Merge branch 'diskutil-fix-missing-headers' of https://github.com/dpronin/fio
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int nr_segments = 0;
66unsigned int cur_segment = 0;
67unsigned int stat_number = 0;
68int temp_stall_ts;
69unsigned long done_secs = 0;
70#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72#else
73pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74#endif
75
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void sig_int(int sig)
79{
80 if (nr_segments) {
81 if (is_backend)
82 fio_server_got_signal(sig);
83 else {
84 log_info("\nfio: terminating on signal %d\n", sig);
85 log_info_flush();
86 exit_value = 128;
87 }
88
89 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90 }
91}
92
93#ifdef WIN32
94static void sig_break(int sig)
95{
96 sig_int(sig);
97
98 /**
99 * Windows terminates all job processes on SIGBREAK after the handler
100 * returns, so give them time to wrap-up and give stats
101 */
102 for_each_td(td) {
103 while (td->runstate < TD_EXITED)
104 sleep(1);
105 } end_for_each();
106}
107#endif
108
109void sig_show_status(int sig)
110{
111 show_running_run_stats();
112}
113
114static void set_sig_handlers(void)
115{
116 struct sigaction act;
117
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGINT, &act, NULL);
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_int;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGTERM, &act, NULL);
127
128/* Windows uses SIGBREAK as a quit signal from other applications */
129#ifdef WIN32
130 memset(&act, 0, sizeof(act));
131 act.sa_handler = sig_break;
132 act.sa_flags = SA_RESTART;
133 sigaction(SIGBREAK, &act, NULL);
134#endif
135
136 memset(&act, 0, sizeof(act));
137 act.sa_handler = sig_show_status;
138 act.sa_flags = SA_RESTART;
139 sigaction(SIGUSR1, &act, NULL);
140
141 if (is_backend) {
142 memset(&act, 0, sizeof(act));
143 act.sa_handler = sig_int;
144 act.sa_flags = SA_RESTART;
145 sigaction(SIGPIPE, &act, NULL);
146 }
147}
148
149/*
150 * Check if we are above the minimum rate given.
151 */
152static bool __check_min_rate(struct thread_data *td, struct timespec *now,
153 enum fio_ddir ddir)
154{
155 unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
156 unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
157 unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
158 unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
159
160 assert(ddir_rw(ddir));
161
162 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
163 return false;
164
165 /*
166 * allow a 2 second settle period in the beginning
167 */
168 if (mtime_since(&td->start, now) < 2000)
169 return false;
170
171 /*
172 * if last_rate_check_blocks or last_rate_check_bytes is set,
173 * we can compute a rate per ratecycle
174 */
175 if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
176 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
177 if (spent < td->o.ratecycle || spent==0)
178 return false;
179
180 if (td->o.ratemin[ddir]) {
181 /*
182 * check bandwidth specified rate
183 */
184 unsigned long long current_rate_bytes =
185 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
186 if (current_rate_bytes < option_rate_bytes_min) {
187 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
188 td->o.name, option_rate_bytes_min, current_rate_bytes);
189 return true;
190 }
191 } else {
192 /*
193 * checks iops specified rate
194 */
195 unsigned long long current_rate_iops =
196 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
197
198 if (current_rate_iops < option_rate_iops_min) {
199 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
200 td->o.name, option_rate_iops_min, current_rate_iops);
201 return true;
202 }
203 }
204 }
205
206 td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
207 td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
208 memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
209 return false;
210}
211
212static bool check_min_rate(struct thread_data *td, struct timespec *now)
213{
214 bool ret = false;
215
216 for_each_rw_ddir(ddir) {
217 if (td->bytes_done[ddir])
218 ret |= __check_min_rate(td, now, ddir);
219 }
220
221 return ret;
222}
223
224/*
225 * When job exits, we can cancel the in-flight IO if we are using async
226 * io. Attempt to do so.
227 */
228static void cleanup_pending_aio(struct thread_data *td)
229{
230 int r;
231
232 /*
233 * get immediately available events, if any
234 */
235 r = io_u_queued_complete(td, 0);
236
237 /*
238 * now cancel remaining active events
239 */
240 if (td->io_ops->cancel) {
241 struct io_u *io_u;
242 int i;
243
244 io_u_qiter(&td->io_u_all, io_u, i) {
245 if (io_u->flags & IO_U_F_FLIGHT) {
246 r = td->io_ops->cancel(td, io_u);
247 if (!r)
248 put_io_u(td, io_u);
249 }
250 }
251 }
252
253 if (td->cur_depth)
254 r = io_u_queued_complete(td, td->cur_depth);
255}
256
257/*
258 * Helper to handle the final sync of a file. Works just like the normal
259 * io path, just does everything sync.
