
995 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
996 char buf[120];
997 double p_of_agg = 100.0;
998
999 assert(ddir_rw(ddir) || ddir_sync(ddir));
1000
1001 if (ts->unified_rw_rep && ddir != DDIR_READ)
1002 return;
1003
1004 dir_object = json_create_object();
1005 json_object_add_value_object(parent,
1006 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1007
1008 if (ddir_rw(ddir)) {
1009 bw_bytes = 0;
1010 bw = 0;
1011 iops = 0.0;
1012 if (ts->runtime[ddir]) {
1013 uint64_t runt = ts->runtime[ddir];
1014
1015 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1016 bw = bw_bytes / 1024; /* KiB/s */
1017 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1018 }
1019
1020 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1021 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1022 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1023 json_object_add_value_int(dir_object, "bw", bw);
1024 json_object_add_value_float(dir_object, "iops", iops);
1025 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1026 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1027 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1028 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1029
1030 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1031 min = max = 0;
1032 mean = dev = 0.0;
1033 }
1034 tmp_object = json_create_object();
1035 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1036 json_object_add_value_int(tmp_object, "min", min);
1037 json_object_add_value_int(tmp_object, "max", max);
1038 json_object_add_value_float(tmp_object, "mean", mean);
1039 json_object_add_value_float(tmp_object, "stddev", dev);
1040
1041 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1042 min = max = 0;
1043 mean = dev = 0.0;
1044 }
1045 tmp_object = json_create_object();
1046 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1047 json_object_add_value_int(tmp_object, "min", min);
1048 json_object_add_value_int(tmp_object, "max", max);
1049 json_object_add_value_float(tmp_object, "mean", mean);
1050 json_object_add_value_float(tmp_object, "stddev", dev);
1051 } else {
1052 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1053 min = max = 0;
1054 mean = dev = 0.0;
1055 }
1056
1057 tmp_object = json_create_object();
1058 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1059 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1060 json_object_add_value_int(tmp_object, "min", min);
1061 json_object_add_value_int(tmp_object, "max", max);
1062 json_object_add_value_float(tmp_object, "mean", mean);
1063 json_object_add_value_float(tmp_object, "stddev", dev);
1064 }
1065
1066 if (ts->clat_percentiles || ts->lat_percentiles) {
1067 if (ddir_rw(ddir)) {
1068 uint64_t samples;
1069
1070 if (ts->clat_percentiles)
1071 samples = ts->clat_stat[ddir].samples;
1072 else
1073 samples = ts->lat_stat[ddir].samples;
1074
1075 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1076 samples, ts->percentile_list, &ovals,
1077 &maxv, &minv);
1078 } else {
1079 len = calc_clat_percentiles(ts->io_u_sync_plat,
1080 ts->sync_stat.samples,
1081 ts->percentile_list, &ovals, &maxv,
1082 &minv);
1083 }
1084
1085 if (len > FIO_IO_U_LIST_MAX_LEN)
1086 len = FIO_IO_U_LIST_MAX_LEN;
1087 } else
1088 len = 0;
1089
1090 percentile_object = json_create_object();
1091 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1092 for (i = 0; i < len; i++) {
1093 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1094 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1095 }
1096
1097 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1098 clat_bins_object = json_create_object();
1099 if (ts->clat_percentiles)
1100 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1101
1102 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1103 if (ddir_rw(ddir)) {
1104 if (ts->io_u_plat[ddir][i]) {
1105 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1106 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1107 }
1108 } else {
1109 if (ts->io_u_sync_plat[i]) {
1110 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1111 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1112 }
1113 }
1114 }
1115 }
1116
1117 if (!ddir_rw(ddir))
1118 return;
1119
1120 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1121 min = max = 0;
1122 mean = dev = 0.0;
1123 }
1124 tmp_object = json_create_object();
1125 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1126 json_object_add_value_int(tmp_object, "min", min);
1127 json_object_add_value_int(tmp_object, "max", max);
1128 json_object_add_value_float(tmp_object, "mean", mean);
1129 json_object_add_value_float(tmp_object, "stddev", dev);
1130 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1131 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1132
1133 if (ovals)
1134 free(ovals);
1135
1136 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1137 if (rs->agg[ddir]) {
1138 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1139 if (p_of_agg > 100.0)
1140 p_of_agg = 100.0;
1141 }
1142 } else {
1143 min = max = 0;
1144 p_of_agg = mean = dev = 0.0;
1145 }
1146 json_object_add_value_int(dir_object, "bw_min", min);
1147 json_object_add_value_int(dir_object, "bw_max", max);
1148 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1149 json_object_add_value_float(dir_object, "bw_mean", mean);
1150 json_object_add_value_float(dir_object, "bw_dev", dev);
1151 json_object_add_value_int(dir_object, "bw_samples",
1152 (&ts->bw_stat[ddir])->samples);
1153
1154 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1155 min = max = 0;
1156 mean = dev = 0.0;
1157 }
1158 json_object_add_value_int(dir_object, "iops_min", min);
1159 json_object_add_value_int(dir_object, "iops_max", max);
1160 json_object_add_value_float(dir_object, "iops_mean", mean);
1161 json_object_add_value_float(dir_object, "iops_stddev", dev);
1162 json_object_add_value_int(dir_object, "iops_samples",
1163 (&ts->iops_stat[ddir])->samples);
1164
1165 if (ts->cachehit + ts->cachemiss) {
1166 uint64_t total;
1167 double hit;
1168
1169 total = ts->cachehit + ts->cachemiss;
1170 hit = (double) ts->cachehit / (double) total;
1171 hit *= 100.0;
1172 json_object_add_value_float(dir_object, "cachehit", hit);
1173 }
1174}
1175
1176static void show_thread_status_terse_all(struct thread_stat *ts,
1177 struct group_run_stats *rs, int ver,
1178 struct buf_output *out)
1179{
1180 double io_u_dist[FIO_IO_U_MAP_NR];
1181 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1182 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1183 double usr_cpu, sys_cpu;
1184 int i;
1185
1186 /* General Info */
1187 if (ver == 2)
1188 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1189 else
1190 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1191 ts->name, ts->groupid, ts->error);
1192
1193 /* Log Read Status */
1194 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1195 /* Log Write Status */
1196 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1197 /* Log Trim Status */
1198 if (ver == 2 || ver == 4 || ver == 5)
1199 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1200
1201 /* CPU Usage */
1202 if (ts->total_run_time) {
1203 double runt = (double) ts->total_run_time;
1204
1205 usr_cpu = (double) ts->usr_time * 100 / runt;
1206 sys_cpu = (double) ts->sys_time * 100 / runt;
1207 } else {
1208 usr_cpu = 0;
1209 sys_cpu = 0;
1210 }
1211
1212 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1213 (unsigned long long) ts->ctx,
1214 (unsigned long long) ts->majf,
1215 (unsigned long long) ts->minf);
1216
1217 /* Calc % distribution of IO depths, usecond, msecond latency */
1218 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1219 stat_calc_lat_nu(ts, io_u_lat_u);
1220 stat_calc_lat_m(ts, io_u_lat_m);
1221
1222 /* Only show fixed 7 I/O depth levels*/
1223 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1224 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1225 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1226
1227 /* Microsecond latency */
1228 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1229 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1230 /* Millisecond latency */
1231 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1232 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1233
1234 /* disk util stats, if any */
1235 if (ver >= 3 && is_running_backend())
1236 show_disk_util(1, NULL, out);
1237
1238 /* Additional output if continue_on_error set - default off*/
1239 if (ts->continue_on_error)
1240 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1241 if (ver == 2)
1242 log_buf(out, "\n");
1243
