Fio 3.7
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32
33#include "fio.h"
34#include "smalloc.h"
35#include "verify.h"
36#include "diskutil.h"
37#include "cgroup.h"
38#include "profile.h"
39#include "lib/rand.h"
40#include "lib/memalign.h"
41#include "server.h"
42#include "lib/getrusage.h"
43#include "idletime.h"
44#include "err.h"
45#include "workqueue.h"
46#include "lib/mountcheck.h"
47#include "rate-submit.h"
48#include "helper_thread.h"
49#include "pshared.h"
50
51static struct fio_sem *startup_sem;
52static struct flist_head *cgroup_list;
53static char *cgroup_mnt;
54static int exit_value;
55static volatile int fio_abort;
56static unsigned int nr_process = 0;
57static unsigned int nr_thread = 0;
58
59struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61int groupid = 0;
62unsigned int thread_number = 0;
63unsigned int stat_number = 0;
64int shm_id = 0;
65int temp_stall_ts;
66unsigned long done_secs = 0;
67
68#define JOB_START_TIMEOUT (5 * 1000)
69
70static void sig_int(int sig)
71{
72 if (threads) {
73 if (is_backend)
74 fio_server_got_signal(sig);
75 else {
76 log_info("\nfio: terminating on signal %d\n", sig);
77 log_info_flush();
78 exit_value = 128;
79 }
80
81 fio_terminate_threads(TERMINATE_ALL);
82 }
83}
84
85void sig_show_status(int sig)
86{
87 show_running_run_stats();
88}
89
90static void set_sig_handlers(void)
91{
92 struct sigaction act;
93
94 memset(&act, 0, sizeof(act));
95 act.sa_handler = sig_int;
96 act.sa_flags = SA_RESTART;
97 sigaction(SIGINT, &act, NULL);
98
99 memset(&act, 0, sizeof(act));
100 act.sa_handler = sig_int;
101 act.sa_flags = SA_RESTART;
102 sigaction(SIGTERM, &act, NULL);
103
104/* Windows uses SIGBREAK as a quit signal from other applications */
105#ifdef WIN32
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGBREAK, &act, NULL);
110#endif
111
112 memset(&act, 0, sizeof(act));
113 act.sa_handler = sig_show_status;
114 act.sa_flags = SA_RESTART;
115 sigaction(SIGUSR1, &act, NULL);
116
117 if (is_backend) {
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGPIPE, &act, NULL);
122 }
123}
124
125/*
126 * Check if we are above the minimum rate given.
127 */
128static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129 enum fio_ddir ddir)
130{
131 unsigned long long bytes = 0;
132 unsigned long iops = 0;
133 unsigned long spent;
134 unsigned long rate;
135 unsigned int ratemin = 0;
136 unsigned int rate_iops = 0;
137 unsigned int rate_iops_min = 0;
138
139 assert(ddir_rw(ddir));
140
141 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142 return false;
143
144 /*
145 * allow a 2 second settle period in the beginning
146 */
147 if (mtime_since(&td->start, now) < 2000)
148 return false;
149
150 iops += td->this_io_blocks[ddir];
151 bytes += td->this_io_bytes[ddir];
152 ratemin += td->o.ratemin[ddir];
153 rate_iops += td->o.rate_iops[ddir];
154 rate_iops_min += td->o.rate_iops_min[ddir];
155
156 /*
157 * if rate blocks is set, sample is running
158 */
159 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160 spent = mtime_since(&td->lastrate[ddir], now);
161 if (spent < td->o.ratecycle)
162 return false;
163
164 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165 /*
166 * check bandwidth specified rate
167 */
168 if (bytes < td->rate_bytes[ddir]) {
169 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170 td->o.name, ratemin, bytes);
171 return true;
172 } else {
173 if (spent)
174 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175 else
176 rate = 0;
177
178 if (rate < ratemin ||
179 bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181 td->o.name, ratemin, rate);
182 return true;
183 }
184 }
185 } else {
186 /*
187 * checks iops specified rate
188 */
189 if (iops < rate_iops) {
190 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191 td->o.name, rate_iops, iops);
192 return true;
193 } else {
194 if (spent)
195 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196 else
197 rate = 0;
198
199 if (rate < rate_iops_min ||
200 iops < td->rate_blocks[ddir]) {
201 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202 td->o.name, rate_iops_min, rate);
203 return true;
204 }
205 }
206 }
207 }
208
209 td->rate_bytes[ddir] = bytes;
210 td->rate_blocks[ddir] = iops;
211 memcpy(&td->lastrate[ddir], now, sizeof(*now));
212 return false;
213}
214
215static bool check_min_rate(struct thread_data *td, struct timespec *now)
216{
217 bool ret = false;
218
219 if (td->bytes_done[DDIR_READ])
220 ret |= __check_min_rate(td, now, DDIR_READ);
221 if (td->bytes_done[DDIR_WRITE])
222 ret |= __check_min_rate(td, now, DDIR_WRITE);
223 if (td->bytes_done[DDIR_TRIM])
224 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226 return ret;
227}
228
229/*
230 * When job exits, we can cancel the in-flight IO if we are using async
231 * io. Attempt to do so.
232 */
233static void cleanup_pending_aio(struct thread_data *td)
234{
235 int r;
236
237 /*
238 * get immediately available events, if any
239 */
240 r = io_u_queued_complete(td, 0);
241 if (r < 0)
242 return;
243
244 /*
245 * now cancel remaining active events
246 */
247 if (td->io_ops->cancel) {
248 struct io_u *io_u;
249 int i;
250
251 io_u_qiter(&td->io_u_all, io_u, i) {
252 if (io_u->flags & IO_U_F_FLIGHT) {
253 r = td->io_ops->cancel(td, io_u);
254 if (!r)
255 put_io_u(td, io_u);
256 }
257 }
258 }
259
260 if (td->cur_depth)
261 r = io_u_queued_complete(td, td->cur_depth);
262}
263
264/*
265 * Helper to handle the final sync of a file. Works just like the normal
266 * io path, just does everything sync.
267 */
268static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269{
270 struct io_u *io_u = __get_io_u(td);
271 enum fio_q_status ret;
272
273 if (!io_u)
274 return true;
275
276 io_u->ddir = DDIR_SYNC;
277 io_u->file = f;
278
279 if (td_io_prep(td, io_u)) {
280 put_io_u(td, io_u);
281 return true;
282 }
283
284requeue:
285 ret = td_io_queue(td, io_u);
286 switch (ret) {
287 case FIO_Q_QUEUED:
288 td_io_commit(td);
289 if (io_u_queued_complete(td, 1) < 0)
290 return true;
291 break;
292 case FIO_Q_COMPLETED:
293 if (io_u->error) {
294 td_verror(td, io_u->error, "td_io_queue");
295 return true;
296 }
297
298 if (io_u_sync_complete(td, io_u) < 0)
299 return true;
300 break;
301 case FIO_Q_BUSY:
302 td_io_commit(td);
303 goto requeue;
304 }
305
306 return false;
307}
308
309static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
310{
311 int ret;
312
313 if (fio_file_open(f))
314 return fio_io_sync(td, f);
315
316 if (td_io_open_file(td, f))
317 return 1;
318
319 ret = fio_io_sync(td, f);
320 td_io_close_file(td, f);
321 return ret;
322}
323
324static inline void __update_ts_cache(struct thread_data *td)
325{
326 fio_gettime(&td->ts_cache, NULL);
327}
328
329static inline void update_ts_cache(struct thread_data *td)
330{
331 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
332 __update_ts_cache(td);
333}
334
335static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
336{
337 if (in_ramp_time(td))
338 return false;
339 if (!td->o.timeout)
340 return false;
341 if (utime_since(&td->epoch, t) >= td->o.timeout)
342 return true;
343
344 return false;
345}
346
347/*
348 * We need to update the runtime consistently in ms, but keep a running
349 * tally of the current elapsed time in microseconds for sub millisecond
350 * updates.
351 */
352static inline void update_runtime(struct thread_data *td,
353 unsigned long long *elapsed_us,
354 const enum fio_ddir ddir)
355{
356 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
357 return;
358
359 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
360 elapsed_us[ddir] += utime_since_now(&td->start);
361 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
362}
363
364static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
365 int *retptr)
366{
367 int ret = *retptr;
368
369 if (ret < 0 || td->error) {
370 int err = td->error;
371 enum error_type_bit eb;
372
373 if (ret < 0)
374 err = -ret;
375
376 eb = td_error_type(ddir, err);
377 if (!(td->o.continue_on_error & (1 << eb)))
378 return true;
379
380 if (td_non_fatal_error(td, eb, err)) {
381 /*
382 * Continue with the I/Os in case of
383 * a non fatal error.
