Merge branch 'sprandom-log-fix' of https://github.com/tomas-winkler-sndk/fio
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13#include "zbd.h"
14#include "sprandom.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timespec time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static bool random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static uint64_t mark_random_map(struct thread_data *td, struct io_u *io_u,
37 uint64_t offset, uint64_t buflen)
38{
39 unsigned long long min_bs = td->o.min_bs[io_u->ddir];
40 struct fio_file *f = io_u->file;
41 unsigned long long nr_blocks;
42 uint64_t block;
43
44 block = (offset - f->file_offset) / (uint64_t) min_bs;
45 nr_blocks = (buflen + min_bs - 1) / min_bs;
46 assert(nr_blocks > 0);
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK)) {
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50 assert(nr_blocks > 0);
51 }
52
53 if ((nr_blocks * min_bs) < buflen)
54 buflen = nr_blocks * min_bs;
55
56 return buflen;
57}
58
59static uint64_t last_block(struct thread_data *td, struct fio_file *f,
60 enum fio_ddir ddir)
61{
62 uint64_t max_blocks;
63 uint64_t max_size;
64
65 assert(ddir_rw(ddir));
66
67 /*
68 * Hmm, should we make sure that ->io_size <= ->real_file_size?
69 * -> not for now since there is code assuming it could go either.
70 */
71 max_size = f->io_size;
72 if (max_size > f->real_file_size)
73 max_size = f->real_file_size;
74
75 if (td->o.zone_mode == ZONE_MODE_STRIDED && td->o.zone_range)
76 max_size = td->o.zone_range;
77
78 if (td->o.min_bs[ddir] > td->o.ba[ddir])
79 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
80
81 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
82 if (!max_blocks)
83 return 0;
84
85 return max_blocks;
86}
87
88
89static int __get_next_rand_offset_sprandom(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 assert(ddir == DDIR_WRITE);
94
95 /* SP RANDOM writes all addresses once */
96 if (sprandom_get_next_offset(f->spr_info, f, b)) {
97 dprint(FD_SPRANDOM, "sprandom is done\n");
98 td->done = 1;
99 return 1;
100 }
101 return 0;
102}
103
104static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
105 enum fio_ddir ddir, uint64_t *b,
106 uint64_t lastb)
107{
108 uint64_t r;
109
110 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
111 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
112
113 r = __rand(&td->random_state);
114
115 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
116
117 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
118 } else {
119 uint64_t off = 0;
120
121 assert(fio_file_lfsr(f));
122
123 if (lfsr_next(&f->lfsr, &off))
124 return 1;
125
126 *b = off;
127 }
128
129 /*
130 * if we are not maintaining a random map, we are done.
131 */
132 if (!file_randommap(td, f))
133 goto ret;
134
135 /*
136 * calculate map offset and check if it's free
137 */
138 if (random_map_free(f, *b))
139 goto ret;
140
141 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
142 (unsigned long long) *b);
143
144 *b = axmap_next_free(f->io_axmap, *b);
145 if (*b == (uint64_t) -1ULL)
146 return 1;
147ret:
148 return 0;
149}
150
151static int __get_next_rand_offset_zipf(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = zipf_next(&f->zipf);
156 return 0;
157}
158
159static int __get_next_rand_offset_pareto(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 *b = pareto_next(&f->zipf);
164 return 0;
165}
166
167static int __get_next_rand_offset_gauss(struct thread_data *td,
168 struct fio_file *f, enum fio_ddir ddir,
169 uint64_t *b)
170{
171 *b = gauss_next(&f->gauss);
172 return 0;
173}
174
175static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
176 struct fio_file *f,
177 enum fio_ddir ddir, uint64_t *b)
178{
179 struct zone_split_index *zsi;
180 uint64_t lastb, send, stotal;
181 unsigned int v;
182
183 lastb = last_block(td, f, ddir);
184 if (!lastb)
185 return 1;
186
187 if (!td->o.zone_split_nr[ddir]) {
188bail:
189 return __get_next_rand_offset(td, f, ddir, b, lastb);
190 }
191
192 /*
193 * Generate a value, v, between 1 and 100, both inclusive
194 */
195 v = rand_between(&td->zone_state, 1, 100);
196
197 /*
198 * Find our generated table. 'send' is the end block of this zone,
199 * 'stotal' is our start offset.
200 */
201 zsi = &td->zone_state_index[ddir][v - 1];
202 stotal = zsi->size_prev / td->o.ba[ddir];
203 send = zsi->size / td->o.ba[ddir];
204
205 /*
206 * Should never happen
207 */
208 if (send == -1U) {
209 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
210 log_err("fio: bug in zoned generation\n");
211 goto bail;
212 } else if (send > lastb) {
213 /*
214 * This happens if the user specifies ranges that exceed
215 * the file/device size. We can't handle that gracefully,
216 * so error and exit.
217 */
218 log_err("fio: zoned_abs sizes exceed file size\n");
219 return 1;
220 }
221
222 /*
223 * Generate index from 0..send-stotal
224 */
225 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
226 return 1;
227
228 *b += stotal;
229 return 0;
230}
231
232static int __get_next_rand_offset_zoned(struct thread_data *td,
233 struct fio_file *f, enum fio_ddir ddir,
234 uint64_t *b)
235{
236 unsigned int v, send, stotal;
237 uint64_t offset, lastb;
238 struct zone_split_index *zsi;
239
240 lastb = last_block(td, f, ddir);
241 if (!lastb)
242 return 1;
243
244 if (!td->o.zone_split_nr[ddir]) {
245bail:
246 return __get_next_rand_offset(td, f, ddir, b, lastb);
247 }
248
249 /*
250 * Generate a value, v, between 1 and 100, both inclusive
251 */
252 v = rand_between(&td->zone_state, 1, 100);
253
254 zsi = &td->zone_state_index[ddir][v - 1];
255 stotal = zsi->size_perc_prev;
256 send = zsi->size_perc;
257
258 /*
259 * Should never happen
260 */
261 if (send == -1U) {
262 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
263 log_err("fio: bug in zoned generation\n");
264 goto bail;
265 }
266
267 /*
268 * 'send' is some percentage below or equal to 100 that
269 * marks the end of the current IO range. 'stotal' marks
270 * the start, in percent.
271 */
272 if (stotal)
273 offset = stotal * lastb / 100ULL;
274 else
275 offset = 0;
276
277 lastb = lastb * (send - stotal) / 100ULL;
278
279 /*
280 * Generate index from 0..send-of-lastb
281 */
282 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
283 return 1;
284
285 /*
286 * Add our start offset, if any
287 */
288 if (offset)
289 *b += offset;
290
291 return 0;
292}
293
294static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
295 enum fio_ddir ddir, uint64_t *b)
296{
297 if (td->o.sprandom && ddir == DDIR_WRITE) {
298 return __get_next_rand_offset_sprandom(td, f, ddir, b, 0);
299 } else if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
300 uint64_t lastb;
301
302 lastb = last_block(td, f, ddir);
303 if (!lastb)
304 return 1;
305
306 return __get_next_rand_offset(td, f, ddir, b, lastb);
307 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
308 return __get_next_rand_offset_zipf(td, f, ddir, b);
309 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
310 return __get_next_rand_offset_pareto(td, f, ddir, b);
311 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
312 return __get_next_rand_offset_gauss(td, f, ddir, b);
313 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
314 return __get_next_rand_offset_zoned(td, f, ddir, b);
315 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
316 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
317
318 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
319 return 1;
320}
321
322static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
323{
324 unsigned int v;
325
326 if (td->o.perc_rand[ddir] == 100)
327 return true;
328
329 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
330
331 return v <= td->o.perc_rand[ddir];
332}
333
334static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
335{
336 struct thread_options *o = &td->o;
337
338 if (o->invalidate_cache && !o->odirect) {
339 int fio_unused ret;
340
341 ret = file_invalidate_cache(td, f);
342 }
343}
344
345static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
346 enum fio_ddir ddir, uint64_t *b)
347{
348 if (!get_next_rand_offset(td, f, ddir, b))
349 return 0;
350
351 if (td->o.time_based ||
352 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
353 fio_file_reset(td, f);
354 loop_cache_invalidate(td, f);
355 if (!get_next_rand_offset(td, f, ddir, b))
356 return 0;
357 }
358
359 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
360 f->file_name, (unsigned long long) f->last_pos[ddir],
361 (unsigned long long) f->real_file_size);
362 return 1;
363}
364
365static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
366 enum fio_ddir ddir, uint64_t *offset)
367{
368 struct thread_options *o = &td->o;
369
370 assert(ddir_rw(ddir));
371
372 /*
373 * If we reach the end for a time based run, reset us back to 0
374 * and invalidate the cache, if we need to.
375 */
376 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
377 o->time_based && o->nr_files == 1) {
378 f->last_pos[ddir] = f->file_offset;
379 loop_cache_invalidate(td, f);
380 }
381
382 /*
383 * If we reach the end for a rw-io-size based run, reset us back to 0
384 * and invalidate the cache, if we need to.
