Fio 1.53
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49
50unsigned long page_mask;
51unsigned long page_size;
52
53#define PAGE_ALIGN(buf) \
54 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
55
56int groupid = 0;
57int thread_number = 0;
58int nr_process = 0;
59int nr_thread = 0;
60int shm_id = 0;
61int temp_stall_ts;
62unsigned long done_secs = 0;
63
64static struct fio_mutex *startup_mutex;
65static struct fio_mutex *writeout_mutex;
66static volatile int fio_abort;
67static int exit_value;
68static pthread_t gtod_thread;
69static pthread_t disk_util_thread;
70static struct flist_head *cgroup_list;
71static char *cgroup_mnt;
72
73struct io_log *agg_io_log[2];
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78void td_set_runstate(struct thread_data *td, int runstate)
79{
80 if (td->runstate == runstate)
81 return;
82
83 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
84 td->runstate, runstate);
85 td->runstate = runstate;
86}
87
88static void terminate_threads(int group_id)
89{
90 struct thread_data *td;
91 int i;
92
93 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
94
95 for_each_td(td, i) {
96 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
97 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
98 td->o.name, (int) td->pid);
99 td->terminate = 1;
100 td->o.start_delay = 0;
101
102 /*
103 * if the thread is running, just let it exit
104 */
105 if (td->runstate < TD_RUNNING)
106 kill(td->pid, SIGTERM);
107 else {
108 struct ioengine_ops *ops = td->io_ops;
109
110 if (ops && (ops->flags & FIO_SIGTERM))
111 kill(td->pid, SIGTERM);
112 }
113 }
114 }
115}
116
117/*
118 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
119 */
120static void sig_quit(int sig)
121{
122}
123
124static void sig_int(int sig)
125{
126 if (threads) {
127 log_info("\nfio: terminating on signal %d\n", sig);
128 fflush(stdout);
129 exit_value = 128;
130 terminate_threads(TERMINATE_ALL);
131 }
132}
133
134static void *disk_thread_main(void *data)
135{
136 fio_mutex_up(startup_mutex);
137
138 while (threads) {
139 usleep(DISK_UTIL_MSEC * 1000);
140 if (!threads)
141 break;
142 update_io_ticks();
143 print_thread_status();
144 }
145
146 return NULL;
147}
148
149static int create_disk_util_thread(void)
150{
151 int ret;
152
153 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
154 if (ret) {
155 log_err("Can't create disk util thread: %s\n", strerror(ret));
156 return 1;
157 }
158
159 ret = pthread_detach(disk_util_thread);
160 if (ret) {
161 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
162 return 1;
163 }
164
165 dprint(FD_MUTEX, "wait on startup_mutex\n");
166 fio_mutex_down(startup_mutex);
167 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
168 return 0;
169}
170
171static void set_sig_handlers(void)
172{
173 struct sigaction act;
174
175 memset(&act, 0, sizeof(act));
176 act.sa_handler = sig_int;
177 act.sa_flags = SA_RESTART;
178 sigaction(SIGINT, &act, NULL);
179
180 memset(&act, 0, sizeof(act));
181 act.sa_handler = sig_quit;
182 act.sa_flags = SA_RESTART;
183 sigaction(SIGTERM, &act, NULL);
184}
185
186/*
187 * Check if we are above the minimum rate given.
188 */
189static int __check_min_rate(struct thread_data *td, struct timeval *now,
190 enum td_ddir ddir)
191{
192 unsigned long long bytes = 0;
193 unsigned long iops = 0;
194 unsigned long spent;
195 unsigned long rate;
196 unsigned int ratemin = 0;
197 unsigned int rate_iops = 0;
198 unsigned int rate_iops_min = 0;
199
200 assert(ddir_rw(ddir));
201
202 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
203 return 0;
204
205 /*
206 * allow a 2 second settle period in the beginning
207 */
208 if (mtime_since(&td->start, now) < 2000)
209 return 0;
210
211 iops += td->io_blocks[ddir];
212 bytes += td->this_io_bytes[ddir];
213 ratemin += td->o.ratemin[ddir];
214 rate_iops += td->o.rate_iops[ddir];
215 rate_iops_min += td->o.rate_iops_min[ddir];
216
217 /*
218 * if rate blocks is set, sample is running
219 */
220 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
221 spent = mtime_since(&td->lastrate[ddir], now);
222 if (spent < td->o.ratecycle)
223 return 0;
224
225 if (td->o.rate[ddir]) {
226 /*
227 * check bandwidth specified rate
228 */
229 if (bytes < td->rate_bytes[ddir]) {
230 log_err("%s: min rate %u not met\n", td->o.name,
231 ratemin);
232 return 1;
233 } else {
234 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
235 if (rate < ratemin ||
236 bytes < td->rate_bytes[ddir]) {
237 log_err("%s: min rate %u not met, got"
238 " %luKB/sec\n", td->o.name,
239 ratemin, rate);
240 return 1;
241 }
242 }
243 } else {
244 /*
245 * checks iops specified rate
246 */
247 if (iops < rate_iops) {
248 log_err("%s: min iops rate %u not met\n",
249 td->o.name, rate_iops);
250 return 1;
251 } else {
252 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
253 if (rate < rate_iops_min ||
254 iops < td->rate_blocks[ddir]) {
255 log_err("%s: min iops rate %u not met,"
256 " got %lu\n", td->o.name,
257 rate_iops_min, rate);
258 }
259 }
260 }
261 }
262
263 td->rate_bytes[ddir] = bytes;
264 td->rate_blocks[ddir] = iops;
265 memcpy(&td->lastrate[ddir], now, sizeof(*now));
266 return 0;
267}
268
269static int check_min_rate(struct thread_data *td, struct timeval *now,
270 unsigned long *bytes_done)
271{
272 int ret = 0;
273
274 if (bytes_done[0])
275 ret |= __check_min_rate(td, now, 0);
276 if (bytes_done[1])
277 ret |= __check_min_rate(td, now, 1);
278
279 return ret;
280}
281
282static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
283{
284 if (!td->o.timeout)
285 return 0;
286 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
287 return 1;
288
289 return 0;
290}
291
292/*
293 * When job exits, we can cancel the in-flight IO if we are using async
294 * io. Attempt to do so.