260 */
261static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
262{
263 struct io_u *io_u = __get_io_u(td);
264 enum fio_q_status ret;
265
266 if (!io_u)
267 return true;
268
269 io_u->ddir = DDIR_SYNC;
270 io_u->file = f;
271 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
272
273 if (td_io_prep(td, io_u)) {
274 put_io_u(td, io_u);
275 return true;
276 }
277
278requeue:
279 ret = td_io_queue(td, io_u);
280 switch (ret) {
281 case FIO_Q_QUEUED:
282 td_io_commit(td);
283 if (io_u_queued_complete(td, 1) < 0)
284 return true;
285 break;
286 case FIO_Q_COMPLETED:
287 if (io_u->error) {
288 td_verror(td, io_u->error, "td_io_queue");
289 return true;
290 }
291
292 if (io_u_sync_complete(td, io_u) < 0)
293 return true;
294 break;
295 case FIO_Q_BUSY:
296 td_io_commit(td);
297 goto requeue;
298 }
299
300 return false;
301}
302
303static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
304{
305 int ret, ret2;
306
307 if (fio_file_open(f))
308 return fio_io_sync(td, f);
309
310 if (td_io_open_file(td, f))
311 return 1;
312
313 ret = fio_io_sync(td, f);
314 ret2 = 0;
315 if (fio_file_open(f))
316 ret2 = td_io_close_file(td, f);
317 return (ret || ret2);
318}
319
320static inline void __update_ts_cache(struct thread_data *td)
321{
322 fio_gettime(&td->ts_cache, NULL);
323}
324
325static inline void update_ts_cache(struct thread_data *td)
326{
327 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
328 __update_ts_cache(td);
329}
330
331static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
332{
333 if (in_ramp_time(td))
334 return false;
335 if (!td->o.timeout)
336 return false;
337 if (utime_since(&td->epoch, t) >= td->o.timeout)
338 return true;
339
340 return false;
341}
342
343/*
344 * We need to update the runtime consistently in ms, but keep a running
345 * tally of the current elapsed time in microseconds for sub millisecond
346 * updates.
347 */
348static inline void update_runtime(struct thread_data *td,
349 unsigned long long *elapsed_us,
350 const enum fio_ddir ddir)
351{
352 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
353 return;
354
355 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
356 elapsed_us[ddir] += utime_since_now(&td->start);
357 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
358}
359
360static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
361 int *retptr)
362{
363 int ret = *retptr;
364
365 if (ret < 0 || td->error) {
366 int err = td->error;
367 enum error_type_bit eb;
368
369 if (ret < 0)
370 err = -ret;
371
372 eb = td_error_type(ddir, err);
373 if (!(td->o.continue_on_error & (1 << eb)))
374 return true;
375
376 if (td_non_fatal_error(td, eb, err)) {
377 /*
378 * Continue with the I/Os in case of
379 * a non fatal error.
380 */
381 update_error_count(td, err);
382 td_clear_error(td);
383 *retptr = 0;
384 return false;
385 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
386 /*
387 * We expect to hit this error if
388 * fill_device option is set.
389 */
390 td_clear_error(td);
391 fio_mark_td_terminate(td);
392 return true;
393 } else {
394 /*
395 * Stop the I/O in case of a fatal
396 * error.
397 */
398 update_error_count(td, err);
399 return true;
400 }
401 }
402
403 return false;
404}
405
406static void check_update_rusage(struct thread_data *td)
407{
408 if (td->update_rusage) {
409 td->update_rusage = 0;
410 update_rusage_stat(td);
411 fio_sem_up(td->rusage_sem);
412 }
413}
414
415static int wait_for_completions(struct thread_data *td, struct timespec *time)
416{
417 const int full = queue_full(td);
418 int min_evts = 0;
419 int ret;
420
421 if (td->flags & TD_F_REGROW_LOGS)
422 return io_u_quiesce(td);
423
424 /*
425 * if the queue is full, we MUST reap at least 1 event
426 */
427 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
428 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
429 min_evts = 1;
430
431 if (time && should_check_rate(td))
432 fio_gettime(time, NULL);
433
434 do {
435 ret = io_u_queued_complete(td, min_evts);
436 if (ret < 0)
437 break;
438 } while (full && (td->cur_depth > td->o.iodepth_low));
439
440 return ret;
441}
442
443int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
444 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
445 struct timespec *comp_time)
446{
447 switch (*ret) {
448 case FIO_Q_COMPLETED:
449 if (io_u->error) {
450 *ret = -io_u->error;
451 clear_io_u(td, io_u);
452 } else if (io_u->resid) {
453 long long bytes = io_u->xfer_buflen - io_u->resid;
454 struct fio_file *f = io_u->file;
455
456 if (bytes_issued)
457 *bytes_issued += bytes;
458
459 if (!from_verify)
460 trim_io_piece(io_u);
461
462 /*
463 * zero read, fail
464 */
465 if (!bytes) {
466 if (!from_verify)
467 unlog_io_piece(td, io_u);
468 td_verror(td, EIO, "full resid");
469 clear_io_u(td, io_u);
470 break;
471 }
472
473 io_u->xfer_buflen = io_u->resid;
474 io_u->xfer_buf += bytes;
475 io_u->offset += bytes;
476
477 if (ddir_rw(io_u->ddir))
478 td->ts.short_io_u[io_u->ddir]++;
479
480 if (io_u->offset == f->real_file_size)
481 goto sync_done;
482
483 requeue_io_u(td, &io_u);
484 } else {
485sync_done:
486 if (comp_time && should_check_rate(td))
487 fio_gettime(comp_time, NULL);
488
489 *ret = io_u_sync_complete(td, io_u);
490 if (*ret < 0)
491 break;
492 }
493
494 if (td->flags & TD_F_REGROW_LOGS)
495 regrow_logs(td);
496
497 /*
498 * when doing I/O (not when verifying),
499 * check for any errors that are to be ignored
500 */
501 if (!from_verify)
502 break;
503
504 return 0;
505 case FIO_Q_QUEUED:
506 /*
507 * if the engine doesn't have a commit hook,
508 * the io_u is really queued. if it does have such
509 * a hook, it has to call io_u_queued() itself.
