Merge branch 'latency_run' of https://github.com/liu-song-6/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
70
71#define JOB_START_TIMEOUT (5 * 1000)
72
73static void sig_int(int sig)
74{
75 if (threads) {
76 if (is_backend)
77 fio_server_got_signal(sig);
78 else {
79 log_info("\nfio: terminating on signal %d\n", sig);
80 log_info_flush();
81 exit_value = 128;
82 }
83
84 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
85 }
86}
87
88void sig_show_status(int sig)
89{
90 show_running_run_stats();
91}
92
93static void set_sig_handlers(void)
94{
95 struct sigaction act;
96
97 memset(&act, 0, sizeof(act));
98 act.sa_handler = sig_int;
99 act.sa_flags = SA_RESTART;
100 sigaction(SIGINT, &act, NULL);
101
102 memset(&act, 0, sizeof(act));
103 act.sa_handler = sig_int;
104 act.sa_flags = SA_RESTART;
105 sigaction(SIGTERM, &act, NULL);
106
107/* Windows uses SIGBREAK as a quit signal from other applications */
108#ifdef WIN32
109 memset(&act, 0, sizeof(act));
110 act.sa_handler = sig_int;
111 act.sa_flags = SA_RESTART;
112 sigaction(SIGBREAK, &act, NULL);
113#endif
114
115 memset(&act, 0, sizeof(act));
116 act.sa_handler = sig_show_status;
117 act.sa_flags = SA_RESTART;
118 sigaction(SIGUSR1, &act, NULL);
119
120 if (is_backend) {
121 memset(&act, 0, sizeof(act));
122 act.sa_handler = sig_int;
123 act.sa_flags = SA_RESTART;
124 sigaction(SIGPIPE, &act, NULL);
125 }
126}
127
128/*
129 * Check if we are above the minimum rate given.
130 */
131static bool __check_min_rate(struct thread_data *td, struct timespec *now,
132 enum fio_ddir ddir)
133{
134 unsigned long long bytes = 0;
135 unsigned long iops = 0;
136 unsigned long spent;
137 unsigned long long rate;
138 unsigned long long ratemin = 0;
139 unsigned int rate_iops = 0;
140 unsigned int rate_iops_min = 0;
141
142 assert(ddir_rw(ddir));
143
144 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
145 return false;
146
147 /*
148 * allow a 2 second settle period in the beginning
149 */
150 if (mtime_since(&td->start, now) < 2000)
151 return false;
152
153 iops += td->this_io_blocks[ddir];
154 bytes += td->this_io_bytes[ddir];
155 ratemin += td->o.ratemin[ddir];
156 rate_iops += td->o.rate_iops[ddir];
157 rate_iops_min += td->o.rate_iops_min[ddir];
158
159 /*
160 * if rate blocks is set, sample is running
161 */
162 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
163 spent = mtime_since(&td->lastrate[ddir], now);
164 if (spent < td->o.ratecycle)
165 return false;
166
167 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
168 /*
169 * check bandwidth specified rate
170 */
171 if (bytes < td->rate_bytes[ddir]) {
172 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
173 td->o.name, ratemin, bytes);
174 return true;
175 } else {
176 if (spent)
177 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
178 else
179 rate = 0;
180
181 if (rate < ratemin ||
182 bytes < td->rate_bytes[ddir]) {
183 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
184 td->o.name, ratemin, rate);
185 return true;
186 }
187 }
188 } else {
189 /*
190 * checks iops specified rate
191 */
192 if (iops < rate_iops) {
193 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
194 td->o.name, rate_iops, iops);
195 return true;
196 } else {
197 if (spent)
198 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
199 else
200 rate = 0;
201
202 if (rate < rate_iops_min ||
203 iops < td->rate_blocks[ddir]) {
204 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
205 td->o.name, rate_iops_min, rate);
206 return true;
207 }
208 }
209 }
210 }
211
212 td->rate_bytes[ddir] = bytes;
213 td->rate_blocks[ddir] = iops;
214 memcpy(&td->lastrate[ddir], now, sizeof(*now));
215 return false;
216}
217
218static bool check_min_rate(struct thread_data *td, struct timespec *now)
219{
220 bool ret = false;
221
222 if (td->bytes_done[DDIR_READ])
223 ret |= __check_min_rate(td, now, DDIR_READ);
224 if (td->bytes_done[DDIR_WRITE])
225 ret |= __check_min_rate(td, now, DDIR_WRITE);
226 if (td->bytes_done[DDIR_TRIM])
227 ret |= __check_min_rate(td, now, DDIR_TRIM);
228
229 return ret;
230}
231
232/*
233 * When job exits, we can cancel the in-flight IO if we are using async
234 * io. Attempt to do so.
235 */
236static void cleanup_pending_aio(struct thread_data *td)
237{
238 int r;
239
240 /*
241 * get immediately available events, if any
242 */
243 r = io_u_queued_complete(td, 0);
244
245 /*
246 * now cancel remaining active events
247 */
248 if (td->io_ops->cancel) {
249 struct io_u *io_u;
250 int i;
251
252 io_u_qiter(&td->io_u_all, io_u, i) {
253 if (io_u->flags & IO_U_F_FLIGHT) {
254 r = td->io_ops->cancel(td, io_u);
255 if (!r)
256 put_io_u(td, io_u);
257 }
258 }
259 }
260
261 if (td->cur_depth)
262 r = io_u_queued_complete(td, td->cur_depth);
263}
264
265/*
266 * Helper to handle the final sync of a file. Works just like the normal
267 * io path, just does everything sync.
268 */
269static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
270{
271 struct io_u *io_u = __get_io_u(td);
272 enum fio_q_status ret;
273
274 if (!io_u)
275 return true;
276
277 io_u->ddir = DDIR_SYNC;
278 io_u->file = f;
279 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
280
281 if (td_io_prep(td, io_u)) {
282 put_io_u(td, io_u);
283 return true;
284 }
285
286requeue:
287 ret = td_io_queue(td, io_u);
288 switch (ret) {
289 case FIO_Q_QUEUED:
290 td_io_commit(td);
291 if (io_u_queued_complete(td, 1) < 0)
292 return true;
293 break;
294 case FIO_Q_COMPLETED:
295 if (io_u->error) {
296 td_verror(td, io_u->error, "td_io_queue");
297 return true;
298 }
299
300 if (io_u_sync_complete(td, io_u) < 0)
301 return true;
302 break;
303 case FIO_Q_BUSY:
304 td_io_commit(td);
305 goto requeue;
306 }
307
308 return false;
309}
310
311static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
312{
313 int ret, ret2;
314
315 if (fio_file_open(f))
316 return fio_io_sync(td, f);
317
318 if (td_io_open_file(td, f))
319 return 1;
320
321 ret = fio_io_sync(td, f);
322 ret2 = 0;
323 if (fio_file_open(f))
324 ret2 = td_io_close_file(td, f);
325 return (ret || ret2);
326}
327
328static inline void __update_ts_cache(struct thread_data *td)
329{
330 fio_gettime(&td->ts_cache, NULL);
331}
332
333static inline void update_ts_cache(struct thread_data *td)
334{
335 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
336 __update_ts_cache(td);
337}
338
339static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
340{
341 if (in_ramp_time(td))
342 return false;
343 if (!td->o.timeout)
344 return false;
345 if (utime_since(&td->epoch, t) >= td->o.timeout)
346 return true;
347
348 return false;
349}
350
351/*
352 * We need to update the runtime consistently in ms, but keep a running
353 * tally of the current elapsed time in microseconds for sub millisecond
354 * updates.
355 */
356static inline void update_runtime(struct thread_data *td,
357 unsigned long long *elapsed_us,
358 const enum fio_ddir ddir)
359{
360 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
361 return;
362
363 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
364 elapsed_us[ddir] += utime_since_now(&td->start);
365 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
366}
367
368static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
369 int *retptr)
370{
371 int ret = *retptr;
372
373 if (ret < 0 || td->error) {
374 int err = td->error;
375 enum error_type_bit eb;
376
377 if (ret < 0)
378 err = -ret;
379
380 eb = td_error_type(ddir, err);
381 if (!(td->o.continue_on_error & (1 << eb)))
382 return true;
383
384 if (td_non_fatal_error(td, eb, err)) {
385 /*
386 * Continue with the I/Os in case of
387 * a non fatal error.
388 */
389 update_error_count(td, err);
390 td_clear_error(td);
391 *retptr = 0;
392 return false;
393 } else if (td->o.fill_device && err == ENOSPC) {
394 /*
395 * We expect to hit this error if
396 * fill_device option is set.