384 */
385 update_error_count(td, err);
386 td_clear_error(td);
387 *retptr = 0;
388 return false;
389 } else if (td->o.fill_device && err == ENOSPC) {
390 /*
391 * We expect to hit this error if
392 * fill_device option is set.
393 */
394 td_clear_error(td);
395 fio_mark_td_terminate(td);
396 return true;
397 } else {
398 /*
399 * Stop the I/O in case of a fatal
400 * error.
401 */
402 update_error_count(td, err);
403 return true;
404 }
405 }
406
407 return false;
408}
409
410static void check_update_rusage(struct thread_data *td)
411{
412 if (td->update_rusage) {
413 td->update_rusage = 0;
414 update_rusage_stat(td);
415 fio_sem_up(td->rusage_sem);
416 }
417}
418
419static int wait_for_completions(struct thread_data *td, struct timespec *time)
420{
421 const int full = queue_full(td);
422 int min_evts = 0;
423 int ret;
424
425 if (td->flags & TD_F_REGROW_LOGS)
426 return io_u_quiesce(td);
427
428 /*
429 * if the queue is full, we MUST reap at least 1 event
430 */
431 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
432 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
433 min_evts = 1;
434
435 if (time && (__should_check_rate(td, DDIR_READ) ||
436 __should_check_rate(td, DDIR_WRITE) ||
437 __should_check_rate(td, DDIR_TRIM)))
438 fio_gettime(time, NULL);
439
440 do {
441 ret = io_u_queued_complete(td, min_evts);
442 if (ret < 0)
443 break;
444 } while (full && (td->cur_depth > td->o.iodepth_low));
445
446 return ret;
447}
448
449int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
450 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
451 struct timespec *comp_time)
452{
453 switch (*ret) {
454 case FIO_Q_COMPLETED:
455 if (io_u->error) {
456 *ret = -io_u->error;
457 clear_io_u(td, io_u);
458 } else if (io_u->resid) {
459 int bytes = io_u->xfer_buflen - io_u->resid;
460 struct fio_file *f = io_u->file;
461
462 if (bytes_issued)
463 *bytes_issued += bytes;
464
465 if (!from_verify)
466 trim_io_piece(td, io_u);
467
468 /*
469 * zero read, fail
470 */
471 if (!bytes) {
472 if (!from_verify)
473 unlog_io_piece(td, io_u);
474 td_verror(td, EIO, "full resid");
475 put_io_u(td, io_u);
476 break;
477 }
478
479 io_u->xfer_buflen = io_u->resid;
480 io_u->xfer_buf += bytes;
481 io_u->offset += bytes;
482
483 if (ddir_rw(io_u->ddir))
484 td->ts.short_io_u[io_u->ddir]++;
485
486 if (io_u->offset == f->real_file_size)
487 goto sync_done;
488
489 requeue_io_u(td, &io_u);
490 } else {
491sync_done:
492 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
493 __should_check_rate(td, DDIR_WRITE) ||
494 __should_check_rate(td, DDIR_TRIM)))
495 fio_gettime(comp_time, NULL);
496
497 *ret = io_u_sync_complete(td, io_u);
498 if (*ret < 0)
499 break;
500 }
501
502 if (td->flags & TD_F_REGROW_LOGS)
503 regrow_logs(td);
504
505 /*
506 * when doing I/O (not when verifying),
507 * check for any errors that are to be ignored
508 */
509 if (!from_verify)
510 break;
511
512 return 0;
513 case FIO_Q_QUEUED:
514 /*
515 * if the engine doesn't have a commit hook,
516 * the io_u is really queued. if it does have such
517 * a hook, it has to call io_u_queued() itself.
518 */
519 if (td->io_ops->commit == NULL)
520 io_u_queued(td, io_u);
521 if (bytes_issued)
522 *bytes_issued += io_u->xfer_buflen;
523 break;
524 case FIO_Q_BUSY:
525 if (!from_verify)
526 unlog_io_piece(td, io_u);
527 requeue_io_u(td, &io_u);
528 td_io_commit(td);
529 break;
530 default:
531 assert(*ret < 0);
532 td_verror(td, -(*ret), "td_io_queue");
533 break;
534 }
535
536 if (break_on_this_error(td, ddir, ret))
537 return 1;
538
539 return 0;
540}
541
542static inline bool io_in_polling(struct thread_data *td)
543{
544 return !td->o.iodepth_batch_complete_min &&
545 !td->o.iodepth_batch_complete_max;
546}
547/*
548 * Unlinks files from thread data fio_file structure
549 */
550static int unlink_all_files(struct thread_data *td)
551{
552 struct fio_file *f;
553 unsigned int i;
554 int ret = 0;
555
556 for_each_file(td, f, i) {
557 if (f->filetype != FIO_TYPE_FILE)
558 continue;
559 ret = td_io_unlink_file(td, f);
560 if (ret)
561 break;
562 }
563
564 if (ret)
565 td_verror(td, ret, "unlink_all_files");
566
567 return ret;
568}
569
570/*
571 * Check if io_u will overlap an in-flight IO in the queue
572 */
573static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574{
575 bool overlap;
576 struct io_u *check_io_u;
577 unsigned long long x1, x2, y1, y2;
578 int i;
579
580 x1 = io_u->offset;
581 x2 = io_u->offset + io_u->buflen;
582 overlap = false;
583 io_u_qiter(q, check_io_u, i) {
584 if (check_io_u->flags & IO_U_F_FLIGHT) {
585 y1 = check_io_u->offset;
586 y2 = check_io_u->offset + check_io_u->buflen;
587
588 if (x1 < y2 && y1 < x2) {
589 overlap = true;
590 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
591 x1, io_u->buflen,
592 y1, check_io_u->buflen);
593 break;
594 }
595 }
596 }
597
598 return overlap;
599}
600
601static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602{
603 /*
604 * Check for overlap if the user asked us to, and we have
605 * at least one IO in flight besides this one.
606 */
607 if (td->o.serialize_overlap && td->cur_depth > 1 &&
608 in_flight_overlap(&td->io_u_all, io_u))
609 return FIO_Q_BUSY;
610
611 return td_io_queue(td, io_u);
612}
613
614/*
615 * The main verify engine. Runs over the writes we previously submitted,
616 * reads the blocks back in, and checks the crc/md5 of the data.
617 */
618static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619{
620 struct fio_file *f;
621 struct io_u *io_u;
622 int ret, min_events;
623 unsigned int i;
624
625 dprint(FD_VERIFY, "starting loop\n");
626
627 /*
628 * sync io first and invalidate cache, to make sure we really
629 * read from disk.
630 */
631 for_each_file(td, f, i) {
632 if (!fio_file_open(f))
633 continue;
634 if (fio_io_sync(td, f))
635 break;
636 if (file_invalidate_cache(td, f))
637 break;
638 }
639
640 check_update_rusage(td);
641
642 if (td->error)
643 return;
644
645 /*
646 * verify_state needs to be reset before verification
647 * proceeds so that expected random seeds match actual
648 * random seeds in headers. The main loop will reset
649 * all random number generators if randrepeat is set.
650 */
651 if (!td->o.rand_repeatable)
652 td_fill_verify_state_seed(td);
653
654 td_set_runstate(td, TD_VERIFYING);
655
656 io_u = NULL;
657 while (!td->terminate) {
658 enum fio_ddir ddir;
659 int full;
660
661 update_ts_cache(td);
662 check_update_rusage(td);
663
664 if (runtime_exceeded(td, &td->ts_cache)) {
665 __update_ts_cache(td);
666 if (runtime_exceeded(td, &td->ts_cache)) {
667 fio_mark_td_terminate(td);
668 break;
669 }
670 }
671
672 if (flow_threshold_exceeded(td))
673 continue;
674
675 if (!td->o.experimental_verify) {
676 io_u = __get_io_u(td);
677 if (!io_u)
678 break;
679
680 if (get_next_verify(td, io_u)) {
681 put_io_u(td, io_u);
682 break;
683 }
684
685 if (td_io_prep(td, io_u)) {
686 put_io_u(td, io_u);
687 break;
688 }
689 } else {
690 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691 break;
692
693 while ((io_u = get_io_u(td)) != NULL) {
694 if (IS_ERR_OR_NULL(io_u)) {
695 io_u = NULL;
696 ret = FIO_Q_BUSY;
697 goto reap;
698 }
699
700 /*
701 * We are only interested in the places where
702 * we wrote or trimmed IOs. Turn those into
703 * reads for verification purposes.