510 */
511 if (td->io_ops->commit == NULL)
512 io_u_queued(td, io_u);
513 if (bytes_issued)
514 *bytes_issued += io_u->xfer_buflen;
515 break;
516 case FIO_Q_BUSY:
517 if (!from_verify)
518 unlog_io_piece(td, io_u);
519 requeue_io_u(td, &io_u);
520 td_io_commit(td);
521 break;
522 default:
523 assert(*ret < 0);
524 td_verror(td, -(*ret), "td_io_queue");
525 break;
526 }
527
528 if (break_on_this_error(td, ddir, ret))
529 return 1;
530
531 return 0;
532}
533
534static inline bool io_in_polling(struct thread_data *td)
535{
536 return !td->o.iodepth_batch_complete_min &&
537 !td->o.iodepth_batch_complete_max;
538}
539/*
540 * Unlinks files from thread data fio_file structure
541 */
542static int unlink_all_files(struct thread_data *td)
543{
544 struct fio_file *f;
545 unsigned int i;
546 int ret = 0;
547
548 for_each_file(td, f, i) {
549 if (f->filetype != FIO_TYPE_FILE)
550 continue;
551 ret = td_io_unlink_file(td, f);
552 if (ret)
553 break;
554 }
555
556 if (ret)
557 td_verror(td, ret, "unlink_all_files");
558
559 return ret;
560}
561
562/*
563 * Check if io_u will overlap an in-flight IO in the queue
564 */
565bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
566{
567 bool overlap;
568 struct io_u *check_io_u;
569 unsigned long long x1, x2, y1, y2;
570 int i;
571
572 x1 = io_u->offset;
573 x2 = io_u->offset + io_u->buflen;
574 overlap = false;
575 io_u_qiter(q, check_io_u, i) {
576 if (check_io_u->flags & IO_U_F_FLIGHT) {
577 y1 = check_io_u->offset;
578 y2 = check_io_u->offset + check_io_u->buflen;
579
580 if (x1 < y2 && y1 < x2) {
581 overlap = true;
582 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
583 x1, io_u->buflen,
584 y1, check_io_u->buflen);
585 break;
586 }
587 }
588 }
589
590 return overlap;
591}
592
593static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
594{
595 /*
596 * Check for overlap if the user asked us to, and we have
597 * at least one IO in flight besides this one.
598 */
599 if (td->o.serialize_overlap && td->cur_depth > 1 &&
600 in_flight_overlap(&td->io_u_all, io_u))
601 return FIO_Q_BUSY;
602
603 return td_io_queue(td, io_u);
604}
605
606/*
607 * The main verify engine. Runs over the writes we previously submitted,
608 * reads the blocks back in, and checks the crc/md5 of the data.
609 */
610static void do_verify(struct thread_data *td, uint64_t verify_bytes)
611{
612 struct fio_file *f;
613 struct io_u *io_u;
614 int ret, min_events;
615 unsigned int i;
616
617 dprint(FD_VERIFY, "starting loop\n");
618
619 /*
620 * sync io first and invalidate cache, to make sure we really
621 * read from disk.
622 */
623 for_each_file(td, f, i) {
624 if (!fio_file_open(f))
625 continue;
626 if (fio_io_sync(td, f))
627 break;
628 if (file_invalidate_cache(td, f))
629 break;
630 }
631
632 check_update_rusage(td);
633
634 if (td->error)
635 return;
636
637 td_set_runstate(td, TD_VERIFYING);
638
639 io_u = NULL;
640 while (!td->terminate) {
641 enum fio_ddir ddir;
642 int full;
643
644 update_ts_cache(td);
645 check_update_rusage(td);
646
647 if (runtime_exceeded(td, &td->ts_cache)) {
648 __update_ts_cache(td);
649 if (runtime_exceeded(td, &td->ts_cache)) {
650 fio_mark_td_terminate(td);
651 break;
652 }
653 }
654
655 if (flow_threshold_exceeded(td))
656 continue;
657
658 if (!td->o.experimental_verify) {
659 io_u = __get_io_u(td);
660 if (!io_u)
661 break;
662
663 if (get_next_verify(td, io_u)) {
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (td_io_prep(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672 } else {
673 if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
674 break;
675
676 while ((io_u = get_io_u(td)) != NULL) {
677 if (IS_ERR_OR_NULL(io_u)) {
678 io_u = NULL;
679 ret = FIO_Q_BUSY;
680 goto reap;
681 }
682
683 /*
684 * We are only interested in the places where
685 * we wrote or trimmed IOs. Turn those into
686 * reads for verification purposes.
