IO buffer allocation cleanup
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38
39unsigned long page_mask;
40unsigned long page_size;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int nr_process = 0;
47int nr_thread = 0;
48int shm_id = 0;
49int temp_stall_ts;
50
51static struct fio_sem *startup_sem;
52static volatile int fio_abort;
53static int exit_value;
54
55struct io_log *agg_io_log[2];
56
57#define TERMINATE_ALL (-1)
58#define JOB_START_TIMEOUT (5 * 1000)
59
60static inline void td_set_runstate(struct thread_data *td, int runstate)
61{
62 td->runstate = runstate;
63}
64
65static void terminate_threads(int group_id)
66{
67 struct thread_data *td;
68 int i;
69
70 for_each_td(td, i) {
71 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
72 if (td->runstate <= TD_RUNNING)
73 kill(td->pid, SIGQUIT);
74 td->terminate = 1;
75 td->o.start_delay = 0;
76 }
77 }
78}
79
80static void sig_handler(int sig)
81{
82 switch (sig) {
83 case SIGALRM:
84 update_io_ticks();
85 disk_util_timer_arm();
86 print_thread_status();
87 break;
88 default:
89 printf("\nfio: terminating on signal %d\n", sig);
90 fflush(stdout);
91 terminate_threads(TERMINATE_ALL);
92 break;
93 }
94}
95
96/*
97 * Check if we are above the minimum rate given.
98 */
99static int check_min_rate(struct thread_data *td, struct timeval *now)
100{
101 unsigned long long bytes = 0;
102 unsigned long iops = 0;
103 unsigned long spent;
104 unsigned long rate;
105
106 /*
107 * No minimum rate set, always ok
108 */
109 if (!td->o.ratemin && !td->o.rate_iops_min)
110 return 0;
111
112 /*
113 * allow a 2 second settle period in the beginning
114 */
115 if (mtime_since(&td->start, now) < 2000)
116 return 0;
117
118 if (td_read(td)) {
119 iops += td->io_blocks[DDIR_READ];
120 bytes += td->this_io_bytes[DDIR_READ];
121 }
122 if (td_write(td)) {
123 iops += td->io_blocks[DDIR_WRITE];
124 bytes += td->this_io_bytes[DDIR_WRITE];
125 }
126
127 /*
128 * if rate blocks is set, sample is running
129 */
130 if (td->rate_bytes || td->rate_blocks) {
131 spent = mtime_since(&td->lastrate, now);
132 if (spent < td->o.ratecycle)
133 return 0;
134
135 if (td->o.rate) {
136 /*
137 * check bandwidth specified rate
138 */
139 if (bytes < td->rate_bytes) {
140 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
141 return 1;
142 } else {
143 rate = (bytes - td->rate_bytes) / spent;
144 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
145 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
146 return 1;
147 }
148 }
149 } else {
150 /*
151 * checks iops specified rate
152 */
153 if (iops < td->o.rate_iops) {
154 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
155 return 1;
156 } else {
157 rate = (iops - td->rate_blocks) / spent;
158 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
159 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
160 }
161 }
162 }
163 }
164
165 td->rate_bytes = bytes;
166 td->rate_blocks = iops;
167 memcpy(&td->lastrate, now, sizeof(*now));
168 return 0;
169}
170
171static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
172{
173 if (!td->o.timeout)
174 return 0;
175 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
176 return 1;
177
178 return 0;
179}
180
181/*
182 * When job exits, we can cancel the in-flight IO if we are using async
183 * io. Attempt to do so.
184 */
185static void cleanup_pending_aio(struct thread_data *td)
186{
187 struct list_head *entry, *n;
188 struct io_u *io_u;
189 int r;
190
191 /*
192 * get immediately available events, if any
193 */
194 r = io_u_queued_complete(td, 0);
195 if (r < 0)
196 return;
197
198 /*
199 * now cancel remaining active events
200 */
201 if (td->io_ops->cancel) {
202 list_for_each_safe(entry, n, &td->io_u_busylist) {
203 io_u = list_entry(entry, struct io_u, list);
204
205 /*
206 * if the io_u isn't in flight, then that generally
207 * means someone leaked an io_u. complain but fix
208 * it up, so we don't stall here.
