Add option to disable fadvise() hints
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 /*
56 * If we have a mixed random workload, we may
57 * encounter blocks we already did IO to.
58 */
59 if (!td->o.ddir_nr && !random_map_free(td, f, block))
60 break;
61
62 idx = RAND_MAP_IDX(td, f, block);
63 bit = RAND_MAP_BIT(td, f, block);
64
65 fio_assert(td, idx < f->num_maps);
66
67 f->file_map[idx] |= (1UL << bit);
68 block++;
69 blocks++;
70 }
71
72 if ((blocks * min_bs) < io_u->buflen)
73 io_u->buflen = blocks * min_bs;
74}
75
76/*
77 * Return the next free block in the map.
78 */
79static int get_next_free_block(struct thread_data *td, struct fio_file *f,
80 unsigned long long *b)
81{
82 int i;
83
84 i = f->last_free_lookup;
85 *b = (i * BLOCKS_PER_MAP);
86 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
87 if (f->file_map[i] != -1UL) {
88 *b += ffz(f->file_map[i]);
89 f->last_free_lookup = i;
90 return 0;
91 }
92
93 *b += BLOCKS_PER_MAP;
94 i++;
95 }
96
97 return 1;
98}
99
100/*
101 * For random io, generate a random new block and see if it's used. Repeat
102 * until we find a free one. For sequential io, just return the end of
103 * the last io issued.
104 */
105static int get_next_offset(struct thread_data *td, struct io_u *io_u)
106{
107 struct fio_file *f = io_u->file;
108 const int ddir = io_u->ddir;
109 unsigned long long b, rb;
110 long r;
111
112 if (td_random(td)) {
113 unsigned long long max_blocks = f->file_size / td->o.min_bs[ddir];
114 int loops = 5;
115
116 if (td->o.ddir_nr) {
117 if (!--td->ddir_nr)
118 td->ddir_nr = td->o.ddir_nr;
119 else {
120 b = f->last_pos / td->o.min_bs[ddir];
121 goto out;
122 }
123 }
124
125 do {
126 r = os_random_long(&td->random_state);
127 if (!max_blocks)
128 b = 0;
129 else
130 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
131 if (td->o.norandommap)
132 break;
133 rb = b + (f->file_offset / td->o.min_bs[ddir]);
134 loops--;
135 } while (!random_map_free(td, f, rb) && loops);
136
137 /*
138 * if we failed to retrieve a truly random offset within
139 * the loops assigned, see if there are free ones left at all
140 */
141 if (!loops && get_next_free_block(td, f, &b))
142 return 1;
143 } else
144 b = f->last_pos / td->o.min_bs[ddir];
145
146out:
147 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
148 if (io_u->offset >= f->real_file_size)
149 return 1;
150
151 return 0;
152}
153
154static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
155{
156 struct fio_file *f = io_u->file;
157 const int ddir = io_u->ddir;
158 unsigned int buflen;
159 long r;
160
161 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
162 buflen = td->o.min_bs[ddir];
163 else {
164 r = os_random_long(&td->bsrange_state);
165 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
166 if (!td->o.bs_unaligned)
167 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
168 }
169
170 while (buflen + io_u->offset > f->real_file_size) {
171 if (buflen == td->o.min_bs[ddir]) {
172 if (!td->o.odirect) {
173 assert(io_u->offset <= f->real_file_size);
174 buflen = f->real_file_size - io_u->offset;
175 return buflen;
176 }
177 return 0;
178 }
179
180 buflen = td->o.min_bs[ddir];
181 }
182
183 return buflen;
184}
185
186static void set_rwmix_bytes(struct thread_data *td)
187{
188 unsigned long long rbytes;
189 unsigned int diff;
190
191 /*
192 * we do time or byte based switch. this is needed because
193 * buffered writes may issue a lot quicker than they complete,
194 * whereas reads do not.