295 */
296static void cleanup_pending_aio(struct thread_data *td)
297{
298 struct flist_head *entry, *n;
299 struct io_u *io_u;
300 int r;
301
302 /*
303 * get immediately available events, if any
304 */
305 r = io_u_queued_complete(td, 0, NULL);
306 if (r < 0)
307 return;
308
309 /*
310 * now cancel remaining active events
311 */
312 if (td->io_ops->cancel) {
313 flist_for_each_safe(entry, n, &td->io_u_busylist) {
314 io_u = flist_entry(entry, struct io_u, list);
315
316 /*
317 * if the io_u isn't in flight, then that generally
318 * means someone leaked an io_u. complain but fix
319 * it up, so we don't stall here.
320 */
321 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
322 log_err("fio: non-busy IO on busy list\n");
323 put_io_u(td, io_u);
324 } else {
325 r = td->io_ops->cancel(td, io_u);
326 if (!r)
327 put_io_u(td, io_u);
328 }
329 }
330 }
331
332 if (td->cur_depth)
333 r = io_u_queued_complete(td, td->cur_depth, NULL);
334}
335
336/*
337 * Helper to handle the final sync of a file. Works just like the normal
338 * io path, just does everything sync.
339 */
340static int fio_io_sync(struct thread_data *td, struct fio_file *f)
341{
342 struct io_u *io_u = __get_io_u(td);
343 int ret;
344
345 if (!io_u)
346 return 1;
347
348 io_u->ddir = DDIR_SYNC;
349 io_u->file = f;
350
351 if (td_io_prep(td, io_u)) {
352 put_io_u(td, io_u);
353 return 1;
354 }
355
356requeue:
357 ret = td_io_queue(td, io_u);
358 if (ret < 0) {
359 td_verror(td, io_u->error, "td_io_queue");
360 put_io_u(td, io_u);
361 return 1;
362 } else if (ret == FIO_Q_QUEUED) {
363 if (io_u_queued_complete(td, 1, NULL) < 0)
364 return 1;
365 } else if (ret == FIO_Q_COMPLETED) {
366 if (io_u->error) {
367 td_verror(td, io_u->error, "td_io_queue");
368 return 1;
369 }
370
371 if (io_u_sync_complete(td, io_u, NULL) < 0)
372 return 1;
373 } else if (ret == FIO_Q_BUSY) {
374 if (td_io_commit(td))
375 return 1;
376 goto requeue;
377 }
378
379 return 0;
380}
381
382static inline void update_tv_cache(struct thread_data *td)
383{
384 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
385 fio_gettime(&td->tv_cache, NULL);
386}
387
388static int break_on_this_error(struct thread_data *td, int *retptr)
389{
390 int ret = *retptr;
391
392 if (ret < 0 || td->error) {
393 int err;
394
395 if (!td->o.continue_on_error)
396 return 1;
397
398 if (ret < 0)
399 err = -ret;
400 else
401 err = td->error;
402
403 if (td_non_fatal_error(err)) {
404 /*
405 * Continue with the I/Os in case of
406 * a non fatal error.
407 */
408 update_error_count(td, err);
409 td_clear_error(td);
410 *retptr = 0;
411 return 0;
412 } else if (td->o.fill_device && err == ENOSPC) {
413 /*
414 * We expect to hit this error if
415 * fill_device option is set.
416 */
417 td_clear_error(td);
418 td->terminate = 1;
419 return 1;
420 } else {
421 /*
422 * Stop the I/O in case of a fatal
423 * error.
424 */
425 update_error_count(td, err);
426 return 1;
427 }
428 }
429
430 return 0;
431}
432
433/*
434 * The main verify engine. Runs over the writes we previously submitted,
435 * reads the blocks back in, and checks the crc/md5 of the data.
436 */
437static void do_verify(struct thread_data *td)
438{
439 struct fio_file *f;
440 struct io_u *io_u;
441 int ret, min_events;
442 unsigned int i;
443
444 dprint(FD_VERIFY, "starting loop\n");
445
446 /*
447 * sync io first and invalidate cache, to make sure we really
448 * read from disk.
449 */
450 for_each_file(td, f, i) {
451 if (!fio_file_open(f))
452 continue;
453 if (fio_io_sync(td, f))
454 break;
455 if (file_invalidate_cache(td, f))
456 break;
457 }
458
459 if (td->error)
460 return;
461
462 td_set_runstate(td, TD_VERIFYING);
463
464 io_u = NULL;
465 while (!td->terminate) {
466 int ret2, full;
467
468 update_tv_cache(td);
469
470 if (runtime_exceeded(td, &td->tv_cache)) {
471 td->terminate = 1;
472 break;
473 }
474
475 io_u = __get_io_u(td);
476 if (!io_u)
477 break;
478
479 if (get_next_verify(td, io_u)) {
480 put_io_u(td, io_u);
481 break;
482 }
483
484 if (td_io_prep(td, io_u)) {
485 put_io_u(td, io_u);
486 break;
487 }
488
489 if (td->o.verify_async)
490 io_u->end_io = verify_io_u_async;
491 else
492 io_u->end_io = verify_io_u;
493
494 ret = td_io_queue(td, io_u);
495 switch (ret) {
496 case FIO_Q_COMPLETED:
497 if (io_u->error) {
498 ret = -io_u->error;
499 clear_io_u(td, io_u);
500 } else if (io_u->resid) {
501 int bytes = io_u->xfer_buflen - io_u->resid;
502
503 /*
504 * zero read, fail
505 */
506 if (!bytes) {
507 td_verror(td, EIO, "full resid");
508 put_io_u(td, io_u);
509 break;
510 }
511
512 io_u->xfer_buflen = io_u->resid;
513 io_u->xfer_buf += bytes;
514 io_u->offset += bytes;
515
516 if (ddir_rw(io_u->ddir))
517 td->ts.short_io_u[io_u->ddir]++;
518
519 f = io_u->file;
520 if (io_u->offset == f->real_file_size)
521 goto sync_done;
522
523 requeue_io_u(td, &io_u);
524 } else {
525sync_done:
526 ret = io_u_sync_complete(td, io_u, NULL);
527 if (ret < 0)
528 break;
529 }
530 continue;
531 case FIO_Q_QUEUED:
532 break;
533 case FIO_Q_BUSY:
534 requeue_io_u(td, &io_u);
535 ret2 = td_io_commit(td);
536 if (ret2 < 0)
537 ret = ret2;
538 break;
539 default:
540 assert(ret < 0);
541 td_verror(td, -ret, "td_io_queue");
542 break;
543 }
544
545 if (break_on_this_error(td, &ret))
546 break;
547
548 /*
549 * if we can queue more, do so. but check if there are
550 * completed io_u's first.