385 */
386 if (td_rw(td) && o->io_size > o->size) {
387 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f)) {
388 f->last_pos[ddir] = f->file_offset;
389 loop_cache_invalidate(td, f);
390 }
391 }
392
393 if (f->last_pos[ddir] < f->real_file_size) {
394 uint64_t pos;
395
396 /*
397 * Only rewind if we already hit the end
398 */
399 if (f->last_pos[ddir] == f->file_offset &&
400 f->file_offset && o->ddir_seq_add < 0) {
401 if (f->real_file_size > f->io_size)
402 f->last_pos[ddir] = f->io_size;
403 else
404 f->last_pos[ddir] = f->real_file_size;
405 }
406
407 pos = f->last_pos[ddir] - f->file_offset;
408 if (pos && o->ddir_seq_add) {
409 pos += o->ddir_seq_add;
410
411 /*
412 * If we reach beyond the end of the file
413 * with holed IO, wrap around to the
414 * beginning again. If we're doing backwards IO,
415 * wrap to the end.
416 */
417 if (pos >= f->real_file_size) {
418 if (o->ddir_seq_add > 0)
419 pos = f->file_offset;
420 else {
421 if (f->real_file_size > f->io_size)
422 pos = f->io_size;
423 else
424 pos = f->real_file_size;
425
426 pos += o->ddir_seq_add;
427 }
428 }
429 }
430
431 *offset = pos;
432 return 0;
433 }
434
435 return 1;
436}
437
438static int get_next_block(struct thread_data *td, struct io_u *io_u,
439 enum fio_ddir ddir, int rw_seq,
440 bool *is_random)
441{
442 struct fio_file *f = io_u->file;
443 uint64_t b, offset;
444 int ret;
445
446 assert(ddir_rw(ddir));
447
448 b = offset = -1ULL;
449
450 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
451 /* don't mark randommap for these writes */
452 io_u_set(td, io_u, IO_U_F_BUSY_OK);
453 offset = f->last_start[DDIR_TRIM] - f->file_offset;
454 *is_random = true;
455 ret = 0;
456 } else if (rw_seq) {
457 if (td_random(td)) {
458 if (should_do_random(td, ddir)) {
459 ret = get_next_rand_block(td, f, ddir, &b);
460 *is_random = true;
461 } else {
462 *is_random = false;
463 io_u_set(td, io_u, IO_U_F_BUSY_OK);
464 ret = get_next_seq_offset(td, f, ddir, &offset);
465 if (ret)
466 ret = get_next_rand_block(td, f, ddir, &b);
467 }
468 } else {
469 *is_random = false;
470 ret = get_next_seq_offset(td, f, ddir, &offset);
471 }
472 } else {
473 io_u_set(td, io_u, IO_U_F_BUSY_OK);
474 *is_random = false;
475
476 if (td->o.rw_seq == RW_SEQ_SEQ) {
477 ret = get_next_seq_offset(td, f, ddir, &offset);
478 if (ret) {
479 ret = get_next_rand_block(td, f, ddir, &b);
480 *is_random = false;
481 }
482 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
483 if (f->last_start[ddir] != -1ULL)
484 offset = f->last_start[ddir] - f->file_offset;
485 else
486 offset = 0;
487 ret = 0;
488 } else {
489 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
490 ret = 1;
491 }
492 }
493
494 if (!ret) {
495 if (offset != -1ULL)
496 io_u->offset = offset;
497 else if (b != -1ULL)
498 io_u->offset = b * td->o.ba[ddir];
499 else {
500 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
501 ret = 1;
502 }
503 io_u->verify_offset = io_u->offset;
504 }
505
506 return ret;
507}
508
509/*
510 * For random io, generate a random new block and see if it's used. Repeat
511 * until we find a free one. For sequential io, just return the end of
512 * the last io issued.
513 */
514static int get_next_offset(struct thread_data *td, struct io_u *io_u,
515 bool *is_random)
516{
517 struct fio_file *f = io_u->file;
518 enum fio_ddir ddir = io_u->ddir;
519 int rw_seq_hit = 0;
520
521 assert(ddir_rw(ddir));
522
523 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
524 rw_seq_hit = 1;
525 td->ddir_seq_nr = td->o.ddir_seq_nr;
526 }
527
528 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
529 return 1;
530
531 if (io_u->offset >= f->io_size) {
532 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
533 (unsigned long long) io_u->offset,
534 (unsigned long long) f->io_size);
535 return 1;
536 }
537
538 io_u->offset += f->file_offset;
539 if (io_u->offset >= f->real_file_size) {
540 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
541 (unsigned long long) io_u->offset,
542 (unsigned long long) f->real_file_size);
543 return 1;
544 }
545
546 /*
547 * For randtrimwrite, we decide whether to issue a trim or a write
548 * based on whether the offsets for the most recent trim and write
549 * operations match. If they don't match that means we just issued a
550 * new trim and the next operation should be a write. If they *do*
551 * match that means we just completed a trim+write pair and the next
552 * command should be a trim.
553 *
554 * This works fine for sequential workloads but for random workloads
555 * it's possible to complete a trim+write pair and then have the next
556 * randomly generated offset match the previous offset. If that happens
557 * we need to alter the offset for the last write operation in order
558 * to ensure that we issue a write operation the next time through.
559 */
560 if (td_randtrimwrite(td) && ddir == DDIR_TRIM &&
561 f->last_start[DDIR_TRIM] == io_u->offset)
562 f->last_start[DDIR_WRITE]--;
563
564 io_u->verify_offset = io_u->offset;
565 return 0;
566}
567
568static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
569 unsigned long long buflen)
570{
571 struct fio_file *f = io_u->file;
572
573 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
574}
575
576static unsigned long long get_next_buflen(struct thread_data *td, struct io_u *io_u,
577 bool is_random)
578{
579 int ddir = io_u->ddir;
580 unsigned long long buflen = 0;
581 unsigned long long minbs, maxbs;
582 uint64_t frand_max, r;
583 bool power_2;
584
585 assert(ddir_rw(ddir));
586
587 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
588 struct fio_file *f = io_u->file;
589
590 return f->last_pos[DDIR_TRIM] - f->last_start[DDIR_TRIM];
591 }
592
593 if (td->o.bs_is_seq_rand)
594 ddir = is_random ? DDIR_WRITE : DDIR_READ;
595
596 minbs = td->o.min_bs[ddir];
597 maxbs = td->o.max_bs[ddir];
598
599 if (minbs == maxbs)
600 return minbs;
601
602 /*
603 * If we can't satisfy the min block size from here, then fail
604 */
605 if (!io_u_fits(td, io_u, minbs))
606 return 0;
607
608 frand_max = rand_max(&td->bsrange_state[ddir]);
609 do {
610 r = __rand(&td->bsrange_state[ddir]);
611
612 if (!td->o.bssplit_nr[ddir]) {
613 buflen = minbs + (unsigned long long) ((double) maxbs *
614 (r / (frand_max + 1.0)));
615 } else {
616 long long perc = 0;
617 unsigned int i;
618
619 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
620 struct bssplit *bsp = &td->o.bssplit[ddir][i];
621
622 if (!bsp->perc)
623 continue;
624 buflen = bsp->bs;
625 perc += bsp->perc;
626 if ((r / perc <= frand_max / 100ULL) &&
627 io_u_fits(td, io_u, buflen))
628 break;
629 }
630 }
631
632 power_2 = is_power_of_2(minbs);
633 if (!td->o.bs_unaligned && power_2)
634 buflen &= ~(minbs - 1);
635 else if (!td->o.bs_unaligned && !power_2)
636 buflen -= buflen % minbs;
637 if (buflen > maxbs)
638 buflen = maxbs;
639 } while (!io_u_fits(td, io_u, buflen));
640
641 return buflen;
642}
643
644static void set_rwmix_bytes(struct thread_data *td)
645{
646 unsigned int diff;
647
648 /*
649 * we do time or byte based switch. this is needed because
650 * buffered writes may issue a lot quicker than they complete,
651 * whereas reads do not.
652 */
653 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
654 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
655}
656
657static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
658{
659 unsigned int v;
660
661 v = rand_between(&td->rwmix_state, 1, 100);
662
663 if (v <= td->o.rwmix[DDIR_READ])
664 return DDIR_READ;
665
666 return DDIR_WRITE;
667}
668
669int io_u_quiesce(struct thread_data *td)
670{
671 int ret = 0, completed = 0, err = 0;
672
673 /*
674 * We are going to sleep, ensure that we flush anything pending as
675 * not to skew our latency numbers.
676 *
677 * Changed to only monitor 'in flight' requests here instead of the
678 * td->cur_depth, b/c td->cur_depth does not accurately represent
679 * io's that have been actually submitted to an async engine,
680 * and cur_depth is meaningless for sync engines.
