rate: ensure IO issue restarts right after sleep
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 if (io_u->offset == f->real_file_size)
503 goto sync_done;
504
505 requeue_io_u(td, &io_u);
506 } else {
507sync_done:
508 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509 __should_check_rate(td, DDIR_WRITE) ||
510 __should_check_rate(td, DDIR_TRIM)))
511 fio_gettime(comp_time, NULL);
512
513 *ret = io_u_sync_complete(td, io_u);
514 if (*ret < 0)
515 break;
516 }
517
518 if (td->flags & TD_F_REGROW_LOGS)
519 regrow_logs(td);
520
521 /*
522 * when doing I/O (not when verifying),
523 * check for any errors that are to be ignored
524 */
525 if (!from_verify)
526 break;
527
528 return 0;
529 case FIO_Q_QUEUED:
530 /*
531 * if the engine doesn't have a commit hook,
532 * the io_u is really queued. if it does have such
533 * a hook, it has to call io_u_queued() itself.
534 */
535 if (td->io_ops->commit == NULL)
536 io_u_queued(td, io_u);
537 if (bytes_issued)
538 *bytes_issued += io_u->xfer_buflen;
539 break;
540 case FIO_Q_BUSY:
541 if (!from_verify)
542 unlog_io_piece(td, io_u);
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 *ret = ret2;
547 break;
548 default:
549 assert(*ret < 0);
550 td_verror(td, -(*ret), "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, ddir, ret))
555 return 1;
556
557 return 0;
558}
559
560static inline bool io_in_polling(struct thread_data *td)
561{
562 return !td->o.iodepth_batch_complete_min &&
563 !td->o.iodepth_batch_complete_max;
564}
565/*
566 * Unlinks files from thread data fio_file structure
567 */
568static int unlink_all_files(struct thread_data *td)
569{
570 struct fio_file *f;
571 unsigned int i;
572 int ret = 0;
573
574 for_each_file(td, f, i) {
575 if (f->filetype != FIO_TYPE_FILE)
576 continue;
577 ret = td_io_unlink_file(td, f);
578 if (ret)
579 break;
580 }
581
582 if (ret)
583 td_verror(td, ret, "unlink_all_files");
584
585 return ret;
586}
587
588/*
589 * Check if io_u will overlap an in-flight IO in the queue
590 */
591static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592{
593 bool overlap;
594 struct io_u *check_io_u;
595 unsigned long long x1, x2, y1, y2;
596 int i;
597
598 x1 = io_u->offset;
599 x2 = io_u->offset + io_u->buflen;
600 overlap = false;
601 io_u_qiter(q, check_io_u, i) {
602 if (check_io_u->flags & IO_U_F_FLIGHT) {
603 y1 = check_io_u->offset;
604 y2 = check_io_u->offset + check_io_u->buflen;
605
606 if (x1 < y2 && y1 < x2) {
607 overlap = true;
608 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609 x1, io_u->buflen,
610 y1, check_io_u->buflen);
611 break;
612 }
613 }
614 }
615
616 return overlap;
617}
618
619static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620{
621 /*
622 * Check for overlap if the user asked us to, and we have
623 * at least one IO in flight besides this one.
624 */
625 if (td->o.serialize_overlap && td->cur_depth > 1 &&
626 in_flight_overlap(&td->io_u_all, io_u))
627 return FIO_Q_BUSY;
628
629 return td_io_queue(td, io_u);
630}
631
632/*
633 * The main verify engine. Runs over the writes we previously submitted,
634 * reads the blocks back in, and checks the crc/md5 of the data.
635 */
636static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637{
638 struct fio_file *f;
639 struct io_u *io_u;
640 int ret, min_events;
641 unsigned int i;
642
643 dprint(FD_VERIFY, "starting loop\n");
644
645 /*
646 * sync io first and invalidate cache, to make sure we really
647 * read from disk.
648 */
649 for_each_file(td, f, i) {
650 if (!fio_file_open(f))
651 continue;
652 if (fio_io_sync(td, f))
653 break;
654 if (file_invalidate_cache(td, f))
655 break;
656 }
657
658 check_update_rusage(td);
659
660 if (td->error)
661 return;
662
663 /*
664 * verify_state needs to be reset before verification
665 * proceeds so that expected random seeds match actual
666 * random seeds in headers. The main loop will reset
667 * all random number generators if randrepeat is set.
668 */
669 if (!td->o.rand_repeatable)
670 td_fill_verify_state_seed(td);
671
672 td_set_runstate(td, TD_VERIFYING);
673
674 io_u = NULL;
675 while (!td->terminate) {
676 enum fio_ddir ddir;
677 int full;
678
679 update_ts_cache(td);
680 check_update_rusage(td);
681
682 if (runtime_exceeded(td, &td->ts_cache)) {
683 __update_ts_cache(td);
684 if (runtime_exceeded(td, &td->ts_cache)) {
685 fio_mark_td_terminate(td);
686 break;
687 }
688 }
689
690 if (flow_threshold_exceeded(td))
691 continue;
692
693 if (!td->o.experimental_verify) {
694 io_u = __get_io_u(td);
695 if (!io_u)
696 break;
697
698 if (get_next_verify(td, io_u)) {
699 put_io_u(td, io_u);
700 break;
701 }
702
703 if (td_io_prep(td, io_u)) {
704 put_io_u(td, io_u);
705 break;
706 }
707 } else {
708 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709 break;
710
711 while ((io_u = get_io_u(td)) != NULL) {
712 if (IS_ERR_OR_NULL(io_u)) {
713 io_u = NULL;
714 ret = FIO_Q_BUSY;
715 goto reap;
716 }
717
718 /*
719 * We are only interested in the places where
720 * we wrote or trimmed IOs. Turn those into
721 * reads for verification purposes.
722 */
723 if (io_u->ddir == DDIR_READ) {
724 /*
725 * Pretend we issued it for rwmix
726 * accounting
727 */
728 td->io_issues[DDIR_READ]++;
729 put_io_u(td, io_u);
730 continue;
731 } else if (io_u->ddir == DDIR_TRIM) {
732 io_u->ddir = DDIR_READ;
733 io_u_set(td, io_u, IO_U_F_TRIMMED);
734 break;
735 } else if (io_u->ddir == DDIR_WRITE) {
736 io_u->ddir = DDIR_READ;
737 break;
738 } else {
739 put_io_u(td, io_u);
740 continue;
741 }
742 }
743
744 if (!io_u)
745 break;
746 }
747
748 if (verify_state_should_stop(td, io_u)) {
749 put_io_u(td, io_u);
750 break;
751 }
752
753 if (td->o.verify_async)
754 io_u->end_io = verify_io_u_async;
755 else
756 io_u->end_io = verify_io_u;
757
758 ddir = io_u->ddir;
759 if (!td->o.disable_slat)
760 fio_gettime(&io_u->start_time, NULL);
761
762 ret = io_u_submit(td, io_u);
763
764 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765 break;
766
767 /*
768 * if we can queue more, do so. but check if there are
769 * completed io_u's first. Note that we can get BUSY even
770 * without IO queued, if the system is resource starved.