551 */
552 full = queue_full(td) || ret == FIO_Q_BUSY;
553 if (full || !td->o.iodepth_batch_complete) {
554 min_events = min(td->o.iodepth_batch_complete,
555 td->cur_depth);
556 if (full && !min_events)
557 min_events = 1;
558
559 do {
560 /*
561 * Reap required number of io units, if any,
562 * and do the verification on them through
563 * the callback handler
564 */
565 if (io_u_queued_complete(td, min_events, NULL) < 0) {
566 ret = -1;
567 break;
568 }
569 } while (full && (td->cur_depth > td->o.iodepth_low));
570 }
571 if (ret < 0)
572 break;
573 }
574
575 if (!td->error) {
576 min_events = td->cur_depth;
577
578 if (min_events)
579 ret = io_u_queued_complete(td, min_events, NULL);
580 } else
581 cleanup_pending_aio(td);
582
583 td_set_runstate(td, TD_RUNNING);
584
585 dprint(FD_VERIFY, "exiting loop\n");
586}
587
588/*
589 * Main IO worker function. It retrieves io_u's to process and queues
590 * and reaps them, checking for rate and errors along the way.
591 */
592static void do_io(struct thread_data *td)
593{
594 unsigned int i;
595 int ret = 0;
596
597 if (in_ramp_time(td))
598 td_set_runstate(td, TD_RAMP);
599 else
600 td_set_runstate(td, TD_RUNNING);
601
602 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
603 (!flist_empty(&td->trim_list)) ||
604 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
605 struct timeval comp_time;
606 unsigned long bytes_done[2] = { 0, 0 };
607 int min_evts = 0;
608 struct io_u *io_u;
609 int ret2, full;
610
611 if (td->terminate)
612 break;
613
614 update_tv_cache(td);
615
616 if (runtime_exceeded(td, &td->tv_cache)) {
617 td->terminate = 1;
618 break;
619 }
620
621 io_u = get_io_u(td);
622 if (!io_u)
623 break;
624
625 /*
626 * Add verification end_io handler, if asked to verify
627 * a previously written file.
628 */
629 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
630 !td_rw(td)) {
631 if (td->o.verify_async)
632 io_u->end_io = verify_io_u_async;
633 else
634 io_u->end_io = verify_io_u;
635 td_set_runstate(td, TD_VERIFYING);
636 } else if (in_ramp_time(td))
637 td_set_runstate(td, TD_RAMP);
638 else
639 td_set_runstate(td, TD_RUNNING);
640
641 ret = td_io_queue(td, io_u);
642 switch (ret) {
643 case FIO_Q_COMPLETED:
644 if (io_u->error) {
645 ret = -io_u->error;
646 clear_io_u(td, io_u);
647 } else if (io_u->resid) {
648 int bytes = io_u->xfer_buflen - io_u->resid;
649 struct fio_file *f = io_u->file;
650
651 /*
652 * zero read, fail
653 */
654 if (!bytes) {
655 td_verror(td, EIO, "full resid");
656 put_io_u(td, io_u);
657 break;
658 }
659
660 io_u->xfer_buflen = io_u->resid;
661 io_u->xfer_buf += bytes;
662 io_u->offset += bytes;
663
664 if (ddir_rw(io_u->ddir))
665 td->ts.short_io_u[io_u->ddir]++;
666
667 if (io_u->offset == f->real_file_size)
668 goto sync_done;
669
670 requeue_io_u(td, &io_u);
671 } else {
672sync_done:
673 if (__should_check_rate(td, 0) ||
674 __should_check_rate(td, 1))
675 fio_gettime(&comp_time, NULL);
676
677 ret = io_u_sync_complete(td, io_u, bytes_done);
678 if (ret < 0)
679 break;
680 }
681 break;
682 case FIO_Q_QUEUED:
683 /*
684 * if the engine doesn't have a commit hook,
685 * the io_u is really queued. if it does have such
686 * a hook, it has to call io_u_queued() itself.