704 */
705 if (io_u->ddir == DDIR_READ) {
706 /*
707 * Pretend we issued it for rwmix
708 * accounting
709 */
710 td->io_issues[DDIR_READ]++;
711 put_io_u(td, io_u);
712 continue;
713 } else if (io_u->ddir == DDIR_TRIM) {
714 io_u->ddir = DDIR_READ;
715 io_u_set(td, io_u, IO_U_F_TRIMMED);
716 break;
717 } else if (io_u->ddir == DDIR_WRITE) {
718 io_u->ddir = DDIR_READ;
719 populate_verify_io_u(td, io_u);
720 break;
721 } else {
722 put_io_u(td, io_u);
723 continue;
724 }
725 }
726
727 if (!io_u)
728 break;
729 }
730
731 if (verify_state_should_stop(td, io_u)) {
732 put_io_u(td, io_u);
733 break;
734 }
735
736 if (td->o.verify_async)
737 io_u->end_io = verify_io_u_async;
738 else
739 io_u->end_io = verify_io_u;
740
741 ddir = io_u->ddir;
742 if (!td->o.disable_slat)
743 fio_gettime(&io_u->start_time, NULL);
744
745 ret = io_u_submit(td, io_u);
746
747 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748 break;
749
750 /*
751 * if we can queue more, do so. but check if there are
752 * completed io_u's first. Note that we can get BUSY even
753 * without IO queued, if the system is resource starved.
754 */
755reap:
756 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757 if (full || io_in_polling(td))
758 ret = wait_for_completions(td, NULL);
759
760 if (ret < 0)
761 break;
762 }
763
764 check_update_rusage(td);
765
766 if (!td->error) {
767 min_events = td->cur_depth;
768
769 if (min_events)
770 ret = io_u_queued_complete(td, min_events);
771 } else
772 cleanup_pending_aio(td);
773
774 td_set_runstate(td, TD_RUNNING);
775
776 dprint(FD_VERIFY, "exiting loop\n");
777}
778
779static bool exceeds_number_ios(struct thread_data *td)
780{
781 unsigned long long number_ios;
782
783 if (!td->o.number_ios)
784 return false;
785
786 number_ios = ddir_rw_sum(td->io_blocks);
787 number_ios += td->io_u_queued + td->io_u_in_flight;
788
789 return number_ios >= (td->o.number_ios * td->loops);
790}
791
792static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793{
794 unsigned long long bytes, limit;
795
796 if (td_rw(td))
797 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798 else if (td_write(td))
799 bytes = this_bytes[DDIR_WRITE];
800 else if (td_read(td))
801 bytes = this_bytes[DDIR_READ];
802 else
803 bytes = this_bytes[DDIR_TRIM];
804
805 if (td->o.io_size)
806 limit = td->o.io_size;
807 else
808 limit = td->o.size;
809
810 limit *= td->loops;
811 return bytes >= limit || exceeds_number_ios(td);
812}
813
814static bool io_issue_bytes_exceeded(struct thread_data *td)
815{
816 return io_bytes_exceeded(td, td->io_issue_bytes);
817}
818
819static bool io_complete_bytes_exceeded(struct thread_data *td)
820{
821 return io_bytes_exceeded(td, td->this_io_bytes);
822}
823
824/*
825 * used to calculate the next io time for rate control
826 *
827 */
828static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829{
830 uint64_t bps = td->rate_bps[ddir];
831
832 assert(!(td->flags & TD_F_CHILD));
833
834 if (td->o.rate_process == RATE_PROCESS_POISSON) {
835 uint64_t val, iops;
836
837 iops = bps / td->o.bs[ddir];
838 val = (int64_t) (1000000 / iops) *
839 -logf(__rand_0_1(&td->poisson_state[ddir]));
840 if (val) {
841 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842 (unsigned long long) 1000000 / val,
843 ddir);
844 }
845 td->last_usec[ddir] += val;
846 return td->last_usec[ddir];
847 } else if (bps) {
848 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849 uint64_t secs = bytes / bps;
850 uint64_t remainder = bytes % bps;
851
852 return remainder * 1000000 / bps + secs * 1000000;
853 }
854
855 return 0;
856}
857
858static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859{
860 unsigned long long b;
861 uint64_t total;
862 int left;
863
864 b = ddir_rw_sum(td->io_blocks);
865 if (b % td->o.thinktime_blocks)
866 return;
867
868 io_u_quiesce(td);
869
870 total = 0;
871 if (td->o.thinktime_spin)
872 total = usec_spin(td->o.thinktime_spin);
873
874 left = td->o.thinktime - total;
875 if (left)
876 total += usec_sleep(td, left);
877
878 /*
879 * If we're ignoring thinktime for the rate, add the number of bytes
880 * we would have done while sleeping, minus one block to ensure we
881 * start issuing immediately after the sleep.
882 */
883 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885 uint64_t bs = td->o.min_bs[ddir];
886 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887 uint64_t over;
888
889 if (usperop <= total)
890 over = bs;
891 else
892 over = (usperop - total) / usperop * -bs;
893
894 td->rate_io_issue_bytes[ddir] += (missed - over);
895 }
896}
897
898/*
899 * Main IO worker function. It retrieves io_u's to process and queues
900 * and reaps them, checking for rate and errors along the way.
901 *
902 * Returns number of bytes written and trimmed.
903 */
904static void do_io(struct thread_data *td, uint64_t *bytes_done)
905{
906 unsigned int i;
907 int ret = 0;
908 uint64_t total_bytes, bytes_issued = 0;
909
910 for (i = 0; i < DDIR_RWDIR_CNT; i++)
911 bytes_done[i] = td->bytes_done[i];
912
913 if (in_ramp_time(td))
914 td_set_runstate(td, TD_RAMP);
915 else
916 td_set_runstate(td, TD_RUNNING);
917
918 lat_target_init(td);
919
920 total_bytes = td->o.size;
921 /*
922 * Allow random overwrite workloads to write up to io_size
923 * before starting verification phase as 'size' doesn't apply.
924 */
925 if (td_write(td) && td_random(td) && td->o.norandommap)
926 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
927 /*
928 * If verify_backlog is enabled, we'll run the verify in this
929 * handler as well. For that case, we may need up to twice the
930 * amount of bytes.
931 */
932 if (td->o.verify != VERIFY_NONE &&
933 (td_write(td) && td->o.verify_backlog))
934 total_bytes += td->o.size;
935
936 /* In trimwrite mode, each byte is trimmed and then written, so
937 * allow total_bytes to be twice as big */
938 if (td_trimwrite(td))
939 total_bytes += td->total_io_size;
940
941 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
942 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
943 td->o.time_based) {
944 struct timespec comp_time;
945 struct io_u *io_u;
946 int full;
947 enum fio_ddir ddir;
948
949 check_update_rusage(td);
950
951 if (td->terminate || td->done)
952 break;
953
954 update_ts_cache(td);
955
956 if (runtime_exceeded(td, &td->ts_cache)) {
957 __update_ts_cache(td);
958 if (runtime_exceeded(td, &td->ts_cache)) {
959 fio_mark_td_terminate(td);
960 break;
961 }
962 }
963
964 if (flow_threshold_exceeded(td))
965 continue;
966
967 /*
968 * Break if we exceeded the bytes. The exception is time
969 * based runs, but we still need to break out of the loop
970 * for those to run verification, if enabled.
971 */
972 if (bytes_issued >= total_bytes &&
973 (!td->o.time_based ||
974 (td->o.time_based && td->o.verify != VERIFY_NONE)))
975 break;
976
977 io_u = get_io_u(td);
978 if (IS_ERR_OR_NULL(io_u)) {
979 int err = PTR_ERR(io_u);
980
981 io_u = NULL;
982 ddir = DDIR_INVAL;
983 if (err == -EBUSY) {
984 ret = FIO_Q_BUSY;
985 goto reap;
986 }
987 if (td->o.latency_target)
988 goto reap;
989 break;
990 }
991
992 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
993 populate_verify_io_u(td, io_u);
994
995 ddir = io_u->ddir;
996
997 /*
998 * Add verification end_io handler if:
999 * - Asked to verify (!td_rw(td))
1000 * - Or the io_u is from our verify list (mixed write/ver)
1001 */
1002 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1003 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1004
1005 if (!td->o.verify_pattern_bytes) {
1006 io_u->rand_seed = __rand(&td->verify_state);
1007 if (sizeof(int) != sizeof(long *))
1008 io_u->rand_seed *= __rand(&td->verify_state);
1009 }
1010
1011 if (verify_state_should_stop(td, io_u)) {
1012 put_io_u(td, io_u);
1013 break;
1014 }
1015
1016 if (td->o.verify_async)
1017 io_u->end_io = verify_io_u_async;
1018 else
1019 io_u->end_io = verify_io_u;
1020 td_set_runstate(td, TD_VERIFYING);
1021 } else if (in_ramp_time(td))
1022 td_set_runstate(td, TD_RAMP);
1023 else
1024 td_set_runstate(td, TD_RUNNING);
1025
1026 /*
1027 * Always log IO before it's issued, so we know the specific
1028 * order of it. The logged unit will track when the IO has
1029 * completed.
