Only apply verify interval to meta verifier, which uses it
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "lib/rand.h"
12
13struct io_completion_data {
14 int nr; /* input */
15
16 int error; /* output */
17 unsigned long bytes_done[2]; /* output */
18 struct timeval time; /* output */
19};
20
21/*
22 * The ->file_map[] contains a map of blocks we have or have not done io
23 * to yet. Used to make sure we cover the entire range in a fair fashion.
24 */
25static int random_map_free(struct fio_file *f, const unsigned long long block)
26{
27 unsigned int idx = RAND_MAP_IDX(f, block);
28 unsigned int bit = RAND_MAP_BIT(f, block);
29
30 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
31
32 return (f->file_map[idx] & (1 << bit)) == 0;
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned long long block;
43 unsigned int blocks, nr_blocks;
44
45 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47 blocks = 0;
48
49 while (nr_blocks) {
50 unsigned int this_blocks, mask;
51 unsigned int idx, bit;
52
53 /*
54 * If we have a mixed random workload, we may
55 * encounter blocks we already did IO to.
56 */
57 if ((td->o.ddir_nr == 1) && !random_map_free(f, block)) {
58 if (!blocks)
59 blocks = 1;
60 break;
61 }
62
63 idx = RAND_MAP_IDX(f, block);
64 bit = RAND_MAP_BIT(f, block);
65
66 fio_assert(td, idx < f->num_maps);
67
68 this_blocks = nr_blocks;
69 if (this_blocks + bit > BLOCKS_PER_MAP)
70 this_blocks = BLOCKS_PER_MAP - bit;
71
72 if (this_blocks == BLOCKS_PER_MAP)
73 mask = -1U;
74 else
75 mask = ((1U << this_blocks) - 1) << bit;
76
77 f->file_map[idx] |= mask;
78 nr_blocks -= this_blocks;
79 blocks += this_blocks;
80 block += this_blocks;
81 }
82
83 if ((blocks * min_bs) < io_u->buflen)
84 io_u->buflen = blocks * min_bs;
85}
86
87static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
88 enum fio_ddir ddir)
89{
90 unsigned long long max_blocks;
91 unsigned long long max_size;
92
93 /*
94 * Hmm, should we make sure that ->io_size <= ->real_file_size?
95 */
96 max_size = f->io_size;
97 if (max_size > f->real_file_size)
98 max_size = f->real_file_size;
99
100 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
101 if (!max_blocks)
102 return 0;
103
104 return max_blocks;
105}
106
107/*
108 * Return the next free block in the map.
109 */
110static int get_next_free_block(struct thread_data *td, struct fio_file *f,
111 enum fio_ddir ddir, unsigned long long *b)
112{
113 unsigned long long min_bs = td->o.rw_min_bs;
114 int i;
115
116 i = f->last_free_lookup;
117 *b = (i * BLOCKS_PER_MAP);
118 while ((*b) * min_bs < f->real_file_size &&
119 (*b) * min_bs < f->io_size) {
120 if (f->file_map[i] != (unsigned int) -1) {
121 *b += ffz(f->file_map[i]);
122 if (*b > last_block(td, f, ddir))
123 break;
124 f->last_free_lookup = i;
125 return 0;
126 }
127
128 *b += BLOCKS_PER_MAP;
129 i++;
130 }
131
132 dprint(FD_IO, "failed finding a free block\n");
133 return 1;
134}
135
136static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
137 enum fio_ddir ddir, unsigned long long *b)
138{
139 unsigned long long r;
140 int loops = 5;
141
142 do {
143 r = os_random_long(&td->random_state);
144 dprint(FD_RANDOM, "off rand %llu\n", r);
145 *b = (last_block(td, f, ddir) - 1)
146 * (r / ((unsigned long long) OS_RAND_MAX + 1.0));
147
148 /*
149 * if we are not maintaining a random map, we are done.
150 */
151 if (!file_randommap(td, f))
152 return 0;
153
154 /*
155 * calculate map offset and check if it's free
156 */
157 if (random_map_free(f, *b))
158 return 0;
159
160 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
161 *b);
162 } while (--loops);
163
164 /*
165 * we get here, if we didn't suceed in looking up a block. generate
166 * a random start offset into the filemap, and find the first free
167 * block from there.