681 */
682 if (td->io_u_queued || td->cur_depth)
683 td_io_commit(td);
684
685 while (td->io_u_in_flight) {
686 ret = io_u_queued_complete(td, 1);
687 if (ret > 0)
688 completed += ret;
689 else if (ret < 0)
690 err = ret;
691 }
692
693 if (td->flags & TD_F_REGROW_LOGS)
694 regrow_logs(td);
695
696 if (completed)
697 return completed;
698
699 return err;
700}
701
702static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
703{
704 enum fio_ddir odir = ddir ^ 1;
705 uint64_t usec;
706 uint64_t now;
707
708 assert(ddir_rw(ddir));
709 now = utime_since_now(&td->epoch);
710
711 /*
712 * if rate_next_io_time is in the past, need to catch up to rate
713 */
714 if (td->rate_next_io_time[ddir] <= now)
715 return ddir;
716
717 /*
718 * We are ahead of rate in this direction. See if we
719 * should switch.
720 */
721 if (td_rw(td) && td->o.rwmix[odir]) {
722 /*
723 * Other direction is behind rate, switch
724 */
725 if (td->rate_next_io_time[odir] <= now)
726 return odir;
727
728 /*
729 * Both directions are ahead of rate. sleep the min,
730 * switch if necessary
731 */
732 if (td->rate_next_io_time[ddir] <=
733 td->rate_next_io_time[odir]) {
734 usec = td->rate_next_io_time[ddir] - now;
735 } else {
736 usec = td->rate_next_io_time[odir] - now;
737 ddir = odir;
738 }
739 } else
740 usec = td->rate_next_io_time[ddir] - now;
741
742 if (td->o.io_submit_mode == IO_MODE_INLINE)
743 io_u_quiesce(td);
744
745 if (td->o.timeout && ((usec + now) > td->o.timeout)) {
746 /*
747 * check if the usec is capable of taking negative values
748 */
749 if (now > td->o.timeout) {
750 ddir = DDIR_TIMEOUT;
751 return ddir;
752 }
753 usec = td->o.timeout - now;
754 }
755 usec_sleep(td, usec);
756
757 now = utime_since_now(&td->epoch);
758 if ((td->o.timeout && (now > td->o.timeout)) || td->terminate)
759 ddir = DDIR_TIMEOUT;
760
761 return ddir;
762}
763
764/*
765 * Return the data direction for the next io_u. If the job is a
766 * mixed read/write workload, check the rwmix cycle and switch if
767 * necessary.
768 */
769static enum fio_ddir get_rw_ddir(struct thread_data *td)
770{
771 enum fio_ddir ddir;
772
773 /*
774 * See if it's time to fsync/fdatasync/sync_file_range first,
775 * and if not then move on to check regular I/Os.
776 */
777 if (should_fsync(td) && td->last_ddir_issued == DDIR_WRITE) {
778 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
779 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
780 return DDIR_SYNC;
781
782 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
783 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
784 return DDIR_DATASYNC;
785
786 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
787 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
788 return DDIR_SYNC_FILE_RANGE;
789 }
790
791 if (td_rw(td)) {
792 /*
793 * Check if it's time to seed a new data direction.
794 */
795 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
796 /*
797 * Put a top limit on how many bytes we do for
798 * one data direction, to avoid overflowing the
799 * ranges too much
800 */
801 ddir = get_rand_ddir(td);
802
803 if (ddir != td->rwmix_ddir)
804 set_rwmix_bytes(td);
805
806 td->rwmix_ddir = ddir;
807 }
808 ddir = td->rwmix_ddir;
809 } else if (td_read(td))
810 ddir = DDIR_READ;
811 else if (td_write(td))
812 ddir = DDIR_WRITE;
813 else if (td_trim(td))
814 ddir = DDIR_TRIM;
815 else
816 ddir = DDIR_INVAL;
817
818 if (!should_check_rate(td)) {
819 /*
820 * avoid time-consuming call to utime_since_now() if rate checking
821 * isn't being used. this imrpoves IOPs 50%. See:
822 * https://github.com/axboe/fio/issues/1501#issuecomment-1418327049
823 */
824 td->rwmix_ddir = ddir;
825 } else
826 td->rwmix_ddir = rate_ddir(td, ddir);
827 return td->rwmix_ddir;
828}
829
830static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
831{
832 enum fio_ddir ddir = get_rw_ddir(td);
833
834 if (td->o.zone_mode == ZONE_MODE_ZBD)
835 ddir = zbd_adjust_ddir(td, io_u, ddir);
836
837 if (td_trimwrite(td) && !ddir_sync(ddir)) {
838 struct fio_file *f = io_u->file;
839 if (f->last_start[DDIR_WRITE] == f->last_start[DDIR_TRIM])
840 ddir = DDIR_TRIM;
841 else
842 ddir = DDIR_WRITE;
843 }
844
845 io_u->ddir = io_u->acct_ddir = ddir;
846
847 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
848 td->o.barrier_blocks &&
849 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
850 td->io_issues[DDIR_WRITE])
851 io_u_set(td, io_u, IO_U_F_BARRIER);
852}
853
854void put_file_log(struct thread_data *td, struct fio_file *f)
855{
856 unsigned int ret = put_file(td, f);
857
858 if (ret)
859 td_verror(td, ret, "file close");
860}
861
862void put_io_u(struct thread_data *td, struct io_u *io_u)
863{
864 const bool needs_lock = td_async_processing(td);
865
866 zbd_put_io_u(td, io_u);
867
868 if (td->parent)
869 td = td->parent;
870
871 if (needs_lock)
872 __td_io_u_lock(td);
873
874 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
875 put_file_log(td, io_u->file);
876
877 io_u->file = NULL;
878 io_u_set(td, io_u, IO_U_F_FREE);
879
880 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
881 td->cur_depth--;
882 assert(!(td->flags & TD_F_CHILD));
883 }
884 io_u_qpush(&td->io_u_freelist, io_u);
885 td_io_u_free_notify(td);
886
887 if (needs_lock)
888 __td_io_u_unlock(td);
889}
890
891static inline void io_u_clear_inflight_flags(struct thread_data *td,
892 struct io_u *io_u)
893{
894 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK |
895 IO_U_F_PATTERN_DONE);
896}
897
898void clear_io_u(struct thread_data *td, struct io_u *io_u)
899{
900 io_u_clear_inflight_flags(td, io_u);
901 put_io_u(td, io_u);
902}
903
904void requeue_io_u(struct thread_data *td, struct io_u **io_u)
905{
906 const bool needs_lock = td_async_processing(td);
907 struct io_u *__io_u = *io_u;
908 enum fio_ddir ddir = acct_ddir(__io_u);
909
910 dprint(FD_IO, "requeue %p\n", __io_u);
911
912 if (td->parent)
913 td = td->parent;
914
915 if (needs_lock)
916 __td_io_u_lock(td);
917
918 io_u_set(td, __io_u, IO_U_F_FREE);
919 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
920 td->io_issues[ddir]--;
921
922 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
923 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
924 td->cur_depth--;
925 assert(!(td->flags & TD_F_CHILD));
926 }
927
928 io_u_rpush(&td->io_u_requeues, __io_u);
929 td_io_u_free_notify(td);
930
931 if (needs_lock)
932 __td_io_u_unlock(td);
933
934 *io_u = NULL;
935}
936
937static void setup_strided_zone_mode(struct thread_data *td, struct io_u *io_u)
938{
939 struct fio_file *f = io_u->file;
940
941 assert(td->o.zone_mode == ZONE_MODE_STRIDED);
942 assert(td->o.zone_size);
943 assert(td->o.zone_range);
944
945 /*
946 * See if it's time to switch to a new zone
947 */
948 if (td->zone_bytes >= td->o.zone_size) {
949 td->zone_bytes = 0;
950 f->file_offset += td->o.zone_range + td->o.zone_skip;
951
952 /*
953 * Wrap from the beginning, if we exceed the file size
954 */
955 if (f->file_offset >= f->real_file_size)
956 f->file_offset = get_start_offset(td, f);
957
958 f->last_pos[io_u->ddir] = f->file_offset;
959 td->io_skip_bytes += td->o.zone_skip;
960 }
961
962 /*
963 * If zone_size > zone_range, then maintain the same zone until
964 * zone_bytes >= zone_size.
965 */
966 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
967 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
968 f->file_offset, f->last_pos[io_u->ddir]);
969 f->last_pos[io_u->ddir] = f->file_offset;
970 }
971
972 /*
973 * For random: if 'norandommap' is not set and zone_size > zone_range,
974 * map needs to be reset as it's done with zone_range everytime.