397 */
398 td_clear_error(td);
399 fio_mark_td_terminate(td);
400 return true;
401 } else {
402 /*
403 * Stop the I/O in case of a fatal
404 * error.
405 */
406 update_error_count(td, err);
407 return true;
408 }
409 }
410
411 return false;
412}
413
414static void check_update_rusage(struct thread_data *td)
415{
416 if (td->update_rusage) {
417 td->update_rusage = 0;
418 update_rusage_stat(td);
419 fio_sem_up(td->rusage_sem);
420 }
421}
422
423static int wait_for_completions(struct thread_data *td, struct timespec *time)
424{
425 const int full = queue_full(td);
426 int min_evts = 0;
427 int ret;
428
429 if (td->flags & TD_F_REGROW_LOGS)
430 return io_u_quiesce(td);
431
432 /*
433 * if the queue is full, we MUST reap at least 1 event
434 */
435 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
436 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
437 min_evts = 1;
438
439 if (time && __should_check_rate(td))
440 fio_gettime(time, NULL);
441
442 do {
443 ret = io_u_queued_complete(td, min_evts);
444 if (ret < 0)
445 break;
446 } while (full && (td->cur_depth > td->o.iodepth_low));
447
448 return ret;
449}
450
451int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
452 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
453 struct timespec *comp_time)
454{
455 switch (*ret) {
456 case FIO_Q_COMPLETED:
457 if (io_u->error) {
458 *ret = -io_u->error;
459 clear_io_u(td, io_u);
460 } else if (io_u->resid) {
461 long long bytes = io_u->xfer_buflen - io_u->resid;
462 struct fio_file *f = io_u->file;
463
464 if (bytes_issued)
465 *bytes_issued += bytes;
466
467 if (!from_verify)
468 trim_io_piece(io_u);
469
470 /*
471 * zero read, fail
472 */
473 if (!bytes) {
474 if (!from_verify)
475 unlog_io_piece(td, io_u);
476 td_verror(td, EIO, "full resid");
477 put_io_u(td, io_u);
478 break;
479 }
480
481 io_u->xfer_buflen = io_u->resid;
482 io_u->xfer_buf += bytes;
483 io_u->offset += bytes;
484
485 if (ddir_rw(io_u->ddir))
486 td->ts.short_io_u[io_u->ddir]++;
487
488 if (io_u->offset == f->real_file_size)
489 goto sync_done;
490
491 requeue_io_u(td, &io_u);
492 } else {
493sync_done:
494 if (comp_time && __should_check_rate(td))
495 fio_gettime(comp_time, NULL);
496
497 *ret = io_u_sync_complete(td, io_u);
498 if (*ret < 0)
499 break;
500 }
501
502 if (td->flags & TD_F_REGROW_LOGS)
503 regrow_logs(td);
504
505 /*
506 * when doing I/O (not when verifying),
507 * check for any errors that are to be ignored
508 */
509 if (!from_verify)
510 break;
511
512 return 0;
513 case FIO_Q_QUEUED:
514 /*
515 * if the engine doesn't have a commit hook,
516 * the io_u is really queued. if it does have such
517 * a hook, it has to call io_u_queued() itself.
518 */
519 if (td->io_ops->commit == NULL)
520 io_u_queued(td, io_u);
521 if (bytes_issued)
522 *bytes_issued += io_u->xfer_buflen;
523 break;
524 case FIO_Q_BUSY:
525 if (!from_verify)
526 unlog_io_piece(td, io_u);
527 requeue_io_u(td, &io_u);
528 td_io_commit(td);
529 break;
530 default:
531 assert(*ret < 0);
532 td_verror(td, -(*ret), "td_io_queue");
533 break;
534 }
535
536 if (break_on_this_error(td, ddir, ret))
537 return 1;
538
539 return 0;
540}
541
542static inline bool io_in_polling(struct thread_data *td)
543{
544 return !td->o.iodepth_batch_complete_min &&
545 !td->o.iodepth_batch_complete_max;
546}
547/*
548 * Unlinks files from thread data fio_file structure
549 */
550static int unlink_all_files(struct thread_data *td)
551{
552 struct fio_file *f;
553 unsigned int i;
554 int ret = 0;
555
556 for_each_file(td, f, i) {
557 if (f->filetype != FIO_TYPE_FILE)
558 continue;
559 ret = td_io_unlink_file(td, f);
560 if (ret)
561 break;
562 }
563
564 if (ret)
565 td_verror(td, ret, "unlink_all_files");
566
567 return ret;
568}
569
570/*
571 * Check if io_u will overlap an in-flight IO in the queue
572 */
573bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574{
575 bool overlap;
576 struct io_u *check_io_u;
577 unsigned long long x1, x2, y1, y2;
578 int i;
579
580 x1 = io_u->offset;
581 x2 = io_u->offset + io_u->buflen;
582 overlap = false;
583 io_u_qiter(q, check_io_u, i) {
584 if (check_io_u->flags & IO_U_F_FLIGHT) {
585 y1 = check_io_u->offset;
586 y2 = check_io_u->offset + check_io_u->buflen;
587
588 if (x1 < y2 && y1 < x2) {
589 overlap = true;
590 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
591 x1, io_u->buflen,
592 y1, check_io_u->buflen);
593 break;
594 }
595 }
596 }
597
598 return overlap;
599}
600
601static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602{
603 /*
604 * Check for overlap if the user asked us to, and we have
605 * at least one IO in flight besides this one.
606 */
607 if (td->o.serialize_overlap && td->cur_depth > 1 &&
608 in_flight_overlap(&td->io_u_all, io_u))
609 return FIO_Q_BUSY;
610
611 return td_io_queue(td, io_u);
612}
613
614/*
615 * The main verify engine. Runs over the writes we previously submitted,
616 * reads the blocks back in, and checks the crc/md5 of the data.
617 */
618static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619{
620 struct fio_file *f;
621 struct io_u *io_u;
622 int ret, min_events;
623 unsigned int i;
624
625 dprint(FD_VERIFY, "starting loop\n");
626
627 /*
628 * sync io first and invalidate cache, to make sure we really
629 * read from disk.
630 */
631 for_each_file(td, f, i) {
632 if (!fio_file_open(f))
633 continue;
634 if (fio_io_sync(td, f))
635 break;
636 if (file_invalidate_cache(td, f))
637 break;
638 }
639
640 check_update_rusage(td);
641
642 if (td->error)
643 return;
644
645 /*
646 * verify_state needs to be reset before verification
647 * proceeds so that expected random seeds match actual
648 * random seeds in headers. The main loop will reset
649 * all random number generators if randrepeat is set.
650 */
651 if (!td->o.rand_repeatable)
652 td_fill_verify_state_seed(td);
653
654 td_set_runstate(td, TD_VERIFYING);
655
656 io_u = NULL;
657 while (!td->terminate) {
658 enum fio_ddir ddir;
659 int full;
660
661 update_ts_cache(td);
662 check_update_rusage(td);
663
664 if (runtime_exceeded(td, &td->ts_cache)) {
665 __update_ts_cache(td);
666 if (runtime_exceeded(td, &td->ts_cache)) {
667 fio_mark_td_terminate(td);
668 break;
669 }
670 }
671
672 if (flow_threshold_exceeded(td))
673 continue;
674
675 if (!td->o.experimental_verify) {
676 io_u = __get_io_u(td);
677 if (!io_u)
678 break;
679
680 if (get_next_verify(td, io_u)) {
681 put_io_u(td, io_u);
682 break;
683 }
684
685 if (td_io_prep(td, io_u)) {
686 put_io_u(td, io_u);
687 break;
688 }
689 } else {
690 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691 break;
692
693 while ((io_u = get_io_u(td)) != NULL) {
694 if (IS_ERR_OR_NULL(io_u)) {
695 io_u = NULL;
696 ret = FIO_Q_BUSY;
697 goto reap;
698 }
699
700 /*
701 * We are only interested in the places where
702 * we wrote or trimmed IOs. Turn those into
703 * reads for verification purposes.