687 */
688 if (td->io_ops->commit == NULL)
689 io_u_queued(td, io_u);
690 break;
691 case FIO_Q_BUSY:
692 requeue_io_u(td, &io_u);
693 ret2 = td_io_commit(td);
694 if (ret2 < 0)
695 ret = ret2;
696 break;
697 default:
698 assert(ret < 0);
699 put_io_u(td, io_u);
700 break;
701 }
702
703 if (break_on_this_error(td, &ret))
704 break;
705
706 /*
707 * See if we need to complete some commands
708 */
709 full = queue_full(td) || ret == FIO_Q_BUSY;
710 if (full || !td->o.iodepth_batch_complete) {
711 min_evts = min(td->o.iodepth_batch_complete,
712 td->cur_depth);
713 if (full && !min_evts)
714 min_evts = 1;
715
716 if (__should_check_rate(td, 0) ||
717 __should_check_rate(td, 1))
718 fio_gettime(&comp_time, NULL);
719
720 do {
721 ret = io_u_queued_complete(td, min_evts, bytes_done);
722 if (ret < 0)
723 break;
724
725 } while (full && (td->cur_depth > td->o.iodepth_low));
726 }
727
728 if (ret < 0)
729 break;
730 if (!(bytes_done[0] + bytes_done[1]))
731 continue;
732
733 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
734 if (check_min_rate(td, &comp_time, bytes_done)) {
735 if (exitall_on_terminate)
736 terminate_threads(td->groupid);
737 td_verror(td, EIO, "check_min_rate");
738 break;
739 }
740 }
741
742 if (td->o.thinktime) {
743 unsigned long long b;
744
745 b = td->io_blocks[0] + td->io_blocks[1];
746 if (!(b % td->o.thinktime_blocks)) {
747 int left;
748
749 if (td->o.thinktime_spin)
750 usec_spin(td->o.thinktime_spin);
751
752 left = td->o.thinktime - td->o.thinktime_spin;
753 if (left)
754 usec_sleep(td, left);
755 }
756 }
757 }
758
759 if (td->trim_entries)
760 printf("trim entries %ld\n", td->trim_entries);
761
762 if (td->o.fill_device && td->error == ENOSPC) {
763 td->error = 0;
764 td->terminate = 1;
765 }
766 if (!td->error) {
767 struct fio_file *f;
768
769 i = td->cur_depth;
770 if (i)
771 ret = io_u_queued_complete(td, i, NULL);
772
773 if (should_fsync(td) && td->o.end_fsync) {
774 td_set_runstate(td, TD_FSYNCING);
775
776 for_each_file(td, f, i) {
777 if (!fio_file_open(f))
778 continue;
779 fio_io_sync(td, f);
780 }
781 }
782 } else
783 cleanup_pending_aio(td);
784
785 /*
786 * stop job if we failed doing any IO
787 */
788 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
789 td->done = 1;
790}
791
792static void cleanup_io_u(struct thread_data *td)
793{
794 struct flist_head *entry, *n;
795 struct io_u *io_u;
796
797 flist_for_each_safe(entry, n, &td->io_u_freelist) {
798 io_u = flist_entry(entry, struct io_u, list);
799
800 flist_del(&io_u->list);
801 fio_memfree(io_u, sizeof(*io_u));
802 }
803
804 free_io_mem(td);
805}
806
807static int init_io_u(struct thread_data *td)
808{
809 struct io_u *io_u;
810 unsigned int max_bs;
811 int cl_align, i, max_units;
812 char *p;
813
814 max_units = td->o.iodepth;
815 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
816 td->orig_buffer_size = (unsigned long long) max_bs
817 * (unsigned long long) max_units;
818
819 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
820 unsigned long bs;
821
822 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
823 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
824 }
825
826 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
827 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
828 return 1;
829 }
830
831 if (allocate_io_mem(td))
832 return 1;
833
834 if (td->o.odirect || td->o.mem_align ||
835 (td->io_ops->flags & FIO_RAWIO))
836 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
837 else
838 p = td->orig_buffer;
839
840 cl_align = os_cache_line_size();
841
842 for (i = 0; i < max_units; i++) {
843 void *ptr;
844
845 if (td->terminate)
846 return 1;
847
848 ptr = fio_memalign(cl_align, sizeof(*io_u));
849 if (!ptr) {
850 log_err("fio: unable to allocate aligned memory\n");
851 break;
852 }
853
854 io_u = ptr;
855 memset(io_u, 0, sizeof(*io_u));
856 INIT_FLIST_HEAD(&io_u->list);
857 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
858
859 if (!(td->io_ops->flags & FIO_NOIO)) {
860 io_u->buf = p + max_bs * i;
861 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
862
863 if (td_write(td) && !td->o.refill_buffers)
864 io_u_fill_buffer(td, io_u, max_bs);
865 else if (td_write(td) && td->o.verify_pattern_bytes) {
866 /*
867 * Fill the buffer with the pattern if we are
868 * going to be doing writes.
869 */
870 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
871 }
872 }
873
874 io_u->index = i;
875 io_u->flags = IO_U_F_FREE;
876 flist_add(&io_u->list, &td->io_u_freelist);
877 }
878
879 return 0;
880}
881
882static int switch_ioscheduler(struct thread_data *td)
883{
884 char tmp[256], tmp2[128];
885 FILE *f;
886 int ret;
887
888 if (td->io_ops->flags & FIO_DISKLESSIO)
889 return 0;
890
891 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
892
893 f = fopen(tmp, "r+");
894 if (!f) {
895 if (errno == ENOENT) {
896 log_err("fio: os or kernel doesn't support IO scheduler"
897 " switching\n");
898 return 0;
899 }
900 td_verror(td, errno, "fopen iosched");
901 return 1;
902 }
903
904 /*
905 * Set io scheduler.
906 */
907 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
908 if (ferror(f) || ret != 1) {
909 td_verror(td, errno, "fwrite");
910 fclose(f);
911 return 1;
912 }
913
914 rewind(f);
915
916 /*
917 * Read back and check that the selected scheduler is now the default.