168 */
169 loops = 10;
170 do {
171 f->last_free_lookup = (f->num_maps - 1) *
172 (r / (OS_RAND_MAX + 1.0));
173 if (!get_next_free_block(td, f, ddir, b))
174 return 0;
175
176 r = os_random_long(&td->random_state);
177 } while (--loops);
178
179 /*
180 * that didn't work either, try exhaustive search from the start
181 */
182 f->last_free_lookup = 0;
183 return get_next_free_block(td, f, ddir, b);
184}
185
186/*
187 * For random io, generate a random new block and see if it's used. Repeat
188 * until we find a free one. For sequential io, just return the end of
189 * the last io issued.
190 */
191static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
192{
193 struct fio_file *f = io_u->file;
194 unsigned long long b;
195 enum fio_ddir ddir = io_u->ddir;
196
197 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
198 td->ddir_nr = td->o.ddir_nr;
199
200 if (get_next_rand_offset(td, f, ddir, &b)) {
201 dprint(FD_IO, "%s: getting rand offset failed\n",
202 f->file_name);
203 return 1;
204 }
205 } else {
206 if (f->last_pos >= f->real_file_size) {
207 if (!td_random(td) ||
208 get_next_rand_offset(td, f, ddir, &b)) {
209 dprint(FD_IO, "%s: pos %llu > size %llu\n",
210 f->file_name, f->last_pos,
211 f->real_file_size);
212 return 1;
213 }
214 } else
215 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
216 }
217
218 io_u->offset = b * td->o.ba[ddir];
219 if (io_u->offset >= f->io_size) {
220 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
221 io_u->offset, f->io_size);
222 return 1;
223 }
224
225 io_u->offset += f->file_offset;
226 if (io_u->offset >= f->real_file_size) {
227 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
228 io_u->offset, f->real_file_size);
229 return 1;
230 }
231
232 return 0;
233}
234
235static int get_next_offset(struct thread_data *td, struct io_u *io_u)
236{
237 struct prof_io_ops *ops = &td->prof_io_ops;
238
239 if (ops->fill_io_u_off)
240 return ops->fill_io_u_off(td, io_u);
241
242 return __get_next_offset(td, io_u);
243}
244
245static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
246{
247 const int ddir = io_u->ddir;
248 unsigned int uninitialized_var(buflen);
249 unsigned int minbs, maxbs;
250 long r;
251
252 minbs = td->o.min_bs[ddir];
253 maxbs = td->o.max_bs[ddir];
254
255 if (minbs == maxbs)
256 buflen = minbs;
257 else {
258 r = os_random_long(&td->bsrange_state);
259 if (!td->o.bssplit_nr[ddir]) {
260 buflen = 1 + (unsigned int) ((double) maxbs *
261 (r / (OS_RAND_MAX + 1.0)));
262 if (buflen < minbs)
263 buflen = minbs;
264 } else {
265 long perc = 0;
266 unsigned int i;
267
268 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
269 struct bssplit *bsp = &td->o.bssplit[ddir][i];
270
271 buflen = bsp->bs;
272 perc += bsp->perc;
273 if (r <= ((OS_RAND_MAX / 100L) * perc))
274 break;
275 }
276 }
277 if (!td->o.bs_unaligned && is_power_of_2(minbs))
278 buflen = (buflen + minbs - 1) & ~(minbs - 1);
279 }
280
281 if (io_u->offset + buflen > io_u->file->real_file_size) {
282 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
283 minbs, ddir);
284 buflen = minbs;
285 }
286
287 return buflen;
288}
289
290static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
291{
292 struct prof_io_ops *ops = &td->prof_io_ops;
293
294 if (ops->fill_io_u_size)
295 return ops->fill_io_u_size(td, io_u);
296
297 return __get_next_buflen(td, io_u);
298}
299
300static void set_rwmix_bytes(struct thread_data *td)
301{
302 unsigned int diff;
303
304 /*
305 * we do time or byte based switch. this is needed because
306 * buffered writes may issue a lot quicker than they complete,
307 * whereas reads do not.