975 */
976 if ((td->zone_bytes % td->o.zone_range) == 0)
977 fio_file_reset(td, f);
978}
979
980static int fill_multi_range_io_u(struct thread_data *td, struct io_u *io_u)
981{
982 bool is_random;
983 uint64_t buflen, i = 0;
984 struct trim_range *range;
985 struct fio_file *f = io_u->file;
986 uint8_t *buf;
987
988 buf = io_u->buf;
989 buflen = 0;
990
991 while (i < td->o.num_range) {
992 range = (struct trim_range *)buf;
993 if (get_next_offset(td, io_u, &is_random)) {
994 dprint(FD_IO, "io_u %p, failed getting offset\n",
995 io_u);
996 break;
997 }
998
999 io_u->buflen = get_next_buflen(td, io_u, is_random);
1000 if (!io_u->buflen) {
1001 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
1002 break;
1003 }
1004
1005 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
1006 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%llx exceeds file size=0x%llx\n",
1007 io_u,
1008 (unsigned long long) io_u->offset, io_u->buflen,
1009 (unsigned long long) io_u->file->real_file_size);
1010 break;
1011 }
1012
1013 range->start = io_u->offset;
1014 range->len = io_u->buflen;
1015 buflen += io_u->buflen;
1016 f->last_start[io_u->ddir] = io_u->offset;
1017 f->last_pos[io_u->ddir] = io_u->offset + range->len;
1018
1019 buf += sizeof(struct trim_range);
1020 i++;
1021
1022 if (td_random(td) && file_randommap(td, io_u->file))
1023 mark_random_map(td, io_u, io_u->offset, io_u->buflen);
1024 dprint_io_u(io_u, "fill");
1025 }
1026 if (buflen) {
1027 /*
1028 * Set buffer length as overall trim length for this IO, and
1029 * tell the ioengine about the number of ranges to be trimmed.
1030 */
1031 io_u->buflen = buflen;
1032 io_u->number_trim = i;
1033 return 0;
1034 }
1035
1036 return 1;
1037}
1038
1039static int fill_io_u(struct thread_data *td, struct io_u *io_u)
1040{
1041 bool is_random;
1042 uint64_t offset;
1043 enum io_u_action ret;
1044
1045 if (td_ioengine_flagged(td, FIO_NOIO))
1046 goto out;
1047
1048 set_rw_ddir(td, io_u);
1049
1050 if (io_u->ddir == DDIR_INVAL || io_u->ddir == DDIR_TIMEOUT) {
1051 dprint(FD_IO, "invalid direction received ddir = %d", io_u->ddir);
1052 return 1;
1053 }
1054 /*
1055 * fsync() or fdatasync() or trim etc, we are done
1056 */
1057 if (!ddir_rw(io_u->ddir))
1058 goto out;
1059
1060 if (td->o.zone_mode == ZONE_MODE_STRIDED)
1061 setup_strided_zone_mode(td, io_u);
1062 else if (td->o.zone_mode == ZONE_MODE_ZBD)
1063 setup_zbd_zone_mode(td, io_u);
1064
1065 if (multi_range_trim(td, io_u)) {
1066 if (fill_multi_range_io_u(td, io_u))
1067 return 1;
1068 } else {
1069 /*
1070 * No log, let the seq/rand engine retrieve the next buflen and
1071 * position.
1072 */
1073 if (get_next_offset(td, io_u, &is_random)) {
1074 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
1075 return 1;
1076 }
1077
1078 io_u->buflen = get_next_buflen(td, io_u, is_random);
1079 if (!io_u->buflen) {
1080 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
1081 return 1;
1082 }
1083 }
1084 offset = io_u->offset;
1085
1086 if (td->o.zone_mode == ZONE_MODE_ZBD) {
1087 ret = zbd_adjust_block(td, io_u);
1088 if (ret == io_u_eof) {
1089 dprint(FD_IO, "zbd_adjust_block() returned io_u_eof\n");
1090 return 1;
1091 }
1092 }
1093
1094 if (td->o.dp_type != FIO_DP_NONE)
1095 dp_fill_dspec_data(td, io_u);
1096
1097 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
1098 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%llx exceeds file size=0x%llx\n",
1099 io_u,
1100 (unsigned long long) io_u->offset, io_u->buflen,
1101 (unsigned long long) io_u->file->real_file_size);
1102 return 1;
1103 }
1104
1105 /*
1106 * mark entry before potentially trimming io_u
1107 */
1108 if (!multi_range_trim(td, io_u) && td_random(td) && file_randommap(td, io_u->file))
1109 io_u->buflen = mark_random_map(td, io_u, offset, io_u->buflen);
1110
1111out:
1112 if (!multi_range_trim(td, io_u))
1113 dprint_io_u(io_u, "fill");
1114 io_u->verify_offset = io_u->offset;
1115 td->zone_bytes += io_u->buflen;
1116 return 0;
1117}
1118
1119static void __io_u_mark_map(uint64_t *map, unsigned int nr)
1120{
1121 int idx = 0;
1122
1123 switch (nr) {
1124 default:
1125 idx = 6;
1126 break;
1127 case 33 ... 64:
1128 idx = 5;
1129 break;
1130 case 17 ... 32:
1131 idx = 4;
1132 break;
1133 case 9 ... 16:
1134 idx = 3;
1135 break;
1136 case 5 ... 8:
1137 idx = 2;
1138 break;
1139 case 1 ... 4:
1140 idx = 1;
1141 fio_fallthrough;
1142 case 0:
1143 break;
1144 }
1145
1146 map[idx]++;
1147}
1148
1149void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1150{
1151 __io_u_mark_map(td->ts.io_u_submit, nr);
1152 td->ts.total_submit++;
1153}
1154
1155void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1156{
1157 __io_u_mark_map(td->ts.io_u_complete, nr);
1158 td->ts.total_complete++;
1159}
1160
1161void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1162{
1163 int idx = 0;
1164
1165 switch (td->cur_depth) {
1166 default:
1167 idx = 6;
1168 break;
1169 case 32 ... 63:
1170 idx = 5;
1171 break;
1172 case 16 ... 31:
1173 idx = 4;
1174 break;
1175 case 8 ... 15:
1176 idx = 3;
1177 break;
1178 case 4 ... 7:
1179 idx = 2;
1180 break;
1181 case 2 ... 3:
1182 idx = 1;
1183 fio_fallthrough;
1184 case 1:
1185 break;
1186 }
1187
1188 td->ts.io_u_map[idx] += nr;
1189}
1190
1191static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1192{
1193 int idx = 0;
1194
1195 assert(nsec < 1000);
1196
1197 switch (nsec) {
1198 case 750 ... 999:
1199 idx = 9;
1200 break;
1201 case 500 ... 749:
1202 idx = 8;
1203 break;
1204 case 250 ... 499:
1205 idx = 7;
1206 break;
1207 case 100 ... 249:
1208 idx = 6;
1209 break;
1210 case 50 ... 99:
1211 idx = 5;
1212 break;
1213 case 20 ... 49:
1214 idx = 4;
1215 break;
1216 case 10 ... 19:
1217 idx = 3;
1218 break;
1219 case 4 ... 9:
1220 idx = 2;
1221 break;
1222 case 2 ... 3:
1223 idx = 1;
1224 fio_fallthrough;
1225 case 0 ... 1:
1226 break;
1227 }
1228
1229 assert(idx < FIO_IO_U_LAT_N_NR);
1230 td->ts.io_u_lat_n[idx]++;
1231}
1232
1233static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1234{
1235 int idx = 0;
1236
1237 assert(usec < 1000 && usec >= 1);
1238
1239 switch (usec) {
1240 case 750 ... 999:
1241 idx = 9;
1242 break;
1243 case 500 ... 749:
1244 idx = 8;
1245 break;
1246 case 250 ... 499:
1247 idx = 7;
1248 break;
1249 case 100 ... 249:
1250 idx = 6;
1251 break;
1252 case 50 ... 99:
1253 idx = 5;
1254 break;
1255 case 20 ... 49:
1256 idx = 4;
1257 break;
1258 case 10 ... 19:
1259 idx = 3;
1260 break;
1261 case 4 ... 9:
1262 idx = 2;
1263 break;
1264 case 2 ... 3:
1265 idx = 1;
1266 fio_fallthrough;
1267 case 0 ... 1:
1268 break;
1269 }
1270
1271 assert(idx < FIO_IO_U_LAT_U_NR);
1272 td->ts.io_u_lat_u[idx]++;
1273}
1274
1275static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1276{
1277 int idx = 0;
1278
1279 assert(msec >= 1);
1280
1281 switch (msec) {
1282 default:
1283 idx = 11;
1284 break;
1285 case 1000 ... 1999:
1286 idx = 10;
1287 break;
1288 case 750 ... 999:
1289 idx = 9;
1290 break;
1291 case 500 ... 749:
1292 idx = 8;
1293 break;
1294 case 250 ... 499:
1295 idx = 7;
1296 break;
1297 case 100 ... 249:
1298 idx = 6;
1299 break;
1300 case 50 ... 99:
1301 idx = 5;
1302 break;
1303 case 20 ... 49:
1304 idx = 4;
1305 break;
1306 case 10 ... 19:
1307 idx = 3;
1308 break;
1309 case 4 ... 9:
1310 idx = 2;
1311 break;
1312 case 2 ... 3:
1313 idx = 1;
1314 fio_fallthrough;
1315 case 0 ... 1:
1316 break;
1317 }
1318
1319 assert(idx < FIO_IO_U_LAT_M_NR);
1320 td->ts.io_u_lat_m[idx]++;
1321}
1322
1323static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1324{
1325 if (nsec < 1000)
1326 io_u_mark_lat_nsec(td, nsec);
1327 else if (nsec < 1000000)
1328 io_u_mark_lat_usec(td, nsec / 1000);
1329 else
1330 io_u_mark_lat_msec(td, nsec / 1000000);
1331}
1332
1333static unsigned int __get_next_fileno_rand(struct thread_data *td)