771 */
772reap:
773 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774 if (full || io_in_polling(td))
775 ret = wait_for_completions(td, NULL);
776
777 if (ret < 0)
778 break;
779 }
780
781 check_update_rusage(td);
782
783 if (!td->error) {
784 min_events = td->cur_depth;
785
786 if (min_events)
787 ret = io_u_queued_complete(td, min_events);
788 } else
789 cleanup_pending_aio(td);
790
791 td_set_runstate(td, TD_RUNNING);
792
793 dprint(FD_VERIFY, "exiting loop\n");
794}
795
796static bool exceeds_number_ios(struct thread_data *td)
797{
798 unsigned long long number_ios;
799
800 if (!td->o.number_ios)
801 return false;
802
803 number_ios = ddir_rw_sum(td->io_blocks);
804 number_ios += td->io_u_queued + td->io_u_in_flight;
805
806 return number_ios >= (td->o.number_ios * td->loops);
807}
808
809static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810{
811 unsigned long long bytes, limit;
812
813 if (td_rw(td))
814 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815 else if (td_write(td))
816 bytes = this_bytes[DDIR_WRITE];
817 else if (td_read(td))
818 bytes = this_bytes[DDIR_READ];
819 else
820 bytes = this_bytes[DDIR_TRIM];
821
822 if (td->o.io_size)
823 limit = td->o.io_size;
824 else
825 limit = td->o.size;
826
827 limit *= td->loops;
828 return bytes >= limit || exceeds_number_ios(td);
829}
830
831static bool io_issue_bytes_exceeded(struct thread_data *td)
832{
833 return io_bytes_exceeded(td, td->io_issue_bytes);
834}
835
836static bool io_complete_bytes_exceeded(struct thread_data *td)
837{
838 return io_bytes_exceeded(td, td->this_io_bytes);
839}
840
841/*
842 * used to calculate the next io time for rate control
843 *
844 */
845static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846{
847 uint64_t bps = td->rate_bps[ddir];
848
849 assert(!(td->flags & TD_F_CHILD));
850
851 if (td->o.rate_process == RATE_PROCESS_POISSON) {
852 uint64_t val, iops;
853
854 iops = bps / td->o.bs[ddir];
855 val = (int64_t) (1000000 / iops) *
856 -logf(__rand_0_1(&td->poisson_state[ddir]));
857 if (val) {
858 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
859 (unsigned long long) 1000000 / val,
860 ddir);
861 }
862 td->last_usec[ddir] += val;
863 return td->last_usec[ddir];
864 } else if (bps) {
865 uint64_t bytes = td->rate_io_issue_bytes[ddir];
866 uint64_t secs = bytes / bps;
867 uint64_t remainder = bytes % bps;
868
869 return remainder * 1000000 / bps + secs * 1000000;
870 }
871
872 return 0;
873}
874
875static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
876{
877 unsigned long long b;
878 uint64_t total;
879 int left;
880
881 b = ddir_rw_sum(td->io_blocks);
882 if (b % td->o.thinktime_blocks)
883 return;
884
885 io_u_quiesce(td);
886
887 total = 0;
888 if (td->o.thinktime_spin)
889 total = usec_spin(td->o.thinktime_spin);
890
891 left = td->o.thinktime - total;
892 if (left)
893 total += usec_sleep(td, left);
894
895 /*
896 * If we're ignoring thinktime for the rate, add the number of bytes
897 * we would have done while sleeping, minus one block to ensure we
898 * start issuing immediately after the sleep.
899 */
900 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
901 td->rate_io_issue_bytes[ddir] += (td->rate_bps[ddir] * 1000000) / total;
902 td->rate_io_issue_bytes[ddir] -= td->o.min_bs[ddir];
903 }
904}
905
906/*
907 * Main IO worker function. It retrieves io_u's to process and queues
908 * and reaps them, checking for rate and errors along the way.
909 *
910 * Returns number of bytes written and trimmed.
911 */
912static void do_io(struct thread_data *td, uint64_t *bytes_done)
913{
914 unsigned int i;
915 int ret = 0;
916 uint64_t total_bytes, bytes_issued = 0;
917
918 for (i = 0; i < DDIR_RWDIR_CNT; i++)
919 bytes_done[i] = td->bytes_done[i];
920
921 if (in_ramp_time(td))
922 td_set_runstate(td, TD_RAMP);
923 else
924 td_set_runstate(td, TD_RUNNING);
925
926 lat_target_init(td);
927
928 total_bytes = td->o.size;
929 /*
930 * Allow random overwrite workloads to write up to io_size
931 * before starting verification phase as 'size' doesn't apply.
932 */
933 if (td_write(td) && td_random(td) && td->o.norandommap)
934 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
935 /*
936 * If verify_backlog is enabled, we'll run the verify in this
937 * handler as well. For that case, we may need up to twice the
938 * amount of bytes.
939 */
940 if (td->o.verify != VERIFY_NONE &&
941 (td_write(td) && td->o.verify_backlog))
942 total_bytes += td->o.size;
943
944 /* In trimwrite mode, each byte is trimmed and then written, so
945 * allow total_bytes to be twice as big */
946 if (td_trimwrite(td))
947 total_bytes += td->total_io_size;
948
949 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
950 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
951 td->o.time_based) {
952 struct timespec comp_time;
953 struct io_u *io_u;
954 int full;
955 enum fio_ddir ddir;
956
957 check_update_rusage(td);
958
959 if (td->terminate || td->done)
960 break;
961
962 update_ts_cache(td);
963
964 if (runtime_exceeded(td, &td->ts_cache)) {
965 __update_ts_cache(td);
966 if (runtime_exceeded(td, &td->ts_cache)) {
967 fio_mark_td_terminate(td);
968 break;
969 }
970 }
971
972 if (flow_threshold_exceeded(td))
973 continue;
974
975 /*
976 * Break if we exceeded the bytes. The exception is time
977 * based runs, but we still need to break out of the loop
978 * for those to run verification, if enabled.
979 */
980 if (bytes_issued >= total_bytes &&
981 (!td->o.time_based ||
982 (td->o.time_based && td->o.verify != VERIFY_NONE)))
983 break;
984
985 io_u = get_io_u(td);
986 if (IS_ERR_OR_NULL(io_u)) {
987 int err = PTR_ERR(io_u);
988
989 io_u = NULL;
990 ddir = DDIR_INVAL;
991 if (err == -EBUSY) {
992 ret = FIO_Q_BUSY;
993 goto reap;
994 }
995 if (td->o.latency_target)
996 goto reap;
997 break;
998 }
999
1000 ddir = io_u->ddir;
1001
1002 /*
1003 * Add verification end_io handler if:
1004 * - Asked to verify (!td_rw(td))
1005 * - Or the io_u is from our verify list (mixed write/ver)
1006 */
1007 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1008 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1009
1010 if (!td->o.verify_pattern_bytes) {
1011 io_u->rand_seed = __rand(&td->verify_state);
1012 if (sizeof(int) != sizeof(long *))
1013 io_u->rand_seed *= __rand(&td->verify_state);
1014 }
1015
1016 if (verify_state_should_stop(td, io_u)) {
1017 put_io_u(td, io_u);
1018 break;
1019 }
1020
1021 if (td->o.verify_async)
1022 io_u->end_io = verify_io_u_async;
1023 else
1024 io_u->end_io = verify_io_u;
1025 td_set_runstate(td, TD_VERIFYING);
1026 } else if (in_ramp_time(td))
1027 td_set_runstate(td, TD_RAMP);
1028 else
1029 td_set_runstate(td, TD_RUNNING);
1030
1031 /*
1032 * Always log IO before it's issued, so we know the specific
1033 * order of it. The logged unit will track when the IO has
1034 * completed.