209 */
210 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
211 log_err("fio: non-busy IO on busy list\n");
212 put_io_u(td, io_u);
213 } else {
214 r = td->io_ops->cancel(td, io_u);
215 if (!r)
216 put_io_u(td, io_u);
217 }
218 }
219 }
220
221 if (td->cur_depth)
222 r = io_u_queued_complete(td, td->cur_depth);
223}
224
225/*
226 * Helper to handle the final sync of a file. Works just like the normal
227 * io path, just does everything sync.
228 */
229static int fio_io_sync(struct thread_data *td, struct fio_file *f)
230{
231 struct io_u *io_u = __get_io_u(td);
232 int ret;
233
234 if (!io_u)
235 return 1;
236
237 io_u->ddir = DDIR_SYNC;
238 io_u->file = f;
239
240 if (td_io_prep(td, io_u)) {
241 put_io_u(td, io_u);
242 return 1;
243 }
244
245requeue:
246 ret = td_io_queue(td, io_u);
247 if (ret < 0) {
248 td_verror(td, io_u->error, "td_io_queue");
249 put_io_u(td, io_u);
250 return 1;
251 } else if (ret == FIO_Q_QUEUED) {
252 if (io_u_queued_complete(td, 1) < 0)
253 return 1;
254 } else if (ret == FIO_Q_COMPLETED) {
255 if (io_u->error) {
256 td_verror(td, io_u->error, "td_io_queue");
257 return 1;
258 }
259
260 if (io_u_sync_complete(td, io_u) < 0)
261 return 1;
262 } else if (ret == FIO_Q_BUSY) {
263 if (td_io_commit(td))
264 return 1;
265 goto requeue;
266 }
267
268 return 0;
269}
270
271/*
272 * The main verify engine. Runs over the writes we previously submitted,
273 * reads the blocks back in, and checks the crc/md5 of the data.
274 */
275static void do_verify(struct thread_data *td)
276{
277 struct fio_file *f;
278 struct io_u *io_u;
279 int ret, min_events;
280 unsigned int i;
281
282 /*
283 * sync io first and invalidate cache, to make sure we really
284 * read from disk.
285 */
286 for_each_file(td, f, i) {
287 if (!(f->flags & FIO_FILE_OPEN))
288 continue;
289 if (fio_io_sync(td, f))
290 break;
291 if (file_invalidate_cache(td, f))
292 break;
293 }
294
295 if (td->error)
296 return;
297
298 td_set_runstate(td, TD_VERIFYING);
299
300 io_u = NULL;
301 while (!td->terminate) {
302 int ret2;
303
304 io_u = __get_io_u(td);
305 if (!io_u)
306 break;
307
308 if (runtime_exceeded(td, &io_u->start_time)) {
309 put_io_u(td, io_u);
310 break;
311 }
312
313 if (get_next_verify(td, io_u)) {
314 put_io_u(td, io_u);
315 break;
316 }
317
318 if (td_io_prep(td, io_u)) {
319 put_io_u(td, io_u);
320 break;
321 }
322
323 io_u->end_io = verify_io_u;
324
325 ret = td_io_queue(td, io_u);
326 switch (ret) {
327 case FIO_Q_COMPLETED:
328 if (io_u->error)
329 ret = -io_u->error;
330 else if (io_u->resid) {
331 int bytes = io_u->xfer_buflen - io_u->resid;
332 struct fio_file *f = io_u->file;
333
334 /*
335 * zero read, fail
336 */
337 if (!bytes) {
338 td_verror(td, ENODATA, "full resid");
339 put_io_u(td, io_u);
340 break;
341 }
342
343 io_u->xfer_buflen = io_u->resid;
344 io_u->xfer_buf += bytes;
345 io_u->offset += bytes;
346 f->last_completed_pos = io_u->offset;
347
348 td->ts.short_io_u[io_u->ddir]++;
349
350 if (io_u->offset == f->real_file_size)
351 goto sync_done;
352
353 requeue_io_u(td, &io_u);
354 } else {
355sync_done:
356 ret = io_u_sync_complete(td, io_u);
357 if (ret < 0)
358 break;
359 }
360 continue;
361 case FIO_Q_QUEUED:
362 break;
363 case FIO_Q_BUSY:
364 requeue_io_u(td, &io_u);
365 ret2 = td_io_commit(td);
366 if (ret2 < 0)
367 ret = ret2;
368 break;
369 default:
370 assert(ret < 0);
371 td_verror(td, -ret, "td_io_queue");
372 break;
373 }
374
375 if (ret < 0 || td->error)
376 break;
377
378 /*
379 * if we can queue more, do so. but check if there are
380 * completed io_u's first.