1334{
1335 unsigned long fileno;
1336
1337 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1338 uint64_t frand_max = rand_max(&td->next_file_state);
1339 unsigned long r;
1340
1341 r = __rand(&td->next_file_state);
1342 return (unsigned int) ((double) td->o.nr_files
1343 * (r / (frand_max + 1.0)));
1344 }
1345
1346 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1347 fileno = zipf_next(&td->next_file_zipf);
1348 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1349 fileno = pareto_next(&td->next_file_zipf);
1350 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1351 fileno = gauss_next(&td->next_file_gauss);
1352 else {
1353 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1354 assert(0);
1355 return 0;
1356 }
1357
1358 return fileno >> FIO_FSERVICE_SHIFT;
1359}
1360
1361/*
1362 * Get next file to service by choosing one at random
1363 */
1364static struct fio_file *get_next_file_rand(struct thread_data *td,
1365 enum fio_file_flags goodf,
1366 enum fio_file_flags badf)
1367{
1368 struct fio_file *f;
1369 int fno;
1370
1371 do {
1372 int opened = 0;
1373
1374 fno = __get_next_fileno_rand(td);
1375
1376 f = td->files[fno];
1377 if (fio_file_done(f))
1378 continue;
1379
1380 if (!fio_file_open(f)) {
1381 int err;
1382
1383 if (td->nr_open_files >= td->o.open_files)
1384 return ERR_PTR(-EBUSY);
1385
1386 err = td_io_open_file(td, f);
1387 if (err)
1388 continue;
1389 opened = 1;
1390 }
1391
1392 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1393 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1394 return f;
1395 }
1396 if (opened)
1397 td_io_close_file(td, f);
1398 } while (1);
1399}
1400
1401/*
1402 * Get next file to service by doing round robin between all available ones
1403 */
1404static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1405 int badf)
1406{
1407 unsigned int old_next_file = td->next_file;
1408 struct fio_file *f;
1409
1410 do {
1411 int opened = 0;
1412
1413 f = td->files[td->next_file];
1414
1415 td->next_file++;
1416 if (td->next_file >= td->o.nr_files)
1417 td->next_file = 0;
1418
1419 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1420 if (fio_file_done(f)) {
1421 f = NULL;
1422 continue;
1423 }
1424
1425 if (!fio_file_open(f)) {
1426 int err;
1427
1428 if (td->nr_open_files >= td->o.open_files)
1429 return ERR_PTR(-EBUSY);
1430
1431 err = td_io_open_file(td, f);
1432 if (err) {
1433 dprint(FD_FILE, "error %d on open of %s\n",
1434 err, f->file_name);
1435 f = NULL;
1436 continue;
1437 }
1438 opened = 1;
1439 }
1440
1441 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1442 f->flags);
1443 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1444 break;
1445
1446 if (opened)
1447 td_io_close_file(td, f);
1448
1449 f = NULL;
1450 } while (td->next_file != old_next_file);
1451
1452 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1453 return f;
1454}
1455
1456static struct fio_file *__get_next_file(struct thread_data *td)
1457{
1458 struct fio_file *f;
1459
1460 assert(td->o.nr_files <= td->files_index);
1461
1462 if (td->nr_done_files >= td->o.nr_files) {
1463 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1464 " nr_files=%d\n", td->nr_open_files,
1465 td->nr_done_files,
1466 td->o.nr_files);
1467 return NULL;
1468 }
1469
1470 f = td->file_service_file;
1471 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1472 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1473 goto out;
1474 if (td->file_service_left) {
1475 td->file_service_left--;
1476 goto out;
1477 }
1478 }
1479
1480 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1481 td->o.file_service_type == FIO_FSERVICE_SEQ)
1482 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1483 else
1484 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1485
1486 if (IS_ERR(f))
1487 return f;
1488
1489 td->file_service_file = f;
1490 td->file_service_left = td->file_service_nr - 1;
1491out:
1492 if (f)
1493 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1494 else
1495 dprint(FD_FILE, "get_next_file: NULL\n");
1496 return f;
1497}
1498
1499static struct fio_file *get_next_file(struct thread_data *td)
1500{
1501 return __get_next_file(td);
1502}
1503
1504static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1505{
1506 struct fio_file *f;
1507
1508 do {
1509 f = get_next_file(td);
1510 if (IS_ERR_OR_NULL(f))
1511 return PTR_ERR(f);
1512
1513 io_u->file = f;
1514 get_file(f);
1515
1516 if (!fill_io_u(td, io_u))
1517 break;
1518
1519 zbd_put_io_u(td, io_u);
1520
1521 put_file_log(td, f);
1522 td_io_close_file(td, f);
1523 io_u->file = NULL;
1524
1525 if (io_u->ddir == DDIR_TIMEOUT)
1526 return 1;
1527
1528 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1529 fio_file_reset(td, f);
1530 else {
1531 fio_file_set_done(f);
1532 td->nr_done_files++;
1533 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1534 td->nr_done_files, td->o.nr_files);
1535 }
1536 } while (1);
1537
1538 return 0;
1539}
1540
1541static void lat_fatal(struct thread_data *td, struct io_u *io_u, struct io_completion_data *icd,
1542 unsigned long long tnsec, unsigned long long max_nsec)
1543{
1544 if (!td->error) {
1545 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec): %s %s %llu %llu\n",
1546 tnsec, max_nsec,
1547 io_u->file->file_name,
1548 io_ddir_name(io_u->ddir),
1549 io_u->offset, io_u->buflen);
1550 }
1551 td_verror(td, ETIMEDOUT, "max latency exceeded");
1552 icd->error = ETIMEDOUT;
1553}
1554
1555static void lat_new_cycle(struct thread_data *td)
1556{
1557 fio_gettime(&td->latency_ts, NULL);
1558 td->latency_ios = ddir_rw_sum(td->io_blocks);
1559 td->latency_failed = 0;
1560}
1561
1562/*
1563 * We had an IO outside the latency target. Reduce the queue depth. If we
1564 * are at QD=1, then it's time to give up.
1565 */
1566static bool __lat_target_failed(struct thread_data *td)
1567{
1568 if (td->latency_qd == 1)
1569 return true;
1570
1571 td->latency_qd_high = td->latency_qd;
1572
1573 if (td->latency_qd == td->latency_qd_low)
1574 td->latency_qd_low--;
1575
1576 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1577 td->latency_stable_count = 0;
1578
1579 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1580
1581 /*
1582 * When we ramp QD down, quiesce existing IO to prevent
1583 * a storm of ramp downs due to pending higher depth.
1584 */
1585 io_u_quiesce(td);
1586 lat_new_cycle(td);
1587 return false;
1588}
1589
1590static bool lat_target_failed(struct thread_data *td)
1591{
1592 if (td->o.latency_percentile.u.f == 100.0)
1593 return __lat_target_failed(td);
1594
1595 td->latency_failed++;
1596 return false;
1597}
1598
1599void lat_target_init(struct thread_data *td)
1600{
1601 td->latency_end_run = 0;
1602
1603 if (td->o.latency_target) {
1604 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1605 fio_gettime(&td->latency_ts, NULL);
1606 td->latency_qd = 1;
1607 td->latency_qd_high = td->o.iodepth;
1608 td->latency_qd_low = 1;
1609 td->latency_ios = ddir_rw_sum(td->io_blocks);
1610 } else
1611 td->latency_qd = td->o.iodepth;
1612}
1613
1614void lat_target_reset(struct thread_data *td)
1615{
1616 if (!td->latency_end_run)
1617 lat_target_init(td);
1618}
1619
1620static void lat_target_success(struct thread_data *td)
1621{
1622 const unsigned int qd = td->latency_qd;
1623 struct thread_options *o = &td->o;
1624
1625 td->latency_qd_low = td->latency_qd;
1626
1627 if (td->latency_qd + 1 == td->latency_qd_high) {
1628 /*
1629 * latency_qd will not incease on lat_target_success(), so
1630 * called stable. If we stick with this queue depth, the
1631 * final latency is likely lower than latency_target. Fix
1632 * this by increasing latency_qd_high slowly. Use a naive
1633 * heuristic here. If we get lat_target_success() 3 times
1634 * in a row, increase latency_qd_high by 1.