308 */
309 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
310 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
311}
312
313static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
314{
315 unsigned int v;
316 long r;
317
318 r = os_random_long(&td->rwmix_state);
319 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
320 if (v <= td->o.rwmix[DDIR_READ])
321 return DDIR_READ;
322
323 return DDIR_WRITE;
324}
325
326static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
327{
328 enum fio_ddir odir = ddir ^ 1;
329 struct timeval t;
330 long usec;
331
332 if (td->rate_pending_usleep[ddir] <= 0)
333 return ddir;
334
335 /*
336 * We have too much pending sleep in this direction. See if we
337 * should switch.
338 */
339 if (td_rw(td)) {
340 /*
341 * Other direction does not have too much pending, switch
342 */
343 if (td->rate_pending_usleep[odir] < 100000)
344 return odir;
345
346 /*
347 * Both directions have pending sleep. Sleep the minimum time
348 * and deduct from both.
349 */
350 if (td->rate_pending_usleep[ddir] <=
351 td->rate_pending_usleep[odir]) {
352 usec = td->rate_pending_usleep[ddir];
353 } else {
354 usec = td->rate_pending_usleep[odir];
355 ddir = odir;
356 }
357 } else
358 usec = td->rate_pending_usleep[ddir];
359
360 fio_gettime(&t, NULL);
361 usec_sleep(td, usec);
362 usec = utime_since_now(&t);
363
364 td->rate_pending_usleep[ddir] -= usec;
365
366 odir = ddir ^ 1;
367 if (td_rw(td) && __should_check_rate(td, odir))
368 td->rate_pending_usleep[odir] -= usec;
369
370 return ddir;
371}
372
373/*
374 * Return the data direction for the next io_u. If the job is a
375 * mixed read/write workload, check the rwmix cycle and switch if
376 * necessary.
377 */
378static enum fio_ddir get_rw_ddir(struct thread_data *td)
379{
380 enum fio_ddir ddir;
381
382 /*
383 * see if it's time to fsync
384 */
385 if (td->o.fsync_blocks &&
386 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
387 td->io_issues[DDIR_WRITE] && should_fsync(td))
388 return DDIR_SYNC;
389
390 /*
391 * see if it's time to fdatasync
392 */
393 if (td->o.fdatasync_blocks &&
394 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
395 td->io_issues[DDIR_WRITE] && should_fsync(td))
396 return DDIR_DATASYNC;
397
398 /*
399 * see if it's time to sync_file_range
400 */
401 if (td->sync_file_range_nr &&
402 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
403 td->io_issues[DDIR_WRITE] && should_fsync(td))
404 return DDIR_SYNC_FILE_RANGE;
405
406 if (td_rw(td)) {
407 /*
408 * Check if it's time to seed a new data direction.
409 */
410 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
411 /*
412 * Put a top limit on how many bytes we do for
413 * one data direction, to avoid overflowing the
414 * ranges too much
415 */
416 ddir = get_rand_ddir(td);
417
418 if (ddir != td->rwmix_ddir)
419 set_rwmix_bytes(td);
420
421 td->rwmix_ddir = ddir;
422 }
423 ddir = td->rwmix_ddir;
424 } else if (td_read(td))
425 ddir = DDIR_READ;
426 else
427 ddir = DDIR_WRITE;
428
429 td->rwmix_ddir = rate_ddir(td, ddir);
430 return td->rwmix_ddir;
431}
432
433void put_file_log(struct thread_data *td, struct fio_file *f)
434{
435 int ret = put_file(td, f);
436
437 if (ret)
438 td_verror(td, ret, "file close");
439}
440
441void put_io_u(struct thread_data *td, struct io_u *io_u)
442{
443 td_io_u_lock(td);
444
445 io_u->flags |= IO_U_F_FREE;
446 io_u->flags &= ~IO_U_F_FREE_DEF;
447
448 if (io_u->file)
449 put_file_log(td, io_u->file);
450
451 io_u->file = NULL;
452 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
453 td->cur_depth--;
454 flist_del_init(&io_u->list);
455 flist_add(&io_u->list, &td->io_u_freelist);
456 td_io_u_unlock(td);
457 td_io_u_free_notify(td);
458}
459
460void clear_io_u(struct thread_data *td, struct io_u *io_u)