1030 */
1031 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1032 td->o.do_verify &&
1033 td->o.verify != VERIFY_NONE &&
1034 !td->o.experimental_verify)
1035 log_io_piece(td, io_u);
1036
1037 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1038 const unsigned long blen = io_u->xfer_buflen;
1039 const enum fio_ddir ddir = acct_ddir(io_u);
1040
1041 if (td->error)
1042 break;
1043
1044 workqueue_enqueue(&td->io_wq, &io_u->work);
1045 ret = FIO_Q_QUEUED;
1046
1047 if (ddir_rw(ddir)) {
1048 td->io_issues[ddir]++;
1049 td->io_issue_bytes[ddir] += blen;
1050 td->rate_io_issue_bytes[ddir] += blen;
1051 }
1052
1053 if (should_check_rate(td))
1054 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1055
1056 } else {
1057 ret = io_u_submit(td, io_u);
1058
1059 if (should_check_rate(td))
1060 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1061
1062 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1063 break;
1064
1065 /*
1066 * See if we need to complete some commands. Note that
1067 * we can get BUSY even without IO queued, if the
1068 * system is resource starved.
1069 */
1070reap:
1071 full = queue_full(td) ||
1072 (ret == FIO_Q_BUSY && td->cur_depth);
1073 if (full || io_in_polling(td))
1074 ret = wait_for_completions(td, &comp_time);
1075 }
1076 if (ret < 0)
1077 break;
1078 if (!ddir_rw_sum(td->bytes_done) &&
1079 !td_ioengine_flagged(td, FIO_NOIO))
1080 continue;
1081
1082 if (!in_ramp_time(td) && should_check_rate(td)) {
1083 if (check_min_rate(td, &comp_time)) {
1084 if (exitall_on_terminate || td->o.exitall_error)
1085 fio_terminate_threads(td->groupid);
1086 td_verror(td, EIO, "check_min_rate");
1087 break;
1088 }
1089 }
1090 if (!in_ramp_time(td) && td->o.latency_target)
1091 lat_target_check(td);
1092
1093 if (ddir_rw(ddir) && td->o.thinktime)
1094 handle_thinktime(td, ddir);
1095 }
1096
1097 check_update_rusage(td);
1098
1099 if (td->trim_entries)
1100 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1101
1102 if (td->o.fill_device && td->error == ENOSPC) {
1103 td->error = 0;
1104 fio_mark_td_terminate(td);
1105 }
1106 if (!td->error) {
1107 struct fio_file *f;
1108
1109 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1110 workqueue_flush(&td->io_wq);
1111 i = 0;
1112 } else
1113 i = td->cur_depth;
1114
1115 if (i) {
1116 ret = io_u_queued_complete(td, i);
1117 if (td->o.fill_device && td->error == ENOSPC)
1118 td->error = 0;
1119 }
1120
1121 if (should_fsync(td) && td->o.end_fsync) {
1122 td_set_runstate(td, TD_FSYNCING);
1123
1124 for_each_file(td, f, i) {
1125 if (!fio_file_fsync(td, f))
1126 continue;
1127
1128 log_err("fio: end_fsync failed for file %s\n",
1129 f->file_name);
1130 }
1131 }
1132 } else
1133 cleanup_pending_aio(td);
1134
1135 /*
1136 * stop job if we failed doing any IO
1137 */
1138 if (!ddir_rw_sum(td->this_io_bytes))
1139 td->done = 1;
1140
1141 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1142 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1143}
1144
1145static void free_file_completion_logging(struct thread_data *td)
1146{
1147 struct fio_file *f;
1148 unsigned int i;
1149
1150 for_each_file(td, f, i) {
1151 if (!f->last_write_comp)
1152 break;
1153 sfree(f->last_write_comp);
1154 }
1155}
1156
1157static int init_file_completion_logging(struct thread_data *td,
1158 unsigned int depth)
1159{
1160 struct fio_file *f;
1161 unsigned int i;
1162
1163 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1164 return 0;
1165
1166 for_each_file(td, f, i) {
1167 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1168 if (!f->last_write_comp)
1169 goto cleanup;
1170 }
1171
1172 return 0;
1173
1174cleanup:
1175 free_file_completion_logging(td);
1176 log_err("fio: failed to alloc write comp data\n");
1177 return 1;
1178}
1179
1180static void cleanup_io_u(struct thread_data *td)
1181{
1182 struct io_u *io_u;
1183
1184 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1185
1186 if (td->io_ops->io_u_free)
1187 td->io_ops->io_u_free(td, io_u);
1188
1189 fio_memfree(io_u, sizeof(*io_u));
1190 }
1191
1192 free_io_mem(td);
1193
1194 io_u_rexit(&td->io_u_requeues);
1195 io_u_qexit(&td->io_u_freelist);
1196 io_u_qexit(&td->io_u_all);
1197
1198 free_file_completion_logging(td);
1199}
1200
1201static int init_io_u(struct thread_data *td)
1202{
1203 struct io_u *io_u;
1204 unsigned int max_bs, min_write;
1205 int cl_align, i, max_units;
1206 int data_xfer = 1, err;
1207 char *p;
1208
1209 max_units = td->o.iodepth;
1210 max_bs = td_max_bs(td);
1211 min_write = td->o.min_bs[DDIR_WRITE];
1212 td->orig_buffer_size = (unsigned long long) max_bs
1213 * (unsigned long long) max_units;
1214
1215 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1216 data_xfer = 0;
1217
1218 err = 0;
1219 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1220 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1221 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1222
1223 if (err) {
1224 log_err("fio: failed setting up IO queues\n");
1225 return 1;
1226 }
1227
1228 /*
1229 * if we may later need to do address alignment, then add any
1230 * possible adjustment here so that we don't cause a buffer
1231 * overflow later. this adjustment may be too much if we get
1232 * lucky and the allocator gives us an aligned address.
1233 */
1234 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1235 td_ioengine_flagged(td, FIO_RAWIO))
1236 td->orig_buffer_size += page_mask + td->o.mem_align;
1237
1238 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1239 unsigned long bs;
1240
1241 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1242 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1243 }
1244
1245 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1246 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1247 return 1;
1248 }
1249
1250 if (data_xfer && allocate_io_mem(td))
1251 return 1;
1252
1253 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1254 td_ioengine_flagged(td, FIO_RAWIO))
1255 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1256 else
1257 p = td->orig_buffer;
1258
1259 cl_align = os_cache_line_size();
1260
1261 for (i = 0; i < max_units; i++) {
1262 void *ptr;
1263
1264 if (td->terminate)
1265 return 1;
1266
1267 ptr = fio_memalign(cl_align, sizeof(*io_u));
1268 if (!ptr) {
1269 log_err("fio: unable to allocate aligned memory\n");
1270 break;
1271 }
1272
1273 io_u = ptr;
1274 memset(io_u, 0, sizeof(*io_u));
1275 INIT_FLIST_HEAD(&io_u->verify_list);
1276 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1277
1278 if (data_xfer) {
1279 io_u->buf = p;
1280 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1281
1282 if (td_write(td))
1283 io_u_fill_buffer(td, io_u, min_write, max_bs);
1284 if (td_write(td) && td->o.verify_pattern_bytes) {
1285 /*
1286 * Fill the buffer with the pattern if we are
1287 * going to be doing writes.
1288 */
1289 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1290 }
1291 }
1292
1293 io_u->index = i;
1294 io_u->flags = IO_U_F_FREE;
1295 io_u_qpush(&td->io_u_freelist, io_u);
1296
1297 /*
1298 * io_u never leaves this stack, used for iteration of all
1299 * io_u buffers.