1635 */
1636 if (++td->latency_stable_count >= 3) {
1637 td->latency_qd_high++;
1638 td->latency_stable_count = 0;
1639 }
1640 }
1641
1642 /*
1643 * If we haven't failed yet, we double up to a failing value instead
1644 * of bisecting from highest possible queue depth. If we have set
1645 * a limit other than td->o.iodepth, bisect between that.
1646 */
1647 if (td->latency_qd_high != o->iodepth)
1648 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1649 else
1650 td->latency_qd *= 2;
1651
1652 if (td->latency_qd > o->iodepth)
1653 td->latency_qd = o->iodepth;
1654
1655 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1656
1657 /*
1658 * Same as last one, we are done. Let it run a latency cycle, so
1659 * we get only the results from the targeted depth.
1660 */
1661 if (!o->latency_run && td->latency_qd == qd) {
1662 if (td->latency_end_run) {
1663 dprint(FD_RATE, "We are done\n");
1664 td->done = 1;
1665 } else {
1666 dprint(FD_RATE, "Quiesce and final run\n");
1667 io_u_quiesce(td);
1668 td->latency_end_run = 1;
1669 reset_all_stats(td);
1670 reset_io_stats(td);
1671 }
1672 }
1673
1674 lat_new_cycle(td);
1675}
1676
1677/*
1678 * Check if we can bump the queue depth
1679 */
1680void lat_target_check(struct thread_data *td)
1681{
1682 uint64_t usec_window;
1683 uint64_t ios;
1684 double success_ios;
1685
1686 usec_window = utime_since_now(&td->latency_ts);
1687 if (usec_window < td->o.latency_window)
1688 return;
1689
1690 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1691 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1692 success_ios *= 100.0;
1693
1694 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1695
1696 if (success_ios >= td->o.latency_percentile.u.f)
1697 lat_target_success(td);
1698 else
1699 __lat_target_failed(td);
1700}
1701
1702/*
1703 * If latency target is enabled, we might be ramping up or down and not
1704 * using the full queue depth available.
1705 */
1706bool queue_full(const struct thread_data *td)
1707{
1708 const int qempty = io_u_qempty(&td->io_u_freelist);
1709
1710 if (qempty)
1711 return true;
1712 if (!td->o.latency_target)
1713 return false;
1714
1715 return td->cur_depth >= td->latency_qd;
1716}
1717
1718struct io_u *__get_io_u(struct thread_data *td)
1719{
1720 const bool needs_lock = td_async_processing(td);
1721 struct io_u *io_u = NULL;
1722
1723 if (td->stop_io)
1724 return NULL;
1725
1726 if (needs_lock)
1727 __td_io_u_lock(td);
1728
1729again:
1730 if (td->runstate != TD_FSYNCING && !io_u_rempty(&td->io_u_requeues)) {
1731 io_u = io_u_rpop(&td->io_u_requeues);
1732 io_u->resid = 0;
1733 } else if (!queue_full(td)) {
1734 io_u = io_u_qpop(&td->io_u_freelist);
1735
1736 io_u->file = NULL;
1737 io_u->buflen = 0;
1738 io_u->resid = 0;
1739 io_u->end_io = NULL;
1740 }
1741
1742 if (io_u) {
1743 assert(io_u->flags & IO_U_F_FREE);
1744 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1745 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1746 IO_U_F_VER_LIST);
1747
1748 io_u->error = 0;
1749 io_u->acct_ddir = -1;
1750 td->cur_depth++;
1751 assert(!(td->flags & TD_F_CHILD));
1752 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1753 io_u->ipo = NULL;
1754 } else if (td_async_processing(td)) {
1755 int ret;
1756 /*
1757 * We ran out, wait for async verify threads to finish and
1758 * return one
1759 */
1760 assert(!(td->flags & TD_F_CHILD));
1761 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1762 if (fio_unlikely(ret != 0)) {
1763 td->error = errno;
1764 } else if (!td->error)
1765 goto again;
1766 }
1767
1768 if (needs_lock)
1769 __td_io_u_unlock(td);
1770
1771 return io_u;
1772}
1773
1774static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1775{
1776 if (!(td->flags & TD_F_TRIM_BACKLOG))
1777 return false;
1778 if (!td->trim_entries) {
1779 td->trim_batch = 0;
1780 return false;
1781 }
1782
1783 if (td->trim_batch) {
1784 td->trim_batch--;
1785 if (get_next_trim(td, io_u))
1786 return true;
1787 else
1788 td->trim_batch = 0;
1789 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1790 td->last_ddir_completed != DDIR_TRIM) {
1791 if (get_next_trim(td, io_u)) {
1792 td->trim_batch = td->o.trim_batch;
1793 if (!td->trim_batch)
1794 td->trim_batch = td->o.trim_backlog;
1795 td->trim_batch--;
1796 return true;
1797 }
1798 }
1799
1800 return false;
1801}
1802
1803static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1804{
1805 if (!(td->flags & TD_F_VER_BACKLOG))
1806 return false;
1807
1808 if (td->io_hist_len) {
1809 int get_verify = 0;
1810
1811 if (td->verify_batch)
1812 get_verify = 1;
1813 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1814 td->last_ddir_completed != DDIR_READ) {
1815 td->verify_batch = td->o.verify_batch;
1816 if (!td->verify_batch)
1817 td->verify_batch = td->o.verify_backlog;
1818 get_verify = 1;
1819 }
1820
1821 if (get_verify && !get_next_verify(td, io_u)) {
1822 td->verify_batch--;
1823 return true;
1824 }
1825 }
1826
1827 return false;
1828}
1829
1830/*
1831 * Fill offset and start time into the buffer content, to prevent too
1832 * easy compressible data for simple de-dupe attempts. Do this for every
1833 * 512b block in the range, since that should be the smallest block size
1834 * we can expect from a device.
1835 */
1836static void small_content_scramble(struct io_u *io_u)
1837{
1838 unsigned long long i, nr_blocks = io_u->buflen >> 9;
1839 unsigned int offset;
1840 uint64_t boffset, *iptr;
1841 char *p;
1842
1843 if (!nr_blocks)
1844 return;
1845
1846 p = io_u->xfer_buf;
1847 boffset = io_u->offset;
1848
1849 if (io_u->buf_filled_len)
1850 io_u->buf_filled_len = 0;
1851
1852 /*
1853 * Generate random index between 0..7. We do chunks of 512b, if
1854 * we assume a cacheline is 64 bytes, then we have 8 of those.
1855 * Scramble content within the blocks in the same cacheline to
1856 * speed things up.
1857 */
1858 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1859
1860 for (i = 0; i < nr_blocks; i++) {
1861 /*
1862 * Fill offset into start of cacheline, time into end
1863 * of cacheline
1864 */
1865 iptr = (void *) p + (offset << 6);
1866 *iptr = boffset;
1867
1868 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1869 iptr[0] = io_u->start_time.tv_sec;
1870 iptr[1] = io_u->start_time.tv_nsec;
1871
1872 p += 512;
1873 boffset += 512;
1874 }
1875}
1876
1877/*
1878 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1879 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1880 */
1881struct io_u *get_io_u(struct thread_data *td)
1882{
1883 struct fio_file *f;
1884 struct io_u *io_u;
1885 int do_scramble = 0;
1886 long ret = 0;
1887
1888 io_u = __get_io_u(td);
1889 if (!io_u) {
1890 dprint(FD_IO, "__get_io_u failed\n");
1891 return NULL;
1892 }
1893
1894 if (check_get_verify(td, io_u))
1895 goto out;
1896 if (check_get_trim(td, io_u))
1897 goto out;
1898
1899 /*
1900 * from a requeue, io_u already setup
1901 */
1902 if (io_u->file)
1903 goto out;
1904
1905 /*
1906 * If using an iolog, grab next piece if any available.
1907 */
1908 if (td->flags & TD_F_READ_IOLOG) {
1909 if (read_iolog_get(td, io_u))
1910 goto err_put;
1911 } else if (set_io_u_file(td, io_u)) {
1912 ret = -EBUSY;
1913 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1914 goto err_put;
1915 }
1916
1917 f = io_u->file;
1918 if (!f) {
1919 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1920 goto err_put;
1921 }
1922
1923 assert(fio_file_open(f));
1924
1925 if (ddir_rw(io_u->ddir) && !multi_range_trim(td, io_u)) {
1926 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1927 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1928 goto err_put;
1929 }
1930
1931 f->last_start[io_u->ddir] = io_u->offset;
1932 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1933
1934 if (io_u->ddir == DDIR_WRITE) {
1935 if (td->flags & TD_F_REFILL_BUFFERS) {
1936 io_u_fill_buffer(td, io_u,
1937 td->o.min_bs[DDIR_WRITE],
1938 io_u->buflen);
1939 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1940 !(td->flags & TD_F_COMPRESS) &&
1941 !(td->flags & TD_F_DO_VERIFY)) {
1942 do_scramble = 1;
1943 }
1944 } else if (io_u->ddir == DDIR_READ) {
1945 /*
1946 * Reset the buf_filled parameters so next time if the
1947 * buffer is used for writes it is refilled.