1244 /* Additional output if description is set */
1245 if (strlen(ts->description))
1246 log_buf(out, ";%s", ts->description);
1247
1248 log_buf(out, "\n");
1249}
1250
1251static void json_add_job_opts(struct json_object *root, const char *name,
1252 struct flist_head *opt_list)
1253{
1254 struct json_object *dir_object;
1255 struct flist_head *entry;
1256 struct print_option *p;
1257
1258 if (flist_empty(opt_list))
1259 return;
1260
1261 dir_object = json_create_object();
1262 json_object_add_value_object(root, name, dir_object);
1263
1264 flist_for_each(entry, opt_list) {
1265 const char *pos = "";
1266
1267 p = flist_entry(entry, struct print_option, list);
1268 if (p->value)
1269 pos = p->value;
1270 json_object_add_value_string(dir_object, p->name, pos);
1271 }
1272}
1273
1274static struct json_object *show_thread_status_json(struct thread_stat *ts,
1275 struct group_run_stats *rs,
1276 struct flist_head *opt_list)
1277{
1278 struct json_object *root, *tmp;
1279 struct jobs_eta *je;
1280 double io_u_dist[FIO_IO_U_MAP_NR];
1281 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1282 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1283 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1284 double usr_cpu, sys_cpu;
1285 int i;
1286 size_t size;
1287
1288 root = json_create_object();
1289 json_object_add_value_string(root, "jobname", ts->name);
1290 json_object_add_value_int(root, "groupid", ts->groupid);
1291 json_object_add_value_int(root, "error", ts->error);
1292
1293 /* ETA Info */
1294 je = get_jobs_eta(true, &size);
1295 if (je) {
1296 json_object_add_value_int(root, "eta", je->eta_sec);
1297 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1298 }
1299
1300 if (opt_list)
1301 json_add_job_opts(root, "job options", opt_list);
1302
1303 add_ddir_status_json(ts, rs, DDIR_READ, root);
1304 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1305 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1306 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1307
1308 /* CPU Usage */
1309 if (ts->total_run_time) {
1310 double runt = (double) ts->total_run_time;
1311
1312 usr_cpu = (double) ts->usr_time * 100 / runt;
1313 sys_cpu = (double) ts->sys_time * 100 / runt;
1314 } else {
1315 usr_cpu = 0;
1316 sys_cpu = 0;
1317 }
1318 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1319 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1320 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1321 json_object_add_value_int(root, "ctx", ts->ctx);
1322 json_object_add_value_int(root, "majf", ts->majf);
1323 json_object_add_value_int(root, "minf", ts->minf);
1324
1325 /* Calc % distribution of IO depths */
1326 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1327 tmp = json_create_object();
1328 json_object_add_value_object(root, "iodepth_level", tmp);
1329 /* Only show fixed 7 I/O depth levels*/
1330 for (i = 0; i < 7; i++) {
1331 char name[20];
1332 if (i < 6)
1333 snprintf(name, 20, "%d", 1 << i);
1334 else
1335 snprintf(name, 20, ">=%d", 1 << i);
1336 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1337 }
1338
1339 /* Calc % distribution of submit IO depths */
1340 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1341 tmp = json_create_object();
1342 json_object_add_value_object(root, "iodepth_submit", tmp);
1343 /* Only show fixed 7 I/O depth levels*/
1344 for (i = 0; i < 7; i++) {
1345 char name[20];
1346 if (i == 0)
1347 snprintf(name, 20, "0");
1348 else if (i < 6)
1349 snprintf(name, 20, "%d", 1 << (i+1));
1350 else
1351 snprintf(name, 20, ">=%d", 1 << i);
1352 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1353 }
1354
1355 /* Calc % distribution of completion IO depths */
1356 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1357 tmp = json_create_object();
1358 json_object_add_value_object(root, "iodepth_complete", tmp);
1359 /* Only show fixed 7 I/O depth levels*/
1360 for (i = 0; i < 7; i++) {
1361 char name[20];
1362 if (i == 0)
1363 snprintf(name, 20, "0");
1364 else if (i < 6)
1365 snprintf(name, 20, "%d", 1 << (i+1));
1366 else
1367 snprintf(name, 20, ">=%d", 1 << i);
1368 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1369 }
1370
1371 /* Calc % distribution of nsecond, usecond, msecond latency */
1372 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1373 stat_calc_lat_n(ts, io_u_lat_n);
1374 stat_calc_lat_u(ts, io_u_lat_u);
1375 stat_calc_lat_m(ts, io_u_lat_m);
1376
1377 /* Nanosecond latency */
1378 tmp = json_create_object();
1379 json_object_add_value_object(root, "latency_ns", tmp);
1380 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1381 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1382 "250", "500", "750", "1000", };
1383 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1384 }
1385 /* Microsecond latency */
1386 tmp = json_create_object();
1387 json_object_add_value_object(root, "latency_us", tmp);
1388 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1389 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1390 "250", "500", "750", "1000", };
1391 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1392 }
1393 /* Millisecond latency */
1394 tmp = json_create_object();
1395 json_object_add_value_object(root, "latency_ms", tmp);
1396 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1397 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1398 "250", "500", "750", "1000", "2000",
1399 ">=2000", };
1400 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1401 }
1402
1403 /* Additional output if continue_on_error set - default off*/
1404 if (ts->continue_on_error) {
1405 json_object_add_value_int(root, "total_err", ts->total_err_count);
1406 json_object_add_value_int(root, "first_error", ts->first_error);
1407 }
1408
1409 if (ts->latency_depth) {
1410 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1411 json_object_add_value_int(root, "latency_target", ts->latency_target);
1412 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1413 json_object_add_value_int(root, "latency_window", ts->latency_window);
1414 }
1415
1416 /* Additional output if description is set */
1417 if (strlen(ts->description))
1418 json_object_add_value_string(root, "desc", ts->description);
1419
1420 if (ts->nr_block_infos) {
1421 /* Block error histogram and types */
1422 int len;
1423 unsigned int *percentiles = NULL;
1424 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1425
1426 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1427 ts->percentile_list,
1428 &percentiles, block_state_counts);
1429
1430 if (len) {
1431 struct json_object *block, *percentile_object, *states;
1432 int state;
1433 block = json_create_object();
1434 json_object_add_value_object(root, "block", block);
1435
1436 percentile_object = json_create_object();
1437 json_object_add_value_object(block, "percentiles",
1438 percentile_object);
1439 for (i = 0; i < len; i++) {
1440 char buf[20];
1441 snprintf(buf, sizeof(buf), "%f",
1442 ts->percentile_list[i].u.f);
1443 json_object_add_value_int(percentile_object,
1444 (const char *)buf,
1445 percentiles[i]);
1446 }
1447
1448 states = json_create_object();
1449 json_object_add_value_object(block, "states", states);
1450 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1451 json_object_add_value_int(states,
1452 block_state_names[state],
1453 block_state_counts[state]);
1454 }
1455 free(percentiles);
1456 }
1457 }
1458
1459 if (ts->ss_dur) {
1460 struct json_object *data;
1461 struct json_array *iops, *bw;
1462 int j, k, l;
1463 char ss_buf[64];
1464
1465 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1466 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1467 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1468 (float) ts->ss_limit.u.f,
1469 ts->ss_state & FIO_SS_PCT ? "%" : "");
1470
1471 tmp = json_create_object();
1472 json_object_add_value_object(root, "steadystate", tmp);
1473 json_object_add_value_string(tmp, "ss", ss_buf);
1474 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1475 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1476
1477 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1478 ts->ss_state & FIO_SS_PCT ? "%" : "");
1479 json_object_add_value_string(tmp, "criterion", ss_buf);
1480 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1481 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1482
1483 data = json_create_object();
1484 json_object_add_value_object(tmp, "data", data);
1485 bw = json_create_array();
1486 iops = json_create_array();
1487
1488 /*
1489 ** if ss was attained or the buffer is not full,
1490 ** ss->head points to the first element in the list.