381 */
382 min_events = 0;
383 if (queue_full(td) || ret == FIO_Q_BUSY) {
384 min_events = 1;
385
386 if (td->cur_depth > td->o.iodepth_low)
387 min_events = td->cur_depth - td->o.iodepth_low;
388 }
389
390 /*
391 * Reap required number of io units, if any, and do the
392 * verification on them through the callback handler
393 */
394 if (io_u_queued_complete(td, min_events) < 0)
395 break;
396 }
397
398 if (!td->error) {
399 min_events = td->cur_depth;
400
401 if (min_events)
402 ret = io_u_queued_complete(td, min_events);
403 } else
404 cleanup_pending_aio(td);
405
406 td_set_runstate(td, TD_RUNNING);
407}
408
409/*
410 * Main IO worker function. It retrieves io_u's to process and queues
411 * and reaps them, checking for rate and errors along the way.
412 */
413static void do_io(struct thread_data *td)
414{
415 struct timeval s;
416 unsigned long usec;
417 unsigned int i;
418 int ret = 0;
419
420 td_set_runstate(td, TD_RUNNING);
421
422 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
423 struct timeval comp_time;
424 long bytes_done = 0;
425 int min_evts = 0;
426 struct io_u *io_u;
427 int ret2;
428
429 if (td->terminate)
430 break;
431
432 io_u = get_io_u(td);
433 if (!io_u)
434 break;
435
436 memcpy(&s, &io_u->start_time, sizeof(s));
437
438 if (runtime_exceeded(td, &s)) {
439 put_io_u(td, io_u);
440 break;
441 }
442
443 ret = td_io_queue(td, io_u);
444 switch (ret) {
445 case FIO_Q_COMPLETED:
446 if (io_u->error)
447 ret = -io_u->error;
448 else if (io_u->resid) {
449 int bytes = io_u->xfer_buflen - io_u->resid;
450 struct fio_file *f = io_u->file;
451
452 /*
453 * zero read, fail
454 */
455 if (!bytes) {
456 td_verror(td, ENODATA, "full resid");
457 put_io_u(td, io_u);
458 break;
459 }
460
461 io_u->xfer_buflen = io_u->resid;
462 io_u->xfer_buf += bytes;
463 io_u->offset += bytes;
464 f->last_completed_pos = io_u->offset;
465
466 td->ts.short_io_u[io_u->ddir]++;
467
468 if (io_u->offset == f->real_file_size)
469 goto sync_done;
470
471 requeue_io_u(td, &io_u);
472 } else {
473sync_done:
474 fio_gettime(&comp_time, NULL);
475 bytes_done = io_u_sync_complete(td, io_u);
476 if (bytes_done < 0)
477 ret = bytes_done;
478 }
479 break;
480 case FIO_Q_QUEUED:
481 /*
482 * if the engine doesn't have a commit hook,
483 * the io_u is really queued. if it does have such
484 * a hook, it has to call io_u_queued() itself.