1300 */
1301 io_u_qpush(&td->io_u_all, io_u);
1302
1303 if (td->io_ops->io_u_init) {
1304 int ret = td->io_ops->io_u_init(td, io_u);
1305
1306 if (ret) {
1307 log_err("fio: failed to init engine data: %d\n", ret);
1308 return 1;
1309 }
1310 }
1311
1312 p += max_bs;
1313 }
1314
1315 if (init_file_completion_logging(td, max_units))
1316 return 1;
1317
1318 return 0;
1319}
1320
1321/*
1322 * This function is Linux specific.
1323 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1324 */
1325static int switch_ioscheduler(struct thread_data *td)
1326{
1327#ifdef FIO_HAVE_IOSCHED_SWITCH
1328 char tmp[256], tmp2[128], *p;
1329 FILE *f;
1330 int ret;
1331
1332 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1333 return 0;
1334
1335 assert(td->files && td->files[0]);
1336 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1337
1338 f = fopen(tmp, "r+");
1339 if (!f) {
1340 if (errno == ENOENT) {
1341 log_err("fio: os or kernel doesn't support IO scheduler"
1342 " switching\n");
1343 return 0;
1344 }
1345 td_verror(td, errno, "fopen iosched");
1346 return 1;
1347 }
1348
1349 /*
1350 * Set io scheduler.
1351 */
1352 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1353 if (ferror(f) || ret != 1) {
1354 td_verror(td, errno, "fwrite");
1355 fclose(f);
1356 return 1;
1357 }
1358
1359 rewind(f);
1360
1361 /*
1362 * Read back and check that the selected scheduler is now the default.
1363 */
1364 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1365 if (ferror(f) || ret < 0) {
1366 td_verror(td, errno, "fread");
1367 fclose(f);
1368 return 1;
1369 }
1370 tmp[ret] = '\0';
1371 /*
1372 * either a list of io schedulers or "none\n" is expected. Strip the
1373 * trailing newline.
1374 */
1375 p = tmp;
1376 strsep(&p, "\n");
1377
1378 /*
1379 * Write to "none" entry doesn't fail, so check the result here.
1380 */
1381 if (!strcmp(tmp, "none")) {
1382 log_err("fio: io scheduler is not tunable\n");
1383 fclose(f);
1384 return 0;
1385 }
1386
1387 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1388 if (!strstr(tmp, tmp2)) {
1389 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1390 td_verror(td, EINVAL, "iosched_switch");
1391 fclose(f);
1392 return 1;
1393 }
1394
1395 fclose(f);
1396 return 0;
1397#else
1398 return 0;
1399#endif
1400}
1401
1402static bool keep_running(struct thread_data *td)
1403{
1404 unsigned long long limit;
1405
1406 if (td->done)
1407 return false;
1408 if (td->terminate)
1409 return false;
1410 if (td->o.time_based)
1411 return true;
1412 if (td->o.loops) {
1413 td->o.loops--;
1414 return true;
1415 }
1416 if (exceeds_number_ios(td))
1417 return false;
1418
1419 if (td->o.io_size)
1420 limit = td->o.io_size;
1421 else
1422 limit = td->o.size;
1423
1424 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1425 uint64_t diff;
1426
1427 /*
1428 * If the difference is less than the maximum IO size, we
1429 * are done.
1430 */
1431 diff = limit - ddir_rw_sum(td->io_bytes);
1432 if (diff < td_max_bs(td))
1433 return false;
1434
1435 if (fio_files_done(td) && !td->o.io_size)
1436 return false;
1437
1438 return true;
1439 }
1440
1441 return false;
1442}
1443
1444static int exec_string(struct thread_options *o, const char *string, const char *mode)
1445{
1446 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1447 int ret;
1448 char *str;
1449
1450 str = malloc(newlen);
1451 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1452
1453 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1454 ret = system(str);
1455 if (ret == -1)
1456 log_err("fio: exec of cmd <%s> failed\n", str);
1457
1458 free(str);
1459 return ret;
1460}
1461
1462/*
1463 * Dry run to compute correct state of numberio for verification.
1464 */
1465static uint64_t do_dry_run(struct thread_data *td)
1466{
1467 td_set_runstate(td, TD_RUNNING);
1468
1469 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1470 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1471 struct io_u *io_u;
1472 int ret;
1473
1474 if (td->terminate || td->done)
1475 break;
1476
1477 io_u = get_io_u(td);
1478 if (IS_ERR_OR_NULL(io_u))
1479 break;
1480
1481 io_u_set(td, io_u, IO_U_F_FLIGHT);
1482 io_u->error = 0;
1483 io_u->resid = 0;
1484 if (ddir_rw(acct_ddir(io_u)))
1485 td->io_issues[acct_ddir(io_u)]++;
1486 if (ddir_rw(io_u->ddir)) {
1487 io_u_mark_depth(td, 1);
1488 td->ts.total_io_u[io_u->ddir]++;
1489 }
1490
1491 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1492 td->o.do_verify &&
1493 td->o.verify != VERIFY_NONE &&
1494 !td->o.experimental_verify)
1495 log_io_piece(td, io_u);
1496
1497 ret = io_u_sync_complete(td, io_u);
1498 (void) ret;
1499 }
1500
1501 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1502}
1503
1504struct fork_data {
1505 struct thread_data *td;
1506 struct sk_out *sk_out;
1507};
1508
1509/*
1510 * Entry point for the thread based jobs. The process based jobs end up
1511 * here as well, after a little setup.
1512 */
1513static void *thread_main(void *data)
1514{
1515 struct fork_data *fd = data;
1516 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1517 struct thread_data *td = fd->td;
1518 struct thread_options *o = &td->o;
1519 struct sk_out *sk_out = fd->sk_out;
1520 uint64_t bytes_done[DDIR_RWDIR_CNT];
1521 int deadlock_loop_cnt;
1522 bool clear_state, did_some_io;
1523 int ret;
1524
1525 sk_out_assign(sk_out);
1526 free(fd);
1527
1528 if (!o->use_thread) {
1529 setsid();
1530 td->pid = getpid();
1531 } else
1532 td->pid = gettid();
1533
1534 fio_local_clock_init(o->use_thread);
1535
1536 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1537
1538 if (is_backend)
1539 fio_server_send_start(td);
1540
1541 INIT_FLIST_HEAD(&td->io_log_list);
1542 INIT_FLIST_HEAD(&td->io_hist_list);
1543 INIT_FLIST_HEAD(&td->verify_list);
1544 INIT_FLIST_HEAD(&td->trim_list);
1545 td->io_hist_tree = RB_ROOT;
1546
1547 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1548 if (ret) {
1549 td_verror(td, ret, "mutex_cond_init_pshared");
1550 goto err;
1551 }
1552 ret = cond_init_pshared(&td->verify_cond);
1553 if (ret) {
1554 td_verror(td, ret, "mutex_cond_pshared");
1555 goto err;
1556 }
1557
1558 td_set_runstate(td, TD_INITIALIZED);
1559 dprint(FD_MUTEX, "up startup_sem\n");
1560 fio_sem_up(startup_sem);
1561 dprint(FD_MUTEX, "wait on td->sem\n");
1562 fio_sem_down(td->sem);
1563 dprint(FD_MUTEX, "done waiting on td->sem\n");
1564
1565 /*
1566 * A new gid requires privilege, so we need to do this before setting
1567 * the uid.
1568 */
1569 if (o->gid != -1U && setgid(o->gid)) {
1570 td_verror(td, errno, "setgid");
1571 goto err;
1572 }
1573 if (o->uid != -1U && setuid(o->uid)) {
1574 td_verror(td, errno, "setuid");
1575 goto err;
1576 }
1577
1578 /*
1579 * Do this early, we don't want the compress threads to be limited
1580 * to the same CPUs as the IO workers. So do this before we set
1581 * any potential CPU affinity
1582 */
1583 if (iolog_compress_init(td, sk_out))
1584 goto err;
1585
1586 /*
1587 * If we have a gettimeofday() thread, make sure we exclude that
1588 * thread from this job
1589 */
1590 if (o->gtod_cpu)
1591 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1592
1593 /*
1594 * Set affinity first, in case it has an impact on the memory
1595 * allocations.