195 */
196 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
197 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
198
199 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
200}
201
202static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
203{
204 unsigned int v;
205 long r;
206
207 r = os_random_long(&td->rwmix_state);
208 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
209 if (v < td->o.rwmix[DDIR_READ])
210 return DDIR_READ;
211
212 return DDIR_WRITE;
213}
214
215/*
216 * Return the data direction for the next io_u. If the job is a
217 * mixed read/write workload, check the rwmix cycle and switch if
218 * necessary.
219 */
220static enum fio_ddir get_rw_ddir(struct thread_data *td)
221{
222 if (td_rw(td)) {
223 struct timeval now;
224 unsigned long elapsed;
225 unsigned int cycle;
226
227 fio_gettime(&now, NULL);
228 elapsed = mtime_since_now(&td->rwmix_switch);
229
230 /*
231 * if this is the first cycle, make it shorter
232 */
233 cycle = td->o.rwmixcycle;
234 if (!td->rwmix_bytes)
235 cycle /= 10;
236
237 /*
238 * Check if it's time to seed a new data direction.
239 */
240 if (elapsed >= cycle ||
241 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
242 unsigned long long max_bytes;
243 enum fio_ddir ddir;
244
245 /*
246 * Put a top limit on how many bytes we do for
247 * one data direction, to avoid overflowing the
248 * ranges too much
249 */
250 ddir = get_rand_ddir(td);
251 max_bytes = td->this_io_bytes[ddir];
252 if (max_bytes >= (td->io_size * td->o.rwmix[ddir] / 100)) {
253 if (!td->rw_end_set[ddir]) {
254 td->rw_end_set[ddir] = 1;
255 memcpy(&td->rw_end[ddir], &now, sizeof(now));
256 }
257 ddir ^= 1;
258 }
259
260 if (ddir != td->rwmix_ddir)
261 set_rwmix_bytes(td);
262
263 td->rwmix_ddir = ddir;
264 memcpy(&td->rwmix_switch, &now, sizeof(now));
265 }
266 return td->rwmix_ddir;
267 } else if (td_read(td))
268 return DDIR_READ;
269 else
270 return DDIR_WRITE;
271}
272
273void put_io_u(struct thread_data *td, struct io_u *io_u)
274{
275 assert((io_u->flags & IO_U_F_FREE) == 0);
276 io_u->flags |= IO_U_F_FREE;
277
278 io_u->file = NULL;
279 list_del(&io_u->list);
280 list_add(&io_u->list, &td->io_u_freelist);
281 td->cur_depth--;
282}
283
284void requeue_io_u(struct thread_data *td, struct io_u **io_u)
285{
286 struct io_u *__io_u = *io_u;
287
288 __io_u->flags |= IO_U_F_FREE;
289 __io_u->flags &= ~IO_U_F_FLIGHT;
290
291 list_del(&__io_u->list);
292 list_add_tail(&__io_u->list, &td->io_u_requeues);
293 td->cur_depth--;
294 *io_u = NULL;
295}
296
297static int fill_io_u(struct thread_data *td, struct io_u *io_u)
298{
299 /*
300 * If using an iolog, grab next piece if any available.
301 */
302 if (td->o.read_iolog)
303 return read_iolog_get(td, io_u);
304
305 /*
306 * see if it's time to sync
307 */
308 if (td->o.fsync_blocks &&
309 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
310 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
311 io_u->ddir = DDIR_SYNC;
312 return 0;
313 }
314
315 io_u->ddir = get_rw_ddir(td);
316
317 /*
318 * No log, let the seq/rand engine retrieve the next buflen and
319 * position.
320 */
321 if (get_next_offset(td, io_u))
322 return 1;
323
324 io_u->buflen = get_next_buflen(td, io_u);
325 if (!io_u->buflen)
326 return 1;
327
328 /*
329 * mark entry before potentially trimming io_u
330 */
331 if (!td->o.read_iolog && td_random(td) && !td->o.norandommap)
332 mark_random_map(td, io_u);
333
334 /*
335 * If using a write iolog, store this entry.