1035 */
1036 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1037 td->o.do_verify &&
1038 td->o.verify != VERIFY_NONE &&
1039 !td->o.experimental_verify)
1040 log_io_piece(td, io_u);
1041
1042 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1043 const unsigned long blen = io_u->xfer_buflen;
1044 const enum fio_ddir ddir = acct_ddir(io_u);
1045
1046 if (td->error)
1047 break;
1048
1049 workqueue_enqueue(&td->io_wq, &io_u->work);
1050 ret = FIO_Q_QUEUED;
1051
1052 if (ddir_rw(ddir)) {
1053 td->io_issues[ddir]++;
1054 td->io_issue_bytes[ddir] += blen;
1055 td->rate_io_issue_bytes[ddir] += blen;
1056 }
1057
1058 if (should_check_rate(td))
1059 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1060
1061 } else {
1062 ret = io_u_submit(td, io_u);
1063
1064 if (should_check_rate(td))
1065 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1066
1067 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1068 break;
1069
1070 /*
1071 * See if we need to complete some commands. Note that
1072 * we can get BUSY even without IO queued, if the
1073 * system is resource starved.
1074 */
1075reap:
1076 full = queue_full(td) ||
1077 (ret == FIO_Q_BUSY && td->cur_depth);
1078 if (full || io_in_polling(td))
1079 ret = wait_for_completions(td, &comp_time);
1080 }
1081 if (ret < 0)
1082 break;
1083 if (!ddir_rw_sum(td->bytes_done) &&
1084 !td_ioengine_flagged(td, FIO_NOIO))
1085 continue;
1086
1087 if (!in_ramp_time(td) && should_check_rate(td)) {
1088 if (check_min_rate(td, &comp_time)) {
1089 if (exitall_on_terminate || td->o.exitall_error)
1090 fio_terminate_threads(td->groupid);
1091 td_verror(td, EIO, "check_min_rate");
1092 break;
1093 }
1094 }
1095 if (!in_ramp_time(td) && td->o.latency_target)
1096 lat_target_check(td);
1097
1098 if (ddir_rw(ddir) && td->o.thinktime)
1099 handle_thinktime(td, ddir);
1100 }
1101
1102 check_update_rusage(td);
1103
1104 if (td->trim_entries)
1105 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1106
1107 if (td->o.fill_device && td->error == ENOSPC) {
1108 td->error = 0;
1109 fio_mark_td_terminate(td);
1110 }
1111 if (!td->error) {
1112 struct fio_file *f;
1113
1114 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1115 workqueue_flush(&td->io_wq);
1116 i = 0;
1117 } else
1118 i = td->cur_depth;
1119
1120 if (i) {
1121 ret = io_u_queued_complete(td, i);
1122 if (td->o.fill_device && td->error == ENOSPC)
1123 td->error = 0;
1124 }
1125
1126 if (should_fsync(td) && td->o.end_fsync) {
1127 td_set_runstate(td, TD_FSYNCING);
1128
1129 for_each_file(td, f, i) {
1130 if (!fio_file_fsync(td, f))
1131 continue;
1132
1133 log_err("fio: end_fsync failed for file %s\n",
1134 f->file_name);
1135 }
1136 }
1137 } else
1138 cleanup_pending_aio(td);
1139
1140 /*
1141 * stop job if we failed doing any IO
1142 */
1143 if (!ddir_rw_sum(td->this_io_bytes))
1144 td->done = 1;
1145
1146 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1147 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1148}
1149
1150static void free_file_completion_logging(struct thread_data *td)
1151{
1152 struct fio_file *f;
1153 unsigned int i;
1154
1155 for_each_file(td, f, i) {
1156 if (!f->last_write_comp)
1157 break;
1158 sfree(f->last_write_comp);
1159 }
1160}
1161
1162static int init_file_completion_logging(struct thread_data *td,
1163 unsigned int depth)
1164{
1165 struct fio_file *f;
1166 unsigned int i;
1167
1168 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1169 return 0;
1170
1171 for_each_file(td, f, i) {
1172 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1173 if (!f->last_write_comp)
1174 goto cleanup;
1175 }
1176
1177 return 0;
1178
1179cleanup:
1180 free_file_completion_logging(td);
1181 log_err("fio: failed to alloc write comp data\n");
1182 return 1;
1183}
1184
1185static void cleanup_io_u(struct thread_data *td)
1186{
1187 struct io_u *io_u;
1188
1189 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1190
1191 if (td->io_ops->io_u_free)
1192 td->io_ops->io_u_free(td, io_u);
1193
1194 fio_memfree(io_u, sizeof(*io_u));
1195 }
1196
1197 free_io_mem(td);
1198
1199 io_u_rexit(&td->io_u_requeues);
1200 io_u_qexit(&td->io_u_freelist);
1201 io_u_qexit(&td->io_u_all);
1202
1203 free_file_completion_logging(td);
1204}
1205
1206static int init_io_u(struct thread_data *td)
1207{
1208 struct io_u *io_u;
1209 unsigned int max_bs, min_write;
1210 int cl_align, i, max_units;
1211 int data_xfer = 1, err;
1212 char *p;
1213
1214 max_units = td->o.iodepth;
1215 max_bs = td_max_bs(td);
1216 min_write = td->o.min_bs[DDIR_WRITE];
1217 td->orig_buffer_size = (unsigned long long) max_bs
1218 * (unsigned long long) max_units;
1219
1220 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1221 data_xfer = 0;
1222
1223 err = 0;
1224 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1225 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1226 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1227
1228 if (err) {
1229 log_err("fio: failed setting up IO queues\n");
1230 return 1;
1231 }
1232
1233 /*
1234 * if we may later need to do address alignment, then add any
1235 * possible adjustment here so that we don't cause a buffer
1236 * overflow later. this adjustment may be too much if we get
1237 * lucky and the allocator gives us an aligned address.