461{
462 io_u->flags &= ~IO_U_F_FLIGHT;
463 put_io_u(td, io_u);
464}
465
466void requeue_io_u(struct thread_data *td, struct io_u **io_u)
467{
468 struct io_u *__io_u = *io_u;
469
470 dprint(FD_IO, "requeue %p\n", __io_u);
471
472 td_io_u_lock(td);
473
474 __io_u->flags |= IO_U_F_FREE;
475 if ((__io_u->flags & IO_U_F_FLIGHT) && !ddir_sync(__io_u->ddir))
476 td->io_issues[__io_u->ddir]--;
477
478 __io_u->flags &= ~IO_U_F_FLIGHT;
479 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
480 td->cur_depth--;
481 flist_del(&__io_u->list);
482 flist_add_tail(&__io_u->list, &td->io_u_requeues);
483 td_io_u_unlock(td);
484 *io_u = NULL;
485}
486
487static int fill_io_u(struct thread_data *td, struct io_u *io_u)
488{
489 if (td->io_ops->flags & FIO_NOIO)
490 goto out;
491
492 io_u->ddir = get_rw_ddir(td);
493
494 /*
495 * fsync() or fdatasync(), we are done
496 */
497 if (ddir_sync(io_u->ddir))
498 goto out;
499
500 /*
501 * See if it's time to switch to a new zone
502 */
503 if (td->zone_bytes >= td->o.zone_size) {
504 td->zone_bytes = 0;
505 io_u->file->last_pos += td->o.zone_skip;
506 td->io_skip_bytes += td->o.zone_skip;
507 }
508
509 /*
510 * No log, let the seq/rand engine retrieve the next buflen and
511 * position.
512 */
513 if (get_next_offset(td, io_u)) {
514 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
515 return 1;
516 }
517
518 io_u->buflen = get_next_buflen(td, io_u);
519 if (!io_u->buflen) {
520 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
521 return 1;
522 }
523
524 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
525 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
526 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
527 io_u->buflen, io_u->file->real_file_size);
528 return 1;
529 }
530
531 /*
532 * mark entry before potentially trimming io_u
533 */
534 if (td_random(td) && file_randommap(td, io_u->file))
535 mark_random_map(td, io_u);
536
537 /*
538 * If using a write iolog, store this entry.
539 */
540out:
541 dprint_io_u(io_u, "fill_io_u");
542 td->zone_bytes += io_u->buflen;
543 log_io_u(td, io_u);
544 return 0;
545}
546
547static void __io_u_mark_map(unsigned int *map, unsigned int nr)
548{
549 int index = 0;
550
551 switch (nr) {
552 default:
553 index = 6;
554 break;
555 case 33 ... 64:
556 index = 5;
557 break;
558 case 17 ... 32:
559 index = 4;
560 break;
561 case 9 ... 16:
562 index = 3;
563 break;
564 case 5 ... 8:
565 index = 2;
566 break;
567 case 1 ... 4:
568 index = 1;
569 case 0:
570 break;
571 }
572
573 map[index]++;
574}
575
576void io_u_mark_submit(struct thread_data *td, unsigned int nr)
577{
578 __io_u_mark_map(td->ts.io_u_submit, nr);
579 td->ts.total_submit++;
580}
581
582void io_u_mark_complete(struct thread_data *td, unsigned int nr)
583{
584 __io_u_mark_map(td->ts.io_u_complete, nr);
585 td->ts.total_complete++;
586}
587
588void io_u_mark_depth(struct thread_data *td, unsigned int nr)
589{
590 int index = 0;
591
592 switch (td->cur_depth) {
593 default:
594 index = 6;
595 break;
596 case 32 ... 63:
597 index = 5;
598 break;
599 case 16 ... 31:
600 index = 4;
601 break;
602 case 8 ... 15:
603 index = 3;
604 break;
605 case 4 ... 7:
606 index = 2;
607 break;
608 case 2 ... 3:
609 index = 1;
610 case 1:
611 break;
612 }
613
614 td->ts.io_u_map[index] += nr;
615}
616
617static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
618{
619 int index = 0;
620
621 assert(usec < 1000);
622
623 switch (usec) {
624 case 750 ... 999:
625 index = 9;
626 break;
627 case 500 ... 749:
628 index = 8;
629 break;
630 case 250 ... 499:
631 index = 7;
632 break;
633 case 100 ... 249:
634 index = 6;
635 break;
636 case 50 ... 99:
637 index = 5;
638 break;
639 case 20 ... 49:
640 index = 4;
641 break;
642 case 10 ... 19:
643 index = 3;