704 */
705 if (io_u->ddir == DDIR_READ) {
706 /*
707 * Pretend we issued it for rwmix
708 * accounting
709 */
710 td->io_issues[DDIR_READ]++;
711 put_io_u(td, io_u);
712 continue;
713 } else if (io_u->ddir == DDIR_TRIM) {
714 io_u->ddir = DDIR_READ;
715 io_u_set(td, io_u, IO_U_F_TRIMMED);
716 break;
717 } else if (io_u->ddir == DDIR_WRITE) {
718 io_u->ddir = DDIR_READ;
719 populate_verify_io_u(td, io_u);
720 break;
721 } else {
722 put_io_u(td, io_u);
723 continue;
724 }
725 }
726
727 if (!io_u)
728 break;
729 }
730
731 if (verify_state_should_stop(td, io_u)) {
732 put_io_u(td, io_u);
733 break;
734 }
735
736 if (td->o.verify_async)
737 io_u->end_io = verify_io_u_async;
738 else
739 io_u->end_io = verify_io_u;
740
741 ddir = io_u->ddir;
742 if (!td->o.disable_slat)
743 fio_gettime(&io_u->start_time, NULL);
744
745 ret = io_u_submit(td, io_u);
746
747 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748 break;
749
750 /*
751 * if we can queue more, do so. but check if there are
752 * completed io_u's first. Note that we can get BUSY even
753 * without IO queued, if the system is resource starved.
754 */
755reap:
756 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757 if (full || io_in_polling(td))
758 ret = wait_for_completions(td, NULL);
759
760 if (ret < 0)
761 break;
762 }
763
764 check_update_rusage(td);
765
766 if (!td->error) {
767 min_events = td->cur_depth;
768
769 if (min_events)
770 ret = io_u_queued_complete(td, min_events);
771 } else
772 cleanup_pending_aio(td);
773
774 td_set_runstate(td, TD_RUNNING);
775
776 dprint(FD_VERIFY, "exiting loop\n");
777}
778
779static bool exceeds_number_ios(struct thread_data *td)
780{
781 unsigned long long number_ios;
782
783 if (!td->o.number_ios)
784 return false;
785
786 number_ios = ddir_rw_sum(td->io_blocks);
787 number_ios += td->io_u_queued + td->io_u_in_flight;
788
789 return number_ios >= (td->o.number_ios * td->loops);
790}
791
792static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793{
794 unsigned long long bytes, limit;
795
796 if (td_rw(td))
797 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798 else if (td_write(td))
799 bytes = this_bytes[DDIR_WRITE];
800 else if (td_read(td))
801 bytes = this_bytes[DDIR_READ];
802 else
803 bytes = this_bytes[DDIR_TRIM];
804
805 if (td->o.io_size)
806 limit = td->o.io_size;
807 else
808 limit = td->o.size;
809
810 limit *= td->loops;
811 return bytes >= limit || exceeds_number_ios(td);
812}
813
814static bool io_issue_bytes_exceeded(struct thread_data *td)
815{
816 return io_bytes_exceeded(td, td->io_issue_bytes);
817}
818
819static bool io_complete_bytes_exceeded(struct thread_data *td)
820{
821 return io_bytes_exceeded(td, td->this_io_bytes);
822}
823
824/*
825 * used to calculate the next io time for rate control
826 *
827 */
828static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829{
830 uint64_t bps = td->rate_bps[ddir];
831
832 assert(!(td->flags & TD_F_CHILD));
833
834 if (td->o.rate_process == RATE_PROCESS_POISSON) {
835 uint64_t val, iops;
836
837 iops = bps / td->o.bs[ddir];
838 val = (int64_t) (1000000 / iops) *
839 -logf(__rand_0_1(&td->poisson_state[ddir]));
840 if (val) {
841 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842 (unsigned long long) 1000000 / val,
843 ddir);
844 }
845 td->last_usec[ddir] += val;
846 return td->last_usec[ddir];
847 } else if (bps) {
848 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849 uint64_t secs = bytes / bps;
850 uint64_t remainder = bytes % bps;
851
852 return remainder * 1000000 / bps + secs * 1000000;
853 }
854
855 return 0;
856}
857
858static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859{
860 unsigned long long b;
861 uint64_t total;
862 int left;
863
864 b = ddir_rw_sum(td->io_blocks);
865 if (b % td->o.thinktime_blocks)
866 return;
867
868 io_u_quiesce(td);
869
870 total = 0;
871 if (td->o.thinktime_spin)
872 total = usec_spin(td->o.thinktime_spin);
873
874 left = td->o.thinktime - total;
875 if (left)
876 total += usec_sleep(td, left);
877
878 /*
879 * If we're ignoring thinktime for the rate, add the number of bytes
880 * we would have done while sleeping, minus one block to ensure we
881 * start issuing immediately after the sleep.
882 */
883 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885 uint64_t bs = td->o.min_bs[ddir];
886 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887 uint64_t over;
888
889 if (usperop <= total)
890 over = bs;
891 else
892 over = (usperop - total) / usperop * -bs;
893
894 td->rate_io_issue_bytes[ddir] += (missed - over);
895 /* adjust for rate_process=poisson */
896 td->last_usec[ddir] += total;
897 }
898}
899
900/*
901 * Main IO worker function. It retrieves io_u's to process and queues
902 * and reaps them, checking for rate and errors along the way.
903 *
904 * Returns number of bytes written and trimmed.
905 */
906static void do_io(struct thread_data *td, uint64_t *bytes_done)
907{
908 unsigned int i;
909 int ret = 0;
910 uint64_t total_bytes, bytes_issued = 0;
911
912 for (i = 0; i < DDIR_RWDIR_CNT; i++)
913 bytes_done[i] = td->bytes_done[i];
914
915 if (in_ramp_time(td))
916 td_set_runstate(td, TD_RAMP);
917 else
918 td_set_runstate(td, TD_RUNNING);
919
920 lat_target_init(td);
921
922 total_bytes = td->o.size;
923 /*
924 * Allow random overwrite workloads to write up to io_size
925 * before starting verification phase as 'size' doesn't apply.
926 */
927 if (td_write(td) && td_random(td) && td->o.norandommap)
928 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
929 /*
930 * If verify_backlog is enabled, we'll run the verify in this
931 * handler as well. For that case, we may need up to twice the
932 * amount of bytes.
933 */
934 if (td->o.verify != VERIFY_NONE &&
935 (td_write(td) && td->o.verify_backlog))
936 total_bytes += td->o.size;
937
938 /* In trimwrite mode, each byte is trimmed and then written, so
939 * allow total_bytes to be twice as big */
940 if (td_trimwrite(td))
941 total_bytes += td->total_io_size;
942
943 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
944 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
945 td->o.time_based) {
946 struct timespec comp_time;
947 struct io_u *io_u;
948 int full;
949 enum fio_ddir ddir;
950
951 check_update_rusage(td);
952
953 if (td->terminate || td->done)
954 break;
955
956 update_ts_cache(td);
957
958 if (runtime_exceeded(td, &td->ts_cache)) {
959 __update_ts_cache(td);
960 if (runtime_exceeded(td, &td->ts_cache)) {
961 fio_mark_td_terminate(td);
962 break;
963 }
964 }
965
966 if (flow_threshold_exceeded(td))
967 continue;
968
969 /*
970 * Break if we exceeded the bytes. The exception is time
971 * based runs, but we still need to break out of the loop
972 * for those to run verification, if enabled.
973 * Jobs read from iolog do not use this stop condition.
974 */
975 if (bytes_issued >= total_bytes &&
976 !td->o.read_iolog_file &&
977 (!td->o.time_based ||
978 (td->o.time_based && td->o.verify != VERIFY_NONE)))
979 break;
980
981 io_u = get_io_u(td);
982 if (IS_ERR_OR_NULL(io_u)) {
983 int err = PTR_ERR(io_u);
984
985 io_u = NULL;
986 ddir = DDIR_INVAL;
987 if (err == -EBUSY) {
988 ret = FIO_Q_BUSY;
989 goto reap;
990 }
991 if (td->o.latency_target)
992 goto reap;
993 break;
994 }
995
996 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
997 populate_verify_io_u(td, io_u);
998
999 ddir = io_u->ddir;
1000
1001 /*
1002 * Add verification end_io handler if:
1003 * - Asked to verify (!td_rw(td))
1004 * - Or the io_u is from our verify list (mixed write/ver)
1005 */
1006 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1007 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1008
1009 if (!td->o.verify_pattern_bytes) {
1010 io_u->rand_seed = __rand(&td->verify_state);
1011 if (sizeof(int) != sizeof(long *))
1012 io_u->rand_seed *= __rand(&td->verify_state);
1013 }
1014
1015 if (verify_state_should_stop(td, io_u)) {
1016 put_io_u(td, io_u);
1017 break;
1018 }
1019
1020 if (td->o.verify_async)
1021 io_u->end_io = verify_io_u_async;
1022 else
1023 io_u->end_io = verify_io_u;
1024 td_set_runstate(td, TD_VERIFYING);
1025 } else if (in_ramp_time(td))
1026 td_set_runstate(td, TD_RAMP);
1027 else
1028 td_set_runstate(td, TD_RUNNING);
1029
1030 /*
1031 * Always log IO before it's issued, so we know the specific
1032 * order of it. The logged unit will track when the IO has
1033 * completed.