687 */
688 if (io_u->ddir == DDIR_READ) {
689 /*
690 * Pretend we issued it for rwmix
691 * accounting
692 */
693 td->io_issues[DDIR_READ]++;
694 put_io_u(td, io_u);
695 continue;
696 } else if (io_u->ddir == DDIR_TRIM) {
697 io_u->ddir = DDIR_READ;
698 io_u_set(td, io_u, IO_U_F_TRIMMED);
699 break;
700 } else if (io_u->ddir == DDIR_WRITE) {
701 io_u->ddir = DDIR_READ;
702 io_u->numberio = td->verify_read_issues;
703 td->verify_read_issues++;
704 populate_verify_io_u(td, io_u);
705 break;
706 } else {
707 put_io_u(td, io_u);
708 continue;
709 }
710 }
711
712 if (!io_u)
713 break;
714 }
715
716 if (verify_state_should_stop(td, io_u)) {
717 put_io_u(td, io_u);
718 break;
719 }
720
721 if (td->o.verify_async)
722 io_u->end_io = verify_io_u_async;
723 else
724 io_u->end_io = verify_io_u;
725
726 ddir = io_u->ddir;
727 if (!td->o.disable_slat)
728 fio_gettime(&io_u->start_time, NULL);
729
730 ret = io_u_submit(td, io_u);
731
732 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
733 break;
734
735 /*
736 * if we can queue more, do so. but check if there are
737 * completed io_u's first. Note that we can get BUSY even
738 * without IO queued, if the system is resource starved.
739 */
740reap:
741 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
742 if (full || io_in_polling(td))
743 ret = wait_for_completions(td, NULL);
744
745 if (ret < 0)
746 break;
747 }
748
749 check_update_rusage(td);
750
751 if (!td->error) {
752 min_events = td->cur_depth;
753
754 if (min_events)
755 ret = io_u_queued_complete(td, min_events);
756 } else
757 cleanup_pending_aio(td);
758
759 td_set_runstate(td, TD_RUNNING);
760
761 dprint(FD_VERIFY, "exiting loop\n");
762}
763
764static bool exceeds_number_ios(struct thread_data *td)
765{
766 unsigned long long number_ios;
767
768 if (!td->o.number_ios)
769 return false;
770
771 number_ios = ddir_rw_sum(td->io_blocks);
772 number_ios += td->io_u_queued + td->io_u_in_flight;
773
774 return number_ios >= (td->o.number_ios * td->loops);
775}
776
777static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
778{
779 unsigned long long bytes, limit;
780
781 if (td_rw(td))
782 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
783 else if (td_write(td))
784 bytes = this_bytes[DDIR_WRITE];
785 else if (td_read(td))
786 bytes = this_bytes[DDIR_READ];
787 else
788 bytes = this_bytes[DDIR_TRIM];
789
790 if (td->o.io_size)
791 limit = td->o.io_size;
792 else
793 limit = td->o.size;
794
795 limit *= td->loops;
796 return bytes >= limit || exceeds_number_ios(td);
797}
798
799static bool io_issue_bytes_exceeded(struct thread_data *td)
800{
801 return io_bytes_exceeded(td, td->io_issue_bytes);
802}
803
804static bool io_complete_bytes_exceeded(struct thread_data *td)
805{
806 return io_bytes_exceeded(td, td->this_io_bytes);
807}
808
809/*
810 * used to calculate the next io time for rate control
811 *
812 */
813static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
814{
815 uint64_t bps = td->rate_bps[ddir];
816
817 assert(!(td->flags & TD_F_CHILD));
818
819 if (td->o.rate_process == RATE_PROCESS_POISSON) {
820 uint64_t val, iops;
821
822 iops = bps / td->o.min_bs[ddir];
823 val = (int64_t) (1000000 / iops) *
824 -logf(__rand_0_1(&td->poisson_state[ddir]));
825 if (val) {
826 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
827 (unsigned long long) 1000000 / val,
828 ddir);
829 }
830 td->last_usec[ddir] += val;
831 return td->last_usec[ddir];
832 } else if (bps) {
833 uint64_t bytes = td->rate_io_issue_bytes[ddir];
834 uint64_t secs = bytes / bps;
835 uint64_t remainder = bytes % bps;
836
837 return remainder * 1000000 / bps + secs * 1000000;
838 }
839
840 return 0;
841}
842
843static void init_thinktime(struct thread_data *td)
844{
845 if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
846 td->thinktime_blocks_counter = td->io_blocks;
847 else
848 td->thinktime_blocks_counter = td->io_issues;
849 td->last_thinktime = td->epoch;
850 td->last_thinktime_blocks = 0;
851}
852
853static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
854 struct timespec *time)
855{
856 unsigned long long b;
857 unsigned long long runtime_left;
858 uint64_t total;
859 int left;
860 struct timespec now;
861 bool stall = false;
862
863 if (td->o.thinktime_iotime) {
864 fio_gettime(&now, NULL);
865 if (utime_since(&td->last_thinktime, &now)
866 >= td->o.thinktime_iotime) {
867 stall = true;
868 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
869 /*
870 * When thinktime_iotime is set and thinktime_blocks is
871 * not set, skip the thinktime_blocks check, since
872 * thinktime_blocks default value 1 does not work
873 * together with thinktime_iotime.