644 break;
645 case 4 ... 9:
646 index = 2;
647 break;
648 case 2 ... 3:
649 index = 1;
650 case 0 ... 1:
651 break;
652 }
653
654 assert(index < FIO_IO_U_LAT_U_NR);
655 td->ts.io_u_lat_u[index]++;
656}
657
658static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
659{
660 int index = 0;
661
662 switch (msec) {
663 default:
664 index = 11;
665 break;
666 case 1000 ... 1999:
667 index = 10;
668 break;
669 case 750 ... 999:
670 index = 9;
671 break;
672 case 500 ... 749:
673 index = 8;
674 break;
675 case 250 ... 499:
676 index = 7;
677 break;
678 case 100 ... 249:
679 index = 6;
680 break;
681 case 50 ... 99:
682 index = 5;
683 break;
684 case 20 ... 49:
685 index = 4;
686 break;
687 case 10 ... 19:
688 index = 3;
689 break;
690 case 4 ... 9:
691 index = 2;
692 break;
693 case 2 ... 3:
694 index = 1;
695 case 0 ... 1:
696 break;
697 }
698
699 assert(index < FIO_IO_U_LAT_M_NR);
700 td->ts.io_u_lat_m[index]++;
701}
702
703static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
704{
705 if (usec < 1000)
706 io_u_mark_lat_usec(td, usec);
707 else
708 io_u_mark_lat_msec(td, usec / 1000);
709}
710
711/*
712 * Get next file to service by choosing one at random
713 */
714static struct fio_file *get_next_file_rand(struct thread_data *td,
715 enum fio_file_flags goodf,
716 enum fio_file_flags badf)
717{
718 struct fio_file *f;
719 int fno;
720
721 do {
722 long r = os_random_long(&td->next_file_state);
723 int opened = 0;
724
725 fno = (unsigned int) ((double) td->o.nr_files
726 * (r / (OS_RAND_MAX + 1.0)));
727 f = td->files[fno];
728 if (fio_file_done(f))
729 continue;
730
731 if (!fio_file_open(f)) {
732 int err;
733
734 err = td_io_open_file(td, f);
735 if (err)
736 continue;
737 opened = 1;
738 }
739
740 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
741 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
742 return f;
743 }
744 if (opened)
745 td_io_close_file(td, f);
746 } while (1);
747}
748
749/*
750 * Get next file to service by doing round robin between all available ones
751 */
752static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
753 int badf)
754{
755 unsigned int old_next_file = td->next_file;
756 struct fio_file *f;
757
758 do {
759 int opened = 0;
760
761 f = td->files[td->next_file];
762
763 td->next_file++;
764 if (td->next_file >= td->o.nr_files)
765 td->next_file = 0;
766
767 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
768 if (fio_file_done(f)) {
769 f = NULL;
770 continue;
771 }
772
773 if (!fio_file_open(f)) {
774 int err;
775
776 err = td_io_open_file(td, f);
777 if (err) {
778 dprint(FD_FILE, "error %d on open of %s\n",
779 err, f->file_name);
780 f = NULL;
781 continue;
782 }
783 opened = 1;
784 }
785
786 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
787 f->flags);
788 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
789 break;
790
791 if (opened)
792 td_io_close_file(td, f);
793
794 f = NULL;
795 } while (td->next_file != old_next_file);
796
797 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
798 return f;
799}
800
801static struct fio_file *__get_next_file(struct thread_data *td)
802{
803 struct fio_file *f;
804
805 assert(td->o.nr_files <= td->files_index);
806
807 if (td->nr_done_files >= td->o.nr_files) {
808 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
809 " nr_files=%d\n", td->nr_open_files,
810 td->nr_done_files,
811 td->o.nr_files);
812 return NULL;
813 }
814
815 f = td->file_service_file;
816 if (f && fio_file_open(f) && !fio_file_closing(f)) {
817 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
818 goto out;
819 if (td->file_service_left--)
820 goto out;
821 }
822
823 if (td->o.file_service_type == FIO_FSERVICE_RR ||
824 td->o.file_service_type == FIO_FSERVICE_SEQ)