1034 */
1035 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1036 td->o.do_verify &&
1037 td->o.verify != VERIFY_NONE &&
1038 !td->o.experimental_verify)
1039 log_io_piece(td, io_u);
1040
1041 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1042 const unsigned long long blen = io_u->xfer_buflen;
1043 const enum fio_ddir __ddir = acct_ddir(io_u);
1044
1045 if (td->error)
1046 break;
1047
1048 workqueue_enqueue(&td->io_wq, &io_u->work);
1049 ret = FIO_Q_QUEUED;
1050
1051 if (ddir_rw(__ddir)) {
1052 td->io_issues[__ddir]++;
1053 td->io_issue_bytes[__ddir] += blen;
1054 td->rate_io_issue_bytes[__ddir] += blen;
1055 }
1056
1057 if (should_check_rate(td))
1058 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1059
1060 } else {
1061 ret = io_u_submit(td, io_u);
1062
1063 if (should_check_rate(td))
1064 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1065
1066 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1067 break;
1068
1069 /*
1070 * See if we need to complete some commands. Note that
1071 * we can get BUSY even without IO queued, if the
1072 * system is resource starved.
1073 */
1074reap:
1075 full = queue_full(td) ||
1076 (ret == FIO_Q_BUSY && td->cur_depth);
1077 if (full || io_in_polling(td))
1078 ret = wait_for_completions(td, &comp_time);
1079 }
1080 if (ret < 0)
1081 break;
1082 if (!ddir_rw_sum(td->bytes_done) &&
1083 !td_ioengine_flagged(td, FIO_NOIO))
1084 continue;
1085
1086 if (!in_ramp_time(td) && should_check_rate(td)) {
1087 if (check_min_rate(td, &comp_time)) {
1088 if (exitall_on_terminate || td->o.exitall_error)
1089 fio_terminate_threads(td->groupid, td->o.exit_what);
1090 td_verror(td, EIO, "check_min_rate");
1091 break;
1092 }
1093 }
1094 if (!in_ramp_time(td) && td->o.latency_target)
1095 lat_target_check(td);
1096
1097 if (ddir_rw(ddir) && td->o.thinktime)
1098 handle_thinktime(td, ddir);
1099 }
1100
1101 check_update_rusage(td);
1102
1103 if (td->trim_entries)
1104 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1105
1106 if (td->o.fill_device && td->error == ENOSPC) {
1107 td->error = 0;
1108 fio_mark_td_terminate(td);
1109 }
1110 if (!td->error) {
1111 struct fio_file *f;
1112
1113 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1114 workqueue_flush(&td->io_wq);
1115 i = 0;
1116 } else
1117 i = td->cur_depth;
1118
1119 if (i) {
1120 ret = io_u_queued_complete(td, i);
1121 if (td->o.fill_device && td->error == ENOSPC)
1122 td->error = 0;
1123 }
1124
1125 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1126 td_set_runstate(td, TD_FSYNCING);
1127
1128 for_each_file(td, f, i) {
1129 if (!fio_file_fsync(td, f))
1130 continue;
1131
1132 log_err("fio: end_fsync failed for file %s\n",
1133 f->file_name);
1134 }
1135 }
1136 } else
1137 cleanup_pending_aio(td);
1138
1139 /*
1140 * stop job if we failed doing any IO
1141 */
1142 if (!ddir_rw_sum(td->this_io_bytes))
1143 td->done = 1;
1144
1145 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1146 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1147}
1148
1149static void free_file_completion_logging(struct thread_data *td)
1150{
1151 struct fio_file *f;
1152 unsigned int i;
1153
1154 for_each_file(td, f, i) {
1155 if (!f->last_write_comp)
1156 break;
1157 sfree(f->last_write_comp);
1158 }
1159}
1160
1161static int init_file_completion_logging(struct thread_data *td,
1162 unsigned int depth)
1163{
1164 struct fio_file *f;
1165 unsigned int i;
1166
1167 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1168 return 0;
1169
1170 for_each_file(td, f, i) {
1171 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1172 if (!f->last_write_comp)
1173 goto cleanup;
1174 }
1175
1176 return 0;
1177
1178cleanup:
1179 free_file_completion_logging(td);
1180 log_err("fio: failed to alloc write comp data\n");
1181 return 1;
1182}
1183
1184static void cleanup_io_u(struct thread_data *td)
1185{
1186 struct io_u *io_u;
1187
1188 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1189
1190 if (td->io_ops->io_u_free)
1191 td->io_ops->io_u_free(td, io_u);
1192
1193 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1194 }
1195
1196 free_io_mem(td);
1197
1198 io_u_rexit(&td->io_u_requeues);
1199 io_u_qexit(&td->io_u_freelist, false);
1200 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1201
1202 free_file_completion_logging(td);
1203}
1204
1205static int init_io_u(struct thread_data *td)
1206{
1207 struct io_u *io_u;
1208 int cl_align, i, max_units;
1209 int err;
1210
1211 max_units = td->o.iodepth;
1212
1213 err = 0;
1214 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1215 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1216 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1217
1218 if (err) {
1219 log_err("fio: failed setting up IO queues\n");
1220 return 1;
1221 }
1222
1223 cl_align = os_cache_line_size();
1224
1225 for (i = 0; i < max_units; i++) {
1226 void *ptr;
1227
1228 if (td->terminate)
1229 return 1;
1230
1231 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1232 if (!ptr) {
1233 log_err("fio: unable to allocate aligned memory\n");
1234 return 1;
1235 }
1236
1237 io_u = ptr;
1238 memset(io_u, 0, sizeof(*io_u));
1239 INIT_FLIST_HEAD(&io_u->verify_list);
1240 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1241
1242 io_u->index = i;
1243 io_u->flags = IO_U_F_FREE;
1244 io_u_qpush(&td->io_u_freelist, io_u);
1245
1246 /*
1247 * io_u never leaves this stack, used for iteration of all
1248 * io_u buffers.
1249 */
1250 io_u_qpush(&td->io_u_all, io_u);
1251
1252 if (td->io_ops->io_u_init) {
1253 int ret = td->io_ops->io_u_init(td, io_u);
1254
1255 if (ret) {
1256 log_err("fio: failed to init engine data: %d\n", ret);
1257 return 1;
1258 }
1259 }
1260 }
1261
1262 init_io_u_buffers(td);
1263
1264 if (init_file_completion_logging(td, max_units))
1265 return 1;
1266
1267 return 0;
1268}
1269
1270int init_io_u_buffers(struct thread_data *td)
1271{
1272 struct io_u *io_u;
1273 unsigned long long max_bs, min_write;
1274 int i, max_units;
1275 int data_xfer = 1;
1276 char *p;
1277
1278 max_units = td->o.iodepth;
1279 max_bs = td_max_bs(td);
1280 min_write = td->o.min_bs[DDIR_WRITE];
1281 td->orig_buffer_size = (unsigned long long) max_bs
1282 * (unsigned long long) max_units;
1283
1284 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1285 data_xfer = 0;
1286
1287 /*
1288 * if we may later need to do address alignment, then add any
1289 * possible adjustment here so that we don't cause a buffer
1290 * overflow later. this adjustment may be too much if we get
1291 * lucky and the allocator gives us an aligned address.
1292 */
1293 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1294 td_ioengine_flagged(td, FIO_RAWIO))
1295 td->orig_buffer_size += page_mask + td->o.mem_align;
1296
1297 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1298 unsigned long long bs;
1299
1300 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1301 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1302 }
1303
1304 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1305 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1306 return 1;
1307 }
1308
1309 if (data_xfer && allocate_io_mem(td))
1310 return 1;
1311
1312 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1313 td_ioengine_flagged(td, FIO_RAWIO))
1314 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1315 else
1316 p = td->orig_buffer;
1317
1318 for (i = 0; i < max_units; i++) {
1319 io_u = td->io_u_all.io_us[i];
1320 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1321
1322 if (data_xfer) {
1323 io_u->buf = p;
1324 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1325
1326 if (td_write(td))
1327 io_u_fill_buffer(td, io_u, min_write, max_bs);
1328 if (td_write(td) && td->o.verify_pattern_bytes) {
1329 /*
1330 * Fill the buffer with the pattern if we are
1331 * going to be doing writes.
1332 */
1333 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1334 }
1335 }
1336 p += max_bs;
1337 }
1338
1339 return 0;
1340}
1341
1342/*
1343 * This function is Linux specific.