874 */
875 return;
876 }
877
878 }
879
880 b = ddir_rw_sum(td->thinktime_blocks_counter);
881 if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
882 stall = true;
883
884 if (!stall)
885 return;
886
887 io_u_quiesce(td);
888
889 left = td->o.thinktime_spin;
890 if (td->o.timeout) {
891 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
892 if (runtime_left < (unsigned long long)left)
893 left = runtime_left;
894 }
895
896 total = 0;
897 if (left)
898 total = usec_spin(left);
899
900 /*
901 * usec_spin() might run for slightly longer than intended in a VM
902 * where the vCPU could get descheduled or the hypervisor could steal
903 * CPU time. Ensure "left" doesn't become negative.
904 */
905 if (total < td->o.thinktime)
906 left = td->o.thinktime - total;
907 else
908 left = 0;
909
910 if (td->o.timeout) {
911 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
912 if (runtime_left < (unsigned long long)left)
913 left = runtime_left;
914 }
915
916 if (left)
917 total += usec_sleep(td, left);
918
919 /*
920 * If we're ignoring thinktime for the rate, add the number of bytes
921 * we would have done while sleeping, minus one block to ensure we
922 * start issuing immediately after the sleep.
923 */
924 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
925 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
926 uint64_t bs = td->o.min_bs[ddir];
927 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
928 uint64_t over;
929
930 if (usperop <= total)
931 over = bs;
932 else
933 over = (usperop - total) / usperop * -bs;
934
935 td->rate_io_issue_bytes[ddir] += (missed - over);
936 /* adjust for rate_process=poisson */
937 td->last_usec[ddir] += total;
938 }
939
940 if (time && should_check_rate(td))
941 fio_gettime(time, NULL);
942
943 td->last_thinktime_blocks = b;
944 if (td->o.thinktime_iotime) {
945 fio_gettime(&now, NULL);
946 td->last_thinktime = now;
947 }
948}
949
950/*
951 * Main IO worker function. It retrieves io_u's to process and queues
952 * and reaps them, checking for rate and errors along the way.
953 *
954 * Returns number of bytes written and trimmed.
955 */
956static void do_io(struct thread_data *td, uint64_t *bytes_done)
957{
958 unsigned int i;
959 int ret = 0;
960 uint64_t total_bytes, bytes_issued = 0;
961
962 for (i = 0; i < DDIR_RWDIR_CNT; i++)
963 bytes_done[i] = td->bytes_done[i];
964
965 if (in_ramp_time(td))
966 td_set_runstate(td, TD_RAMP);
967 else
968 td_set_runstate(td, TD_RUNNING);
969
970 lat_target_init(td);
971
972 total_bytes = td->o.size;
973 /*
974 * Allow random overwrite workloads to write up to io_size
975 * before starting verification phase as 'size' doesn't apply.
976 */
977 if (td_write(td) && td_random(td) && td->o.norandommap)
978 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
979 /*
980 * If verify_backlog is enabled, we'll run the verify in this
981 * handler as well. For that case, we may need up to twice the
982 * amount of bytes.
983 */
984 if (td->o.verify != VERIFY_NONE &&
985 (td_write(td) && td->o.verify_backlog))
986 total_bytes += td->o.size;
987
988 /* In trimwrite mode, each byte is trimmed and then written, so
989 * allow total_bytes or number of ios to be twice as big */
990 if (td_trimwrite(td)) {
991 total_bytes += td->total_io_size;
992 td->o.number_ios *= 2;
993 }
994
995 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
996 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
997 td->o.time_based) {
998 struct timespec comp_time;
999 struct io_u *io_u;
1000 int full;
1001 enum fio_ddir ddir;
1002
1003 check_update_rusage(td);
1004
1005 if (td->terminate || td->done)
1006 break;
1007
1008 update_ts_cache(td);
1009
1010 if (runtime_exceeded(td, &td->ts_cache)) {
1011 __update_ts_cache(td);
1012 if (runtime_exceeded(td, &td->ts_cache)) {
1013 fio_mark_td_terminate(td);
1014 break;
1015 }
1016 }
1017
1018 if (flow_threshold_exceeded(td))
1019 continue;
1020
1021 /*
1022 * Break if we exceeded the bytes. The exception is time
1023 * based runs, but we still need to break out of the loop
1024 * for those to run verification, if enabled.
1025 * Jobs read from iolog do not use this stop condition.
1026 */
1027 if (bytes_issued >= total_bytes &&
1028 !td->o.read_iolog_file &&
1029 (!td->o.time_based ||
1030 (td->o.time_based && td->o.verify != VERIFY_NONE)))
1031 break;
1032
1033 io_u = get_io_u(td);
1034 if (IS_ERR_OR_NULL(io_u)) {
1035 int err = PTR_ERR(io_u);
1036
1037 io_u = NULL;
1038 ddir = DDIR_INVAL;
1039 if (err == -EBUSY) {
1040 ret = FIO_Q_BUSY;
1041 goto reap;
1042 }
1043 if (td->o.latency_target)
1044 goto reap;
1045 break;
1046 }
1047
1048 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1049 if (!(io_u->flags & IO_U_F_PATTERN_DONE)) {
1050 io_u_set(td, io_u, IO_U_F_PATTERN_DONE);
1051 io_u->numberio = td->io_issues[io_u->ddir];
1052 populate_verify_io_u(td, io_u);
1053 }
1054 }
1055
1056 ddir = io_u->ddir;
1057
1058 /*
1059 * Add verification end_io handler if:
1060 * - Asked to verify (!td_rw(td))
1061 * - Or the io_u is from our verify list (mixed write/ver)
1062 */
1063 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1064 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1065
1066 if (verify_state_should_stop(td, io_u)) {
1067 put_io_u(td, io_u);
1068 break;
1069 }
1070
1071 if (td->o.verify_async)
1072 io_u->end_io = verify_io_u_async;
1073 else
1074 io_u->end_io = verify_io_u;
1075 td_set_runstate(td, TD_VERIFYING);
1076 } else if (in_ramp_time(td))
1077 td_set_runstate(td, TD_RAMP);
1078 else
1079 td_set_runstate(td, TD_RUNNING);
1080
1081 /*
1082 * Always log IO before it's issued, so we know the specific
1083 * order of it. The logged unit will track when the IO has
1084 * completed.