1491 ** otherwise it actually points to the second element
1492 ** in the list
1493 */
1494 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1495 j = ts->ss_head;
1496 else
1497 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1498 for (l = 0; l < ts->ss_dur; l++) {
1499 k = (j + l) % ts->ss_dur;
1500 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1501 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1502 }
1503 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1504 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1505 json_object_add_value_array(data, "iops", iops);
1506 json_object_add_value_array(data, "bw", bw);
1507 }
1508
1509 return root;
1510}
1511
1512static void show_thread_status_terse(struct thread_stat *ts,
1513 struct group_run_stats *rs,
1514 struct buf_output *out)
1515{
1516 if (terse_version >= 2 && terse_version <= 5)
1517 show_thread_status_terse_all(ts, rs, terse_version, out);
1518 else
1519 log_err("fio: bad terse version!? %d\n", terse_version);
1520}
1521
1522struct json_object *show_thread_status(struct thread_stat *ts,
1523 struct group_run_stats *rs,
1524 struct flist_head *opt_list,
1525 struct buf_output *out)
1526{
1527 struct json_object *ret = NULL;
1528
1529 if (output_format & FIO_OUTPUT_TERSE)
1530 show_thread_status_terse(ts, rs, out);
1531 if (output_format & FIO_OUTPUT_JSON)
1532 ret = show_thread_status_json(ts, rs, opt_list);
1533 if (output_format & FIO_OUTPUT_NORMAL)
1534 show_thread_status_normal(ts, rs, out);
1535
1536 return ret;
1537}
1538
1539static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1540{
1541 double mean, S;
1542
1543 dst->min_val = min(dst->min_val, src->min_val);
1544 dst->max_val = max(dst->max_val, src->max_val);
1545
1546 /*
1547 * Compute new mean and S after the merge
1548 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1549 * #Parallel_algorithm>
1550 */
1551 if (first) {
1552 mean = src->mean.u.f;
1553 S = src->S.u.f;
1554 } else {
1555 double delta = src->mean.u.f - dst->mean.u.f;
1556
1557 mean = ((src->mean.u.f * src->samples) +
1558 (dst->mean.u.f * dst->samples)) /
1559 (dst->samples + src->samples);
1560
1561 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1562 (dst->samples * src->samples) /
1563 (dst->samples + src->samples);
1564 }
1565
1566 dst->samples += src->samples;
1567 dst->mean.u.f = mean;
1568 dst->S.u.f = S;
1569
1570}
1571
1572/*
1573 * We sum two kinds of stats - one that is time based, in which case we
1574 * apply the proper summing technique, and then one that is iops/bw
1575 * numbers. For group_reporting, we should just add those up, not make
1576 * them the mean of everything.
1577 */
1578static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1579 bool pure_sum)
1580{
1581 if (src->samples == 0)
1582 return;
1583
1584 if (!pure_sum) {
1585 __sum_stat(dst, src, first);
1586 return;
1587 }
1588
1589 if (first) {
1590 dst->min_val = src->min_val;
1591 dst->max_val = src->max_val;
1592 dst->samples = src->samples;
1593 dst->mean.u.f = src->mean.u.f;
1594 dst->S.u.f = src->S.u.f;
1595 } else {
1596 dst->min_val += src->min_val;
1597 dst->max_val += src->max_val;
1598 dst->samples += src->samples;
1599 dst->mean.u.f += src->mean.u.f;
1600 dst->S.u.f += src->S.u.f;
1601 }
1602}
1603
1604void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1605{
1606 int i;
1607
1608 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1609 if (dst->max_run[i] < src->max_run[i])
1610 dst->max_run[i] = src->max_run[i];
1611 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1612 dst->min_run[i] = src->min_run[i];
1613 if (dst->max_bw[i] < src->max_bw[i])
1614 dst->max_bw[i] = src->max_bw[i];
1615 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1616 dst->min_bw[i] = src->min_bw[i];
1617
1618 dst->iobytes[i] += src->iobytes[i];
1619 dst->agg[i] += src->agg[i];
1620 }
1621
1622 if (!dst->kb_base)
1623 dst->kb_base = src->kb_base;
1624 if (!dst->unit_base)
1625 dst->unit_base = src->unit_base;
1626 if (!dst->sig_figs)
1627 dst->sig_figs = src->sig_figs;
1628}
1629
1630void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1631 bool first)
1632{
1633 int l, k;
1634
1635 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1636 if (!dst->unified_rw_rep) {
1637 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1638 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1639 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1640 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1641 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1642
1643 dst->io_bytes[l] += src->io_bytes[l];
1644
1645 if (dst->runtime[l] < src->runtime[l])
1646 dst->runtime[l] = src->runtime[l];
1647 } else {
1648 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1649 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1650 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1651 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1652 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1653
1654 dst->io_bytes[0] += src->io_bytes[l];
1655
1656 if (dst->runtime[0] < src->runtime[l])
1657 dst->runtime[0] = src->runtime[l];
1658
1659 /*
1660 * We're summing to the same destination, so override
1661 * 'first' after the first iteration of the loop
1662 */
1663 first = false;
1664 }
1665 }
1666
1667 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1668 dst->usr_time += src->usr_time;
1669 dst->sys_time += src->sys_time;
1670 dst->ctx += src->ctx;
1671 dst->majf += src->majf;
1672 dst->minf += src->minf;
1673
1674 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1675 dst->io_u_map[k] += src->io_u_map[k];
1676 dst->io_u_submit[k] += src->io_u_submit[k];
1677 dst->io_u_complete[k] += src->io_u_complete[k];
1678 }
1679 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1680 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1681 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1682 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1683 }
1684 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1685 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1686
1687 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1688 if (!dst->unified_rw_rep) {
1689 dst->total_io_u[k] += src->total_io_u[k];
1690 dst->short_io_u[k] += src->short_io_u[k];
1691 dst->drop_io_u[k] += src->drop_io_u[k];
1692 } else {
1693 dst->total_io_u[0] += src->total_io_u[k];
1694 dst->short_io_u[0] += src->short_io_u[k];
1695 dst->drop_io_u[0] += src->drop_io_u[k];
1696 }
1697 }
1698
1699 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1700
1701 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1702 int m;
1703
1704 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1705 if (!dst->unified_rw_rep)
1706 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1707 else
1708 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1709 }
1710 }
1711
1712 dst->total_run_time += src->total_run_time;
1713 dst->total_submit += src->total_submit;
1714 dst->total_complete += src->total_complete;
1715 dst->nr_zone_resets += src->nr_zone_resets;
1716 dst->cachehit += src->cachehit;
1717 dst->cachemiss += src->cachemiss;
1718}
1719
1720void init_group_run_stat(struct group_run_stats *gs)
1721{
1722 int i;
1723 memset(gs, 0, sizeof(*gs));
1724
1725 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1726 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1727}
1728
1729void init_thread_stat(struct thread_stat *ts)
1730{
1731 int j;
1732
1733 memset(ts, 0, sizeof(*ts));
1734
1735 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1736 ts->lat_stat[j].min_val = -1UL;
1737 ts->clat_stat[j].min_val = -1UL;
1738 ts->slat_stat[j].min_val = -1UL;
1739 ts->bw_stat[j].min_val = -1UL;
1740 ts->iops_stat[j].min_val = -1UL;
1741 }
1742 ts->sync_stat.min_val = -1UL;
1743 ts->groupid = -1;
1744}
1745
1746void __show_run_stats(void)
1747{
1748 struct group_run_stats *runstats, *rs;
1749 struct thread_data *td;
1750 struct thread_stat *threadstats, *ts;
1751 int i, j, k, nr_ts, last_ts, idx;
1752 bool kb_base_warned = false;
1753 bool unit_base_warned = false;
1754 struct json_object *root = NULL;
1755 struct json_array *array = NULL;
1756 struct buf_output output[FIO_OUTPUT_NR];
1757 struct flist_head **opt_lists;
1758
1759 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1760
1761 for (i = 0; i < groupid + 1; i++)
1762 init_group_run_stat(&runstats[i]);
1763
1764 /*
1765 * find out how many threads stats we need. if group reporting isn't
1766 * enabled, it's one-per-td.
1767 */
1768 nr_ts = 0;
1769 last_ts = -1;
1770 for_each_td(td, i) {
1771 if (!td->o.group_reporting) {
1772 nr_ts++;
1773 continue;
1774 }
1775 if (last_ts == td->groupid)
1776 continue;
1777 if (!td->o.stats)
1778 continue;
1779
1780 last_ts = td->groupid;
1781 nr_ts++;
1782 }
1783
1784 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1785 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1786
1787 for (i = 0; i < nr_ts; i++) {
1788 init_thread_stat(&threadstats[i]);
1789 opt_lists[i] = NULL;
1790 }
1791
1792 j = 0;
1793 last_ts = -1;
1794 idx = 0;
1795 for_each_td(td, i) {
1796 if (!td->o.stats)
1797 continue;
1798 if (idx && (!td->o.group_reporting ||
1799 (td->o.group_reporting && last_ts != td->groupid))) {
1800 idx = 0;
1801 j++;
1802 }
1803
1804 last_ts = td->groupid;
1805
1806 ts = &threadstats[j];
1807
1808 ts->clat_percentiles = td->o.clat_percentiles;
1809 ts->lat_percentiles = td->o.lat_percentiles;
1810 ts->percentile_precision = td->o.percentile_precision;
1811 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1812 opt_lists[j] = &td->opt_list;
1813
1814 idx++;
1815 ts->members++;
1816
1817 if (ts->groupid == -1) {
1818 /*
1819 * These are per-group shared already
1820 */
1821 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1822 if (td->o.description)
1823 strncpy(ts->description, td->o.description,
1824 FIO_JOBDESC_SIZE - 1);
1825 else
1826 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1827
1828 /*
1829 * If multiple entries in this group, this is
1830 * the first member.
1831 */
1832 ts->thread_number = td->thread_number;
1833 ts->groupid = td->groupid;
1834
1835 /*
1836 * first pid in group, not very useful...