825 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
826 else
827 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
828
829 td->file_service_file = f;
830 td->file_service_left = td->file_service_nr - 1;
831out:
832 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
833 return f;
834}
835
836static struct fio_file *get_next_file(struct thread_data *td)
837{
838 struct prof_io_ops *ops = &td->prof_io_ops;
839
840 if (ops->get_next_file)
841 return ops->get_next_file(td);
842
843 return __get_next_file(td);
844}
845
846static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
847{
848 struct fio_file *f;
849
850 do {
851 f = get_next_file(td);
852 if (!f)
853 return 1;
854
855 io_u->file = f;
856 get_file(f);
857
858 if (!fill_io_u(td, io_u))
859 break;
860
861 put_file_log(td, f);
862 td_io_close_file(td, f);
863 io_u->file = NULL;
864 fio_file_set_done(f);
865 td->nr_done_files++;
866 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
867 td->nr_done_files, td->o.nr_files);
868 } while (1);
869
870 return 0;
871}
872
873
874struct io_u *__get_io_u(struct thread_data *td)
875{
876 struct io_u *io_u = NULL;
877
878 td_io_u_lock(td);
879
880again:
881 if (!flist_empty(&td->io_u_requeues))
882 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
883 else if (!queue_full(td)) {
884 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
885
886 io_u->buflen = 0;
887 io_u->resid = 0;
888 io_u->file = NULL;
889 io_u->end_io = NULL;
890 }
891
892 if (io_u) {
893 assert(io_u->flags & IO_U_F_FREE);
894 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
895
896 io_u->error = 0;
897 flist_del(&io_u->list);
898 flist_add(&io_u->list, &td->io_u_busylist);
899 td->cur_depth++;
900 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
901 } else if (td->o.verify_async) {
902 /*
903 * We ran out, wait for async verify threads to finish and
904 * return one
905 */
906 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
907 goto again;
908 }
909
910 td_io_u_unlock(td);
911 return io_u;
912}
913
914/*
915 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
916 * etc. The returned io_u is fully ready to be prepped and submitted.
917 */
918struct io_u *get_io_u(struct thread_data *td)
919{
920 struct fio_file *f;
921 struct io_u *io_u;
922
923 io_u = __get_io_u(td);
924 if (!io_u) {
925 dprint(FD_IO, "__get_io_u failed\n");
926 return NULL;
927 }
928
929 if (td->o.verify_backlog && td->io_hist_len) {
930 int get_verify = 0;
931
932 if (td->verify_batch) {
933 td->verify_batch--;
934 get_verify = 1;
935 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
936 td->last_ddir != DDIR_READ) {
937 td->verify_batch = td->o.verify_batch;
938 if (!td->verify_batch)
939 td->verify_batch = td->o.verify_backlog;
940 get_verify = 1;
941 }
942
943 if (get_verify && !get_next_verify(td, io_u))
944 goto out;
945 }
946
947 /*
948 * from a requeue, io_u already setup
949 */
950 if (io_u->file)
951 goto out;
952
953 /*
954 * If using an iolog, grab next piece if any available.
955 */
956 if (td->o.read_iolog_file) {
957 if (read_iolog_get(td, io_u))
958 goto err_put;
959 } else if (set_io_u_file(td, io_u)) {
960 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
961 goto err_put;
962 }
963
964 f = io_u->file;
965 assert(fio_file_open(f));
966
967 if (!ddir_sync(io_u->ddir)) {
968 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
969 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
970 goto err_put;
971 }
972
973 f->last_pos = io_u->offset + io_u->buflen;
974
975 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_WRITE)
976 populate_verify_io_u(td, io_u);
977 else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
978 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
979 }
980
981 /*
982 * Set io data pointers.