336 */
337 if (td->o.write_iolog_file)
338 write_iolog_put(td, io_u);
339
340 return 0;
341}
342
343void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
344{
345 int index = 0;
346
347 if (io_u->ddir == DDIR_SYNC)
348 return;
349
350 switch (td->cur_depth) {
351 default:
352 index++;
353 case 32 ... 63:
354 index++;
355 case 16 ... 31:
356 index++;
357 case 8 ... 15:
358 index++;
359 case 4 ... 7:
360 index++;
361 case 2 ... 3:
362 index++;
363 case 1:
364 break;
365 }
366
367 td->ts.io_u_map[index]++;
368 td->ts.total_io_u[io_u->ddir]++;
369}
370
371static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
372{
373 int index = 0;
374
375 switch (msec) {
376 default:
377 index++;
378 case 1000 ... 1999:
379 index++;
380 case 750 ... 999:
381 index++;
382 case 500 ... 749:
383 index++;
384 case 250 ... 499:
385 index++;
386 case 100 ... 249:
387 index++;
388 case 50 ... 99:
389 index++;
390 case 20 ... 49:
391 index++;
392 case 10 ... 19:
393 index++;
394 case 4 ... 9:
395 index++;
396 case 2 ... 3:
397 index++;
398 case 0 ... 1:
399 break;
400 }
401
402 td->ts.io_u_lat[index]++;
403}
404
405/*
406 * Get next file to service by choosing one at random
407 */
408static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
409 int badf)
410{
411 struct fio_file *f;
412 int fno;
413
414 do {
415 long r = os_random_long(&td->next_file_state);
416
417 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
418 f = &td->files[fno];
419
420 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
421 return f;
422 } while (1);
423}
424
425/*
426 * Get next file to service by doing round robin between all available ones
427 */
428static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
429 int badf)
430{
431 unsigned int old_next_file = td->next_file;
432 struct fio_file *f;
433
434 do {
435 f = &td->files[td->next_file];
436
437 td->next_file++;
438 if (td->next_file >= td->o.nr_files)
439 td->next_file = 0;
440
441 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
442 break;
443
444 f = NULL;
445 } while (td->next_file != old_next_file);
446
447 return f;
448}
449
450static struct fio_file *get_next_file(struct thread_data *td)
451{
452 struct fio_file *f;
453
454 assert(td->o.nr_files <= td->files_index);
455
456 if (!td->nr_open_files)
457 return NULL;
458
459 f = td->file_service_file;
460 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
461 return f;
462
463 if (td->o.file_service_type == FIO_FSERVICE_RR)
464 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
465 else
466 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
467
468 td->file_service_file = f;
469 td->file_service_left = td->file_service_nr - 1;
470 return f;
471}
472
473static struct fio_file *find_next_new_file(struct thread_data *td)
474{
475 struct fio_file *f;
476
477 if (td->o.file_service_type == FIO_FSERVICE_RR)
478 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
479 else
480 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
481
482 return f;
483}
484
485struct io_u *__get_io_u(struct thread_data *td)
486{
487 struct io_u *io_u = NULL;
488
489 if (!list_empty(&td->io_u_requeues))
490 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
491 else if (!queue_full(td)) {
492 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
493
494 io_u->buflen = 0;
495 io_u->resid = 0;
496 io_u->file = NULL;
497 io_u->end_io = NULL;
498 }
499
500 if (io_u) {
501 assert(io_u->flags & IO_U_F_FREE);
502 io_u->flags &= ~IO_U_F_FREE;
503
504 io_u->error = 0;
505 list_del(&io_u->list);
506 list_add(&io_u->list, &td->io_u_busylist);
507 td->cur_depth++;
508 }
509
510 return io_u;
511}
512
513/*
514 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
515 * etc. The returned io_u is fully ready to be prepped and submitted.