918 */
919 ret = fread(tmp, 1, sizeof(tmp), f);
920 if (ferror(f) || ret < 0) {
921 td_verror(td, errno, "fread");
922 fclose(f);
923 return 1;
924 }
925
926 sprintf(tmp2, "[%s]", td->o.ioscheduler);
927 if (!strstr(tmp, tmp2)) {
928 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
929 td_verror(td, EINVAL, "iosched_switch");
930 fclose(f);
931 return 1;
932 }
933
934 fclose(f);
935 return 0;
936}
937
938static int keep_running(struct thread_data *td)
939{
940 unsigned long long io_done;
941
942 if (td->done)
943 return 0;
944 if (td->o.time_based)
945 return 1;
946 if (td->o.loops) {
947 td->o.loops--;
948 return 1;
949 }
950
951 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
952 + td->io_skip_bytes;
953 if (io_done < td->o.size)
954 return 1;
955
956 return 0;
957}
958
959static void reset_io_counters(struct thread_data *td)
960{
961 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
962 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
963 td->zone_bytes = 0;
964 td->rate_bytes[0] = td->rate_bytes[1] = 0;
965 td->rate_blocks[0] = td->rate_blocks[1] = 0;
966
967 td->last_was_sync = 0;
968
969 /*
970 * reset file done count if we are to start over
971 */
972 if (td->o.time_based || td->o.loops)
973 td->nr_done_files = 0;
974
975 /*
976 * Set the same seed to get repeatable runs
977 */
978 td_fill_rand_seeds(td);
979}
980
981void reset_all_stats(struct thread_data *td)
982{
983 struct timeval tv;
984 int i;
985
986 reset_io_counters(td);
987
988 for (i = 0; i < 2; i++) {
989 td->io_bytes[i] = 0;
990 td->io_blocks[i] = 0;
991 td->io_issues[i] = 0;
992 td->ts.total_io_u[i] = 0;
993 }
994
995 fio_gettime(&tv, NULL);
996 td->ts.runtime[0] = 0;
997 td->ts.runtime[1] = 0;
998 memcpy(&td->epoch, &tv, sizeof(tv));
999 memcpy(&td->start, &tv, sizeof(tv));
1000}
1001
1002static void clear_io_state(struct thread_data *td)
1003{
1004 struct fio_file *f;
1005 unsigned int i;
1006
1007 reset_io_counters(td);
1008
1009 close_files(td);
1010 for_each_file(td, f, i)
1011 fio_file_clear_done(f);
1012}
1013
1014static int exec_string(const char *string)
1015{
1016 int ret, newlen = strlen(string) + 1 + 8;
1017 char *str;
1018
1019 str = malloc(newlen);
1020 sprintf(str, "sh -c %s", string);
1021
1022 ret = system(str);
1023 if (ret == -1)
1024 log_err("fio: exec of cmd <%s> failed\n", str);
1025
1026 free(str);
1027 return ret;
1028}
1029
1030/*
1031 * Entry point for the thread based jobs. The process based jobs end up
1032 * here as well, after a little setup.
1033 */
1034static void *thread_main(void *data)
1035{
1036 unsigned long long elapsed;
1037 struct thread_data *td = data;
1038 pthread_condattr_t attr;
1039 int clear_state;
1040
1041 if (!td->o.use_thread)
1042 setsid();
1043
1044 td->pid = getpid();
1045
1046 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1047
1048 INIT_FLIST_HEAD(&td->io_u_freelist);
1049 INIT_FLIST_HEAD(&td->io_u_busylist);
1050 INIT_FLIST_HEAD(&td->io_u_requeues);
1051 INIT_FLIST_HEAD(&td->io_log_list);
1052 INIT_FLIST_HEAD(&td->io_hist_list);
1053 INIT_FLIST_HEAD(&td->verify_list);
1054 INIT_FLIST_HEAD(&td->trim_list);
1055 pthread_mutex_init(&td->io_u_lock, NULL);
1056 td->io_hist_tree = RB_ROOT;
1057
1058 pthread_condattr_init(&attr);
1059 pthread_cond_init(&td->verify_cond, &attr);
1060 pthread_cond_init(&td->free_cond, &attr);
1061
1062 td_set_runstate(td, TD_INITIALIZED);
1063 dprint(FD_MUTEX, "up startup_mutex\n");
1064 fio_mutex_up(startup_mutex);
1065 dprint(FD_MUTEX, "wait on td->mutex\n");
1066 fio_mutex_down(td->mutex);
1067 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1068
1069 /*
1070 * the ->mutex mutex is now no longer used, close it to avoid
1071 * eating a file descriptor
1072 */
1073 fio_mutex_remove(td->mutex);
1074
1075 /*
1076 * A new gid requires privilege, so we need to do this before setting
1077 * the uid.
1078 */
1079 if (td->o.gid != -1U && setgid(td->o.gid)) {
1080 td_verror(td, errno, "setgid");
1081 goto err;
1082 }
1083 if (td->o.uid != -1U && setuid(td->o.uid)) {
1084 td_verror(td, errno, "setuid");
1085 goto err;
1086 }
1087
1088 /*
1089 * May alter parameters that init_io_u() will use, so we need to
1090 * do this first.