485 */
486 if (td->io_ops->commit == NULL)
487 io_u_queued(td, io_u);
488 break;
489 case FIO_Q_BUSY:
490 requeue_io_u(td, &io_u);
491 ret2 = td_io_commit(td);
492 if (ret2 < 0)
493 ret = ret2;
494 break;
495 default:
496 assert(ret < 0);
497 put_io_u(td, io_u);
498 break;
499 }
500
501 if (ret < 0 || td->error)
502 break;
503
504 /*
505 * See if we need to complete some commands
506 */
507 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
508 min_evts = 0;
509 if (queue_full(td) || ret == FIO_Q_BUSY) {
510 min_evts = 1;
511
512 if (td->cur_depth > td->o.iodepth_low)
513 min_evts = td->cur_depth - td->o.iodepth_low;
514 }
515
516 fio_gettime(&comp_time, NULL);
517 bytes_done = io_u_queued_complete(td, min_evts);
518 if (bytes_done < 0)
519 break;
520 }
521
522 if (!bytes_done)
523 continue;
524
525 /*
526 * the rate is batched for now, it should work for batches
527 * of completions except the very first one which may look
528 * a little bursty
529 */
530 usec = utime_since(&s, &comp_time);
531
532 rate_throttle(td, usec, bytes_done);
533
534 if (check_min_rate(td, &comp_time)) {
535 if (exitall_on_terminate)
536 terminate_threads(td->groupid);
537 td_verror(td, ENODATA, "check_min_rate");
538 break;
539 }
540
541 if (td->o.thinktime) {
542 unsigned long long b;
543
544 b = td->io_blocks[0] + td->io_blocks[1];
545 if (!(b % td->o.thinktime_blocks)) {
546 int left;
547
548 if (td->o.thinktime_spin)
549 __usec_sleep(td->o.thinktime_spin);
550
551 left = td->o.thinktime - td->o.thinktime_spin;
552 if (left)
553 usec_sleep(td, left);
554 }
555 }
556 }
557
558 if (!td->error) {
559 struct fio_file *f;
560
561 i = td->cur_depth;
562 if (i)
563 ret = io_u_queued_complete(td, i);
564
565 if (should_fsync(td) && td->o.end_fsync) {
566 td_set_runstate(td, TD_FSYNCING);
567
568 for_each_file(td, f, i) {
569 if (!(f->flags & FIO_FILE_OPEN))
570 continue;
571 fio_io_sync(td, f);
572 }
573 }
574 } else
575 cleanup_pending_aio(td);
576}
577
578static void cleanup_io_u(struct thread_data *td)
579{
580 struct list_head *entry, *n;
581 struct io_u *io_u;
582
583 list_for_each_safe(entry, n, &td->io_u_freelist) {
584 io_u = list_entry(entry, struct io_u, list);
585
586 list_del(&io_u->list);
587 free(io_u);
588 }
589
590 free_io_mem(td);
591}
592
593/*
594 * "randomly" fill the buffer contents
595 */
596static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
597{
598 int *ptr = io_u->buf;
599
600 if (!td->o.zero_buffers) {
601 while ((void *) ptr - io_u->buf < max_bs) {
602 *ptr = rand() * 0x9e370001;
603 ptr++;
604 }
605 } else
606 memset(ptr, 0, max_bs);
607}
608
609static int init_io_u(struct thread_data *td)
610{
611 unsigned long long buf_size;
612 struct io_u *io_u;
613 unsigned int max_bs;
614 int i, max_units;
615 char *p;
616
617 if (td->io_ops->flags & FIO_SYNCIO)
618 max_units = 1;
619 else
620 max_units = td->o.iodepth;
621
622 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
623 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
624 buf_size += page_mask;
625 if (buf_size != (size_t) buf_size) {
626 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
627 return 1;
628 }
629
630 td->orig_buffer_size = buf_size;
631
632 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
633 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
634 else if (td->orig_buffer_size & page_mask)
635 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
636
637 if (allocate_io_mem(td))
638 return 1;
639
640 p = ALIGN(td->orig_buffer);
641 for (i = 0; i < max_units; i++) {
642 io_u = malloc(sizeof(*io_u));
643 memset(io_u, 0, sizeof(*io_u));
644 INIT_LIST_HEAD(&io_u->list);
645
646 io_u->buf = p + max_bs * i;
647
648 if (td_write(td))
649 fill_io_buf(td, io_u, max_bs);
650
651 io_u->index = i;
652 io_u->flags = IO_U_F_FREE;
653 list_add(&io_u->list, &td->io_u_freelist);
654 }
655
656 io_u_init_timeout();
657
658 return 0;
659}
660
661static int switch_ioscheduler(struct thread_data *td)
662{
663 char tmp[256], tmp2[128];
664 FILE *f;
665 int ret;
666
667 if (td->io_ops->flags & FIO_DISKLESSIO)
668 return 0;
669
670 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
671
672 f = fopen(tmp, "r+");
673 if (!f) {
674 if (errno == ENOENT) {
675 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
676 return 0;
677 }
678 td_verror(td, errno, "fopen iosched");
679 return 1;
680 }
681
682 /*
683 * Set io scheduler.