1344 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1345 */
1346static int switch_ioscheduler(struct thread_data *td)
1347{
1348#ifdef FIO_HAVE_IOSCHED_SWITCH
1349 char tmp[256], tmp2[128], *p;
1350 FILE *f;
1351 int ret;
1352
1353 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1354 return 0;
1355
1356 assert(td->files && td->files[0]);
1357 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1358
1359 f = fopen(tmp, "r+");
1360 if (!f) {
1361 if (errno == ENOENT) {
1362 log_err("fio: os or kernel doesn't support IO scheduler"
1363 " switching\n");
1364 return 0;
1365 }
1366 td_verror(td, errno, "fopen iosched");
1367 return 1;
1368 }
1369
1370 /*
1371 * Set io scheduler.
1372 */
1373 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1374 if (ferror(f) || ret != 1) {
1375 td_verror(td, errno, "fwrite");
1376 fclose(f);
1377 return 1;
1378 }
1379
1380 rewind(f);
1381
1382 /*
1383 * Read back and check that the selected scheduler is now the default.
1384 */
1385 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1386 if (ferror(f) || ret < 0) {
1387 td_verror(td, errno, "fread");
1388 fclose(f);
1389 return 1;
1390 }
1391 tmp[ret] = '\0';
1392 /*
1393 * either a list of io schedulers or "none\n" is expected. Strip the
1394 * trailing newline.
1395 */
1396 p = tmp;
1397 strsep(&p, "\n");
1398
1399 /*
1400 * Write to "none" entry doesn't fail, so check the result here.
1401 */
1402 if (!strcmp(tmp, "none")) {
1403 log_err("fio: io scheduler is not tunable\n");
1404 fclose(f);
1405 return 0;
1406 }
1407
1408 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1409 if (!strstr(tmp, tmp2)) {
1410 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1411 td_verror(td, EINVAL, "iosched_switch");
1412 fclose(f);
1413 return 1;
1414 }
1415
1416 fclose(f);
1417 return 0;
1418#else
1419 return 0;
1420#endif
1421}
1422
1423static bool keep_running(struct thread_data *td)
1424{
1425 unsigned long long limit;
1426
1427 if (td->done)
1428 return false;
1429 if (td->terminate)
1430 return false;
1431 if (td->o.time_based)
1432 return true;
1433 if (td->o.loops) {
1434 td->o.loops--;
1435 return true;
1436 }
1437 if (exceeds_number_ios(td))
1438 return false;
1439
1440 if (td->o.io_size)
1441 limit = td->o.io_size;
1442 else
1443 limit = td->o.size;
1444
1445 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1446 uint64_t diff;
1447
1448 /*
1449 * If the difference is less than the maximum IO size, we
1450 * are done.
1451 */
1452 diff = limit - ddir_rw_sum(td->io_bytes);
1453 if (diff < td_max_bs(td))
1454 return false;
1455
1456 if (fio_files_done(td) && !td->o.io_size)
1457 return false;
1458
1459 return true;
1460 }
1461
1462 return false;
1463}
1464
1465static int exec_string(struct thread_options *o, const char *string, const char *mode)
1466{
1467 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 13 + 1;
1468 int ret;
1469 char *str;
1470
1471 str = malloc(newlen);
1472 sprintf(str, "%s > %s.%s.txt 2>&1", string, o->name, mode);
1473
1474 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1475 ret = system(str);
1476 if (ret == -1)
1477 log_err("fio: exec of cmd <%s> failed\n", str);
1478
1479 free(str);
1480 return ret;
1481}
1482
1483/*
1484 * Dry run to compute correct state of numberio for verification.
1485 */
1486static uint64_t do_dry_run(struct thread_data *td)
1487{
1488 td_set_runstate(td, TD_RUNNING);
1489
1490 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1491 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1492 struct io_u *io_u;
1493 int ret;
1494
1495 if (td->terminate || td->done)
1496 break;
1497
1498 io_u = get_io_u(td);
1499 if (IS_ERR_OR_NULL(io_u))
1500 break;
1501
1502 io_u_set(td, io_u, IO_U_F_FLIGHT);
1503 io_u->error = 0;
1504 io_u->resid = 0;
1505 if (ddir_rw(acct_ddir(io_u)))
1506 td->io_issues[acct_ddir(io_u)]++;
1507 if (ddir_rw(io_u->ddir)) {
1508 io_u_mark_depth(td, 1);
1509 td->ts.total_io_u[io_u->ddir]++;
1510 }
1511
1512 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1513 td->o.do_verify &&
1514 td->o.verify != VERIFY_NONE &&
1515 !td->o.experimental_verify)
1516 log_io_piece(td, io_u);
1517
1518 ret = io_u_sync_complete(td, io_u);
1519 (void) ret;
1520 }
1521
1522 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1523}
1524
1525struct fork_data {
1526 struct thread_data *td;
1527 struct sk_out *sk_out;
1528};
1529
1530/*
1531 * Entry point for the thread based jobs. The process based jobs end up
1532 * here as well, after a little setup.
1533 */
1534static void *thread_main(void *data)
1535{
1536 struct fork_data *fd = data;
1537 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1538 struct thread_data *td = fd->td;
1539 struct thread_options *o = &td->o;
1540 struct sk_out *sk_out = fd->sk_out;
1541 uint64_t bytes_done[DDIR_RWDIR_CNT];
1542 int deadlock_loop_cnt;
1543 bool clear_state;
1544 int ret;
1545
1546 sk_out_assign(sk_out);
1547 free(fd);
1548
1549 if (!o->use_thread) {
1550 setsid();
1551 td->pid = getpid();
1552 } else
1553 td->pid = gettid();
1554
1555 fio_local_clock_init();
1556
1557 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1558
1559 if (is_backend)
1560 fio_server_send_start(td);
1561
1562 INIT_FLIST_HEAD(&td->io_log_list);
1563 INIT_FLIST_HEAD(&td->io_hist_list);
1564 INIT_FLIST_HEAD(&td->verify_list);
1565 INIT_FLIST_HEAD(&td->trim_list);
1566 td->io_hist_tree = RB_ROOT;
1567
1568 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1569 if (ret) {
1570 td_verror(td, ret, "mutex_cond_init_pshared");
1571 goto err;
1572 }
1573 ret = cond_init_pshared(&td->verify_cond);
1574 if (ret) {
1575 td_verror(td, ret, "mutex_cond_pshared");
1576 goto err;
1577 }
1578
1579 td_set_runstate(td, TD_INITIALIZED);
1580 dprint(FD_MUTEX, "up startup_sem\n");
1581 fio_sem_up(startup_sem);
1582 dprint(FD_MUTEX, "wait on td->sem\n");
1583 fio_sem_down(td->sem);
1584 dprint(FD_MUTEX, "done waiting on td->sem\n");
1585
1586 /*
1587 * A new gid requires privilege, so we need to do this before setting
1588 * the uid.
1589 */
1590 if (o->gid != -1U && setgid(o->gid)) {
1591 td_verror(td, errno, "setgid");
1592 goto err;
1593 }
1594 if (o->uid != -1U && setuid(o->uid)) {
1595 td_verror(td, errno, "setuid");
1596 goto err;
1597 }
1598
1599 td_zone_gen_index(td);
1600
1601 /*
1602 * Do this early, we don't want the compress threads to be limited
1603 * to the same CPUs as the IO workers. So do this before we set
1604 * any potential CPU affinity
1605 */
1606 if (iolog_compress_init(td, sk_out))
1607 goto err;
1608
1609 /*
1610 * If we have a gettimeofday() thread, make sure we exclude that
1611 * thread from this job
1612 */
1613 if (o->gtod_cpu)
1614 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1615
1616 /*
1617 * Set affinity first, in case it has an impact on the memory
1618 * allocations.