1091 */
1092 if (init_iolog(td))
1093 goto err;
1094
1095 if (init_io_u(td))
1096 goto err;
1097
1098 if (td->o.verify_async && verify_async_init(td))
1099 goto err;
1100
1101 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1102 td_verror(td, errno, "cpu_set_affinity");
1103 goto err;
1104 }
1105
1106 /*
1107 * If we have a gettimeofday() thread, make sure we exclude that
1108 * thread from this job
1109 */
1110 if (td->o.gtod_cpu) {
1111 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1112 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1113 td_verror(td, errno, "cpu_set_affinity");
1114 goto err;
1115 }
1116 }
1117
1118 if (td->ioprio_set) {
1119 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1120 td_verror(td, errno, "ioprio_set");
1121 goto err;
1122 }
1123 }
1124
1125 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1126 goto err;
1127
1128 if (nice(td->o.nice) == -1) {
1129 td_verror(td, errno, "nice");
1130 goto err;
1131 }
1132
1133 if (td->o.ioscheduler && switch_ioscheduler(td))
1134 goto err;
1135
1136 if (!td->o.create_serialize && setup_files(td))
1137 goto err;
1138
1139 if (td_io_init(td))
1140 goto err;
1141
1142 if (init_random_map(td))
1143 goto err;
1144
1145 if (td->o.exec_prerun) {
1146 if (exec_string(td->o.exec_prerun))
1147 goto err;
1148 }
1149
1150 if (td->o.pre_read) {
1151 if (pre_read_files(td) < 0)
1152 goto err;
1153 }
1154
1155 fio_gettime(&td->epoch, NULL);
1156 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1157
1158 clear_state = 0;
1159 while (keep_running(td)) {
1160 fio_gettime(&td->start, NULL);
1161 memcpy(&td->ts.stat_sample_time[0], &td->start,
1162 sizeof(td->start));
1163 memcpy(&td->ts.stat_sample_time[1], &td->start,
1164 sizeof(td->start));
1165 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1166
1167 if (td->o.ratemin[0] || td->o.ratemin[1])
1168 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1169 sizeof(td->lastrate));
1170
1171 if (clear_state)
1172 clear_io_state(td);
1173
1174 prune_io_piece_log(td);
1175
1176 do_io(td);
1177
1178 clear_state = 1;
1179
1180 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1181 elapsed = utime_since_now(&td->start);
1182 td->ts.runtime[DDIR_READ] += elapsed;
1183 }
1184 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1185 elapsed = utime_since_now(&td->start);
1186 td->ts.runtime[DDIR_WRITE] += elapsed;
1187 }
1188
1189 if (td->error || td->terminate)
1190 break;
1191
1192 if (!td->o.do_verify ||
1193 td->o.verify == VERIFY_NONE ||
1194 (td->io_ops->flags & FIO_UNIDIR))
1195 continue;
1196
1197 clear_io_state(td);
1198
1199 fio_gettime(&td->start, NULL);
1200
1201 do_verify(td);
1202
1203 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1204
1205 if (td->error || td->terminate)
1206 break;
1207 }
1208
1209 update_rusage_stat(td);
1210 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1211 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1212 td->ts.total_run_time = mtime_since_now(&td->epoch);
1213 td->ts.io_bytes[0] = td->io_bytes[0];
1214 td->ts.io_bytes[1] = td->io_bytes[1];
1215
1216 fio_mutex_down(writeout_mutex);
1217 if (td->ts.bw_log) {
1218 if (td->o.bw_log_file) {
1219 finish_log_named(td, td->ts.bw_log,
1220 td->o.bw_log_file, "bw");
1221 } else
1222 finish_log(td, td->ts.bw_log, "bw");
1223 }
1224 if (td->ts.lat_log) {
1225 if (td->o.lat_log_file) {
1226 finish_log_named(td, td->ts.lat_log,
1227 td->o.lat_log_file, "lat");
1228 } else
1229 finish_log(td, td->ts.lat_log, "lat");
1230 }
1231 if (td->ts.slat_log) {
1232 if (td->o.lat_log_file) {
1233 finish_log_named(td, td->ts.slat_log,
1234 td->o.lat_log_file, "slat");
1235 } else
1236 finish_log(td, td->ts.slat_log, "slat");
1237 }
1238 if (td->ts.clat_log) {
1239 if (td->o.lat_log_file) {
1240 finish_log_named(td, td->ts.clat_log,
1241 td->o.lat_log_file, "clat");
1242 } else
1243 finish_log(td, td->ts.clat_log, "clat");
1244 }
1245 fio_mutex_up(writeout_mutex);
1246 if (td->o.exec_postrun)
1247 exec_string(td->o.exec_postrun);
1248
1249 if (exitall_on_terminate)
1250 terminate_threads(td->groupid);
1251
1252err:
1253 if (td->error)
1254 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1255 td->verror);
1256
1257 if (td->o.verify_async)
1258 verify_async_exit(td);
1259
1260 close_and_free_files(td);
1261 close_ioengine(td);
1262 cleanup_io_u(td);
1263 cgroup_shutdown(td, &cgroup_mnt);
1264
1265 if (td->o.cpumask_set) {
1266 int ret = fio_cpuset_exit(&td->o.cpumask);
1267
1268 td_verror(td, ret, "fio_cpuset_exit");
1269 }
1270
1271 /*
1272 * do this very late, it will log file closing as well
1273 */
1274 if (td->o.write_iolog_file)
1275 write_iolog_close(td);
1276
1277 options_mem_free(td);
1278 td_set_runstate(td, TD_EXITED);
1279 return (void *) (unsigned long) td->error;
1280}
1281
1282/*
1283 * We cannot pass the td data into a forked process, so attach the td and
1284 * pass it to the thread worker.
1285 */
1286static int fork_main(int shmid, int offset)
1287{
1288 struct thread_data *td;
1289 void *data, *ret;
1290
1291 data = shmat(shmid, NULL, 0);
1292 if (data == (void *) -1) {
1293 int __err = errno;
1294
1295 perror("shmat");
1296 return __err;
1297 }
1298
1299 td = data + offset * sizeof(struct thread_data);
1300 ret = thread_main(td);
1301 shmdt(data);
1302 return (int) (unsigned long) ret;
1303}
1304
1305/*
1306 * Run over the job map and reap the threads that have exited, if any.