983 */
984 io_u->xfer_buf = io_u->buf;
985 io_u->xfer_buflen = io_u->buflen;
986
987out:
988 if (!td_io_prep(td, io_u)) {
989 if (!td->o.disable_slat)
990 fio_gettime(&io_u->start_time, NULL);
991 return io_u;
992 }
993err_put:
994 dprint(FD_IO, "get_io_u failed\n");
995 put_io_u(td, io_u);
996 return NULL;
997}
998
999void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1000{
1001 const char *msg[] = { "read", "write", "sync" };
1002
1003 log_err("fio: io_u error");
1004
1005 if (io_u->file)
1006 log_err(" on file %s", io_u->file->file_name);
1007
1008 log_err(": %s\n", strerror(io_u->error));
1009
1010 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1011 io_u->offset, io_u->xfer_buflen);
1012
1013 if (!td->error)
1014 td_verror(td, io_u->error, "io_u error");
1015}
1016
1017static void io_completed(struct thread_data *td, struct io_u *io_u,
1018 struct io_completion_data *icd)
1019{
1020 /*
1021 * Older gcc's are too dumb to realize that usec is always used
1022 * initialized, silence that warning.
1023 */
1024 unsigned long uninitialized_var(usec);
1025 struct fio_file *f;
1026
1027 dprint_io_u(io_u, "io complete");
1028
1029 td_io_u_lock(td);
1030 assert(io_u->flags & IO_U_F_FLIGHT);
1031 io_u->flags &= ~IO_U_F_FLIGHT;
1032 td_io_u_unlock(td);
1033
1034 if (ddir_sync(io_u->ddir)) {
1035 td->last_was_sync = 1;
1036 f = io_u->file;
1037 if (f) {
1038 f->first_write = -1ULL;
1039 f->last_write = -1ULL;
1040 }
1041 return;
1042 }
1043
1044 td->last_was_sync = 0;
1045 td->last_ddir = io_u->ddir;
1046
1047 if (!io_u->error) {
1048 unsigned int bytes = io_u->buflen - io_u->resid;
1049 const enum fio_ddir idx = io_u->ddir;
1050 const enum fio_ddir odx = io_u->ddir ^ 1;
1051 int ret;
1052
1053 td->io_blocks[idx]++;
1054 td->io_bytes[idx] += bytes;
1055 td->this_io_bytes[idx] += bytes;
1056
1057 if (idx == DDIR_WRITE) {
1058 f = io_u->file;
1059 if (f) {
1060 if (f->first_write == -1ULL ||
1061 io_u->offset < f->first_write)
1062 f->first_write = io_u->offset;
1063 if (f->last_write == -1ULL ||
1064 ((io_u->offset + bytes) > f->last_write))
1065 f->last_write = io_u->offset + bytes;
1066 }
1067 }
1068
1069 if (ramp_time_over(td)) {
1070 unsigned long uninitialized_var(lusec);
1071
1072 if (!td->o.disable_clat || !td->o.disable_bw)
1073 lusec = utime_since(&io_u->issue_time,
1074 &icd->time);
1075
1076 if (!td->o.disable_clat) {
1077 add_clat_sample(td, idx, lusec, bytes);
1078 io_u_mark_latency(td, lusec);
1079 }
1080 if (!td->o.disable_bw)
1081 add_bw_sample(td, idx, bytes, &icd->time);
1082 if (__should_check_rate(td, idx)) {
1083 td->rate_pending_usleep[idx] =
1084 ((td->this_io_bytes[idx] *
1085 td->rate_nsec_cycle[idx]) / 1000 -
1086 utime_since_now(&td->start));
1087 }
1088 if (__should_check_rate(td, idx ^ 1))
1089 td->rate_pending_usleep[odx] =
1090 ((td->this_io_bytes[odx] *
1091 td->rate_nsec_cycle[odx]) / 1000 -
1092 utime_since_now(&td->start));
1093 }
1094
1095 if (td_write(td) && idx == DDIR_WRITE &&
1096 td->o.do_verify &&
1097 td->o.verify != VERIFY_NONE)
1098 log_io_piece(td, io_u);
1099
1100 icd->bytes_done[idx] += bytes;
1101
1102 if (io_u->end_io) {
1103 ret = io_u->end_io(td, io_u);
1104 if (ret && !icd->error)
1105 icd->error = ret;
1106 }
1107 } else {
1108 icd->error = io_u->error;
1109 io_u_log_error(td, io_u);
1110 }
1111 if (td->o.continue_on_error && icd->error &&
1112 td_non_fatal_error(icd->error)) {
1113 /*
1114 * If there is a non_fatal error, then add to the error count
1115 * and clear all the errors.