1085 */
1086 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1087 td->o.do_verify &&
1088 td->o.verify != VERIFY_NONE &&
1089 !td->o.experimental_verify)
1090 log_io_piece(td, io_u);
1091
1092 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1093 const unsigned long long blen = io_u->xfer_buflen;
1094 const enum fio_ddir __ddir = acct_ddir(io_u);
1095
1096 if (td->error)
1097 break;
1098
1099 workqueue_enqueue(&td->io_wq, &io_u->work);
1100 ret = FIO_Q_QUEUED;
1101
1102 if (ddir_rw(__ddir)) {
1103 td->io_issues[__ddir]++;
1104 td->io_issue_bytes[__ddir] += blen;
1105 td->rate_io_issue_bytes[__ddir] += blen;
1106 }
1107
1108 if (should_check_rate(td)) {
1109 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1110 fio_gettime(&comp_time, NULL);
1111 }
1112
1113 } else {
1114 ret = io_u_submit(td, io_u);
1115
1116 if (should_check_rate(td))
1117 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1118
1119 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1120 break;
1121
1122 /*
1123 * See if we need to complete some commands. Note that
1124 * we can get BUSY even without IO queued, if the
1125 * system is resource starved.
1126 */
1127reap:
1128 full = queue_full(td) ||
1129 (ret == FIO_Q_BUSY && td->cur_depth);
1130 if (full || io_in_polling(td))
1131 ret = wait_for_completions(td, &comp_time);
1132 }
1133 if (ret < 0)
1134 break;
1135
1136 if (ddir_rw(ddir) && td->o.thinktime)
1137 handle_thinktime(td, ddir, &comp_time);
1138
1139 if (!ddir_rw_sum(td->bytes_done) &&
1140 !td_ioengine_flagged(td, FIO_NOIO))
1141 continue;
1142
1143 if (!in_ramp_time(td) && should_check_rate(td)) {
1144 if (check_min_rate(td, &comp_time)) {
1145 if (exitall_on_terminate || td->o.exitall_error)
1146 fio_terminate_threads(td->groupid, td->o.exit_what);
1147 td_verror(td, EIO, "check_min_rate");
1148 break;
1149 }
1150 }
1151 if (!in_ramp_time(td) && td->o.latency_target)
1152 lat_target_check(td);
1153 }
1154
1155 check_update_rusage(td);
1156
1157 if (td->trim_entries)
1158 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1159
1160 if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1161 td->error = 0;
1162 fio_mark_td_terminate(td);
1163 }
1164 if (!td->error) {
1165 struct fio_file *f;
1166
1167 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1168 workqueue_flush(&td->io_wq);
1169 i = 0;
1170 } else
1171 i = td->cur_depth;
1172
1173 if (i) {
1174 ret = io_u_queued_complete(td, i);
1175 if (td->o.fill_device &&
1176 (td->error == ENOSPC || td->error == EDQUOT))
1177 td->error = 0;
1178 }
1179
1180 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1181 td_set_runstate(td, TD_FSYNCING);
1182
1183 for_each_file(td, f, i) {
1184 if (!fio_file_fsync(td, f))
1185 continue;
1186
1187 log_err("fio: end_fsync failed for file %s\n",
1188 f->file_name);
1189 }
1190 }
1191 } else {
1192 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1193 workqueue_flush(&td->io_wq);
1194 cleanup_pending_aio(td);
1195 }
1196
1197 /*
1198 * stop job if we failed doing any IO
1199 */
1200 if (!ddir_rw_sum(td->this_io_bytes))
1201 td->done = 1;
1202
1203 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1204 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1205}
1206
1207static void free_file_completion_logging(struct thread_data *td)
1208{
1209 struct fio_file *f;
1210 unsigned int i;
1211
1212 for_each_file(td, f, i) {
1213 if (!f->last_write_comp)
1214 break;
1215 sfree(f->last_write_comp);
1216 }
1217}
1218
1219static int init_file_completion_logging(struct thread_data *td,
1220 unsigned int depth)
1221{
1222 struct fio_file *f;
1223 unsigned int i;
1224
1225 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1226 return 0;
1227
1228 for_each_file(td, f, i) {
1229 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1230 if (!f->last_write_comp)
1231 goto cleanup;
1232 }
1233
1234 return 0;
1235
1236cleanup:
1237 free_file_completion_logging(td);
1238 log_err("fio: failed to alloc write comp data\n");
1239 return 1;
1240}
1241
1242static void cleanup_io_u(struct thread_data *td)
1243{
1244 struct io_u *io_u;
1245
1246 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1247
1248 if (td->io_ops->io_u_free)
1249 td->io_ops->io_u_free(td, io_u);
1250
1251 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1252 }
1253
1254 free_io_mem(td);
1255
1256 io_u_rexit(&td->io_u_requeues);
1257 io_u_qexit(&td->io_u_freelist, false);
1258 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1259
1260 free_file_completion_logging(td);
1261}
1262
1263static int init_io_u(struct thread_data *td)
1264{
1265 struct io_u *io_u;
1266 int cl_align, i, max_units;
1267 int err;
1268
1269 max_units = td->o.iodepth;
1270
1271 err = 0;
1272 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1273 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1274 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1275
1276 if (err) {
1277 log_err("fio: failed setting up IO queues\n");
1278 return 1;
1279 }
1280
1281 cl_align = os_cache_line_size();
1282
1283 for (i = 0; i < max_units; i++) {
1284 void *ptr;
1285
1286 if (td->terminate)
1287 return 1;
1288
1289 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1290 if (!ptr) {
1291 log_err("fio: unable to allocate aligned memory\n");
1292 return 1;
1293 }
1294
1295 io_u = ptr;
1296 memset(io_u, 0, sizeof(*io_u));
1297 INIT_FLIST_HEAD(&io_u->verify_list);
1298 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1299
1300 io_u->index = i;
1301 io_u->flags = IO_U_F_FREE;
1302 io_u_qpush(&td->io_u_freelist, io_u);
1303
1304 /*
1305 * io_u never leaves this stack, used for iteration of all
1306 * io_u buffers.