1307 */
1308static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1309{
1310 struct thread_data *td;
1311 int i, cputhreads, realthreads, pending, status, ret;
1312
1313 /*
1314 * reap exited threads (TD_EXITED -> TD_REAPED)
1315 */
1316 realthreads = pending = cputhreads = 0;
1317 for_each_td(td, i) {
1318 int flags = 0;
1319
1320 /*
1321 * ->io_ops is NULL for a thread that has closed its
1322 * io engine
1323 */
1324 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1325 cputhreads++;
1326 else
1327 realthreads++;
1328
1329 if (!td->pid) {
1330 pending++;
1331 continue;
1332 }
1333 if (td->runstate == TD_REAPED)
1334 continue;
1335 if (td->o.use_thread) {
1336 if (td->runstate == TD_EXITED) {
1337 td_set_runstate(td, TD_REAPED);
1338 goto reaped;
1339 }
1340 continue;
1341 }
1342
1343 flags = WNOHANG;
1344 if (td->runstate == TD_EXITED)
1345 flags = 0;
1346
1347 /*
1348 * check if someone quit or got killed in an unusual way
1349 */
1350 ret = waitpid(td->pid, &status, flags);
1351 if (ret < 0) {
1352 if (errno == ECHILD) {
1353 log_err("fio: pid=%d disappeared %d\n",
1354 (int) td->pid, td->runstate);
1355 td_set_runstate(td, TD_REAPED);
1356 goto reaped;
1357 }
1358 perror("waitpid");
1359 } else if (ret == td->pid) {
1360 if (WIFSIGNALED(status)) {
1361 int sig = WTERMSIG(status);
1362
1363 if (sig != SIGTERM)
1364 log_err("fio: pid=%d, got signal=%d\n",
1365 (int) td->pid, sig);
1366 td_set_runstate(td, TD_REAPED);
1367 goto reaped;
1368 }
1369 if (WIFEXITED(status)) {
1370 if (WEXITSTATUS(status) && !td->error)
1371 td->error = WEXITSTATUS(status);
1372
1373 td_set_runstate(td, TD_REAPED);
1374 goto reaped;
1375 }
1376 }
1377
1378 /*
1379 * thread is not dead, continue
1380 */
1381 pending++;
1382 continue;
1383reaped:
1384 (*nr_running)--;
1385 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1386 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1387 if (!td->pid)
1388 pending--;
1389
1390 if (td->error)
1391 exit_value++;
1392
1393 done_secs += mtime_since_now(&td->epoch) / 1000;
1394 }
1395
1396 if (*nr_running == cputhreads && !pending && realthreads)
1397 terminate_threads(TERMINATE_ALL);
1398}
1399
1400static void *gtod_thread_main(void *data)
1401{
1402 fio_mutex_up(startup_mutex);
1403
1404 /*
1405 * As long as we have jobs around, update the clock. It would be nice
1406 * to have some way of NOT hammering that CPU with gettimeofday(),
1407 * but I'm not sure what to use outside of a simple CPU nop to relax
1408 * it - we don't want to lose precision.
1409 */
1410 while (threads) {
1411 fio_gtod_update();
1412 nop;
1413 }
1414
1415 return NULL;
1416}
1417
1418static int fio_start_gtod_thread(void)
1419{
1420 pthread_attr_t attr;
1421 int ret;
1422
1423 pthread_attr_init(&attr);
1424 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1425 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1426 pthread_attr_destroy(&attr);
1427 if (ret) {
1428 log_err("Can't create gtod thread: %s\n", strerror(ret));
1429 return 1;
1430 }
1431
1432 ret = pthread_detach(gtod_thread);
1433 if (ret) {
1434 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1435 return 1;
1436 }
1437
1438 dprint(FD_MUTEX, "wait on startup_mutex\n");
1439 fio_mutex_down(startup_mutex);
1440 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1441 return 0;
1442}
1443
1444/*
1445 * Main function for kicking off and reaping jobs, as needed.
1446 */
1447static void run_threads(void)
1448{
1449 struct thread_data *td;
1450 unsigned long spent;
1451 int i, todo, nr_running, m_rate, t_rate, nr_started;
1452
1453 if (fio_pin_memory())
1454 return;
1455
1456 if (fio_gtod_offload && fio_start_gtod_thread())
1457 return;
1458
1459 if (!terse_output) {
1460 log_info("Starting ");
1461 if (nr_thread)
1462 log_info("%d thread%s", nr_thread,
1463 nr_thread > 1 ? "s" : "");
1464 if (nr_process) {
1465 if (nr_thread)
1466 printf(" and ");
1467 log_info("%d process%s", nr_process,
1468 nr_process > 1 ? "es" : "");
1469 }
1470 log_info("\n");
1471 fflush(stdout);
1472 }
1473
1474 set_sig_handlers();
1475
1476 todo = thread_number;
1477 nr_running = 0;
1478 nr_started = 0;
1479 m_rate = t_rate = 0;
1480
1481 for_each_td(td, i) {
1482 print_status_init(td->thread_number - 1);
1483
1484 if (!td->o.create_serialize) {
1485 init_disk_util(td);
1486 continue;
1487 }
1488
1489 /*
1490 * do file setup here so it happens sequentially,
1491 * we don't want X number of threads getting their
1492 * client data interspersed on disk
1493 */
1494 if (setup_files(td)) {
1495 exit_value++;
1496 if (td->error)
1497 log_err("fio: pid=%d, err=%d/%s\n",
1498 (int) td->pid, td->error, td->verror);
1499 td_set_runstate(td, TD_REAPED);
1500 todo--;
1501 } else {
1502 struct fio_file *f;
1503 unsigned int j;
1504
1505 /*
1506 * for sharing to work, each job must always open
1507 * its own files. so close them, if we opened them
1508 * for creation
1509 */
1510 for_each_file(td, f, j) {
1511 if (fio_file_open(f))
1512 td_io_close_file(td, f);
1513 }
1514 }
1515
1516 init_disk_util(td);
1517 }
1518
1519 set_genesis_time();
1520
1521 while (todo) {
1522 struct thread_data *map[MAX_JOBS];
1523 struct timeval this_start;
1524 int this_jobs = 0, left;
1525
1526 /*
1527 * create threads (TD_NOT_CREATED -> TD_CREATED)
1528 */
1529 for_each_td(td, i) {
1530 if (td->runstate != TD_NOT_CREATED)
1531 continue;
1532
1533 /*
1534 * never got a chance to start, killed by other
1535 * thread for some reason
1536 */
1537 if (td->terminate) {
1538 todo--;
1539 continue;
1540 }
1541
1542 if (td->o.start_delay) {
1543 spent = mtime_since_genesis();
1544
1545 if (td->o.start_delay * 1000 > spent)
1546 continue;
1547 }
1548
1549 if (td->o.stonewall && (nr_started || nr_running)) {
1550 dprint(FD_PROCESS, "%s: stonewall wait\n",
1551 td->o.name);
1552 break;
1553 }
1554
1555 /*
1556 * Set state to created. Thread will transition
1557 * to TD_INITIALIZED when it's done setting up.