516 */
517struct io_u *get_io_u(struct thread_data *td)
518{
519 struct fio_file *f;
520 struct io_u *io_u;
521 int ret;
522
523 io_u = __get_io_u(td);
524 if (!io_u)
525 return NULL;
526
527 /*
528 * from a requeue, io_u already setup
529 */
530 if (io_u->file)
531 goto out;
532
533 do {
534 f = get_next_file(td);
535 if (!f) {
536 put_io_u(td, io_u);
537 return NULL;
538 }
539
540set_file:
541 io_u->file = f;
542
543 if (!fill_io_u(td, io_u))
544 break;
545
546 /*
547 * No more to do for this file, close it
548 */
549 io_u->file = NULL;
550 td_io_close_file(td, f);
551
552 /*
553 * probably not the right place to do this, but see
554 * if we need to open a new file
555 */
556 if (td->nr_open_files < td->o.open_files &&
557 td->o.open_files != td->o.nr_files) {
558 f = find_next_new_file(td);
559
560 if (!f || (ret = td_io_open_file(td, f))) {
561 put_io_u(td, io_u);
562 return NULL;
563 }
564 goto set_file;
565 }
566 } while (1);
567
568 if (td->zone_bytes >= td->o.zone_size) {
569 td->zone_bytes = 0;
570 f->last_pos += td->o.zone_skip;
571 }
572
573 if (io_u->buflen + io_u->offset > f->real_file_size) {
574 if (td->io_ops->flags & FIO_RAWIO) {
575 put_io_u(td, io_u);
576 return NULL;
577 }
578
579 io_u->buflen = f->real_file_size - io_u->offset;
580 }
581
582 if (io_u->ddir != DDIR_SYNC) {
583 if (!io_u->buflen) {
584 put_io_u(td, io_u);
585 return NULL;
586 }
587
588 f->last_pos = io_u->offset + io_u->buflen;
589
590 if (td->o.verify != VERIFY_NONE)
591 populate_verify_io_u(td, io_u);
592 }
593
594 /*
595 * Set io data pointers.
596 */
597out:
598 io_u->xfer_buf = io_u->buf;
599 io_u->xfer_buflen = io_u->buflen;
600
601 if (td_io_prep(td, io_u)) {
602 put_io_u(td, io_u);
603 return NULL;
604 }
605
606 fio_gettime(&io_u->start_time, NULL);
607 return io_u;
608}
609
610void io_u_log_error(struct thread_data *td, struct io_u *io_u)
611{
612 const char *msg[] = { "read", "write", "sync" };
613
614 log_err("fio: io_u error");
615
616 if (io_u->file)
617 log_err(" on file %s", io_u->file->file_name);
618
619 log_err(": %s\n", strerror(io_u->error));
620
621 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
622
623 if (!td->error)
624 td_verror(td, io_u->error, "io_u error");
625}
626
627static void io_completed(struct thread_data *td, struct io_u *io_u,
628 struct io_completion_data *icd)
629{
630 unsigned long msec;
631
632 assert(io_u->flags & IO_U_F_FLIGHT);
633 io_u->flags &= ~IO_U_F_FLIGHT;
634
635 put_file(td, io_u->file);
636
637 if (io_u->ddir == DDIR_SYNC) {
638 td->last_was_sync = 1;
639 return;
640 }
641
642 td->last_was_sync = 0;
643
644 if (!io_u->error) {
645 unsigned int bytes = io_u->buflen - io_u->resid;
646 const enum fio_ddir idx = io_u->ddir;
647 int ret;
648
649 td->io_blocks[idx]++;
650 td->io_bytes[idx] += bytes;
651 td->zone_bytes += bytes;
652 td->this_io_bytes[idx] += bytes;
653
654 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
655
656 msec = mtime_since(&io_u->issue_time, &icd->time);
657
658 add_clat_sample(td, idx, msec);
659 add_bw_sample(td, idx, &icd->time);
660 io_u_mark_latency(td, msec);
661
662 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
663 log_io_piece(td, io_u);
664
665 icd->bytes_done[idx] += bytes;
666
667 if (io_u->end_io) {
668 ret = io_u->end_io(io_u);
669 if (ret && !icd->error)
670 icd->error = ret;
671 }
672 } else {
673 icd->error = io_u->error;
674 io_u_log_error(td, io_u);
675 }
676}
677
678static void init_icd(struct io_completion_data *icd, int nr)
679{
680 fio_gettime(&icd->time, NULL);
681
682 icd->nr = nr;
683
684 icd->error = 0;
685 icd->bytes_done[0] = icd->bytes_done[1] = 0;
686}
687
688static void ios_completed(struct thread_data *td,
689 struct io_completion_data *icd)
690{
691 struct io_u *io_u;
692 int i;
693
694 for (i = 0; i < icd->nr; i++) {
695 io_u = td->io_ops->event(td, i);
696
697 io_completed(td, io_u, icd);
698 put_io_u(td, io_u);
699 }
700}
701
702/*
703 * Complete a single io_u for the sync engines.