1948 */
1949 io_u->buf_filled_len = 0;
1950 }
1951 }
1952
1953 /*
1954 * Set io data pointers.
1955 */
1956 io_u->xfer_buf = io_u->buf;
1957 io_u->xfer_buflen = io_u->buflen;
1958
1959 /*
1960 * Remember the issuing context priority. The IO engine may change this.
1961 */
1962 io_u->ioprio = td->ioprio;
1963 io_u->clat_prio_index = 0;
1964out:
1965 assert(io_u->file);
1966 if (!td_io_prep(td, io_u)) {
1967 if (!td->o.disable_lat)
1968 fio_gettime(&io_u->start_time, NULL);
1969
1970 if (do_scramble)
1971 small_content_scramble(io_u);
1972
1973 return io_u;
1974 }
1975err_put:
1976 dprint(FD_IO, "get_io_u failed\n");
1977 put_io_u(td, io_u);
1978 return ERR_PTR(ret);
1979}
1980
1981static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1982{
1983 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1984
1985 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1986 return;
1987
1988 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%llu\n",
1989 io_u->file ? " on file " : "",
1990 io_u->file ? io_u->file->file_name : "",
1991 (io_u->flags & IO_U_F_DEVICE_ERROR) ?
1992 "Device-specific error" : strerror(io_u->error),
1993 io_ddir_name(io_u->ddir),
1994 io_u->offset, io_u->xfer_buflen);
1995
1996 zbd_log_err(td, io_u);
1997
1998 if (td->io_ops->errdetails) {
1999 char *err = td->io_ops->errdetails(td, io_u);
2000
2001 if (err) {
2002 log_err("fio: %s\n", err);
2003 free(err);
2004 }
2005 }
2006
2007 if (!td->error)
2008 td_verror(td, io_u->error, "io_u error");
2009}
2010
2011void io_u_log_error(struct thread_data *td, struct io_u *io_u)
2012{
2013 __io_u_log_error(td, io_u);
2014 if (td->parent)
2015 __io_u_log_error(td->parent, io_u);
2016}
2017
2018static inline bool gtod_reduce(struct thread_data *td)
2019{
2020 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
2021 || td->o.gtod_reduce;
2022}
2023
2024static void trim_block_info(struct thread_data *td, struct io_u *io_u)
2025{
2026 uint32_t *info = io_u_block_info(td, io_u);
2027
2028 if (BLOCK_INFO_STATE(*info) >= BLOCK_STATE_TRIM_FAILURE)
2029 return;
2030
2031 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED, BLOCK_INFO_TRIMS(*info) + 1);
2032}
2033
2034static void account_io_completion(struct thread_data *td, struct io_u *io_u,
2035 struct io_completion_data *icd,
2036 const enum fio_ddir idx, unsigned int bytes)
2037{
2038 const int no_reduce = !gtod_reduce(td);
2039 unsigned long long llnsec = 0;
2040
2041 if (td->parent)
2042 td = td->parent;
2043
2044 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
2045 return;
2046
2047 if (no_reduce)
2048 llnsec = ntime_since(&io_u->issue_time, &icd->time);
2049
2050 if (!td->o.disable_lat) {
2051 unsigned long long tnsec;
2052
2053 tnsec = ntime_since(&io_u->start_time, &icd->time);
2054 add_lat_sample(td, idx, tnsec, bytes, io_u);
2055
2056 if (td->flags & TD_F_PROFILE_OPS) {
2057 struct prof_io_ops *ops = &td->prof_io_ops;
2058
2059 if (ops->io_u_lat)
2060 icd->error = ops->io_u_lat(td, tnsec);
2061 }
2062
2063 if (ddir_rw(idx)) {
2064 if (td->o.max_latency[idx] && tnsec > td->o.max_latency[idx])
2065 lat_fatal(td, io_u, icd, tnsec, td->o.max_latency[idx]);
2066 if (td->o.latency_target && tnsec > td->o.latency_target) {
2067 if (lat_target_failed(td))
2068 lat_fatal(td, io_u, icd, tnsec, td->o.latency_target);
2069 }
2070 }
2071 }
2072
2073 if (ddir_rw(idx)) {
2074 if (!td->o.disable_clat) {
2075 add_clat_sample(td, idx, llnsec, bytes, io_u);
2076 io_u_mark_latency(td, llnsec);
2077 }
2078
2079 if (!td->o.disable_bw && per_unit_log(td->bw_log))
2080 add_bw_sample(td, io_u, bytes, llnsec);
2081
2082 if (no_reduce && per_unit_log(td->iops_log))
2083 add_iops_sample(td, io_u, bytes);
2084 } else if (ddir_sync(idx) && !td->o.disable_clat)
2085 add_sync_clat_sample(&td->ts, llnsec);
2086
2087 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM)
2088 trim_block_info(td, io_u);
2089}
2090
2091static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
2092 uint64_t offset, unsigned int bytes)
2093{
2094 if (!f)
2095 return;
2096
2097 if (f->first_write == -1ULL || offset < f->first_write)
2098 f->first_write = offset;
2099 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
2100 f->last_write = offset + bytes;
2101}
2102
2103static bool should_account(struct thread_data *td)
2104{
2105 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
2106 td->runstate == TD_VERIFYING);
2107}
2108
2109static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
2110 struct io_completion_data *icd)
2111{
2112 struct io_u *io_u = *io_u_ptr;
2113 enum fio_ddir ddir = io_u->ddir;
2114 struct fio_file *f = io_u->file;
2115
2116 dprint_io_u(io_u, "complete");
2117
2118 assert(io_u->flags & IO_U_F_FLIGHT);
2119 io_u_clear_inflight_flags(td, io_u);
2120 invalidate_inflight(td, io_u);
2121
2122 if (td->o.zone_mode == ZONE_MODE_ZBD && td->o.recover_zbd_write_error &&
2123 io_u->error && io_u->ddir == DDIR_WRITE &&
2124 !td_ioengine_flagged(td, FIO_SYNCIO))
2125 zbd_recover_write_error(td, io_u);
2126
2127 /*
2128 * Mark IO ok to verify
2129 */
2130 if (io_u->ipo) {
2131 /*
2132 * Remove errored entry from the verification list
2133 */
2134 if (io_u->error)
2135 unlog_io_piece(td, io_u);
2136 else {
2137 atomic_store_release(&io_u->ipo->flags,
2138 io_u->ipo->flags & ~IP_F_IN_FLIGHT);
2139 }
2140 }
2141
2142 if (ddir_sync(ddir)) {
2143 if (io_u->error)
2144 goto error;
2145 if (f) {
2146 f->first_write = -1ULL;
2147 f->last_write = -1ULL;
2148 }
2149 if (should_account(td))
2150 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
2151 return;
2152 }
2153
2154 td->last_ddir_completed = ddir;
2155
2156 if (!io_u->error && ddir_rw(ddir)) {
2157 unsigned long long bytes = io_u->xfer_buflen - io_u->resid;
2158 int ret;
2159
2160 /*
2161 * Make sure we notice short IO from here, and requeue them
2162 * appropriately!
2163 */
2164 if (bytes && io_u->resid) {
2165 io_u->xfer_buflen = io_u->resid;
2166 io_u->xfer_buf += bytes;
2167 io_u->offset += bytes;
2168 td->ts.short_io_u[io_u->ddir]++;
2169 if (io_u->offset < io_u->file->real_file_size) {
2170 requeue_io_u(td, io_u_ptr);
2171 return;
2172 }
2173 }
2174
2175 td->io_blocks[ddir]++;
2176 td->io_bytes[ddir] += bytes;
2177
2178 if (!(io_u->flags & IO_U_F_VER_LIST)) {
2179 td->this_io_blocks[ddir]++;
2180 td->this_io_bytes[ddir] += bytes;
2181 }
2182
2183 if (ddir == DDIR_WRITE)
2184 file_log_write_comp(td, f, io_u->offset, bytes);
2185
2186 if (should_account(td))
2187 account_io_completion(td, io_u, icd, ddir, bytes);
2188
2189 icd->bytes_done[ddir] += bytes;
2190
2191 if (io_u->end_io) {
2192 ret = io_u->end_io(td, io_u_ptr);
2193 io_u = *io_u_ptr;
2194 if (ret && !icd->error)
2195 icd->error = ret;
2196 }
2197 } else if (io_u->error) {
2198error:
2199 icd->error = io_u->error;
2200 io_u_log_error(td, io_u);
2201 }
2202 if (icd->error) {
2203 enum error_type_bit eb = td_error_type(ddir, icd->error);
2204
2205 if (!td_non_fatal_error(td, eb, icd->error))
2206 return;
2207
2208 /*
2209 * If there is a non_fatal error, then add to the error count
2210 * and clear all the errors.