1307 */
1308 io_u_qpush(&td->io_u_all, io_u);
1309
1310 if (td->io_ops->io_u_init) {
1311 int ret = td->io_ops->io_u_init(td, io_u);
1312
1313 if (ret) {
1314 log_err("fio: failed to init engine data: %d\n", ret);
1315 return 1;
1316 }
1317 }
1318 }
1319
1320 if (init_io_u_buffers(td))
1321 return 1;
1322
1323 if (init_file_completion_logging(td, max_units))
1324 return 1;
1325
1326 return 0;
1327}
1328
1329int init_io_u_buffers(struct thread_data *td)
1330{
1331 struct io_u *io_u;
1332 unsigned long long max_bs, min_write;
1333 int i, max_units;
1334 int data_xfer = 1;
1335 char *p;
1336
1337 max_units = td->o.iodepth;
1338 max_bs = td_max_bs(td);
1339 min_write = td->o.min_bs[DDIR_WRITE];
1340 td->orig_buffer_size = (unsigned long long) max_bs
1341 * (unsigned long long) max_units;
1342
1343 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1344 data_xfer = 0;
1345
1346 /*
1347 * if we may later need to do address alignment, then add any
1348 * possible adjustment here so that we don't cause a buffer
1349 * overflow later. this adjustment may be too much if we get
1350 * lucky and the allocator gives us an aligned address.
1351 */
1352 if (td->o.odirect || td->o.mem_align ||
1353 td_ioengine_flagged(td, FIO_RAWIO))
1354 td->orig_buffer_size += page_mask + td->o.mem_align;
1355
1356 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1357 unsigned long long bs;
1358
1359 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1360 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1361 }
1362
1363 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1364 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1365 return 1;
1366 }
1367
1368 if (data_xfer && allocate_io_mem(td))
1369 return 1;
1370
1371 if (td->o.odirect || td->o.mem_align ||
1372 td_ioengine_flagged(td, FIO_RAWIO))
1373 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1374 else
1375 p = td->orig_buffer;
1376
1377 for (i = 0; i < max_units; i++) {
1378 io_u = td->io_u_all.io_us[i];
1379 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1380
1381 if (data_xfer) {
1382 io_u->buf = p;
1383 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1384
1385 if (td_write(td))
1386 io_u_fill_buffer(td, io_u, min_write, max_bs);
1387 if (td_write(td) && td->o.verify_pattern_bytes) {
1388 /*
1389 * Fill the buffer with the pattern if we are
1390 * going to be doing writes.
1391 */
1392 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1393 }
1394 }
1395 p += max_bs;
1396 }
1397
1398 return 0;
1399}
1400
1401#ifdef FIO_HAVE_IOSCHED_SWITCH
1402/*
1403 * These functions are Linux specific.
1404 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1405 */
1406static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1407{
1408 char tmp[256], tmp2[128], *p;
1409 FILE *f;
1410 int ret;
1411
1412 assert(file->du && file->du->sysfs_root);
1413 sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1414
1415 f = fopen(tmp, "r+");
1416 if (!f) {
1417 if (errno == ENOENT) {
1418 log_err("fio: os or kernel doesn't support IO scheduler"
1419 " switching\n");
1420 return 0;
1421 }
1422 td_verror(td, errno, "fopen iosched");
1423 return 1;
1424 }
1425
1426 /*
1427 * Set io scheduler.
1428 */
1429 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1430 if (ferror(f) || ret != 1) {
1431 td_verror(td, errno, "fwrite");
1432 fclose(f);
1433 return 1;
1434 }
1435
1436 rewind(f);
1437
1438 /*
1439 * Read back and check that the selected scheduler is now the default.