1596 */
1597 if (fio_option_is_set(o, cpumask)) {
1598 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1599 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1600 if (!ret) {
1601 log_err("fio: no CPUs set\n");
1602 log_err("fio: Try increasing number of available CPUs\n");
1603 td_verror(td, EINVAL, "cpus_split");
1604 goto err;
1605 }
1606 }
1607 ret = fio_setaffinity(td->pid, o->cpumask);
1608 if (ret == -1) {
1609 td_verror(td, errno, "cpu_set_affinity");
1610 goto err;
1611 }
1612 }
1613
1614#ifdef CONFIG_LIBNUMA
1615 /* numa node setup */
1616 if (fio_option_is_set(o, numa_cpunodes) ||
1617 fio_option_is_set(o, numa_memnodes)) {
1618 struct bitmask *mask;
1619
1620 if (numa_available() < 0) {
1621 td_verror(td, errno, "Does not support NUMA API\n");
1622 goto err;
1623 }
1624
1625 if (fio_option_is_set(o, numa_cpunodes)) {
1626 mask = numa_parse_nodestring(o->numa_cpunodes);
1627 ret = numa_run_on_node_mask(mask);
1628 numa_free_nodemask(mask);
1629 if (ret == -1) {
1630 td_verror(td, errno, \
1631 "numa_run_on_node_mask failed\n");
1632 goto err;
1633 }
1634 }
1635
1636 if (fio_option_is_set(o, numa_memnodes)) {
1637 mask = NULL;
1638 if (o->numa_memnodes)
1639 mask = numa_parse_nodestring(o->numa_memnodes);
1640
1641 switch (o->numa_mem_mode) {
1642 case MPOL_INTERLEAVE:
1643 numa_set_interleave_mask(mask);
1644 break;
1645 case MPOL_BIND:
1646 numa_set_membind(mask);
1647 break;
1648 case MPOL_LOCAL:
1649 numa_set_localalloc();
1650 break;
1651 case MPOL_PREFERRED:
1652 numa_set_preferred(o->numa_mem_prefer_node);
1653 break;
1654 case MPOL_DEFAULT:
1655 default:
1656 break;
1657 }
1658
1659 if (mask)
1660 numa_free_nodemask(mask);
1661
1662 }
1663 }
1664#endif
1665
1666 if (fio_pin_memory(td))
1667 goto err;
1668
1669 /*
1670 * May alter parameters that init_io_u() will use, so we need to
1671 * do this first.
1672 */
1673 if (!init_iolog(td))
1674 goto err;
1675
1676 if (init_io_u(td))
1677 goto err;
1678
1679 if (o->verify_async && verify_async_init(td))
1680 goto err;
1681
1682 if (fio_option_is_set(o, ioprio) ||
1683 fio_option_is_set(o, ioprio_class)) {
1684 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1685 if (ret == -1) {
1686 td_verror(td, errno, "ioprio_set");
1687 goto err;
1688 }
1689 }
1690
1691 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1692 goto err;
1693
1694 errno = 0;
1695 if (nice(o->nice) == -1 && errno != 0) {
1696 td_verror(td, errno, "nice");
1697 goto err;
1698 }
1699
1700 if (o->ioscheduler && switch_ioscheduler(td))
1701 goto err;
1702
1703 if (!o->create_serialize && setup_files(td))
1704 goto err;
1705
1706 if (td_io_init(td))
1707 goto err;
1708
1709 if (!init_random_map(td))
1710 goto err;
1711
1712 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1713 goto err;
1714
1715 if (o->pre_read && !pre_read_files(td))
1716 goto err;
1717
1718 fio_verify_init(td);
1719
1720 if (rate_submit_init(td, sk_out))
1721 goto err;
1722
1723 set_epoch_time(td, o->log_unix_epoch);
1724 fio_getrusage(&td->ru_start);
1725 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1726 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1727 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1728
1729 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1730 o->ratemin[DDIR_TRIM]) {
1731 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1732 sizeof(td->bw_sample_time));
1733 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1734 sizeof(td->bw_sample_time));
1735 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1736 sizeof(td->bw_sample_time));
1737 }
1738
1739 memset(bytes_done, 0, sizeof(bytes_done));
1740 clear_state = false;
1741 did_some_io = false;
1742
1743 while (keep_running(td)) {
1744 uint64_t verify_bytes;
1745
1746 fio_gettime(&td->start, NULL);
1747 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1748
1749 if (clear_state) {
1750 clear_io_state(td, 0);
1751
1752 if (o->unlink_each_loop && unlink_all_files(td))
1753 break;
1754 }
1755
1756 prune_io_piece_log(td);
1757
1758 if (td->o.verify_only && td_write(td))
1759 verify_bytes = do_dry_run(td);
1760 else {
1761 do_io(td, bytes_done);
1762
1763 if (!ddir_rw_sum(bytes_done)) {
1764 fio_mark_td_terminate(td);
1765 verify_bytes = 0;
1766 } else {
1767 verify_bytes = bytes_done[DDIR_WRITE] +
1768 bytes_done[DDIR_TRIM];
1769 }
1770 }
1771
1772 /*
1773 * If we took too long to shut down, the main thread could
1774 * already consider us reaped/exited. If that happens, break
1775 * out and clean up.
1776 */
1777 if (td->runstate >= TD_EXITED)
1778 break;
1779
1780 clear_state = true;
1781
1782 /*
1783 * Make sure we've successfully updated the rusage stats
1784 * before waiting on the stat mutex. Otherwise we could have
1785 * the stat thread holding stat mutex and waiting for
1786 * the rusage_sem, which would never get upped because
1787 * this thread is waiting for the stat mutex.
1788 */
1789 deadlock_loop_cnt = 0;
1790 do {
1791 check_update_rusage(td);
1792 if (!fio_sem_down_trylock(stat_sem))
1793 break;
1794 usleep(1000);
1795 if (deadlock_loop_cnt++ > 5000) {
1796 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1797 td->error = EDEADLK;
1798 goto err;
1799 }
1800 } while (1);
1801
1802 if (td_read(td) && td->io_bytes[DDIR_READ])
1803 update_runtime(td, elapsed_us, DDIR_READ);
1804 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1805 update_runtime(td, elapsed_us, DDIR_WRITE);
1806 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1807 update_runtime(td, elapsed_us, DDIR_TRIM);
1808 fio_gettime(&td->start, NULL);
1809 fio_sem_up(stat_sem);
1810
1811 if (td->error || td->terminate)
1812 break;
1813
1814 if (!o->do_verify ||
1815 o->verify == VERIFY_NONE ||
1816 td_ioengine_flagged(td, FIO_UNIDIR))
1817 continue;
1818
1819 if (ddir_rw_sum(bytes_done))
1820 did_some_io = true;
1821
1822 clear_io_state(td, 0);
1823
1824 fio_gettime(&td->start, NULL);
1825
1826 do_verify(td, verify_bytes);
1827
1828 /*
1829 * See comment further up for why this is done here.
1830 */
1831 check_update_rusage(td);
1832
1833 fio_sem_down(stat_sem);
1834 update_runtime(td, elapsed_us, DDIR_READ);
1835 fio_gettime(&td->start, NULL);
1836 fio_sem_up(stat_sem);
1837
1838 if (td->error || td->terminate)
1839 break;
1840 }
1841
1842 /*
1843 * If td ended up with no I/O when it should have had,
1844 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1845 * (Are we not missing other flags that can be ignored ?)
1846 */
1847 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1848 !did_some_io && !td->o.create_only &&
1849 !(td_ioengine_flagged(td, FIO_NOIO) ||
1850 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1851 log_err("%s: No I/O performed by %s, "
1852 "perhaps try --debug=io option for details?\n",
1853 td->o.name, td->io_ops->name);
1854
1855 td_set_runstate(td, TD_FINISHING);
1856
1857 update_rusage_stat(td);
1858 td->ts.total_run_time = mtime_since_now(&td->epoch);
1859 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1860 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1861 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1862
1863 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1864 (td->o.verify != VERIFY_NONE && td_write(td)))
1865 verify_save_state(td->thread_number);
1866
1867 fio_unpin_memory(td);
1868
1869 td_writeout_logs(td, true);
1870
1871 iolog_compress_exit(td);
1872 rate_submit_exit(td);
1873
1874 if (o->exec_postrun)
1875 exec_string(o, o->exec_postrun, (const char *)"postrun");
1876
1877 if (exitall_on_terminate || (o->exitall_error && td->error))
1878 fio_terminate_threads(td->groupid);
1879
1880err:
1881 if (td->error)
1882 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1883 td->verror);
1884
1885 if (o->verify_async)
1886 verify_async_exit(td);
1887
1888 close_and_free_files(td);
1889 cleanup_io_u(td);
1890 close_ioengine(td);
1891 cgroup_shutdown(td, &cgroup_mnt);
1892 verify_free_state(td);
1893
1894 if (td->zone_state_index) {
1895 int i;
1896
1897 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1898 free(td->zone_state_index[i]);
1899 free(td->zone_state_index);
1900 td->zone_state_index = NULL;
1901 }
1902
1903 if (fio_option_is_set(o, cpumask)) {
1904 ret = fio_cpuset_exit(&o->cpumask);
1905 if (ret)
1906 td_verror(td, ret, "fio_cpuset_exit");
1907 }
1908
1909 /*
1910 * do this very late, it will log file closing as well
1911 */
1912 if (o->write_iolog_file)
1913 write_iolog_close(td);
1914
1915 td_set_runstate(td, TD_EXITED);
1916
1917 /*
1918 * Do this last after setting our runstate to exited, so we
1919 * know that the stat thread is signaled.