1238 */
1239 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1240 td_ioengine_flagged(td, FIO_RAWIO))
1241 td->orig_buffer_size += page_mask + td->o.mem_align;
1242
1243 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1244 unsigned long bs;
1245
1246 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1247 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1248 }
1249
1250 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1251 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1252 return 1;
1253 }
1254
1255 if (data_xfer && allocate_io_mem(td))
1256 return 1;
1257
1258 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1259 td_ioengine_flagged(td, FIO_RAWIO))
1260 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1261 else
1262 p = td->orig_buffer;
1263
1264 cl_align = os_cache_line_size();
1265
1266 for (i = 0; i < max_units; i++) {
1267 void *ptr;
1268
1269 if (td->terminate)
1270 return 1;
1271
1272 ptr = fio_memalign(cl_align, sizeof(*io_u));
1273 if (!ptr) {
1274 log_err("fio: unable to allocate aligned memory\n");
1275 break;
1276 }
1277
1278 io_u = ptr;
1279 memset(io_u, 0, sizeof(*io_u));
1280 INIT_FLIST_HEAD(&io_u->verify_list);
1281 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1282
1283 if (data_xfer) {
1284 io_u->buf = p;
1285 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1286
1287 if (td_write(td))
1288 io_u_fill_buffer(td, io_u, min_write, max_bs);
1289 if (td_write(td) && td->o.verify_pattern_bytes) {
1290 /*
1291 * Fill the buffer with the pattern if we are
1292 * going to be doing writes.
1293 */
1294 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1295 }
1296 }
1297
1298 io_u->index = i;
1299 io_u->flags = IO_U_F_FREE;
1300 io_u_qpush(&td->io_u_freelist, io_u);
1301
1302 /*
1303 * io_u never leaves this stack, used for iteration of all
1304 * io_u buffers.
1305 */
1306 io_u_qpush(&td->io_u_all, io_u);
1307
1308 if (td->io_ops->io_u_init) {
1309 int ret = td->io_ops->io_u_init(td, io_u);
1310
1311 if (ret) {
1312 log_err("fio: failed to init engine data: %d\n", ret);
1313 return 1;
1314 }
1315 }
1316
1317 p += max_bs;
1318 }
1319
1320 if (init_file_completion_logging(td, max_units))
1321 return 1;
1322
1323 return 0;
1324}
1325
1326/*
1327 * This function is Linux specific.
1328 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1329 */
1330static int switch_ioscheduler(struct thread_data *td)
1331{
1332#ifdef FIO_HAVE_IOSCHED_SWITCH
1333 char tmp[256], tmp2[128];
1334 FILE *f;
1335 int ret;
1336
1337 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1338 return 0;
1339
1340 assert(td->files && td->files[0]);
1341 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1342
1343 f = fopen(tmp, "r+");
1344 if (!f) {
1345 if (errno == ENOENT) {
1346 log_err("fio: os or kernel doesn't support IO scheduler"
1347 " switching\n");
1348 return 0;
1349 }
1350 td_verror(td, errno, "fopen iosched");
1351 return 1;
1352 }
1353
1354 /*
1355 * Set io scheduler.
1356 */
1357 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1358 if (ferror(f) || ret != 1) {
1359 td_verror(td, errno, "fwrite");
1360 fclose(f);
1361 return 1;
1362 }
1363
1364 rewind(f);
1365
1366 /*
1367 * Read back and check that the selected scheduler is now the default.
1368 */
1369 memset(tmp, 0, sizeof(tmp));
1370 ret = fread(tmp, sizeof(tmp), 1, f);
1371 if (ferror(f) || ret < 0) {
1372 td_verror(td, errno, "fread");
1373 fclose(f);
1374 return 1;
1375 }
1376 /*
1377 * either a list of io schedulers or "none\n" is expected.
1378 */
1379 tmp[strlen(tmp) - 1] = '\0';
1380
1381 /*
1382 * Write to "none" entry doesn't fail, so check the result here.
1383 */
1384 if (!strcmp(tmp, "none")) {
1385 log_err("fio: io scheduler is not tunable\n");
1386 fclose(f);
1387 return 0;
1388 }
1389
1390 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1391 if (!strstr(tmp, tmp2)) {
1392 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1393 td_verror(td, EINVAL, "iosched_switch");
1394 fclose(f);
1395 return 1;
1396 }
1397
1398 fclose(f);
1399 return 0;
1400#else
1401 return 0;
1402#endif
1403}
1404
1405static bool keep_running(struct thread_data *td)
1406{
1407 unsigned long long limit;
1408
1409 if (td->done)
1410 return false;
1411 if (td->terminate)
1412 return false;
1413 if (td->o.time_based)
1414 return true;
1415 if (td->o.loops) {
1416 td->o.loops--;
1417 return true;
1418 }
1419 if (exceeds_number_ios(td))
1420 return false;
1421
1422 if (td->o.io_size)
1423 limit = td->o.io_size;
1424 else
1425 limit = td->o.size;
1426
1427 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1428 uint64_t diff;
1429
1430 /*
1431 * If the difference is less than the maximum IO size, we
1432 * are done.
1433 */
1434 diff = limit - ddir_rw_sum(td->io_bytes);
1435 if (diff < td_max_bs(td))
1436 return false;
1437
1438 if (fio_files_done(td) && !td->o.io_size)
1439 return false;
1440
1441 return true;
1442 }
1443
1444 return false;
1445}
1446
1447static int exec_string(struct thread_options *o, const char *string, const char *mode)
1448{
1449 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1450 int ret;
1451 char *str;
1452
1453 str = malloc(newlen);
1454 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1455
1456 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1457 ret = system(str);
1458 if (ret == -1)
1459 log_err("fio: exec of cmd <%s> failed\n", str);
1460
1461 free(str);
1462 return ret;
1463}
1464
1465/*
1466 * Dry run to compute correct state of numberio for verification.
1467 */
1468static uint64_t do_dry_run(struct thread_data *td)
1469{
1470 td_set_runstate(td, TD_RUNNING);
1471
1472 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1473 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1474 struct io_u *io_u;
1475 int ret;
1476
1477 if (td->terminate || td->done)
1478 break;
1479
1480 io_u = get_io_u(td);
1481 if (IS_ERR_OR_NULL(io_u))
1482 break;
1483
1484 io_u_set(td, io_u, IO_U_F_FLIGHT);
1485 io_u->error = 0;
1486 io_u->resid = 0;
1487 if (ddir_rw(acct_ddir(io_u)))
1488 td->io_issues[acct_ddir(io_u)]++;
1489 if (ddir_rw(io_u->ddir)) {
1490 io_u_mark_depth(td, 1);
1491 td->ts.total_io_u[io_u->ddir]++;
1492 }
1493
1494 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1495 td->o.do_verify &&
1496 td->o.verify != VERIFY_NONE &&
1497 !td->o.experimental_verify)
1498 log_io_piece(td, io_u);
1499
1500 ret = io_u_sync_complete(td, io_u);
1501 (void) ret;
1502 }
1503
1504 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1505}
1506
1507struct fork_data {
1508 struct thread_data *td;
1509 struct sk_out *sk_out;
1510};
1511
1512/*
1513 * Entry point for the thread based jobs. The process based jobs end up
1514 * here as well, after a little setup.