1619 */
1620 if (fio_option_is_set(o, cpumask)) {
1621 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1622 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1623 if (!ret) {
1624 log_err("fio: no CPUs set\n");
1625 log_err("fio: Try increasing number of available CPUs\n");
1626 td_verror(td, EINVAL, "cpus_split");
1627 goto err;
1628 }
1629 }
1630 ret = fio_setaffinity(td->pid, o->cpumask);
1631 if (ret == -1) {
1632 td_verror(td, errno, "cpu_set_affinity");
1633 goto err;
1634 }
1635 }
1636
1637#ifdef CONFIG_LIBNUMA
1638 /* numa node setup */
1639 if (fio_option_is_set(o, numa_cpunodes) ||
1640 fio_option_is_set(o, numa_memnodes)) {
1641 struct bitmask *mask;
1642
1643 if (numa_available() < 0) {
1644 td_verror(td, errno, "Does not support NUMA API\n");
1645 goto err;
1646 }
1647
1648 if (fio_option_is_set(o, numa_cpunodes)) {
1649 mask = numa_parse_nodestring(o->numa_cpunodes);
1650 ret = numa_run_on_node_mask(mask);
1651 numa_free_nodemask(mask);
1652 if (ret == -1) {
1653 td_verror(td, errno, \
1654 "numa_run_on_node_mask failed\n");
1655 goto err;
1656 }
1657 }
1658
1659 if (fio_option_is_set(o, numa_memnodes)) {
1660 mask = NULL;
1661 if (o->numa_memnodes)
1662 mask = numa_parse_nodestring(o->numa_memnodes);
1663
1664 switch (o->numa_mem_mode) {
1665 case MPOL_INTERLEAVE:
1666 numa_set_interleave_mask(mask);
1667 break;
1668 case MPOL_BIND:
1669 numa_set_membind(mask);
1670 break;
1671 case MPOL_LOCAL:
1672 numa_set_localalloc();
1673 break;
1674 case MPOL_PREFERRED:
1675 numa_set_preferred(o->numa_mem_prefer_node);
1676 break;
1677 case MPOL_DEFAULT:
1678 default:
1679 break;
1680 }
1681
1682 if (mask)
1683 numa_free_nodemask(mask);
1684
1685 }
1686 }
1687#endif
1688
1689 if (fio_pin_memory(td))
1690 goto err;
1691
1692 /*
1693 * May alter parameters that init_io_u() will use, so we need to
1694 * do this first.
1695 */
1696 if (!init_iolog(td))
1697 goto err;
1698
1699 if (td_io_init(td))
1700 goto err;
1701
1702 if (init_io_u(td))
1703 goto err;
1704
1705 if (td->io_ops->post_init && td->io_ops->post_init(td))
1706 goto err;
1707
1708 if (o->verify_async && verify_async_init(td))
1709 goto err;
1710
1711 if (fio_option_is_set(o, ioprio) ||
1712 fio_option_is_set(o, ioprio_class)) {
1713 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1714 if (ret == -1) {
1715 td_verror(td, errno, "ioprio_set");
1716 goto err;
1717 }
1718 }
1719
1720 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1721 goto err;
1722
1723 errno = 0;
1724 if (nice(o->nice) == -1 && errno != 0) {
1725 td_verror(td, errno, "nice");
1726 goto err;
1727 }
1728
1729 if (o->ioscheduler && switch_ioscheduler(td))
1730 goto err;
1731
1732 if (!o->create_serialize && setup_files(td))
1733 goto err;
1734
1735 if (!init_random_map(td))
1736 goto err;
1737
1738 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1739 goto err;
1740
1741 if (o->pre_read && !pre_read_files(td))
1742 goto err;
1743
1744 fio_verify_init(td);
1745
1746 if (rate_submit_init(td, sk_out))
1747 goto err;
1748
1749 set_epoch_time(td, o->log_unix_epoch);
1750 fio_getrusage(&td->ru_start);
1751 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1752 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1753 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1754
1755 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1756 o->ratemin[DDIR_TRIM]) {
1757 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1758 sizeof(td->bw_sample_time));
1759 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1760 sizeof(td->bw_sample_time));
1761 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1762 sizeof(td->bw_sample_time));
1763 }
1764
1765 memset(bytes_done, 0, sizeof(bytes_done));
1766 clear_state = false;
1767
1768 while (keep_running(td)) {
1769 uint64_t verify_bytes;
1770
1771 fio_gettime(&td->start, NULL);
1772 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1773
1774 if (clear_state) {
1775 clear_io_state(td, 0);
1776
1777 if (o->unlink_each_loop && unlink_all_files(td))
1778 break;
1779 }
1780
1781 prune_io_piece_log(td);
1782
1783 if (td->o.verify_only && td_write(td))
1784 verify_bytes = do_dry_run(td);
1785 else {
1786 do_io(td, bytes_done);
1787
1788 if (!ddir_rw_sum(bytes_done)) {
1789 fio_mark_td_terminate(td);
1790 verify_bytes = 0;
1791 } else {
1792 verify_bytes = bytes_done[DDIR_WRITE] +
1793 bytes_done[DDIR_TRIM];
1794 }
1795 }
1796
1797 /*
1798 * If we took too long to shut down, the main thread could
1799 * already consider us reaped/exited. If that happens, break
1800 * out and clean up.
1801 */
1802 if (td->runstate >= TD_EXITED)
1803 break;
1804
1805 clear_state = true;
1806
1807 /*
1808 * Make sure we've successfully updated the rusage stats
1809 * before waiting on the stat mutex. Otherwise we could have
1810 * the stat thread holding stat mutex and waiting for
1811 * the rusage_sem, which would never get upped because
1812 * this thread is waiting for the stat mutex.
1813 */
1814 deadlock_loop_cnt = 0;
1815 do {
1816 check_update_rusage(td);
1817 if (!fio_sem_down_trylock(stat_sem))
1818 break;
1819 usleep(1000);
1820 if (deadlock_loop_cnt++ > 5000) {
1821 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1822 td->error = EDEADLK;
1823 goto err;
1824 }
1825 } while (1);
1826
1827 if (td_read(td) && td->io_bytes[DDIR_READ])
1828 update_runtime(td, elapsed_us, DDIR_READ);
1829 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1830 update_runtime(td, elapsed_us, DDIR_WRITE);
1831 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1832 update_runtime(td, elapsed_us, DDIR_TRIM);
1833 fio_gettime(&td->start, NULL);
1834 fio_sem_up(stat_sem);
1835
1836 if (td->error || td->terminate)
1837 break;
1838
1839 if (!o->do_verify ||
1840 o->verify == VERIFY_NONE ||
1841 td_ioengine_flagged(td, FIO_UNIDIR))
1842 continue;
1843
1844 clear_io_state(td, 0);
1845
1846 fio_gettime(&td->start, NULL);
1847
1848 do_verify(td, verify_bytes);
1849
1850 /*
1851 * See comment further up for why this is done here.
1852 */
1853 check_update_rusage(td);
1854
1855 fio_sem_down(stat_sem);
1856 update_runtime(td, elapsed_us, DDIR_READ);
1857 fio_gettime(&td->start, NULL);
1858 fio_sem_up(stat_sem);
1859
1860 if (td->error || td->terminate)
1861 break;
1862 }
1863
1864 /*
1865 * Acquire this lock if we were doing overlap checking in
1866 * offload mode so that we don't clean up this job while
1867 * another thread is checking its io_u's for overlap
1868 */
1869 if (td_offload_overlap(td))
1870 pthread_mutex_lock(&overlap_check);
1871 td_set_runstate(td, TD_FINISHING);
1872 if (td_offload_overlap(td))
1873 pthread_mutex_unlock(&overlap_check);
1874
1875 update_rusage_stat(td);
1876 td->ts.total_run_time = mtime_since_now(&td->epoch);
1877 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1878 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1879 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1880
1881 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1882 (td->o.verify != VERIFY_NONE && td_write(td)))
1883 verify_save_state(td->thread_number);
1884
1885 fio_unpin_memory(td);
1886
1887 td_writeout_logs(td, true);
1888
1889 iolog_compress_exit(td);
1890 rate_submit_exit(td);
1891
1892 if (o->exec_postrun)
1893 exec_string(o, o->exec_postrun, (const char *)"postrun");
1894
1895 if (exitall_on_terminate || (o->exitall_error && td->error))
1896 fio_terminate_threads(td->groupid, td->o.exit_what);
1897
1898err:
1899 if (td->error)
1900 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1901 td->verror);
1902
1903 if (o->verify_async)
1904 verify_async_exit(td);
1905
1906 close_and_free_files(td);
1907 cleanup_io_u(td);
1908 close_ioengine(td);
1909 cgroup_shutdown(td, cgroup_mnt);
1910 verify_free_state(td);
1911 td_zone_free_index(td);
1912
1913 if (fio_option_is_set(o, cpumask)) {
1914 ret = fio_cpuset_exit(&o->cpumask);
1915 if (ret)
1916 td_verror(td, ret, "fio_cpuset_exit");
1917 }
1918
1919 /*
1920 * do this very late, it will log file closing as well
1921 */
1922 if (o->write_iolog_file)
1923 write_iolog_close(td);
1924 if (td->io_log_rfile)
1925 fclose(td->io_log_rfile);
1926
1927 td_set_runstate(td, TD_EXITED);
1928
1929 /*
1930 * Do this last after setting our runstate to exited, so we
1931 * know that the stat thread is signaled.