1837 */
1838 ts->pid = td->pid;
1839
1840 ts->kb_base = td->o.kb_base;
1841 ts->unit_base = td->o.unit_base;
1842 ts->sig_figs = td->o.sig_figs;
1843 ts->unified_rw_rep = td->o.unified_rw_rep;
1844 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1845 log_info("fio: kb_base differs for jobs in group, using"
1846 " %u as the base\n", ts->kb_base);
1847 kb_base_warned = true;
1848 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1849 log_info("fio: unit_base differs for jobs in group, using"
1850 " %u as the base\n", ts->unit_base);
1851 unit_base_warned = true;
1852 }
1853
1854 ts->continue_on_error = td->o.continue_on_error;
1855 ts->total_err_count += td->total_err_count;
1856 ts->first_error = td->first_error;
1857 if (!ts->error) {
1858 if (!td->error && td->o.continue_on_error &&
1859 td->first_error) {
1860 ts->error = td->first_error;
1861 ts->verror[sizeof(ts->verror) - 1] = '\0';
1862 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1863 } else if (td->error) {
1864 ts->error = td->error;
1865 ts->verror[sizeof(ts->verror) - 1] = '\0';
1866 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1867 }
1868 }
1869
1870 ts->latency_depth = td->latency_qd;
1871 ts->latency_target = td->o.latency_target;
1872 ts->latency_percentile = td->o.latency_percentile;
1873 ts->latency_window = td->o.latency_window;
1874
1875 ts->nr_block_infos = td->ts.nr_block_infos;
1876 for (k = 0; k < ts->nr_block_infos; k++)
1877 ts->block_infos[k] = td->ts.block_infos[k];
1878
1879 sum_thread_stats(ts, &td->ts, idx == 1);
1880
1881 if (td->o.ss_dur) {
1882 ts->ss_state = td->ss.state;
1883 ts->ss_dur = td->ss.dur;
1884 ts->ss_head = td->ss.head;
1885 ts->ss_bw_data = td->ss.bw_data;
1886 ts->ss_iops_data = td->ss.iops_data;
1887 ts->ss_limit.u.f = td->ss.limit;
1888 ts->ss_slope.u.f = td->ss.slope;
1889 ts->ss_deviation.u.f = td->ss.deviation;
1890 ts->ss_criterion.u.f = td->ss.criterion;
1891 }
1892 else
1893 ts->ss_dur = ts->ss_state = 0;
1894 }
1895
1896 for (i = 0; i < nr_ts; i++) {
1897 unsigned long long bw;
1898
1899 ts = &threadstats[i];
1900 if (ts->groupid == -1)
1901 continue;
1902 rs = &runstats[ts->groupid];
1903 rs->kb_base = ts->kb_base;
1904 rs->unit_base = ts->unit_base;
1905 rs->sig_figs = ts->sig_figs;
1906 rs->unified_rw_rep += ts->unified_rw_rep;
1907
1908 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1909 if (!ts->runtime[j])
1910 continue;
1911 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1912 rs->min_run[j] = ts->runtime[j];
1913 if (ts->runtime[j] > rs->max_run[j])
1914 rs->max_run[j] = ts->runtime[j];
1915
1916 bw = 0;
1917 if (ts->runtime[j])
1918 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1919 if (bw < rs->min_bw[j])
1920 rs->min_bw[j] = bw;
1921 if (bw > rs->max_bw[j])
1922 rs->max_bw[j] = bw;
1923
1924 rs->iobytes[j] += ts->io_bytes[j];
1925 }
1926 }
1927
1928 for (i = 0; i < groupid + 1; i++) {
1929 int ddir;
1930
1931 rs = &runstats[i];
1932
1933 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1934 if (rs->max_run[ddir])
1935 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1936 rs->max_run[ddir];
1937 }
1938 }
1939
1940 for (i = 0; i < FIO_OUTPUT_NR; i++)
1941 buf_output_init(&output[i]);
1942
1943 /*
1944 * don't overwrite last signal output
1945 */
1946 if (output_format & FIO_OUTPUT_NORMAL)
1947 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1948 if (output_format & FIO_OUTPUT_JSON) {
1949 struct thread_data *global;
1950 char time_buf[32];
1951 struct timeval now;
1952 unsigned long long ms_since_epoch;
1953 time_t tv_sec;
1954
1955 gettimeofday(&now, NULL);
1956 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1957 (unsigned long long)(now.tv_usec) / 1000;
1958
1959 tv_sec = now.tv_sec;
1960 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1961 if (time_buf[strlen(time_buf) - 1] == '\n')
1962 time_buf[strlen(time_buf) - 1] = '\0';
1963
1964 root = json_create_object();
1965 json_object_add_value_string(root, "fio version", fio_version_string);
1966 json_object_add_value_int(root, "timestamp", now.tv_sec);
1967 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1968 json_object_add_value_string(root, "time", time_buf);
1969 global = get_global_options();
1970 json_add_job_opts(root, "global options", &global->opt_list);
1971 array = json_create_array();
1972 json_object_add_value_array(root, "jobs", array);
1973 }
1974
1975 if (is_backend)
1976 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1977
1978 for (i = 0; i < nr_ts; i++) {
1979 ts = &threadstats[i];
1980 rs = &runstats[ts->groupid];
1981
1982 if (is_backend) {
1983 fio_server_send_job_options(opt_lists[i], i);
1984 fio_server_send_ts(ts, rs);
1985 } else {
1986 if (output_format & FIO_OUTPUT_TERSE)
1987 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1988 if (output_format & FIO_OUTPUT_JSON) {