684 */
685 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
686 if (ferror(f) || ret != 1) {
687 td_verror(td, errno, "fwrite");
688 fclose(f);
689 return 1;
690 }
691
692 rewind(f);
693
694 /*
695 * Read back and check that the selected scheduler is now the default.
696 */
697 ret = fread(tmp, 1, sizeof(tmp), f);
698 if (ferror(f) || ret < 0) {
699 td_verror(td, errno, "fread");
700 fclose(f);
701 return 1;
702 }
703
704 sprintf(tmp2, "[%s]", td->o.ioscheduler);
705 if (!strstr(tmp, tmp2)) {
706 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
707 td_verror(td, EINVAL, "iosched_switch");
708 fclose(f);
709 return 1;
710 }
711
712 fclose(f);
713 return 0;
714}
715
716static int clear_io_state(struct thread_data *td)
717{
718 struct fio_file *f;
719 unsigned int i;
720 int ret;
721
722 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
723 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
724 td->zone_bytes = 0;
725 td->rate_bytes = 0;
726 td->rate_blocks = 0;
727 td->rw_end_set[0] = td->rw_end_set[1] = 0;
728
729 td->last_was_sync = 0;
730
731 for_each_file(td, f, i)
732 td_io_close_file(td, f);
733
734 ret = 0;
735 for_each_file(td, f, i) {
736 ret = td_io_open_file(td, f);
737 if (ret)
738 break;
739 }
740
741 return ret;
742}
743
744/*
745 * Entry point for the thread based jobs. The process based jobs end up
746 * here as well, after a little setup.
747 */
748static void *thread_main(void *data)
749{
750 unsigned long long runtime[2];
751 struct thread_data *td = data;
752 unsigned long elapsed;
753 int clear_state;
754
755 if (!td->o.use_thread)
756 setsid();
757
758 td->pid = getpid();
759
760 INIT_LIST_HEAD(&td->io_u_freelist);
761 INIT_LIST_HEAD(&td->io_u_busylist);
762 INIT_LIST_HEAD(&td->io_u_requeues);
763 INIT_LIST_HEAD(&td->io_log_list);
764 INIT_LIST_HEAD(&td->io_hist_list);
765 td->io_hist_tree = RB_ROOT;
766
767 if (init_io_u(td))
768 goto err_sem;
769
770 if (fio_setaffinity(td) == -1) {
771 td_verror(td, errno, "cpu_set_affinity");
772 goto err_sem;
773 }
774
775 if (init_iolog(td))
776 goto err_sem;
777
778 if (td->ioprio) {
779 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
780 td_verror(td, errno, "ioprio_set");
781 goto err_sem;
782 }
783 }
784
785 if (nice(td->o.nice) == -1) {
786 td_verror(td, errno, "nice");
787 goto err_sem;
788 }
789
790 if (td->o.ioscheduler && switch_ioscheduler(td))
791 goto err_sem;
792
793 td_set_runstate(td, TD_INITIALIZED);
794 fio_sem_up(startup_sem);
795 fio_sem_down(td->mutex);
796
797 /*
798 * the ->mutex semaphore is now no longer used, close it to avoid
799 * eating a file descriptor
800 */
801 fio_sem_remove(td->mutex);
802
803 if (!td->o.create_serialize && setup_files(td))
804 goto err;
805
806 if (td_io_init(td))
807 goto err;
808
809 if (open_files(td))
810 goto err;
811
812 if (init_random_map(td))
813 goto err;
814
815 if (td->o.exec_prerun) {
816 if (system(td->o.exec_prerun) < 0)
817 goto err;
818 }
819
820 fio_gettime(&td->epoch, NULL);