2211 */
2212 update_error_count(td, icd->error);
2213 td_clear_error(td);
2214 icd->error = 0;
2215 if (io_u)
2216 io_u->error = 0;
2217 }
2218}
2219
2220static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2221 int nr)
2222{
2223 int ddir;
2224
2225 if (!gtod_reduce(td))
2226 fio_gettime(&icd->time, NULL);
2227
2228 icd->nr = nr;
2229
2230 icd->error = 0;
2231 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2232 icd->bytes_done[ddir] = 0;
2233}
2234
2235static void ios_completed(struct thread_data *td,
2236 struct io_completion_data *icd)
2237{
2238 struct io_u *io_u;
2239 int i;
2240
2241 for (i = 0; i < icd->nr; i++) {
2242 io_u = td->io_ops->event(td, i);
2243
2244 io_completed(td, &io_u, icd);
2245
2246 if (io_u)
2247 put_io_u(td, io_u);
2248 }
2249}
2250
2251static void io_u_update_bytes_done(struct thread_data *td,
2252 struct io_completion_data *icd)
2253{
2254 int ddir;
2255
2256 if (td->runstate == TD_VERIFYING) {
2257 td->bytes_verified += icd->bytes_done[DDIR_READ];
2258 if (td_write(td))
2259 return;
2260 }
2261
2262 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2263 td->bytes_done[ddir] += icd->bytes_done[ddir];
2264}
2265
2266/*
2267 * Complete a single io_u for the sync engines.
2268 */
2269int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2270{
2271 struct io_completion_data icd;
2272
2273 init_icd(td, &icd, 1);
2274 io_completed(td, &io_u, &icd);
2275
2276 if (io_u)
2277 put_io_u(td, io_u);
2278
2279 if (icd.error) {
2280 td_verror(td, icd.error, "io_u_sync_complete");
2281 return -1;
2282 }
2283
2284 io_u_update_bytes_done(td, &icd);
2285
2286 return 0;
2287}
2288
2289/*
2290 * Called to complete min_events number of io for the async engines.
2291 */
2292int io_u_queued_complete(struct thread_data *td, int min_evts)
2293{
2294 struct io_completion_data icd;
2295 struct timespec *tvp = NULL;
2296 int ret;
2297 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2298
2299 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2300
2301 if (!min_evts)
2302 tvp = &ts;
2303 else if (min_evts > td->cur_depth)
2304 min_evts = td->cur_depth;
2305
2306 /* No worries, td_io_getevents fixes min and max if they are
2307 * set incorrectly */
2308 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2309 if (ret < 0) {
2310 td_verror(td, -ret, "td_io_getevents");
2311 return ret;
2312 } else if (!ret)
2313 return ret;
2314
2315 init_icd(td, &icd, ret);
2316 ios_completed(td, &icd);
2317 if (icd.error) {
2318 td_verror(td, icd.error, "io_u_queued_complete");
2319 return -1;
2320 }
2321
2322 io_u_update_bytes_done(td, &icd);
2323
2324 return ret;
2325}
2326
2327/*
2328 * Call when io_u is really queued, to update the submission latency.
2329 */
2330void io_u_queued(struct thread_data *td, struct io_u *io_u)
2331{
2332 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2333 if (td->parent)
2334 td = td->parent;
2335 add_slat_sample(td, io_u);
2336 }
2337}
2338
2339/*
2340 * See if we should reuse the last seed, if dedupe is enabled
2341 */
2342static struct frand_state *get_buf_state(struct thread_data *td)
2343{
2344 unsigned int v;
2345 unsigned long long i;
2346
2347 if (!td->o.dedupe_percentage)
2348 return &td->buf_state;
2349 else if (td->o.dedupe_percentage == 100) {
2350 frand_copy(&td->buf_state_prev, &td->buf_state);
2351 return &td->buf_state;
2352 }
2353
2354 v = rand_between(&td->dedupe_state, 1, 100);
2355
2356 if (v <= td->o.dedupe_percentage)
2357 switch (td->o.dedupe_mode) {
2358 case DEDUPE_MODE_REPEAT:
2359 /*
2360 * The caller advances the returned frand_state.
2361 * A copy of prev should be returned instead since
2362 * a subsequent intention to generate a deduped buffer
2363 * might result in generating a unique one
2364 */
2365 frand_copy(&td->buf_state_ret, &td->buf_state_prev);
2366 return &td->buf_state_ret;
2367 case DEDUPE_MODE_WORKING_SET:
2368 i = rand_between(&td->dedupe_working_set_index_state, 0, td->num_unique_pages - 1);
2369 frand_copy(&td->buf_state_ret, &td->dedupe_working_set_states[i]);
2370 return &td->buf_state_ret;
2371 default:
2372 log_err("unexpected dedupe mode %u\n", td->o.dedupe_mode);
2373 assert(0);
2374 }
2375
2376 return &td->buf_state;
2377}
2378
2379static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2380{
2381 if (td->o.dedupe_percentage == 100)
2382 frand_copy(rs, &td->buf_state_prev);
2383 else if (rs == &td->buf_state)
2384 frand_copy(&td->buf_state_prev, rs);
2385}
2386
2387void fill_io_buffer(struct thread_data *td, void *buf, unsigned long long min_write,
2388 unsigned long long max_bs)
2389{
2390 struct thread_options *o = &td->o;
2391
2392 if (o->mem_type == MEM_CUDA_MALLOC)
2393 return;
2394
2395 if (o->compress_percentage || o->dedupe_percentage) {
2396 unsigned int perc = td->o.compress_percentage;
2397 struct frand_state *rs = NULL;
2398 unsigned long long left = max_bs;
2399 unsigned long long this_write;
2400
2401 do {
2402 /*
2403 * Buffers are either entirely dedupe-able or not.
2404 * If we choose to dedup, the buffer should undergo
2405 * the same manipulation as the original write. Which
2406 * means we should retrack the steps we took for compression
2407 * as well.
2408 */
2409 if (!rs)
2410 rs = get_buf_state(td);
2411
2412 min_write = min(min_write, left);
2413
2414 this_write = min_not_zero(min_write,
2415 (unsigned long long) td->o.compress_chunk);
2416
2417 fill_random_buf_percentage(rs, buf, perc,
2418 this_write, this_write,
2419 o->buffer_pattern,
2420 o->buffer_pattern_bytes);
2421
2422 buf += this_write;
2423 left -= this_write;
2424 save_buf_state(td, rs);
2425 } while (left);
2426 } else if (o->buffer_pattern_bytes)
2427 fill_buffer_pattern(td, buf, max_bs);
2428 else if (o->zero_buffers)
2429 memset(buf, 0, max_bs);
2430 else
2431 fill_random_buf(get_buf_state(td), buf, max_bs);
2432}
2433
2434/*
2435 * "randomly" fill the buffer contents
2436 */
2437void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2438 unsigned long long min_write, unsigned long long max_bs)
2439{
2440 io_u->buf_filled_len = 0;
2441 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2442}
2443
2444static int do_sync_file_range(const struct thread_data *td,
2445 struct fio_file *f)
2446{
2447 uint64_t offset, nbytes;
2448
2449 offset = f->first_write;
2450 nbytes = f->last_write - f->first_write;
2451
2452 if (!nbytes)
2453 return 0;
2454
2455 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2456}
2457
2458int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2459{
2460 int ret;
2461
2462 if (io_u->ddir == DDIR_SYNC) {
2463#ifdef CONFIG_FCNTL_SYNC
2464 ret = fcntl(io_u->file->fd, F_FULLFSYNC);
2465#else
2466 ret = fsync(io_u->file->fd);
2467#endif
2468 } else if (io_u->ddir == DDIR_DATASYNC) {
2469#ifdef CONFIG_FDATASYNC
2470 ret = fdatasync(io_u->file->fd);
2471#else
2472 ret = io_u->xfer_buflen;
2473 io_u->error = EINVAL;
2474#endif
2475 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2476 ret = do_sync_file_range(td, io_u->file);
2477 else {
2478 ret = io_u->xfer_buflen;
2479 io_u->error = EINVAL;
2480 }
2481
2482 if (ret < 0)
2483 io_u->error = errno;
2484
2485 return ret;
2486}
2487
2488int do_io_u_trim(struct thread_data *td, struct io_u *io_u)
2489{
2490#ifndef FIO_HAVE_TRIM
2491 io_u->error = EINVAL;
2492 return 0;
2493#else
2494 struct fio_file *f = io_u->file;
2495 int ret;
2496
2497 if (td->o.zone_mode == ZONE_MODE_ZBD) {
2498 ret = zbd_do_io_u_trim(td, io_u);
2499 if (ret == io_u_completed)
2500 return io_u->xfer_buflen;
2501 if (ret)
2502 goto err;
2503 }
2504
2505 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2506 if (!ret)
2507 return io_u->xfer_buflen;
2508
2509err:
2510 io_u->error = ret;
2511 return 0;
2512#endif
2513}