1515 */
1516static void *thread_main(void *data)
1517{
1518 struct fork_data *fd = data;
1519 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1520 struct thread_data *td = fd->td;
1521 struct thread_options *o = &td->o;
1522 struct sk_out *sk_out = fd->sk_out;
1523 uint64_t bytes_done[DDIR_RWDIR_CNT];
1524 int deadlock_loop_cnt;
1525 bool clear_state, did_some_io;
1526 int ret;
1527
1528 sk_out_assign(sk_out);
1529 free(fd);
1530
1531 if (!o->use_thread) {
1532 setsid();
1533 td->pid = getpid();
1534 } else
1535 td->pid = gettid();
1536
1537 fio_local_clock_init(o->use_thread);
1538
1539 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1540
1541 if (is_backend)
1542 fio_server_send_start(td);
1543
1544 INIT_FLIST_HEAD(&td->io_log_list);
1545 INIT_FLIST_HEAD(&td->io_hist_list);
1546 INIT_FLIST_HEAD(&td->verify_list);
1547 INIT_FLIST_HEAD(&td->trim_list);
1548 INIT_FLIST_HEAD(&td->next_rand_list);
1549 td->io_hist_tree = RB_ROOT;
1550
1551 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1552 if (ret) {
1553 td_verror(td, ret, "mutex_cond_init_pshared");
1554 goto err;
1555 }
1556 ret = cond_init_pshared(&td->verify_cond);
1557 if (ret) {
1558 td_verror(td, ret, "mutex_cond_pshared");
1559 goto err;
1560 }
1561
1562 td_set_runstate(td, TD_INITIALIZED);
1563 dprint(FD_MUTEX, "up startup_mutex\n");
1564 fio_mutex_up(startup_mutex);
1565 dprint(FD_MUTEX, "wait on td->mutex\n");
1566 fio_mutex_down(td->mutex);
1567 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1568
1569 /*
1570 * A new gid requires privilege, so we need to do this before setting
1571 * the uid.
1572 */
1573 if (o->gid != -1U && setgid(o->gid)) {
1574 td_verror(td, errno, "setgid");
1575 goto err;
1576 }
1577 if (o->uid != -1U && setuid(o->uid)) {
1578 td_verror(td, errno, "setuid");
1579 goto err;
1580 }
1581
1582 /*
1583 * Do this early, we don't want the compress threads to be limited
1584 * to the same CPUs as the IO workers. So do this before we set
1585 * any potential CPU affinity
1586 */
1587 if (iolog_compress_init(td, sk_out))
1588 goto err;
1589
1590 /*
1591 * If we have a gettimeofday() thread, make sure we exclude that
1592 * thread from this job
1593 */
1594 if (o->gtod_cpu)
1595 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1596
1597 /*
1598 * Set affinity first, in case it has an impact on the memory
1599 * allocations.
1600 */
1601 if (fio_option_is_set(o, cpumask)) {
1602 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1603 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1604 if (!ret) {
1605 log_err("fio: no CPUs set\n");
1606 log_err("fio: Try increasing number of available CPUs\n");
1607 td_verror(td, EINVAL, "cpus_split");
1608 goto err;
1609 }
1610 }
1611 ret = fio_setaffinity(td->pid, o->cpumask);
1612 if (ret == -1) {
1613 td_verror(td, errno, "cpu_set_affinity");
1614 goto err;
1615 }
1616 }
1617
1618#ifdef CONFIG_LIBNUMA
1619 /* numa node setup */
1620 if (fio_option_is_set(o, numa_cpunodes) ||
1621 fio_option_is_set(o, numa_memnodes)) {
1622 struct bitmask *mask;
1623
1624 if (numa_available() < 0) {
1625 td_verror(td, errno, "Does not support NUMA API\n");
1626 goto err;
1627 }
1628
1629 if (fio_option_is_set(o, numa_cpunodes)) {
1630 mask = numa_parse_nodestring(o->numa_cpunodes);
1631 ret = numa_run_on_node_mask(mask);
1632 numa_free_nodemask(mask);
1633 if (ret == -1) {
1634 td_verror(td, errno, \
1635 "numa_run_on_node_mask failed\n");
1636 goto err;
1637 }
1638 }
1639
1640 if (fio_option_is_set(o, numa_memnodes)) {
1641 mask = NULL;
1642 if (o->numa_memnodes)
1643 mask = numa_parse_nodestring(o->numa_memnodes);
1644
1645 switch (o->numa_mem_mode) {
1646 case MPOL_INTERLEAVE:
1647 numa_set_interleave_mask(mask);
1648 break;
1649 case MPOL_BIND:
1650 numa_set_membind(mask);
1651 break;
1652 case MPOL_LOCAL:
1653 numa_set_localalloc();
1654 break;
1655 case MPOL_PREFERRED:
1656 numa_set_preferred(o->numa_mem_prefer_node);
1657 break;
1658 case MPOL_DEFAULT:
1659 default:
1660 break;
1661 }
1662
1663 if (mask)
1664 numa_free_nodemask(mask);
1665
1666 }
1667 }
1668#endif
1669
1670 if (fio_pin_memory(td))
1671 goto err;
1672
1673 /*
1674 * May alter parameters that init_io_u() will use, so we need to
1675 * do this first.
1676 */
1677 if (init_iolog(td))
1678 goto err;
1679
1680 if (init_io_u(td))
1681 goto err;
1682
1683 if (o->verify_async && verify_async_init(td))
1684 goto err;
1685
1686 if (fio_option_is_set(o, ioprio) ||
1687 fio_option_is_set(o, ioprio_class)) {
1688 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1689 if (ret == -1) {
1690 td_verror(td, errno, "ioprio_set");
1691 goto err;
1692 }
1693 }
1694
1695 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1696 goto err;
1697
1698 errno = 0;
1699 if (nice(o->nice) == -1 && errno != 0) {
1700 td_verror(td, errno, "nice");
1701 goto err;
1702 }
1703
1704 if (o->ioscheduler && switch_ioscheduler(td))
1705 goto err;
1706
1707 if (!o->create_serialize && setup_files(td))
1708 goto err;
1709
1710 if (td_io_init(td))
1711 goto err;
1712
1713 if (!init_random_map(td))
1714 goto err;
1715
1716 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1717 goto err;
1718
1719 if (o->pre_read && !pre_read_files(td))
1720 goto err;
1721
1722 fio_verify_init(td);
1723
1724 if (rate_submit_init(td, sk_out))
1725 goto err;
1726
1727 set_epoch_time(td, o->log_unix_epoch);
1728 fio_getrusage(&td->ru_start);
1729 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1730 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1731 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1732
1733 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1734 o->ratemin[DDIR_TRIM]) {
1735 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1736 sizeof(td->bw_sample_time));
1737 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1738 sizeof(td->bw_sample_time));
1739 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1740 sizeof(td->bw_sample_time));
1741 }
1742
1743 memset(bytes_done, 0, sizeof(bytes_done));
1744 clear_state = false;
1745 did_some_io = false;
1746
1747 while (keep_running(td)) {
1748 uint64_t verify_bytes;
1749
1750 fio_gettime(&td->start, NULL);
1751 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1752
1753 if (clear_state) {
1754 clear_io_state(td, 0);
1755
1756 if (o->unlink_each_loop && unlink_all_files(td))
1757 break;
1758 }
1759
1760 prune_io_piece_log(td);
1761
1762 if (td->o.verify_only && td_write(td))
1763 verify_bytes = do_dry_run(td);
1764 else {
1765 do_io(td, bytes_done);
1766
1767 if (!ddir_rw_sum(bytes_done)) {
1768 fio_mark_td_terminate(td);
1769 verify_bytes = 0;
1770 } else {
1771 verify_bytes = bytes_done[DDIR_WRITE] +
1772 bytes_done[DDIR_TRIM];
1773 }
1774 }
1775
1776 /*
1777 * If we took too long to shut down, the main thread could
1778 * already consider us reaped/exited. If that happens, break
1779 * out and clean up.