1989 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1990 json_array_add_value_object(array, tmp);
1991 }
1992 if (output_format & FIO_OUTPUT_NORMAL)
1993 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1994 }
1995 }
1996 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1997 /* disk util stats, if any */
1998 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1999
2000 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2001
2002 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2003 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2004 json_free_object(root);
2005 }
2006
2007 for (i = 0; i < groupid + 1; i++) {
2008 rs = &runstats[i];
2009
2010 rs->groupid = i;
2011 if (is_backend)
2012 fio_server_send_gs(rs);
2013 else if (output_format & FIO_OUTPUT_NORMAL)
2014 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2015 }
2016
2017 if (is_backend)
2018 fio_server_send_du();
2019 else if (output_format & FIO_OUTPUT_NORMAL) {
2020 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2021 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2022 }
2023
2024 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2025 struct buf_output *out = &output[i];
2026
2027 log_info_buf(out->buf, out->buflen);
2028 buf_output_free(out);
2029 }
2030
2031 fio_idle_prof_cleanup();
2032
2033 log_info_flush();
2034 free(runstats);
2035 free(threadstats);
2036 free(opt_lists);
2037}
2038
2039void __show_running_run_stats(void)
2040{
2041 struct thread_data *td;
2042 unsigned long long *rt;
2043 struct timespec ts;
2044 int i;
2045
2046 fio_sem_down(stat_sem);
2047
2048 rt = malloc(thread_number * sizeof(unsigned long long));
2049 fio_gettime(&ts, NULL);
2050
2051 for_each_td(td, i) {
2052 td->update_rusage = 1;
2053 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2054 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2055 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2056 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2057
2058 rt[i] = mtime_since(&td->start, &ts);
2059 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2060 td->ts.runtime[DDIR_READ] += rt[i];
2061 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2062 td->ts.runtime[DDIR_WRITE] += rt[i];
2063 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2064 td->ts.runtime[DDIR_TRIM] += rt[i];
2065 }
2066
2067 for_each_td(td, i) {
2068 if (td->runstate >= TD_EXITED)
2069 continue;
2070 if (td->rusage_sem) {
2071 td->update_rusage = 1;
2072 fio_sem_down(td->rusage_sem);
2073 }
2074 td->update_rusage = 0;
2075 }
2076
2077 __show_run_stats();
2078
2079 for_each_td(td, i) {
2080 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2081 td->ts.runtime[DDIR_READ] -= rt[i];
2082 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2083 td->ts.runtime[DDIR_WRITE] -= rt[i];
2084 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2085 td->ts.runtime[DDIR_TRIM] -= rt[i];
2086 }
2087
2088 free(rt);
2089 fio_sem_up(stat_sem);
2090}
2091
2092static bool status_interval_init;
2093static struct timespec status_time;
2094static bool status_file_disabled;
2095
2096#define FIO_STATUS_FILE "fio-dump-status"
2097
2098static int check_status_file(void)
2099{
2100 struct stat sb;
2101 const char *temp_dir;
2102 char fio_status_file_path[PATH_MAX];
2103
2104 if (status_file_disabled)
2105 return 0;
2106
2107 temp_dir = getenv("TMPDIR");
2108 if (temp_dir == NULL) {
2109 temp_dir = getenv("TEMP");
2110 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2111 temp_dir = NULL;
2112 }
2113 if (temp_dir == NULL)
2114 temp_dir = "/tmp";
2115
2116 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2117
2118 if (stat(fio_status_file_path, &sb))
2119 return 0;
2120
2121 if (unlink(fio_status_file_path) < 0) {
2122 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2123 strerror(errno));
2124 log_err("fio: disabling status file updates\n");
2125 status_file_disabled = true;
2126 }
2127
2128 return 1;
2129}
2130
2131void check_for_running_stats(void)
2132{
2133 if (status_interval) {
2134 if (!status_interval_init) {
2135 fio_gettime(&status_time, NULL);
2136 status_interval_init = true;
2137 } else if (mtime_since_now(&status_time) >= status_interval) {
2138 show_running_run_stats();
2139 fio_gettime(&status_time, NULL);
2140 return;
2141 }
2142 }
2143 if (check_status_file()) {
2144 show_running_run_stats();
2145 return;
2146 }
2147}
2148
2149static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2150{
2151 double val = data;
2152 double delta;
2153
2154 if (data > is->max_val)
2155 is->max_val = data;
2156 if (data < is->min_val)
2157 is->min_val = data;
2158
2159 delta = val - is->mean.u.f;
2160 if (delta) {
2161 is->mean.u.f += delta / (is->samples + 1.0);
2162 is->S.u.f += delta * (val - is->mean.u.f);
2163 }
2164
2165 is->samples++;
2166}
2167
2168/*
2169 * Return a struct io_logs, which is added to the tail of the log
2170 * list for 'iolog'.