1116 */
1117 update_error_count(td, icd->error);
1118 td_clear_error(td);
1119 icd->error = 0;
1120 io_u->error = 0;
1121 }
1122}
1123
1124static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1125 int nr)
1126{
1127 if (!td->o.disable_clat || !td->o.disable_bw)
1128 fio_gettime(&icd->time, NULL);
1129
1130 icd->nr = nr;
1131
1132 icd->error = 0;
1133 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1134}
1135
1136static void ios_completed(struct thread_data *td,
1137 struct io_completion_data *icd)
1138{
1139 struct io_u *io_u;
1140 int i;
1141
1142 for (i = 0; i < icd->nr; i++) {
1143 io_u = td->io_ops->event(td, i);
1144
1145 io_completed(td, io_u, icd);
1146
1147 if (!(io_u->flags & IO_U_F_FREE_DEF))
1148 put_io_u(td, io_u);
1149 }
1150}
1151
1152/*
1153 * Complete a single io_u for the sync engines.
1154 */
1155int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1156 unsigned long *bytes)
1157{
1158 struct io_completion_data icd;
1159
1160 init_icd(td, &icd, 1);
1161 io_completed(td, io_u, &icd);
1162
1163 if (!(io_u->flags & IO_U_F_FREE_DEF))
1164 put_io_u(td, io_u);
1165
1166 if (icd.error) {
1167 td_verror(td, icd.error, "io_u_sync_complete");
1168 return -1;
1169 }
1170
1171 if (bytes) {
1172 bytes[0] += icd.bytes_done[0];
1173 bytes[1] += icd.bytes_done[1];
1174 }
1175
1176 return 0;
1177}
1178
1179/*
1180 * Called to complete min_events number of io for the async engines.
1181 */
1182int io_u_queued_complete(struct thread_data *td, int min_evts,
1183 unsigned long *bytes)
1184{
1185 struct io_completion_data icd;
1186 struct timespec *tvp = NULL;
1187 int ret;
1188 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1189
1190 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1191
1192 if (!min_evts)
1193 tvp = &ts;
1194
1195 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1196 if (ret < 0) {
1197 td_verror(td, -ret, "td_io_getevents");
1198 return ret;
1199 } else if (!ret)
1200 return ret;
1201
1202 init_icd(td, &icd, ret);
1203 ios_completed(td, &icd);
1204 if (icd.error) {
1205 td_verror(td, icd.error, "io_u_queued_complete");
1206 return -1;
1207 }
1208
1209 if (bytes) {
1210 bytes[0] += icd.bytes_done[0];
1211 bytes[1] += icd.bytes_done[1];
1212 }
1213
1214 return 0;
1215}
1216
1217/*
1218 * Call when io_u is really queued, to update the submission latency.
1219 */
1220void io_u_queued(struct thread_data *td, struct io_u *io_u)
1221{
1222 if (!td->o.disable_slat) {
1223 unsigned long slat_time;
1224
1225 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1226 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1227 }
1228}
1229
1230/*
1231 * "randomly" fill the buffer contents
1232 */
1233void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1234 unsigned int max_bs)
1235{
1236 long *ptr = io_u->buf;
1237
1238 if (!td->o.zero_buffers) {
1239 unsigned long r = __rand(&__fio_rand_state);
1240
1241 if (sizeof(int) != sizeof(*ptr))
1242 r *= (unsigned long) __rand(&__fio_rand_state);
1243
1244 while ((void *) ptr - io_u->buf < max_bs) {
1245 *ptr = r;
1246 ptr++;
1247 r *= GOLDEN_RATIO_PRIME;
1248 r >>= 3;
1249 }
1250 } else
1251 memset(ptr, 0, max_bs);
1252}