1932 */
1933 check_update_rusage(td);
1934
1935 sk_out_drop();
1936 return (void *) (uintptr_t) td->error;
1937}
1938
1939/*
1940 * Run over the job map and reap the threads that have exited, if any.
1941 */
1942static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1943 uint64_t *m_rate)
1944{
1945 struct thread_data *td;
1946 unsigned int cputhreads, realthreads, pending;
1947 int i, status, ret;
1948
1949 /*
1950 * reap exited threads (TD_EXITED -> TD_REAPED)
1951 */
1952 realthreads = pending = cputhreads = 0;
1953 for_each_td(td, i) {
1954 int flags = 0;
1955
1956 if (!strcmp(td->o.ioengine, "cpuio"))
1957 cputhreads++;
1958 else
1959 realthreads++;
1960
1961 if (!td->pid) {
1962 pending++;
1963 continue;
1964 }
1965 if (td->runstate == TD_REAPED)
1966 continue;
1967 if (td->o.use_thread) {
1968 if (td->runstate == TD_EXITED) {
1969 td_set_runstate(td, TD_REAPED);
1970 goto reaped;
1971 }
1972 continue;
1973 }
1974
1975 flags = WNOHANG;
1976 if (td->runstate == TD_EXITED)
1977 flags = 0;
1978
1979 /*
1980 * check if someone quit or got killed in an unusual way
1981 */
1982 ret = waitpid(td->pid, &status, flags);
1983 if (ret < 0) {
1984 if (errno == ECHILD) {
1985 log_err("fio: pid=%d disappeared %d\n",
1986 (int) td->pid, td->runstate);
1987 td->sig = ECHILD;
1988 td_set_runstate(td, TD_REAPED);
1989 goto reaped;
1990 }
1991 perror("waitpid");
1992 } else if (ret == td->pid) {
1993 if (WIFSIGNALED(status)) {
1994 int sig = WTERMSIG(status);
1995
1996 if (sig != SIGTERM && sig != SIGUSR2)
1997 log_err("fio: pid=%d, got signal=%d\n",
1998 (int) td->pid, sig);
1999 td->sig = sig;
2000 td_set_runstate(td, TD_REAPED);
2001 goto reaped;
2002 }
2003 if (WIFEXITED(status)) {
2004 if (WEXITSTATUS(status) && !td->error)
2005 td->error = WEXITSTATUS(status);
2006
2007 td_set_runstate(td, TD_REAPED);
2008 goto reaped;
2009 }
2010 }
2011
2012 /*
2013 * If the job is stuck, do a forceful timeout of it and
2014 * move on.
2015 */
2016 if (td->terminate &&
2017 td->runstate < TD_FSYNCING &&
2018 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2019 log_err("fio: job '%s' (state=%d) hasn't exited in "
2020 "%lu seconds, it appears to be stuck. Doing "
2021 "forceful exit of this job.\n",
2022 td->o.name, td->runstate,
2023 (unsigned long) time_since_now(&td->terminate_time));
2024 td_set_runstate(td, TD_REAPED);
2025 goto reaped;
2026 }
2027
2028 /*
2029 * thread is not dead, continue
2030 */
2031 pending++;
2032 continue;
2033reaped:
2034 (*nr_running)--;
2035 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2036 (*t_rate) -= ddir_rw_sum(td->o.rate);
2037 if (!td->pid)
2038 pending--;
2039
2040 if (td->error)
2041 exit_value++;
2042
2043 done_secs += mtime_since_now(&td->epoch) / 1000;
2044 profile_td_exit(td);
2045 }
2046
2047 if (*nr_running == cputhreads && !pending && realthreads)
2048 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2049}
2050
2051static bool __check_trigger_file(void)
2052{
2053 struct stat sb;
2054
2055 if (!trigger_file)
2056 return false;
2057
2058 if (stat(trigger_file, &sb))
2059 return false;
2060
2061 if (unlink(trigger_file) < 0)
2062 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2063 strerror(errno));
2064
2065 return true;
2066}
2067
2068static bool trigger_timedout(void)
2069{
2070 if (trigger_timeout)
2071 if (time_since_genesis() >= trigger_timeout) {
2072 trigger_timeout = 0;
2073 return true;
2074 }
2075
2076 return false;
2077}
2078
2079void exec_trigger(const char *cmd)
2080{
2081 int ret;
2082
2083 if (!cmd || cmd[0] == '\0')
2084 return;
2085
2086 ret = system(cmd);
2087 if (ret == -1)
2088 log_err("fio: failed executing %s trigger\n", cmd);
2089}
2090
2091void check_trigger_file(void)
2092{
2093 if (__check_trigger_file() || trigger_timedout()) {
2094 if (nr_clients)
2095 fio_clients_send_trigger(trigger_remote_cmd);
2096 else {
2097 verify_save_state(IO_LIST_ALL);
2098 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2099 exec_trigger(trigger_cmd);
2100 }
2101 }
2102}
2103
2104static int fio_verify_load_state(struct thread_data *td)
2105{
2106 int ret;
2107
2108 if (!td->o.verify_state)
2109 return 0;
2110
2111 if (is_backend) {
2112 void *data;
2113
2114 ret = fio_server_get_verify_state(td->o.name,
2115 td->thread_number - 1, &data);
2116 if (!ret)
2117 verify_assign_state(td, data);
2118 } else {
2119 char prefix[PATH_MAX];
2120
2121 if (aux_path)
2122 sprintf(prefix, "%s%clocal", aux_path,
2123 FIO_OS_PATH_SEPARATOR);
2124 else
2125 strcpy(prefix, "local");
2126 ret = verify_load_state(td, prefix);
2127 }
2128
2129 return ret;
2130}
2131
2132static void do_usleep(unsigned int usecs)
2133{
2134 check_for_running_stats();
2135 check_trigger_file();
2136 usleep(usecs);
2137}
2138
2139static bool check_mount_writes(struct thread_data *td)
2140{
2141 struct fio_file *f;
2142 unsigned int i;
2143
2144 if (!td_write(td) || td->o.allow_mounted_write)
2145 return false;
2146
2147 /*
2148 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2149 * are mkfs'd and mounted.
2150 */
2151 for_each_file(td, f, i) {
2152#ifdef FIO_HAVE_CHARDEV_SIZE
2153 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2154#else
2155 if (f->filetype != FIO_TYPE_BLOCK)
2156#endif
2157 continue;
2158 if (device_is_mounted(f->file_name))
2159 goto mounted;
2160 }
2161
2162 return false;
2163mounted:
2164 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2165 return true;
2166}
2167
2168static bool waitee_running(struct thread_data *me)
2169{
2170 const char *waitee = me->o.wait_for;
2171 const char *self = me->o.name;
2172 struct thread_data *td;
2173 int i;
2174
2175 if (!waitee)
2176 return false;
2177
2178 for_each_td(td, i) {
2179 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2180 continue;
2181
2182 if (td->runstate < TD_EXITED) {
2183 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2184 self, td->o.name,
2185 runstate_to_name(td->runstate));
2186 return true;
2187 }
2188 }
2189
2190 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2191 return false;
2192}
2193
2194/*
2195 * Main function for kicking off and reaping jobs, as needed.