1558 */
1559 td_set_runstate(td, TD_CREATED);
1560 map[this_jobs++] = td;
1561 nr_started++;
1562
1563 if (td->o.use_thread) {
1564 int ret;
1565
1566 dprint(FD_PROCESS, "will pthread_create\n");
1567 ret = pthread_create(&td->thread, NULL,
1568 thread_main, td);
1569 if (ret) {
1570 log_err("pthread_create: %s\n",
1571 strerror(ret));
1572 nr_started--;
1573 break;
1574 }
1575 ret = pthread_detach(td->thread);
1576 if (ret)
1577 log_err("pthread_detach: %s",
1578 strerror(ret));
1579 } else {
1580 pid_t pid;
1581 dprint(FD_PROCESS, "will fork\n");
1582 pid = fork();
1583 if (!pid) {
1584 int ret = fork_main(shm_id, i);
1585
1586 _exit(ret);
1587 } else if (i == fio_debug_jobno)
1588 *fio_debug_jobp = pid;
1589 }
1590 dprint(FD_MUTEX, "wait on startup_mutex\n");
1591 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1592 log_err("fio: job startup hung? exiting.\n");
1593 terminate_threads(TERMINATE_ALL);
1594 fio_abort = 1;
1595 nr_started--;
1596 break;
1597 }
1598 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1599 }
1600
1601 /*
1602 * Wait for the started threads to transition to
1603 * TD_INITIALIZED.
1604 */
1605 fio_gettime(&this_start, NULL);
1606 left = this_jobs;
1607 while (left && !fio_abort) {
1608 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1609 break;
1610
1611 usleep(100000);
1612
1613 for (i = 0; i < this_jobs; i++) {
1614 td = map[i];
1615 if (!td)
1616 continue;
1617 if (td->runstate == TD_INITIALIZED) {
1618 map[i] = NULL;
1619 left--;
1620 } else if (td->runstate >= TD_EXITED) {
1621 map[i] = NULL;
1622 left--;
1623 todo--;
1624 nr_running++; /* work-around... */
1625 }
1626 }
1627 }
1628
1629 if (left) {
1630 log_err("fio: %d jobs failed to start\n", left);
1631 for (i = 0; i < this_jobs; i++) {
1632 td = map[i];
1633 if (!td)
1634 continue;
1635 kill(td->pid, SIGTERM);
1636 }
1637 break;
1638 }
1639
1640 /*
1641 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1642 */
1643 for_each_td(td, i) {
1644 if (td->runstate != TD_INITIALIZED)
1645 continue;
1646
1647 if (in_ramp_time(td))
1648 td_set_runstate(td, TD_RAMP);
1649 else
1650 td_set_runstate(td, TD_RUNNING);
1651 nr_running++;
1652 nr_started--;
1653 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1654 t_rate += td->o.rate[0] + td->o.rate[1];
1655 todo--;
1656 fio_mutex_up(td->mutex);
1657 }
1658
1659 reap_threads(&nr_running, &t_rate, &m_rate);
1660
1661 if (todo)
1662 usleep(100000);
1663 }
1664
1665 while (nr_running) {
1666 reap_threads(&nr_running, &t_rate, &m_rate);
1667 usleep(10000);
1668 }
1669
1670 update_io_ticks();
1671 fio_unpin_memory();
1672}
1673
1674int main(int argc, char *argv[])
1675{
1676 long ps;
1677
1678 sinit();
1679 init_rand(&__fio_rand_state);
1680
1681 /*
1682 * We need locale for number printing, if it isn't set then just
1683 * go with the US format.
1684 */
1685 if (!getenv("LC_NUMERIC"))
1686 setlocale(LC_NUMERIC, "en_US");
1687
1688 ps = sysconf(_SC_PAGESIZE);
1689 if (ps < 0) {
1690 log_err("Failed to get page size\n");
1691 return 1;
1692 }
1693
1694 page_size = ps;
1695 page_mask = ps - 1;
1696
1697 fio_keywords_init();
1698
1699 if (parse_options(argc, argv))
1700 return 1;
1701
1702 if (exec_profile && load_profile(exec_profile))
1703 return 1;
1704
1705 if (!thread_number)
1706 return 0;
1707
1708 if (write_bw_log) {
1709 setup_log(&agg_io_log[DDIR_READ]);
1710 setup_log(&agg_io_log[DDIR_WRITE]);
1711 }
1712
1713 startup_mutex = fio_mutex_init(0);
1714 if (startup_mutex == NULL)
1715 return 1;
1716 writeout_mutex = fio_mutex_init(1);
1717 if (writeout_mutex == NULL)
1718 return 1;
1719
1720 set_genesis_time();
1721 create_disk_util_thread();
1722
1723 cgroup_list = smalloc(sizeof(*cgroup_list));
1724 INIT_FLIST_HEAD(cgroup_list);
1725
1726 run_threads();
1727
1728 if (!fio_abort) {
1729 show_run_stats();
1730 if (write_bw_log) {
1731 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1732 __finish_log(agg_io_log[DDIR_WRITE],
1733 "agg-write_bw.log");
1734 }
1735 }
1736
1737 cgroup_kill(cgroup_list);
1738 sfree(cgroup_list);
1739 sfree(cgroup_mnt);
1740
1741 fio_mutex_remove(startup_mutex);
1742 fio_mutex_remove(writeout_mutex);
1743 return exit_value;
1744}