1780 */
1781 if (td->runstate >= TD_EXITED)
1782 break;
1783
1784 clear_state = true;
1785
1786 /*
1787 * Make sure we've successfully updated the rusage stats
1788 * before waiting on the stat mutex. Otherwise we could have
1789 * the stat thread holding stat mutex and waiting for
1790 * the rusage_sem, which would never get upped because
1791 * this thread is waiting for the stat mutex.
1792 */
1793 deadlock_loop_cnt = 0;
1794 do {
1795 check_update_rusage(td);
1796 if (!fio_mutex_down_trylock(stat_mutex))
1797 break;
1798 usleep(1000);
1799 if (deadlock_loop_cnt++ > 5000) {
1800 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1801 td->error = EDEADLK;
1802 goto err;
1803 }
1804 } while (1);
1805
1806 if (td_read(td) && td->io_bytes[DDIR_READ])
1807 update_runtime(td, elapsed_us, DDIR_READ);
1808 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1809 update_runtime(td, elapsed_us, DDIR_WRITE);
1810 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1811 update_runtime(td, elapsed_us, DDIR_TRIM);
1812 fio_gettime(&td->start, NULL);
1813 fio_mutex_up(stat_mutex);
1814
1815 if (td->error || td->terminate)
1816 break;
1817
1818 if (!o->do_verify ||
1819 o->verify == VERIFY_NONE ||
1820 td_ioengine_flagged(td, FIO_UNIDIR))
1821 continue;
1822
1823 if (ddir_rw_sum(bytes_done))
1824 did_some_io = true;
1825
1826 clear_io_state(td, 0);
1827
1828 fio_gettime(&td->start, NULL);
1829
1830 do_verify(td, verify_bytes);
1831
1832 /*
1833 * See comment further up for why this is done here.
1834 */
1835 check_update_rusage(td);
1836
1837 fio_mutex_down(stat_mutex);
1838 update_runtime(td, elapsed_us, DDIR_READ);
1839 fio_gettime(&td->start, NULL);
1840 fio_mutex_up(stat_mutex);
1841
1842 if (td->error || td->terminate)
1843 break;
1844 }
1845
1846 /*
1847 * If td ended up with no I/O when it should have had,
1848 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1849 * (Are we not missing other flags that can be ignored ?)
1850 */
1851 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1852 !did_some_io && !td->o.create_only &&
1853 !(td_ioengine_flagged(td, FIO_NOIO) ||
1854 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1855 log_err("%s: No I/O performed by %s, "
1856 "perhaps try --debug=io option for details?\n",
1857 td->o.name, td->io_ops->name);
1858
1859 td_set_runstate(td, TD_FINISHING);
1860
1861 update_rusage_stat(td);
1862 td->ts.total_run_time = mtime_since_now(&td->epoch);
1863 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1864 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1865 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1866
1867 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1868 (td->o.verify != VERIFY_NONE && td_write(td)))
1869 verify_save_state(td->thread_number);
1870
1871 fio_unpin_memory(td);
1872
1873 td_writeout_logs(td, true);
1874
1875 iolog_compress_exit(td);
1876 rate_submit_exit(td);
1877
1878 if (o->exec_postrun)
1879 exec_string(o, o->exec_postrun, (const char *)"postrun");
1880
1881 if (exitall_on_terminate || (o->exitall_error && td->error))
1882 fio_terminate_threads(td->groupid);
1883
1884err:
1885 if (td->error)
1886 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1887 td->verror);
1888
1889 if (o->verify_async)
1890 verify_async_exit(td);
1891
1892 close_and_free_files(td);
1893 cleanup_io_u(td);
1894 close_ioengine(td);
1895 cgroup_shutdown(td, &cgroup_mnt);
1896 verify_free_state(td);
1897
1898 if (td->zone_state_index) {
1899 int i;
1900
1901 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1902 free(td->zone_state_index[i]);
1903 free(td->zone_state_index);
1904 td->zone_state_index = NULL;
1905 }
1906
1907 if (fio_option_is_set(o, cpumask)) {
1908 ret = fio_cpuset_exit(&o->cpumask);
1909 if (ret)
1910 td_verror(td, ret, "fio_cpuset_exit");
1911 }
1912
1913 /*
1914 * do this very late, it will log file closing as well
1915 */
1916 if (o->write_iolog_file)
1917 write_iolog_close(td);
1918
1919 td_set_runstate(td, TD_EXITED);
1920
1921 /*
1922 * Do this last after setting our runstate to exited, so we
1923 * know that the stat thread is signaled.
1924 */
1925 check_update_rusage(td);
1926
1927 sk_out_drop();
1928 return (void *) (uintptr_t) td->error;
1929}
1930
1931/*
1932 * Run over the job map and reap the threads that have exited, if any.
1933 */
1934static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1935 uint64_t *m_rate)
1936{
1937 struct thread_data *td;
1938 unsigned int cputhreads, realthreads, pending;
1939 int i, status, ret;
1940
1941 /*
1942 * reap exited threads (TD_EXITED -> TD_REAPED)
1943 */
1944 realthreads = pending = cputhreads = 0;
1945 for_each_td(td, i) {
1946 int flags = 0;
1947
1948 if (!strcmp(td->o.ioengine, "cpuio"))
1949 cputhreads++;
1950 else
1951 realthreads++;
1952
1953 if (!td->pid) {
1954 pending++;
1955 continue;
1956 }
1957 if (td->runstate == TD_REAPED)
1958 continue;
1959 if (td->o.use_thread) {
1960 if (td->runstate == TD_EXITED) {
1961 td_set_runstate(td, TD_REAPED);
1962 goto reaped;
1963 }
1964 continue;
1965 }
1966
1967 flags = WNOHANG;
1968 if (td->runstate == TD_EXITED)
1969 flags = 0;
1970
1971 /*
1972 * check if someone quit or got killed in an unusual way
1973 */
1974 ret = waitpid(td->pid, &status, flags);
1975 if (ret < 0) {
1976 if (errno == ECHILD) {
1977 log_err("fio: pid=%d disappeared %d\n",
1978 (int) td->pid, td->runstate);
1979 td->sig = ECHILD;
1980 td_set_runstate(td, TD_REAPED);
1981 goto reaped;
1982 }
1983 perror("waitpid");
1984 } else if (ret == td->pid) {
1985 if (WIFSIGNALED(status)) {
1986 int sig = WTERMSIG(status);
1987
1988 if (sig != SIGTERM && sig != SIGUSR2)
1989 log_err("fio: pid=%d, got signal=%d\n",
1990 (int) td->pid, sig);
1991 td->sig = sig;
1992 td_set_runstate(td, TD_REAPED);
1993 goto reaped;
1994 }
1995 if (WIFEXITED(status)) {
1996 if (WEXITSTATUS(status) && !td->error)
1997 td->error = WEXITSTATUS(status);
1998
1999 td_set_runstate(td, TD_REAPED);
2000 goto reaped;
2001 }
2002 }
2003
2004 /*
2005 * If the job is stuck, do a forceful timeout of it and
2006 * move on.