821 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
822 getrusage(RUSAGE_SELF, &td->ts.ru_start);
823
824 runtime[0] = runtime[1] = 0;
825 clear_state = 0;
826 while (td->o.loops--) {
827 fio_gettime(&td->start, NULL);
828 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
829
830 if (td->o.ratemin)
831 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
832
833 if (clear_state && clear_io_state(td))
834 break;
835
836 prune_io_piece_log(td);
837
838 do_io(td);
839
840 clear_state = 1;
841
842 if (td_read(td) && td->io_bytes[DDIR_READ]) {
843 if (td->rw_end_set[DDIR_READ])
844 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
845 else
846 elapsed = utime_since_now(&td->start);
847
848 runtime[DDIR_READ] += elapsed;
849 }
850 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
851 if (td->rw_end_set[DDIR_WRITE])
852 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
853 else
854 elapsed = utime_since_now(&td->start);
855
856 runtime[DDIR_WRITE] += elapsed;
857 }
858
859 if (td->error || td->terminate)
860 break;
861
862 if (td->o.verify == VERIFY_NONE)
863 continue;
864
865 if (clear_io_state(td))
866 break;
867
868 fio_gettime(&td->start, NULL);
869
870 do_verify(td);
871
872 runtime[DDIR_READ] += utime_since_now(&td->start);
873
874 if (td->error || td->terminate)
875 break;
876 }
877
878 update_rusage_stat(td);
879 td->ts.runtime[0] = runtime[0] / 1000;
880 td->ts.runtime[1] = runtime[1] / 1000;
881 td->ts.total_run_time = mtime_since_now(&td->epoch);
882 td->ts.io_bytes[0] = td->io_bytes[0];
883 td->ts.io_bytes[1] = td->io_bytes[1];
884
885 if (td->ts.bw_log)
886 finish_log(td, td->ts.bw_log, "bw");
887 if (td->ts.slat_log)
888 finish_log(td, td->ts.slat_log, "slat");
889 if (td->ts.clat_log)
890 finish_log(td, td->ts.clat_log, "clat");
891 if (td->o.write_iolog_file)
892 write_iolog_close(td);
893 if (td->o.exec_postrun) {
894 if (system(td->o.exec_postrun) < 0)
895 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
896 }
897
898 if (exitall_on_terminate)
899 terminate_threads(td->groupid);
900
901err:
902 if (td->error)
903 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
904 close_files(td);
905 close_ioengine(td);
906 cleanup_io_u(td);
907 options_mem_free(td);
908 td_set_runstate(td, TD_EXITED);
909 return (void *) (unsigned long) td->error;
910err_sem:
911 fio_sem_up(startup_sem);
912 goto err;
913}
914
915/*
916 * We cannot pass the td data into a forked process, so attach the td and
917 * pass it to the thread worker.
918 */
919static int fork_main(int shmid, int offset)
920{
921 struct thread_data *td;
922 void *data, *ret;
923
924 data = shmat(shmid, NULL, 0);
925 if (data == (void *) -1) {
926 int __err = errno;
927
928 perror("shmat");
929 return __err;
930 }
931
932 td = data + offset * sizeof(struct thread_data);
933 ret = thread_main(td);
934 shmdt(data);
935 return (int) (unsigned long) ret;
936}
937
938/*
939 * Run over the job map and reap the threads that have exited, if any.