1920 */
1921 check_update_rusage(td);
1922
1923 sk_out_drop();
1924 return (void *) (uintptr_t) td->error;
1925}
1926
1927/*
1928 * Run over the job map and reap the threads that have exited, if any.
1929 */
1930static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1931 uint64_t *m_rate)
1932{
1933 struct thread_data *td;
1934 unsigned int cputhreads, realthreads, pending;
1935 int i, status, ret;
1936
1937 /*
1938 * reap exited threads (TD_EXITED -> TD_REAPED)
1939 */
1940 realthreads = pending = cputhreads = 0;
1941 for_each_td(td, i) {
1942 int flags = 0;
1943
1944 if (!strcmp(td->o.ioengine, "cpuio"))
1945 cputhreads++;
1946 else
1947 realthreads++;
1948
1949 if (!td->pid) {
1950 pending++;
1951 continue;
1952 }
1953 if (td->runstate == TD_REAPED)
1954 continue;
1955 if (td->o.use_thread) {
1956 if (td->runstate == TD_EXITED) {
1957 td_set_runstate(td, TD_REAPED);
1958 goto reaped;
1959 }
1960 continue;
1961 }
1962
1963 flags = WNOHANG;
1964 if (td->runstate == TD_EXITED)
1965 flags = 0;
1966
1967 /*
1968 * check if someone quit or got killed in an unusual way
1969 */
1970 ret = waitpid(td->pid, &status, flags);
1971 if (ret < 0) {
1972 if (errno == ECHILD) {
1973 log_err("fio: pid=%d disappeared %d\n",
1974 (int) td->pid, td->runstate);
1975 td->sig = ECHILD;
1976 td_set_runstate(td, TD_REAPED);
1977 goto reaped;
1978 }
1979 perror("waitpid");
1980 } else if (ret == td->pid) {
1981 if (WIFSIGNALED(status)) {
1982 int sig = WTERMSIG(status);
1983
1984 if (sig != SIGTERM && sig != SIGUSR2)
1985 log_err("fio: pid=%d, got signal=%d\n",
1986 (int) td->pid, sig);
1987 td->sig = sig;
1988 td_set_runstate(td, TD_REAPED);
1989 goto reaped;
1990 }
1991 if (WIFEXITED(status)) {
1992 if (WEXITSTATUS(status) && !td->error)
1993 td->error = WEXITSTATUS(status);
1994
1995 td_set_runstate(td, TD_REAPED);
1996 goto reaped;
1997 }
1998 }
1999
2000 /*
2001 * If the job is stuck, do a forceful timeout of it and
2002 * move on.
2003 */
2004 if (td->terminate &&
2005 td->runstate < TD_FSYNCING &&
2006 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2007 log_err("fio: job '%s' (state=%d) hasn't exited in "
2008 "%lu seconds, it appears to be stuck. Doing "
2009 "forceful exit of this job.\n",
2010 td->o.name, td->runstate,
2011 (unsigned long) time_since_now(&td->terminate_time));
2012 td_set_runstate(td, TD_REAPED);
2013 goto reaped;
2014 }
2015
2016 /*
2017 * thread is not dead, continue
2018 */
2019 pending++;
2020 continue;
2021reaped:
2022 (*nr_running)--;
2023 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2024 (*t_rate) -= ddir_rw_sum(td->o.rate);
2025 if (!td->pid)
2026 pending--;
2027
2028 if (td->error)
2029 exit_value++;
2030
2031 done_secs += mtime_since_now(&td->epoch) / 1000;
2032 profile_td_exit(td);
2033 }
2034
2035 if (*nr_running == cputhreads && !pending && realthreads)
2036 fio_terminate_threads(TERMINATE_ALL);
2037}
2038
2039static bool __check_trigger_file(void)
2040{
2041 struct stat sb;
2042
2043 if (!trigger_file)
2044 return false;
2045
2046 if (stat(trigger_file, &sb))
2047 return false;
2048
2049 if (unlink(trigger_file) < 0)
2050 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2051 strerror(errno));
2052
2053 return true;
2054}
2055
2056static bool trigger_timedout(void)
2057{
2058 if (trigger_timeout)
2059 if (time_since_genesis() >= trigger_timeout) {
2060 trigger_timeout = 0;
2061 return true;
2062 }
2063
2064 return false;
2065}
2066
2067void exec_trigger(const char *cmd)
2068{
2069 int ret;
2070
2071 if (!cmd || cmd[0] == '\0')
2072 return;
2073
2074 ret = system(cmd);
2075 if (ret == -1)
2076 log_err("fio: failed executing %s trigger\n", cmd);
2077}
2078
2079void check_trigger_file(void)
2080{
2081 if (__check_trigger_file() || trigger_timedout()) {
2082 if (nr_clients)
2083 fio_clients_send_trigger(trigger_remote_cmd);
2084 else {
2085 verify_save_state(IO_LIST_ALL);
2086 fio_terminate_threads(TERMINATE_ALL);
2087 exec_trigger(trigger_cmd);
2088 }
2089 }
2090}
2091
2092static int fio_verify_load_state(struct thread_data *td)
2093{
2094 int ret;
2095
2096 if (!td->o.verify_state)
2097 return 0;
2098
2099 if (is_backend) {
2100 void *data;
2101
2102 ret = fio_server_get_verify_state(td->o.name,
2103 td->thread_number - 1, &data);
2104 if (!ret)
2105 verify_assign_state(td, data);
2106 } else
2107 ret = verify_load_state(td, "local");
2108
2109 return ret;
2110}
2111
2112static void do_usleep(unsigned int usecs)
2113{
2114 check_for_running_stats();
2115 check_trigger_file();
2116 usleep(usecs);
2117}
2118
2119static bool check_mount_writes(struct thread_data *td)
2120{
2121 struct fio_file *f;
2122 unsigned int i;
2123
2124 if (!td_write(td) || td->o.allow_mounted_write)
2125 return false;
2126
2127 /*
2128 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2129 * are mkfs'd and mounted.
2130 */
2131 for_each_file(td, f, i) {
2132#ifdef FIO_HAVE_CHARDEV_SIZE
2133 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2134#else
2135 if (f->filetype != FIO_TYPE_BLOCK)
2136#endif
2137 continue;
2138 if (device_is_mounted(f->file_name))
2139 goto mounted;
2140 }
2141
2142 return false;
2143mounted:
2144 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2145 return true;
2146}
2147
2148static bool waitee_running(struct thread_data *me)
2149{
2150 const char *waitee = me->o.wait_for;
2151 const char *self = me->o.name;
2152 struct thread_data *td;
2153 int i;
2154
2155 if (!waitee)
2156 return false;
2157
2158 for_each_td(td, i) {
2159 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2160 continue;
2161
2162 if (td->runstate < TD_EXITED) {
2163 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2164 self, td->o.name,
2165 runstate_to_name(td->runstate));
2166 return true;
2167 }
2168 }
2169
2170 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2171 return false;
2172}
2173
2174/*
2175 * Main function for kicking off and reaping jobs, as needed.