2007 */
2008 if (td->terminate &&
2009 td->runstate < TD_FSYNCING &&
2010 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2011 log_err("fio: job '%s' (state=%d) hasn't exited in "
2012 "%lu seconds, it appears to be stuck. Doing "
2013 "forceful exit of this job.\n",
2014 td->o.name, td->runstate,
2015 (unsigned long) time_since_now(&td->terminate_time));
2016 td_set_runstate(td, TD_REAPED);
2017 goto reaped;
2018 }
2019
2020 /*
2021 * thread is not dead, continue
2022 */
2023 pending++;
2024 continue;
2025reaped:
2026 (*nr_running)--;
2027 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2028 (*t_rate) -= ddir_rw_sum(td->o.rate);
2029 if (!td->pid)
2030 pending--;
2031
2032 if (td->error)
2033 exit_value++;
2034
2035 done_secs += mtime_since_now(&td->epoch) / 1000;
2036 profile_td_exit(td);
2037 }
2038
2039 if (*nr_running == cputhreads && !pending && realthreads)
2040 fio_terminate_threads(TERMINATE_ALL);
2041}
2042
2043static bool __check_trigger_file(void)
2044{
2045 struct stat sb;
2046
2047 if (!trigger_file)
2048 return false;
2049
2050 if (stat(trigger_file, &sb))
2051 return false;
2052
2053 if (unlink(trigger_file) < 0)
2054 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2055 strerror(errno));
2056
2057 return true;
2058}
2059
2060static bool trigger_timedout(void)
2061{
2062 if (trigger_timeout)
2063 if (time_since_genesis() >= trigger_timeout) {
2064 trigger_timeout = 0;
2065 return true;
2066 }
2067
2068 return false;
2069}
2070
2071void exec_trigger(const char *cmd)
2072{
2073 int ret;
2074
2075 if (!cmd || cmd[0] == '\0')
2076 return;
2077
2078 ret = system(cmd);
2079 if (ret == -1)
2080 log_err("fio: failed executing %s trigger\n", cmd);
2081}
2082
2083void check_trigger_file(void)
2084{
2085 if (__check_trigger_file() || trigger_timedout()) {
2086 if (nr_clients)
2087 fio_clients_send_trigger(trigger_remote_cmd);
2088 else {
2089 verify_save_state(IO_LIST_ALL);
2090 fio_terminate_threads(TERMINATE_ALL);
2091 exec_trigger(trigger_cmd);
2092 }
2093 }
2094}
2095
2096static int fio_verify_load_state(struct thread_data *td)
2097{
2098 int ret;
2099
2100 if (!td->o.verify_state)
2101 return 0;
2102
2103 if (is_backend) {
2104 void *data;
2105
2106 ret = fio_server_get_verify_state(td->o.name,
2107 td->thread_number - 1, &data);
2108 if (!ret)
2109 verify_assign_state(td, data);
2110 } else
2111 ret = verify_load_state(td, "local");
2112
2113 return ret;
2114}
2115
2116static void do_usleep(unsigned int usecs)
2117{
2118 check_for_running_stats();
2119 check_trigger_file();
2120 usleep(usecs);
2121}
2122
2123static bool check_mount_writes(struct thread_data *td)
2124{
2125 struct fio_file *f;
2126 unsigned int i;
2127
2128 if (!td_write(td) || td->o.allow_mounted_write)
2129 return false;
2130
2131 /*
2132 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2133 * are mkfs'd and mounted.
2134 */
2135 for_each_file(td, f, i) {
2136#ifdef FIO_HAVE_CHARDEV_SIZE
2137 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2138#else
2139 if (f->filetype != FIO_TYPE_BLOCK)
2140#endif
2141 continue;
2142 if (device_is_mounted(f->file_name))
2143 goto mounted;
2144 }
2145
2146 return false;
2147mounted:
2148 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2149 return true;
2150}
2151
2152static bool waitee_running(struct thread_data *me)
2153{
2154 const char *waitee = me->o.wait_for;
2155 const char *self = me->o.name;
2156 struct thread_data *td;
2157 int i;
2158
2159 if (!waitee)
2160 return false;
2161
2162 for_each_td(td, i) {
2163 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2164 continue;
2165
2166 if (td->runstate < TD_EXITED) {
2167 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2168 self, td->o.name,
2169 runstate_to_name(td->runstate));
2170 return true;
2171 }
2172 }
2173
2174 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2175 return false;
2176}
2177
2178/*
2179 * Main function for kicking off and reaping jobs, as needed.
2180 */
2181static void run_threads(struct sk_out *sk_out)
2182{
2183 struct thread_data *td;
2184 unsigned int i, todo, nr_running, nr_started;
2185 uint64_t m_rate, t_rate;
2186 uint64_t spent;
2187
2188 if (fio_gtod_offload && fio_start_gtod_thread())
2189 return;
2190
2191 fio_idle_prof_init();
2192
2193 set_sig_handlers();
2194
2195 nr_thread = nr_process = 0;
2196 for_each_td(td, i) {
2197 if (check_mount_writes(td))
2198 return;
2199 if (td->o.use_thread)
2200 nr_thread++;
2201 else
2202 nr_process++;
2203 }
2204
2205 if (output_format & FIO_OUTPUT_NORMAL) {
2206 log_info("Starting ");
2207 if (nr_thread)
2208 log_info("%d thread%s", nr_thread,
2209 nr_thread > 1 ? "s" : "");
2210 if (nr_process) {
2211 if (nr_thread)
2212 log_info(" and ");
2213 log_info("%d process%s", nr_process,
2214 nr_process > 1 ? "es" : "");
2215 }
2216 log_info("\n");
2217 log_info_flush();
2218 }
2219
2220 todo = thread_number;
2221 nr_running = 0;
2222 nr_started = 0;
2223 m_rate = t_rate = 0;
2224
2225 for_each_td(td, i) {
2226 print_status_init(td->thread_number - 1);
2227
2228 if (!td->o.create_serialize)
2229 continue;
2230
2231 if (fio_verify_load_state(td))
2232 goto reap;
2233
2234 /*
2235 * do file setup here so it happens sequentially,
2236 * we don't want X number of threads getting their
2237 * client data interspersed on disk
2238 */
2239 if (setup_files(td)) {
2240reap:
2241 exit_value++;
2242 if (td->error)
2243 log_err("fio: pid=%d, err=%d/%s\n",
2244 (int) td->pid, td->error, td->verror);
2245 td_set_runstate(td, TD_REAPED);
2246 todo--;
2247 } else {
2248 struct fio_file *f;
2249 unsigned int j;
2250
2251 /*
2252 * for sharing to work, each job must always open
2253 * its own files. so close them, if we opened them
2254 * for creation
2255 */
2256 for_each_file(td, f, j) {
2257 if (fio_file_open(f))
2258 td_io_close_file(td, f);
2259 }
2260 }
2261 }
2262
2263 /* start idle threads before io threads start to run */
2264 fio_idle_prof_start();
2265
2266 set_genesis_time();
2267
2268 while (todo) {
2269 struct thread_data *map[REAL_MAX_JOBS];
2270 struct timespec this_start;
2271 int this_jobs = 0, left;
2272 struct fork_data *fd;
2273
2274 /*
2275 * create threads (TD_NOT_CREATED -> TD_CREATED)
2276 */
2277 for_each_td(td, i) {
2278 if (td->runstate != TD_NOT_CREATED)
2279 continue;
2280
2281 /*
2282 * never got a chance to start, killed by other
2283 * thread for some reason
2284 */
2285 if (td->terminate) {
2286 todo--;
2287 continue;
2288 }
2289
2290 if (td->o.start_delay) {
2291 spent = utime_since_genesis();
2292
2293 if (td->o.start_delay > spent)
2294 continue;
2295 }
2296
2297 if (td->o.stonewall && (nr_started || nr_running)) {
2298 dprint(FD_PROCESS, "%s: stonewall wait\n",
2299 td->o.name);
2300 break;
2301 }
2302
2303 if (waitee_running(td)) {
2304 dprint(FD_PROCESS, "%s: waiting for %s\n",
2305 td->o.name, td->o.wait_for);
2306 continue;
2307 }
2308
2309 init_disk_util(td);
2310
2311 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2312 td->update_rusage = 0;
2313
2314 /*
2315 * Set state to created. Thread will transition
2316 * to TD_INITIALIZED when it's done setting up.