940 */
941static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
942{
943 struct thread_data *td;
944 int i, cputhreads, pending, status, ret;
945
946 /*
947 * reap exited threads (TD_EXITED -> TD_REAPED)
948 */
949 pending = cputhreads = 0;
950 for_each_td(td, i) {
951 int flags = 0;
952
953 /*
954 * ->io_ops is NULL for a thread that has closed its
955 * io engine
956 */
957 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
958 cputhreads++;
959
960 if (!td->pid || td->runstate == TD_REAPED)
961 continue;
962 if (td->o.use_thread) {
963 if (td->runstate == TD_EXITED) {
964 td_set_runstate(td, TD_REAPED);
965 goto reaped;
966 }
967 continue;
968 }
969
970 flags = WNOHANG;
971 if (td->runstate == TD_EXITED)
972 flags = 0;
973
974 /*
975 * check if someone quit or got killed in an unusual way
976 */
977 ret = waitpid(td->pid, &status, flags);
978 if (ret < 0) {
979 if (errno == ECHILD) {
980 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
981 td_set_runstate(td, TD_REAPED);
982 goto reaped;
983 }
984 perror("waitpid");
985 } else if (ret == td->pid) {
986 if (WIFSIGNALED(status)) {
987 int sig = WTERMSIG(status);
988
989 if (sig != SIGQUIT)
990 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
991 td_set_runstate(td, TD_REAPED);
992 goto reaped;
993 }
994 if (WIFEXITED(status)) {
995 if (WEXITSTATUS(status) && !td->error)
996 td->error = WEXITSTATUS(status);
997
998 td_set_runstate(td, TD_REAPED);
999 goto reaped;
1000 }
1001 }
1002
1003 /*
1004 * thread is not dead, continue
1005 */
1006 pending++;
1007 continue;
1008reaped:
1009 if (td->o.use_thread) {
1010 long ret;
1011
1012 if (pthread_join(td->thread, (void *) &ret))
1013 perror("pthread_join");
1014 }
1015
1016 (*nr_running)--;
1017 (*m_rate) -= td->o.ratemin;
1018 (*t_rate) -= td->o.rate;
1019 pending--;
1020
1021 if (td->error)
1022 exit_value++;
1023 }
1024
1025 if (*nr_running == cputhreads && !pending)
1026 terminate_threads(TERMINATE_ALL);
1027}
1028
1029/*
1030 * Main function for kicking off and reaping jobs, as needed.
1031 */
1032static void run_threads(void)
1033{
1034 struct thread_data *td;
1035 unsigned long spent;
1036 int i, todo, nr_running, m_rate, t_rate, nr_started;
1037
1038 if (fio_pin_memory())
1039 return;
1040
1041 if (!terse_output) {
1042 printf("Starting ");
1043 if (nr_thread)
1044 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1045 if (nr_process) {
1046 if (nr_thread)
1047 printf(" and ");
1048 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1049 }
1050 printf("\n");
1051 fflush(stdout);
1052 }
1053
1054 signal(SIGINT, sig_handler);
1055 signal(SIGALRM, sig_handler);
1056
1057 todo = thread_number;
1058 nr_running = 0;
1059 nr_started = 0;
1060 m_rate = t_rate = 0;
1061
1062 for_each_td(td, i) {
1063 print_status_init(td->thread_number - 1);
1064
1065 if (!td->o.create_serialize) {
1066 init_disk_util(td);
1067 continue;
1068 }
1069
1070 /*
1071 * do file setup here so it happens sequentially,
1072 * we don't want X number of threads getting their
1073 * client data interspersed on disk
1074 */
1075 if (setup_files(td)) {
1076 exit_value++;
1077 if (td->error)
1078 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1079 td_set_runstate(td, TD_REAPED);
1080 todo--;
1081 }
1082
1083 init_disk_util(td);
1084 }
1085
1086 set_genesis_time();
1087
1088 while (todo) {
1089 struct thread_data *map[MAX_JOBS];
1090 struct timeval this_start;
1091 int this_jobs = 0, left;
1092
1093 /*
1094 * create threads (TD_NOT_CREATED -> TD_CREATED)
1095 */
1096 for_each_td(td, i) {
1097 if (td->runstate != TD_NOT_CREATED)
1098 continue;
1099
1100 /*
1101 * never got a chance to start, killed by other
1102 * thread for some reason
1103 */
1104 if (td->terminate) {
1105 todo--;
1106 continue;
1107 }
1108
1109 if (td->o.start_delay) {
1110 spent = mtime_since_genesis();
1111
1112 if (td->o.start_delay * 1000 > spent)
1113 continue;
1114 }
1115
1116 if (td->o.stonewall && (nr_started || nr_running))
1117 break;
1118
1119 /*
1120 * Set state to created. Thread will transition
1121 * to TD_INITIALIZED when it's done setting up.