704 */
705long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
706{
707 struct io_completion_data icd;
708
709 init_icd(&icd, 1);
710 io_completed(td, io_u, &icd);
711 put_io_u(td, io_u);
712
713 if (!icd.error)
714 return icd.bytes_done[0] + icd.bytes_done[1];
715
716 td_verror(td, icd.error, "io_u_sync_complete");
717 return -1;
718}
719
720/*
721 * Called to complete min_events number of io for the async engines.
722 */
723long io_u_queued_complete(struct thread_data *td, int min_events)
724{
725 struct io_completion_data icd;
726 struct timespec *tvp = NULL;
727 int ret;
728 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
729
730 if (!min_events)
731 tvp = &ts;
732
733 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
734 if (ret < 0) {
735 td_verror(td, -ret, "td_io_getevents");
736 return ret;
737 } else if (!ret)
738 return ret;
739
740 init_icd(&icd, ret);
741 ios_completed(td, &icd);
742 if (!icd.error)
743 return icd.bytes_done[0] + icd.bytes_done[1];
744
745 td_verror(td, icd.error, "io_u_queued_complete");
746 return -1;
747}
748
749/*
750 * Call when io_u is really queued, to update the submission latency.
751 */
752void io_u_queued(struct thread_data *td, struct io_u *io_u)
753{
754 unsigned long slat_time;
755
756 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
757 add_slat_sample(td, io_u->ddir, slat_time);
758}
759
760#ifdef FIO_USE_TIMEOUT
761void io_u_set_timeout(struct thread_data *td)
762{
763 assert(td->cur_depth);
764
765 td->timer.it_interval.tv_sec = 0;
766 td->timer.it_interval.tv_usec = 0;
767 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
768 td->timer.it_value.tv_usec = 0;
769 setitimer(ITIMER_REAL, &td->timer, NULL);
770 fio_gettime(&td->timeout_end, NULL);
771}
772
773static void io_u_dump(struct io_u *io_u)
774{
775 unsigned long t_start = mtime_since_now(&io_u->start_time);
776 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
777
778 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
779 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
780 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
781}
782#else
783void io_u_set_timeout(struct thread_data fio_unused *td)
784{
785}
786#endif
787
788#ifdef FIO_USE_TIMEOUT
789static void io_u_timeout_handler(int fio_unused sig)
790{
791 struct thread_data *td, *__td;
792 pid_t pid = getpid();
793 struct list_head *entry;
794 struct io_u *io_u;
795 int i;
796
797 log_err("fio: io_u timeout\n");
798
799 /*
800 * TLS would be nice...
801 */
802 td = NULL;
803 for_each_td(__td, i) {
804 if (__td->pid == pid) {
805 td = __td;
806 break;
807 }
808 }
809
810 if (!td) {
811 log_err("fio: io_u timeout, can't find job\n");
812 exit(1);
813 }
814
815 if (!td->cur_depth) {
816 log_err("fio: timeout without pending work?\n");
817 return;
818 }
819
820 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
821
822 list_for_each(entry, &td->io_u_busylist) {
823 io_u = list_entry(entry, struct io_u, list);
824
825 io_u_dump(io_u);
826 }
827
828 td_verror(td, ETIMEDOUT, "io_u timeout");
829 exit(1);
830}
831#endif
832
833void io_u_init_timeout(void)
834{
835#ifdef FIO_USE_TIMEOUT
836 signal(SIGALRM, io_u_timeout_handler);
837#endif
838}