2317 */
2318 td_set_runstate(td, TD_CREATED);
2319 map[this_jobs++] = td;
2320 nr_started++;
2321
2322 fd = calloc(1, sizeof(*fd));
2323 fd->td = td;
2324 fd->sk_out = sk_out;
2325
2326 if (td->o.use_thread) {
2327 int ret;
2328
2329 dprint(FD_PROCESS, "will pthread_create\n");
2330 ret = pthread_create(&td->thread, NULL,
2331 thread_main, fd);
2332 if (ret) {
2333 log_err("pthread_create: %s\n",
2334 strerror(ret));
2335 free(fd);
2336 nr_started--;
2337 break;
2338 }
2339 fd = NULL;
2340 ret = pthread_detach(td->thread);
2341 if (ret)
2342 log_err("pthread_detach: %s",
2343 strerror(ret));
2344 } else {
2345 pid_t pid;
2346 dprint(FD_PROCESS, "will fork\n");
2347 pid = fork();
2348 if (!pid) {
2349 int ret;
2350
2351 ret = (int)(uintptr_t)thread_main(fd);
2352 _exit(ret);
2353 } else if (i == fio_debug_jobno)
2354 *fio_debug_jobp = pid;
2355 }
2356 dprint(FD_MUTEX, "wait on startup_mutex\n");
2357 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2358 log_err("fio: job startup hung? exiting.\n");
2359 fio_terminate_threads(TERMINATE_ALL);
2360 fio_abort = 1;
2361 nr_started--;
2362 free(fd);
2363 break;
2364 }
2365 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2366 }
2367
2368 /*
2369 * Wait for the started threads to transition to
2370 * TD_INITIALIZED.
2371 */
2372 fio_gettime(&this_start, NULL);
2373 left = this_jobs;
2374 while (left && !fio_abort) {
2375 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2376 break;
2377
2378 do_usleep(100000);
2379
2380 for (i = 0; i < this_jobs; i++) {
2381 td = map[i];
2382 if (!td)
2383 continue;
2384 if (td->runstate == TD_INITIALIZED) {
2385 map[i] = NULL;
2386 left--;
2387 } else if (td->runstate >= TD_EXITED) {
2388 map[i] = NULL;
2389 left--;
2390 todo--;
2391 nr_running++; /* work-around... */
2392 }
2393 }
2394 }
2395
2396 if (left) {
2397 log_err("fio: %d job%s failed to start\n", left,
2398 left > 1 ? "s" : "");
2399 for (i = 0; i < this_jobs; i++) {
2400 td = map[i];
2401 if (!td)
2402 continue;
2403 kill(td->pid, SIGTERM);
2404 }
2405 break;
2406 }
2407
2408 /*
2409 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2410 */
2411 for_each_td(td, i) {
2412 if (td->runstate != TD_INITIALIZED)
2413 continue;
2414
2415 if (in_ramp_time(td))
2416 td_set_runstate(td, TD_RAMP);
2417 else
2418 td_set_runstate(td, TD_RUNNING);
2419 nr_running++;
2420 nr_started--;
2421 m_rate += ddir_rw_sum(td->o.ratemin);
2422 t_rate += ddir_rw_sum(td->o.rate);
2423 todo--;
2424 fio_mutex_up(td->mutex);
2425 }
2426
2427 reap_threads(&nr_running, &t_rate, &m_rate);
2428
2429 if (todo)
2430 do_usleep(100000);
2431 }
2432
2433 while (nr_running) {
2434 reap_threads(&nr_running, &t_rate, &m_rate);
2435 do_usleep(10000);
2436 }
2437
2438 fio_idle_prof_stop();
2439
2440 update_io_ticks();
2441}
2442
2443static void free_disk_util(void)
2444{
2445 disk_util_prune_entries();
2446 helper_thread_destroy();
2447}
2448
2449int fio_backend(struct sk_out *sk_out)
2450{
2451 struct thread_data *td;
2452 int i;
2453
2454 if (exec_profile) {
2455 if (load_profile(exec_profile))
2456 return 1;
2457 free(exec_profile);
2458 exec_profile = NULL;
2459 }
2460 if (!thread_number)
2461 return 0;
2462
2463 if (write_bw_log) {
2464 struct log_params p = {
2465 .log_type = IO_LOG_TYPE_BW,
2466 };
2467
2468 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2469 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2470 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2471 }
2472
2473 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2474 if (startup_mutex == NULL)
2475 return 1;
2476
2477 set_genesis_time();
2478 stat_init();
2479 helper_thread_create(startup_mutex, sk_out);
2480
2481 cgroup_list = smalloc(sizeof(*cgroup_list));
2482 INIT_FLIST_HEAD(cgroup_list);
2483
2484 run_threads(sk_out);
2485
2486 helper_thread_exit();
2487
2488 if (!fio_abort) {
2489 __show_run_stats();
2490 if (write_bw_log) {
2491 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2492 struct io_log *log = agg_io_log[i];
2493
2494 flush_log(log, false);
2495 free_log(log);
2496 }
2497 }
2498 }
2499
2500 for_each_td(td, i) {
2501 steadystate_free(td);
2502 fio_options_free(td);
2503 if (td->rusage_sem) {
2504 fio_mutex_remove(td->rusage_sem);
2505 td->rusage_sem = NULL;
2506 }
2507 fio_mutex_remove(td->mutex);
2508 td->mutex = NULL;
2509 }
2510
2511 free_disk_util();
2512 cgroup_kill(cgroup_list);
2513 sfree(cgroup_list);
2514 sfree(cgroup_mnt);
2515
2516 fio_mutex_remove(startup_mutex);
2517 stat_exit();
2518 return exit_value;
2519}