2171 */
2172static struct io_logs *get_new_log(struct io_log *iolog)
2173{
2174 size_t new_size, new_samples;
2175 struct io_logs *cur_log;
2176
2177 /*
2178 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2179 * forever
2180 */
2181 if (!iolog->cur_log_max)
2182 new_samples = DEF_LOG_ENTRIES;
2183 else {
2184 new_samples = iolog->cur_log_max * 2;
2185 if (new_samples > MAX_LOG_ENTRIES)
2186 new_samples = MAX_LOG_ENTRIES;
2187 }
2188
2189 new_size = new_samples * log_entry_sz(iolog);
2190
2191 cur_log = smalloc(sizeof(*cur_log));
2192 if (cur_log) {
2193 INIT_FLIST_HEAD(&cur_log->list);
2194 cur_log->log = malloc(new_size);
2195 if (cur_log->log) {
2196 cur_log->nr_samples = 0;
2197 cur_log->max_samples = new_samples;
2198 flist_add_tail(&cur_log->list, &iolog->io_logs);
2199 iolog->cur_log_max = new_samples;
2200 return cur_log;
2201 }
2202 sfree(cur_log);
2203 }
2204
2205 return NULL;
2206}
2207
2208/*
2209 * Add and return a new log chunk, or return current log if big enough
2210 */
2211static struct io_logs *regrow_log(struct io_log *iolog)
2212{
2213 struct io_logs *cur_log;
2214 int i;
2215
2216 if (!iolog || iolog->disabled)
2217 goto disable;
2218
2219 cur_log = iolog_cur_log(iolog);
2220 if (!cur_log) {
2221 cur_log = get_new_log(iolog);
2222 if (!cur_log)
2223 return NULL;
2224 }
2225
2226 if (cur_log->nr_samples < cur_log->max_samples)
2227 return cur_log;
2228
2229 /*
2230 * No room for a new sample. If we're compressing on the fly, flush
2231 * out the current chunk
2232 */
2233 if (iolog->log_gz) {
2234 if (iolog_cur_flush(iolog, cur_log)) {
2235 log_err("fio: failed flushing iolog! Will stop logging.\n");
2236 return NULL;
2237 }
2238 }
2239
2240 /*
2241 * Get a new log array, and add to our list
2242 */
2243 cur_log = get_new_log(iolog);
2244 if (!cur_log) {
2245 log_err("fio: failed extending iolog! Will stop logging.\n");
2246 return NULL;
2247 }
2248
2249 if (!iolog->pending || !iolog->pending->nr_samples)
2250 return cur_log;
2251
2252 /*
2253 * Flush pending items to new log
2254 */
2255 for (i = 0; i < iolog->pending->nr_samples; i++) {
2256 struct io_sample *src, *dst;
2257
2258 src = get_sample(iolog, iolog->pending, i);
2259 dst = get_sample(iolog, cur_log, i);
2260 memcpy(dst, src, log_entry_sz(iolog));
2261 }
2262 cur_log->nr_samples = iolog->pending->nr_samples;
2263
2264 iolog->pending->nr_samples = 0;
2265 return cur_log;
2266disable:
2267 if (iolog)
2268 iolog->disabled = true;
2269 return NULL;
2270}
2271
2272void regrow_logs(struct thread_data *td)
2273{
2274 regrow_log(td->slat_log);
2275 regrow_log(td->clat_log);
2276 regrow_log(td->clat_hist_log);
2277 regrow_log(td->lat_log);
2278 regrow_log(td->bw_log);
2279 regrow_log(td->iops_log);
2280 td->flags &= ~TD_F_REGROW_LOGS;
2281}
2282
2283static struct io_logs *get_cur_log(struct io_log *iolog)
2284{
2285 struct io_logs *cur_log;
2286
2287 cur_log = iolog_cur_log(iolog);
2288 if (!cur_log) {
2289 cur_log = get_new_log(iolog);
2290 if (!cur_log)
2291 return NULL;
2292 }
2293
2294 if (cur_log->nr_samples < cur_log->max_samples)
2295 return cur_log;
2296
2297 /*
2298 * Out of space. If we're in IO offload mode, or we're not doing
2299 * per unit logging (hence logging happens outside of the IO thread
2300 * as well), add a new log chunk inline. If we're doing inline
2301 * submissions, flag 'td' as needing a log regrow and we'll take
2302 * care of it on the submission side.