2196 */
2197static void run_threads(struct sk_out *sk_out)
2198{
2199 struct thread_data *td;
2200 unsigned int i, todo, nr_running, nr_started;
2201 uint64_t m_rate, t_rate;
2202 uint64_t spent;
2203
2204 if (fio_gtod_offload && fio_start_gtod_thread())
2205 return;
2206
2207 fio_idle_prof_init();
2208
2209 set_sig_handlers();
2210
2211 nr_thread = nr_process = 0;
2212 for_each_td(td, i) {
2213 if (check_mount_writes(td))
2214 return;
2215 if (td->o.use_thread)
2216 nr_thread++;
2217 else
2218 nr_process++;
2219 }
2220
2221 if (output_format & FIO_OUTPUT_NORMAL) {
2222 struct buf_output out;
2223
2224 buf_output_init(&out);
2225 __log_buf(&out, "Starting ");
2226 if (nr_thread)
2227 __log_buf(&out, "%d thread%s", nr_thread,
2228 nr_thread > 1 ? "s" : "");
2229 if (nr_process) {
2230 if (nr_thread)
2231 __log_buf(&out, " and ");
2232 __log_buf(&out, "%d process%s", nr_process,
2233 nr_process > 1 ? "es" : "");
2234 }
2235 __log_buf(&out, "\n");
2236 log_info_buf(out.buf, out.buflen);
2237 buf_output_free(&out);
2238 }
2239
2240 todo = thread_number;
2241 nr_running = 0;
2242 nr_started = 0;
2243 m_rate = t_rate = 0;
2244
2245 for_each_td(td, i) {
2246 print_status_init(td->thread_number - 1);
2247
2248 if (!td->o.create_serialize)
2249 continue;
2250
2251 if (fio_verify_load_state(td))
2252 goto reap;
2253
2254 /*
2255 * do file setup here so it happens sequentially,
2256 * we don't want X number of threads getting their
2257 * client data interspersed on disk
2258 */
2259 if (setup_files(td)) {
2260reap:
2261 exit_value++;
2262 if (td->error)
2263 log_err("fio: pid=%d, err=%d/%s\n",
2264 (int) td->pid, td->error, td->verror);
2265 td_set_runstate(td, TD_REAPED);
2266 todo--;
2267 } else {
2268 struct fio_file *f;
2269 unsigned int j;
2270
2271 /*
2272 * for sharing to work, each job must always open
2273 * its own files. so close them, if we opened them
2274 * for creation
2275 */
2276 for_each_file(td, f, j) {
2277 if (fio_file_open(f))
2278 td_io_close_file(td, f);
2279 }
2280 }
2281 }
2282
2283 /* start idle threads before io threads start to run */
2284 fio_idle_prof_start();
2285
2286 set_genesis_time();
2287
2288 while (todo) {
2289 struct thread_data *map[REAL_MAX_JOBS];
2290 struct timespec this_start;
2291 int this_jobs = 0, left;
2292 struct fork_data *fd;
2293
2294 /*
2295 * create threads (TD_NOT_CREATED -> TD_CREATED)
2296 */
2297 for_each_td(td, i) {
2298 if (td->runstate != TD_NOT_CREATED)
2299 continue;
2300
2301 /*
2302 * never got a chance to start, killed by other
2303 * thread for some reason
2304 */
2305 if (td->terminate) {
2306 todo--;
2307 continue;
2308 }
2309
2310 if (td->o.start_delay) {
2311 spent = utime_since_genesis();
2312
2313 if (td->o.start_delay > spent)
2314 continue;
2315 }
2316
2317 if (td->o.stonewall && (nr_started || nr_running)) {
2318 dprint(FD_PROCESS, "%s: stonewall wait\n",
2319 td->o.name);
2320 break;
2321 }
2322
2323 if (waitee_running(td)) {
2324 dprint(FD_PROCESS, "%s: waiting for %s\n",
2325 td->o.name, td->o.wait_for);
2326 continue;
2327 }
2328
2329 init_disk_util(td);
2330
2331 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2332 td->update_rusage = 0;
2333
2334 /*
2335 * Set state to created. Thread will transition
2336 * to TD_INITIALIZED when it's done setting up.
2337 */
2338 td_set_runstate(td, TD_CREATED);
2339 map[this_jobs++] = td;
2340 nr_started++;
2341
2342 fd = calloc(1, sizeof(*fd));
2343 fd->td = td;
2344 fd->sk_out = sk_out;
2345
2346 if (td->o.use_thread) {
2347 int ret;
2348
2349 dprint(FD_PROCESS, "will pthread_create\n");
2350 ret = pthread_create(&td->thread, NULL,
2351 thread_main, fd);
2352 if (ret) {
2353 log_err("pthread_create: %s\n",
2354 strerror(ret));
2355 free(fd);
2356 nr_started--;
2357 break;
2358 }
2359 fd = NULL;
2360 ret = pthread_detach(td->thread);
2361 if (ret)
2362 log_err("pthread_detach: %s",
2363 strerror(ret));
2364 } else {
2365 pid_t pid;
2366 dprint(FD_PROCESS, "will fork\n");
2367 pid = fork();
2368 if (!pid) {
2369 int ret;
2370
2371 ret = (int)(uintptr_t)thread_main(fd);
2372 _exit(ret);
2373 } else if (i == fio_debug_jobno)
2374 *fio_debug_jobp = pid;
2375 }
2376 dprint(FD_MUTEX, "wait on startup_sem\n");
2377 if (fio_sem_down_timeout(startup_sem, 10000)) {
2378 log_err("fio: job startup hung? exiting.\n");
2379 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2380 fio_abort = true;
2381 nr_started--;
2382 free(fd);
2383 break;
2384 }
2385 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2386 }
2387
2388 /*
2389 * Wait for the started threads to transition to
2390 * TD_INITIALIZED.
2391 */
2392 fio_gettime(&this_start, NULL);
2393 left = this_jobs;
2394 while (left && !fio_abort) {
2395 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2396 break;
2397
2398 do_usleep(100000);
2399
2400 for (i = 0; i < this_jobs; i++) {
2401 td = map[i];
2402 if (!td)
2403 continue;
2404 if (td->runstate == TD_INITIALIZED) {
2405 map[i] = NULL;
2406 left--;
2407 } else if (td->runstate >= TD_EXITED) {
2408 map[i] = NULL;
2409 left--;
2410 todo--;
2411 nr_running++; /* work-around... */
2412 }
2413 }
2414 }
2415
2416 if (left) {
2417 log_err("fio: %d job%s failed to start\n", left,
2418 left > 1 ? "s" : "");
2419 for (i = 0; i < this_jobs; i++) {
2420 td = map[i];
2421 if (!td)
2422 continue;
2423 kill(td->pid, SIGTERM);
2424 }
2425 break;
2426 }
2427
2428 /*
2429 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2430 */
2431 for_each_td(td, i) {
2432 if (td->runstate != TD_INITIALIZED)
2433 continue;
2434
2435 if (in_ramp_time(td))
2436 td_set_runstate(td, TD_RAMP);
2437 else
2438 td_set_runstate(td, TD_RUNNING);
2439 nr_running++;
2440 nr_started--;
2441 m_rate += ddir_rw_sum(td->o.ratemin);
2442 t_rate += ddir_rw_sum(td->o.rate);
2443 todo--;
2444 fio_sem_up(td->sem);
2445 }
2446
2447 reap_threads(&nr_running, &t_rate, &m_rate);
2448
2449 if (todo)
2450 do_usleep(100000);
2451 }
2452
2453 while (nr_running) {
2454 reap_threads(&nr_running, &t_rate, &m_rate);
2455 do_usleep(10000);
2456 }
2457
2458 fio_idle_prof_stop();
2459
2460 update_io_ticks();
2461}
2462
2463static void free_disk_util(void)
2464{
2465 disk_util_prune_entries();
2466 helper_thread_destroy();
2467}
2468
2469int fio_backend(struct sk_out *sk_out)
2470{
2471 struct thread_data *td;
2472 int i;
2473
2474 if (exec_profile) {
2475 if (load_profile(exec_profile))
2476 return 1;
2477 free(exec_profile);
2478 exec_profile = NULL;
2479 }
2480 if (!thread_number)
2481 return 0;
2482
2483 if (write_bw_log) {
2484 struct log_params p = {
2485 .log_type = IO_LOG_TYPE_BW,
2486 };
2487
2488 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2489 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2490 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2491 }
2492
2493 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2494 if (!sk_out)
2495 is_local_backend = true;
2496 if (startup_sem == NULL)
2497 return 1;
2498
2499 set_genesis_time();
2500 stat_init();
2501 if (helper_thread_create(startup_sem, sk_out))
2502 log_err("fio: failed to create helper thread\n");
2503
2504 cgroup_list = smalloc(sizeof(*cgroup_list));
2505 if (cgroup_list)
2506 INIT_FLIST_HEAD(cgroup_list);
2507
2508 run_threads(sk_out);
2509
2510 helper_thread_exit();
2511
2512 if (!fio_abort) {
2513 __show_run_stats();
2514 if (write_bw_log) {
2515 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2516 struct io_log *log = agg_io_log[i];
2517
2518 flush_log(log, false);
2519 free_log(log);
2520 }
2521 }
2522 }
2523
2524 for_each_td(td, i) {
2525 steadystate_free(td);
2526 fio_options_free(td);
2527 if (td->rusage_sem) {
2528 fio_sem_remove(td->rusage_sem);
2529 td->rusage_sem = NULL;
2530 }
2531 fio_sem_remove(td->sem);
2532 td->sem = NULL;
2533 }
2534
2535 free_disk_util();
2536 if (cgroup_list) {
2537 cgroup_kill(cgroup_list);
2538 sfree(cgroup_list);
2539 }
2540
2541 fio_sem_remove(startup_sem);
2542 stat_exit();
2543 return exit_value;
2544}