1122 */
1123 td_set_runstate(td, TD_CREATED);
1124 map[this_jobs++] = td;
1125 nr_started++;
1126
1127 if (td->o.use_thread) {
1128 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1129 perror("thread_create");
1130 nr_started--;
1131 break;
1132 }
1133 } else {
1134 if (!fork()) {
1135 int ret = fork_main(shm_id, i);
1136
1137 exit(ret);
1138 }
1139 }
1140 fio_sem_down(startup_sem);
1141 }
1142
1143 /*
1144 * Wait for the started threads to transition to
1145 * TD_INITIALIZED.
1146 */
1147 fio_gettime(&this_start, NULL);
1148 left = this_jobs;
1149 while (left && !fio_abort) {
1150 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1151 break;
1152
1153 usleep(100000);
1154
1155 for (i = 0; i < this_jobs; i++) {
1156 td = map[i];
1157 if (!td)
1158 continue;
1159 if (td->runstate == TD_INITIALIZED) {
1160 map[i] = NULL;
1161 left--;
1162 } else if (td->runstate >= TD_EXITED) {
1163 map[i] = NULL;
1164 left--;
1165 todo--;
1166 nr_running++; /* work-around... */
1167 }
1168 }
1169 }
1170
1171 if (left) {
1172 log_err("fio: %d jobs failed to start\n", left);
1173 for (i = 0; i < this_jobs; i++) {
1174 td = map[i];
1175 if (!td)
1176 continue;
1177 kill(td->pid, SIGTERM);
1178 }
1179 break;
1180 }
1181
1182 /*
1183 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1184 */
1185 for_each_td(td, i) {
1186 if (td->runstate != TD_INITIALIZED)
1187 continue;
1188
1189 td_set_runstate(td, TD_RUNNING);
1190 nr_running++;
1191 nr_started--;
1192 m_rate += td->o.ratemin;
1193 t_rate += td->o.rate;
1194 todo--;
1195 fio_sem_up(td->mutex);
1196 }
1197
1198 reap_threads(&nr_running, &t_rate, &m_rate);
1199
1200 if (todo)
1201 usleep(100000);
1202 }
1203
1204 while (nr_running) {
1205 reap_threads(&nr_running, &t_rate, &m_rate);
1206 usleep(10000);
1207 }
1208
1209 update_io_ticks();
1210 fio_unpin_memory();
1211}
1212
1213int main(int argc, char *argv[])
1214{
1215 long ps;
1216
1217 /*
1218 * We need locale for number printing, if it isn't set then just
1219 * go with the US format.
1220 */
1221 if (!getenv("LC_NUMERIC"))
1222 setlocale(LC_NUMERIC, "en_US");
1223
1224 if (parse_options(argc, argv))
1225 return 1;
1226
1227 if (!thread_number)
1228 return 0;
1229
1230 ps = sysconf(_SC_PAGESIZE);
1231 if (ps < 0) {
1232 log_err("Failed to get page size\n");
1233 return 1;
1234 }
1235
1236 page_size = ps;
1237 page_mask = ps - 1;
1238
1239 if (write_bw_log) {
1240 setup_log(&agg_io_log[DDIR_READ]);
1241 setup_log(&agg_io_log[DDIR_WRITE]);
1242 }
1243
1244 startup_sem = fio_sem_init(0);
1245
1246 set_genesis_time();
1247
1248 disk_util_timer_arm();
1249
1250 run_threads();
1251
1252 if (!fio_abort) {
1253 show_run_stats();
1254 if (write_bw_log) {
1255 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1256 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1257 }
1258 }
1259
1260 fio_sem_remove(startup_sem);
1261 return exit_value;
1262}