2303 */
2304 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2305 !per_unit_log(iolog))
2306 return regrow_log(iolog);
2307
2308 if (iolog->td)
2309 iolog->td->flags |= TD_F_REGROW_LOGS;
2310 if (iolog->pending)
2311 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2312 return iolog->pending;
2313}
2314
2315static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2316 enum fio_ddir ddir, unsigned long long bs,
2317 unsigned long t, uint64_t offset)
2318{
2319 struct io_logs *cur_log;
2320
2321 if (iolog->disabled)
2322 return;
2323 if (flist_empty(&iolog->io_logs))
2324 iolog->avg_last[ddir] = t;
2325
2326 cur_log = get_cur_log(iolog);
2327 if (cur_log) {
2328 struct io_sample *s;
2329
2330 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2331
2332 s->data = data;
2333 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2334 io_sample_set_ddir(iolog, s, ddir);
2335 s->bs = bs;
2336
2337 if (iolog->log_offset) {
2338 struct io_sample_offset *so = (void *) s;
2339
2340 so->offset = offset;
2341 }
2342
2343 cur_log->nr_samples++;
2344 return;
2345 }
2346
2347 iolog->disabled = true;
2348}
2349
2350static inline void reset_io_stat(struct io_stat *ios)
2351{
2352 ios->min_val = -1ULL;
2353 ios->max_val = ios->samples = 0;
2354 ios->mean.u.f = ios->S.u.f = 0;
2355}
2356
2357void reset_io_stats(struct thread_data *td)
2358{
2359 struct thread_stat *ts = &td->ts;
2360 int i, j;
2361
2362 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2363 reset_io_stat(&ts->clat_stat[i]);
2364 reset_io_stat(&ts->slat_stat[i]);
2365 reset_io_stat(&ts->lat_stat[i]);
2366 reset_io_stat(&ts->bw_stat[i]);
2367 reset_io_stat(&ts->iops_stat[i]);
2368
2369 ts->io_bytes[i] = 0;
2370 ts->runtime[i] = 0;
2371 ts->total_io_u[i] = 0;
2372 ts->short_io_u[i] = 0;
2373 ts->drop_io_u[i] = 0;
2374
2375 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2376 ts->io_u_plat[i][j] = 0;
2377 if (!i)
2378 ts->io_u_sync_plat[j] = 0;
2379 }
2380 }
2381
2382 ts->total_io_u[DDIR_SYNC] = 0;
2383
2384 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2385 ts->io_u_map[i] = 0;
2386 ts->io_u_submit[i] = 0;
2387 ts->io_u_complete[i] = 0;
2388 }
2389
2390 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2391 ts->io_u_lat_n[i] = 0;
2392 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2393 ts->io_u_lat_u[i] = 0;
2394 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2395 ts->io_u_lat_m[i] = 0;
2396
2397 ts->total_submit = 0;
2398 ts->total_complete = 0;
2399 ts->nr_zone_resets = 0;
2400 ts->cachehit = ts->cachemiss = 0;
2401}
2402
2403static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2404 unsigned long elapsed, bool log_max)
2405{
2406 /*
2407 * Note an entry in the log. Use the mean from the logged samples,
2408 * making sure to properly round up. Only write a log entry if we
2409 * had actual samples done.
2410 */
2411 if (iolog->avg_window[ddir].samples) {
2412 union io_sample_data data;
2413
2414 if (log_max)
2415 data.val = iolog->avg_window[ddir].max_val;
2416 else
2417 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2418
2419 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2420 }
2421
2422 reset_io_stat(&iolog->avg_window[ddir]);
2423}
2424
2425static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2426 bool log_max)
2427{
2428 int ddir;
2429
2430 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2431 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2432}
2433
2434static unsigned long add_log_sample(struct thread_data *td,
2435 struct io_log *iolog,
2436 union io_sample_data data,
2437 enum fio_ddir ddir, unsigned long long bs,
2438 uint64_t offset)
2439{
2440 unsigned long elapsed, this_window;
2441
2442 if (!ddir_rw(ddir))
2443 return 0;
2444
2445 elapsed = mtime_since_now(&td->epoch);
2446
2447 /*
2448 * If no time averaging, just add the log sample.
2449 */
2450 if (!iolog->avg_msec) {
2451 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2452 return 0;
2453 }
2454
2455 /*
2456 * Add the sample. If the time period has passed, then
2457 * add that entry to the log and clear.
2458 */
2459 add_stat_sample(&iolog->avg_window[ddir], data.val);
2460
2461 /*
2462 * If period hasn't passed, adding the above sample is all we
2463 * need to do.
2464 */
2465 this_window = elapsed - iolog->avg_last[ddir];
2466 if (elapsed < iolog->avg_last[ddir])
2467 return iolog->avg_last[ddir] - elapsed;
2468 else if (this_window < iolog->avg_msec) {
2469 unsigned long diff = iolog->avg_msec - this_window;
2470
2471 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2472 return diff;
2473 }
2474
2475 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2476
2477 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2478 return iolog->avg_msec;
2479}
2480
2481void finalize_logs(struct thread_data *td, bool unit_logs)
2482{
2483 unsigned long elapsed;
2484
2485 elapsed = mtime_since_now(&td->epoch);
2486
2487 if (td->clat_log && unit_logs)
2488 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2489 if (td->slat_log && unit_logs)
2490 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2491 if (td->lat_log && unit_logs)
2492 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2493 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2494 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2495 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2496 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2497}
2498
2499void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2500{
2501 struct io_log *iolog;
2502
2503 if (!ddir_rw(ddir))
2504 return;
2505
2506 iolog = agg_io_log[ddir];
2507 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2508}
2509
2510void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2511{
2512 unsigned int idx = plat_val_to_idx(nsec);
2513 assert(idx < FIO_IO_U_PLAT_NR);
2514
2515 ts->io_u_sync_plat[idx]++;
2516 add_stat_sample(&ts->sync_stat, nsec);
2517}
2518
2519static void add_clat_percentile_sample(struct thread_stat *ts,
2520 unsigned long long nsec, enum fio_ddir ddir)
2521{
2522 unsigned int idx = plat_val_to_idx(nsec);
2523 assert(idx < FIO_IO_U_PLAT_NR);
2524
2525 ts->io_u_plat[ddir][idx]++;
2526}
2527
2528void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2529 unsigned long long nsec, unsigned long long bs,
2530 uint64_t offset)
2531{
2532 const bool needs_lock = td_async_processing(td);
2533 unsigned long elapsed, this_window;
2534 struct thread_stat *ts = &td->ts;
2535 struct io_log *iolog = td->clat_hist_log;
2536
2537 if (needs_lock)
2538 __td_io_u_lock(td);
2539
2540 add_stat_sample(&ts->clat_stat[ddir], nsec);
2541
2542 if (td->clat_log)
2543 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2544 offset);
2545
2546 if (ts->clat_percentiles)
2547 add_clat_percentile_sample(ts, nsec, ddir);
2548
2549 if (iolog && iolog->hist_msec) {
2550 struct io_hist *hw = &iolog->hist_window[ddir];
2551
2552 hw->samples++;
2553 elapsed = mtime_since_now(&td->epoch);
2554 if (!hw->hist_last)
2555 hw->hist_last = elapsed;
2556 this_window = elapsed - hw->hist_last;
2557
2558 if (this_window >= iolog->hist_msec) {
2559 uint64_t *io_u_plat;
2560 struct io_u_plat_entry *dst;
2561
2562 /*
2563 * Make a byte-for-byte copy of the latency histogram
2564 * stored in td->ts.io_u_plat[ddir], recording it in a
2565 * log sample. Note that the matching call to free() is
2566 * located in iolog.c after printing this sample to the
2567 * log file.