2176 */
2177static void run_threads(struct sk_out *sk_out)
2178{
2179 struct thread_data *td;
2180 unsigned int i, todo, nr_running, nr_started;
2181 uint64_t m_rate, t_rate;
2182 uint64_t spent;
2183
2184 if (fio_gtod_offload && fio_start_gtod_thread())
2185 return;
2186
2187 fio_idle_prof_init();
2188
2189 set_sig_handlers();
2190
2191 nr_thread = nr_process = 0;
2192 for_each_td(td, i) {
2193 if (check_mount_writes(td))
2194 return;
2195 if (td->o.use_thread)
2196 nr_thread++;
2197 else
2198 nr_process++;
2199 }
2200
2201 if (output_format & FIO_OUTPUT_NORMAL) {
2202 log_info("Starting ");
2203 if (nr_thread)
2204 log_info("%d thread%s", nr_thread,
2205 nr_thread > 1 ? "s" : "");
2206 if (nr_process) {
2207 if (nr_thread)
2208 log_info(" and ");
2209 log_info("%d process%s", nr_process,
2210 nr_process > 1 ? "es" : "");
2211 }
2212 log_info("\n");
2213 log_info_flush();
2214 }
2215
2216 todo = thread_number;
2217 nr_running = 0;
2218 nr_started = 0;
2219 m_rate = t_rate = 0;
2220
2221 for_each_td(td, i) {
2222 print_status_init(td->thread_number - 1);
2223
2224 if (!td->o.create_serialize)
2225 continue;
2226
2227 if (fio_verify_load_state(td))
2228 goto reap;
2229
2230 /*
2231 * do file setup here so it happens sequentially,
2232 * we don't want X number of threads getting their
2233 * client data interspersed on disk
2234 */
2235 if (setup_files(td)) {
2236reap:
2237 exit_value++;
2238 if (td->error)
2239 log_err("fio: pid=%d, err=%d/%s\n",
2240 (int) td->pid, td->error, td->verror);
2241 td_set_runstate(td, TD_REAPED);
2242 todo--;
2243 } else {
2244 struct fio_file *f;
2245 unsigned int j;
2246
2247 /*
2248 * for sharing to work, each job must always open
2249 * its own files. so close them, if we opened them
2250 * for creation
2251 */
2252 for_each_file(td, f, j) {
2253 if (fio_file_open(f))
2254 td_io_close_file(td, f);
2255 }
2256 }
2257 }
2258
2259 /* start idle threads before io threads start to run */
2260 fio_idle_prof_start();
2261
2262 set_genesis_time();
2263
2264 while (todo) {
2265 struct thread_data *map[REAL_MAX_JOBS];
2266 struct timespec this_start;
2267 int this_jobs = 0, left;
2268 struct fork_data *fd;
2269
2270 /*
2271 * create threads (TD_NOT_CREATED -> TD_CREATED)
2272 */
2273 for_each_td(td, i) {
2274 if (td->runstate != TD_NOT_CREATED)
2275 continue;
2276
2277 /*
2278 * never got a chance to start, killed by other
2279 * thread for some reason
2280 */
2281 if (td->terminate) {
2282 todo--;
2283 continue;
2284 }
2285
2286 if (td->o.start_delay) {
2287 spent = utime_since_genesis();
2288
2289 if (td->o.start_delay > spent)
2290 continue;
2291 }
2292
2293 if (td->o.stonewall && (nr_started || nr_running)) {
2294 dprint(FD_PROCESS, "%s: stonewall wait\n",
2295 td->o.name);
2296 break;
2297 }
2298
2299 if (waitee_running(td)) {
2300 dprint(FD_PROCESS, "%s: waiting for %s\n",
2301 td->o.name, td->o.wait_for);
2302 continue;
2303 }
2304
2305 init_disk_util(td);
2306
2307 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2308 td->update_rusage = 0;
2309
2310 /*
2311 * Set state to created. Thread will transition
2312 * to TD_INITIALIZED when it's done setting up.
2313 */
2314 td_set_runstate(td, TD_CREATED);
2315 map[this_jobs++] = td;
2316 nr_started++;
2317
2318 fd = calloc(1, sizeof(*fd));
2319 fd->td = td;
2320 fd->sk_out = sk_out;
2321
2322 if (td->o.use_thread) {
2323 int ret;
2324
2325 dprint(FD_PROCESS, "will pthread_create\n");
2326 ret = pthread_create(&td->thread, NULL,
2327 thread_main, fd);
2328 if (ret) {
2329 log_err("pthread_create: %s\n",
2330 strerror(ret));
2331 free(fd);
2332 nr_started--;
2333 break;
2334 }
2335 fd = NULL;
2336 ret = pthread_detach(td->thread);
2337 if (ret)
2338 log_err("pthread_detach: %s",
2339 strerror(ret));
2340 } else {
2341 pid_t pid;
2342 dprint(FD_PROCESS, "will fork\n");
2343 pid = fork();
2344 if (!pid) {
2345 int ret;
2346
2347 ret = (int)(uintptr_t)thread_main(fd);
2348 _exit(ret);
2349 } else if (i == fio_debug_jobno)
2350 *fio_debug_jobp = pid;
2351 }
2352 dprint(FD_MUTEX, "wait on startup_sem\n");
2353 if (fio_sem_down_timeout(startup_sem, 10000)) {
2354 log_err("fio: job startup hung? exiting.\n");
2355 fio_terminate_threads(TERMINATE_ALL);
2356 fio_abort = 1;
2357 nr_started--;
2358 free(fd);
2359 break;
2360 }
2361 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2362 }
2363
2364 /*
2365 * Wait for the started threads to transition to
2366 * TD_INITIALIZED.
2367 */
2368 fio_gettime(&this_start, NULL);
2369 left = this_jobs;
2370 while (left && !fio_abort) {
2371 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2372 break;
2373
2374 do_usleep(100000);
2375
2376 for (i = 0; i < this_jobs; i++) {
2377 td = map[i];
2378 if (!td)
2379 continue;
2380 if (td->runstate == TD_INITIALIZED) {
2381 map[i] = NULL;
2382 left--;
2383 } else if (td->runstate >= TD_EXITED) {
2384 map[i] = NULL;
2385 left--;
2386 todo--;
2387 nr_running++; /* work-around... */
2388 }
2389 }
2390 }
2391
2392 if (left) {
2393 log_err("fio: %d job%s failed to start\n", left,
2394 left > 1 ? "s" : "");
2395 for (i = 0; i < this_jobs; i++) {
2396 td = map[i];
2397 if (!td)
2398 continue;
2399 kill(td->pid, SIGTERM);
2400 }
2401 break;
2402 }
2403
2404 /*
2405 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2406 */
2407 for_each_td(td, i) {
2408 if (td->runstate != TD_INITIALIZED)
2409 continue;
2410
2411 if (in_ramp_time(td))
2412 td_set_runstate(td, TD_RAMP);
2413 else
2414 td_set_runstate(td, TD_RUNNING);
2415 nr_running++;
2416 nr_started--;
2417 m_rate += ddir_rw_sum(td->o.ratemin);
2418 t_rate += ddir_rw_sum(td->o.rate);
2419 todo--;
2420 fio_sem_up(td->sem);
2421 }
2422
2423 reap_threads(&nr_running, &t_rate, &m_rate);
2424
2425 if (todo)
2426 do_usleep(100000);
2427 }
2428
2429 while (nr_running) {
2430 reap_threads(&nr_running, &t_rate, &m_rate);
2431 do_usleep(10000);
2432 }
2433
2434 fio_idle_prof_stop();
2435
2436 update_io_ticks();
2437}
2438
2439static void free_disk_util(void)
2440{
2441 disk_util_prune_entries();
2442 helper_thread_destroy();
2443}
2444
2445int fio_backend(struct sk_out *sk_out)
2446{
2447 struct thread_data *td;
2448 int i;
2449
2450 if (exec_profile) {
2451 if (load_profile(exec_profile))
2452 return 1;
2453 free(exec_profile);
2454 exec_profile = NULL;
2455 }
2456 if (!thread_number)
2457 return 0;
2458
2459 if (write_bw_log) {
2460 struct log_params p = {
2461 .log_type = IO_LOG_TYPE_BW,
2462 };
2463
2464 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2465 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2466 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2467 }
2468
2469 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2470 if (startup_sem == NULL)
2471 return 1;
2472
2473 set_genesis_time();
2474 stat_init();
2475 helper_thread_create(startup_sem, sk_out);
2476
2477 cgroup_list = smalloc(sizeof(*cgroup_list));
2478 if (cgroup_list)
2479 INIT_FLIST_HEAD(cgroup_list);
2480
2481 run_threads(sk_out);
2482
2483 helper_thread_exit();
2484
2485 if (!fio_abort) {
2486 __show_run_stats();
2487 if (write_bw_log) {
2488 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2489 struct io_log *log = agg_io_log[i];
2490
2491 flush_log(log, false);
2492 free_log(log);
2493 }
2494 }
2495 }
2496
2497 for_each_td(td, i) {
2498 steadystate_free(td);
2499 fio_options_free(td);
2500 if (td->rusage_sem) {
2501 fio_sem_remove(td->rusage_sem);
2502 td->rusage_sem = NULL;
2503 }
2504 fio_sem_remove(td->sem);
2505 td->sem = NULL;
2506 }
2507
2508 free_disk_util();
2509 if (cgroup_list) {
2510 cgroup_kill(cgroup_list);
2511 sfree(cgroup_list);
2512 }
2513 sfree(cgroup_mnt);
2514
2515 fio_sem_remove(startup_sem);
2516 stat_exit();
2517 return exit_value;
2518}