2568 */
2569 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2570 dst = malloc(sizeof(struct io_u_plat_entry));
2571 memcpy(&(dst->io_u_plat), io_u_plat,
2572 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2573 flist_add(&dst->list, &hw->list);
2574 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2575 elapsed, offset);
2576
2577 /*
2578 * Update the last time we recorded as being now, minus
2579 * any drift in time we encountered before actually
2580 * making the record.
2581 */
2582 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2583 hw->samples = 0;
2584 }
2585 }
2586
2587 if (needs_lock)
2588 __td_io_u_unlock(td);
2589}
2590
2591void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2592 unsigned long usec, unsigned long long bs, uint64_t offset)
2593{
2594 const bool needs_lock = td_async_processing(td);
2595 struct thread_stat *ts = &td->ts;
2596
2597 if (!ddir_rw(ddir))
2598 return;
2599
2600 if (needs_lock)
2601 __td_io_u_lock(td);
2602
2603 add_stat_sample(&ts->slat_stat[ddir], usec);
2604
2605 if (td->slat_log)
2606 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2607
2608 if (needs_lock)
2609 __td_io_u_unlock(td);
2610}
2611
2612void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2613 unsigned long long nsec, unsigned long long bs,
2614 uint64_t offset)
2615{
2616 const bool needs_lock = td_async_processing(td);
2617 struct thread_stat *ts = &td->ts;
2618
2619 if (!ddir_rw(ddir))
2620 return;
2621
2622 if (needs_lock)
2623 __td_io_u_lock(td);
2624
2625 add_stat_sample(&ts->lat_stat[ddir], nsec);
2626
2627 if (td->lat_log)
2628 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2629 offset);
2630
2631 if (ts->lat_percentiles)
2632 add_clat_percentile_sample(ts, nsec, ddir);
2633
2634 if (needs_lock)
2635 __td_io_u_unlock(td);
2636}
2637
2638void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2639 unsigned int bytes, unsigned long long spent)
2640{
2641 const bool needs_lock = td_async_processing(td);
2642 struct thread_stat *ts = &td->ts;
2643 unsigned long rate;
2644
2645 if (spent)
2646 rate = (unsigned long) (bytes * 1000000ULL / spent);
2647 else
2648 rate = 0;
2649
2650 if (needs_lock)
2651 __td_io_u_lock(td);
2652
2653 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2654
2655 if (td->bw_log)
2656 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2657 bytes, io_u->offset);
2658
2659 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2660
2661 if (needs_lock)
2662 __td_io_u_unlock(td);
2663}
2664
2665static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2666 struct timespec *t, unsigned int avg_time,
2667 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2668 struct io_stat *stat, struct io_log *log,
2669 bool is_kb)
2670{
2671 const bool needs_lock = td_async_processing(td);
2672 unsigned long spent, rate;
2673 enum fio_ddir ddir;
2674 unsigned long next, next_log;
2675
2676 next_log = avg_time;
2677
2678 spent = mtime_since(parent_tv, t);
2679 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2680 return avg_time - spent;
2681
2682 if (needs_lock)
2683 __td_io_u_lock(td);
2684
2685 /*
2686 * Compute both read and write rates for the interval.
2687 */
2688 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2689 uint64_t delta;
2690
2691 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2692 if (!delta)
2693 continue; /* No entries for interval */
2694
2695 if (spent) {
2696 if (is_kb)
2697 rate = delta * 1000 / spent / 1024; /* KiB/s */
2698 else
2699 rate = (delta * 1000) / spent;
2700 } else
2701 rate = 0;
2702
2703 add_stat_sample(&stat[ddir], rate);
2704
2705 if (log) {
2706 unsigned long long bs = 0;
2707
2708 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2709 bs = td->o.min_bs[ddir];
2710
2711 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2712 next_log = min(next_log, next);
2713 }
2714
2715 stat_io_bytes[ddir] = this_io_bytes[ddir];
2716 }
2717
2718 timespec_add_msec(parent_tv, avg_time);
2719
2720 if (needs_lock)
2721 __td_io_u_unlock(td);
2722
2723 if (spent <= avg_time)
2724 next = avg_time;
2725 else
2726 next = avg_time - (1 + spent - avg_time);
2727
2728 return min(next, next_log);
2729}
2730
2731static int add_bw_samples(struct thread_data *td, struct timespec *t)
2732{
2733 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2734 td->this_io_bytes, td->stat_io_bytes,
2735 td->ts.bw_stat, td->bw_log, true);
2736}
2737
2738void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2739 unsigned int bytes)
2740{
2741 const bool needs_lock = td_async_processing(td);
2742 struct thread_stat *ts = &td->ts;
2743
2744 if (needs_lock)
2745 __td_io_u_lock(td);
2746
2747 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2748
2749 if (td->iops_log)
2750 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2751 bytes, io_u->offset);
2752
2753 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2754
2755 if (needs_lock)
2756 __td_io_u_unlock(td);
2757}
2758
2759static int add_iops_samples(struct thread_data *td, struct timespec *t)
2760{
2761 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2762 td->this_io_blocks, td->stat_io_blocks,
2763 td->ts.iops_stat, td->iops_log, false);
2764}
2765
2766/*
2767 * Returns msecs to next event
2768 */
2769int calc_log_samples(void)
2770{
2771 struct thread_data *td;
2772 unsigned int next = ~0U, tmp;
2773 struct timespec now;
2774 int i;
2775
2776 fio_gettime(&now, NULL);
2777
2778 for_each_td(td, i) {
2779 if (!td->o.stats)
2780 continue;
2781 if (in_ramp_time(td) ||
2782 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2783 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2784 continue;
2785 }
2786 if (!td->bw_log ||
2787 (td->bw_log && !per_unit_log(td->bw_log))) {
2788 tmp = add_bw_samples(td, &now);
2789 if (tmp < next)
2790 next = tmp;
2791 }
2792 if (!td->iops_log ||
2793 (td->iops_log && !per_unit_log(td->iops_log))) {
2794 tmp = add_iops_samples(td, &now);
2795 if (tmp < next)
2796 next = tmp;
2797 }
2798 }
2799
2800 return next == ~0U ? 0 : next;
2801}
2802
2803void stat_init(void)
2804{
2805 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2806}
2807
2808void stat_exit(void)
2809{
2810 /*
2811 * When we have the mutex, we know out-of-band access to it
2812 * have ended.
2813 */
2814 fio_sem_down(stat_sem);
2815 fio_sem_remove(stat_sem);
2816}
2817
2818/*
2819 * Called from signal handler. Wake up status thread.
2820 */
2821void show_running_run_stats(void)
2822{
2823 helper_do_stat();
2824}
2825
2826uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2827{
2828 /* Ignore io_u's which span multiple blocks--they will just get
2829 * inaccurate counts. */
2830 int idx = (io_u->offset - io_u->file->file_offset)
2831 / td->o.bs[DDIR_TRIM];
2832 uint32_t *info = &td->ts.block_infos[idx];
2833 assert(idx < td->ts.nr_block_infos);
2834 return info;
2835}