1440 */
1441 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1442 if (ferror(f) || ret < 0) {
1443 td_verror(td, errno, "fread");
1444 fclose(f);
1445 return 1;
1446 }
1447 tmp[ret] = '\0';
1448 /*
1449 * either a list of io schedulers or "none\n" is expected. Strip the
1450 * trailing newline.
1451 */
1452 p = tmp;
1453 strsep(&p, "\n");
1454
1455 /*
1456 * Write to "none" entry doesn't fail, so check the result here.
1457 */
1458 if (!strcmp(tmp, "none")) {
1459 log_err("fio: io scheduler is not tunable\n");
1460 fclose(f);
1461 return 0;
1462 }
1463
1464 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1465 if (!strstr(tmp, tmp2)) {
1466 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1467 td_verror(td, EINVAL, "iosched_switch");
1468 fclose(f);
1469 return 1;
1470 }
1471
1472 fclose(f);
1473 return 0;
1474}
1475
1476static int switch_ioscheduler(struct thread_data *td)
1477{
1478 struct fio_file *f;
1479 unsigned int i;
1480 int ret = 0;
1481
1482 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1483 return 0;
1484
1485 assert(td->files && td->files[0]);
1486
1487 for_each_file(td, f, i) {
1488
1489 /* Only consider regular files and block device files */
1490 switch (f->filetype) {
1491 case FIO_TYPE_FILE:
1492 case FIO_TYPE_BLOCK:
1493 /*
1494 * Make sure that the device hosting the file could
1495 * be determined.
1496 */
1497 if (!f->du)
1498 continue;
1499 break;
1500 case FIO_TYPE_CHAR:
1501 case FIO_TYPE_PIPE:
1502 default:
1503 continue;
1504 }
1505
1506 ret = set_ioscheduler(td, f);
1507 if (ret)
1508 return ret;
1509 }
1510
1511 return 0;
1512}
1513
1514#else
1515
1516static int switch_ioscheduler(struct thread_data *td)
1517{
1518 return 0;
1519}
1520
1521#endif /* FIO_HAVE_IOSCHED_SWITCH */
1522
1523static bool keep_running(struct thread_data *td)
1524{
1525 unsigned long long limit;
1526
1527 if (td->done)
1528 return false;
1529 if (td->terminate)
1530 return false;
1531 if (td->o.time_based)
1532 return true;
1533 if (td->o.loops) {
1534 td->o.loops--;
1535 return true;
1536 }
1537 if (exceeds_number_ios(td))
1538 return false;
1539
1540 if (td->o.io_size)
1541 limit = td->o.io_size;
1542 else
1543 limit = td->o.size;
1544
1545 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1546 uint64_t diff;
1547
1548 /*
1549 * If the difference is less than the maximum IO size, we
1550 * are done.
1551 */
1552 diff = limit - ddir_rw_sum(td->io_bytes);
1553 if (diff < td_max_bs(td))
1554 return false;
1555
1556 if (fio_files_done(td) && !td->o.io_size)
1557 return false;
1558
1559 return true;
1560 }
1561
1562 return false;
1563}
1564
1565static int exec_string(struct thread_options *o, const char *string,
1566 const char *mode)
1567{
1568 int ret;
1569 char *str;
1570
1571 if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1572 return -1;
1573
1574 log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1575 o->name, mode);
1576 ret = system(str);
1577 if (ret == -1)
1578 log_err("fio: exec of cmd <%s> failed\n", str);
1579
1580 free(str);
1581 return ret;
1582}
1583
1584/*
1585 * Dry run to compute correct state of numberio for verification.
1586 */
1587static uint64_t do_dry_run(struct thread_data *td)
1588{
1589 td_set_runstate(td, TD_RUNNING);
1590
1591 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1592 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1593 struct io_u *io_u;
1594 int ret;
1595
1596 if (td->terminate || td->done)
1597 break;
1598
1599 io_u = get_io_u(td);
1600 if (IS_ERR_OR_NULL(io_u))
1601 break;
1602
1603 io_u_set(td, io_u, IO_U_F_FLIGHT);
1604 io_u->error = 0;
1605 io_u->resid = 0;
1606 if (ddir_rw(acct_ddir(io_u)))
1607 td->io_issues[acct_ddir(io_u)]++;
1608 if (ddir_rw(io_u->ddir)) {
1609 io_u_mark_depth(td, 1);
1610 td->ts.total_io_u[io_u->ddir]++;
1611 }
1612
1613 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1614 td->o.do_verify &&
1615 td->o.verify != VERIFY_NONE &&
1616 !td->o.experimental_verify)
1617 log_io_piece(td, io_u);
1618
1619 ret = io_u_sync_complete(td, io_u);
1620 (void) ret;
1621 }
1622
1623 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1624}
1625
1626struct fork_data {
1627 struct thread_data *td;
1628 struct sk_out *sk_out;
1629};
1630
1631/*
1632 * Entry point for the thread based jobs. The process based jobs end up
1633 * here as well, after a little setup.
1634 */
1635static void *thread_main(void *data)
1636{
1637 struct fork_data *fd = data;
1638 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1639 struct thread_data *td = fd->td;
1640 struct thread_options *o = &td->o;
1641 struct sk_out *sk_out = fd->sk_out;
1642 uint64_t bytes_done[DDIR_RWDIR_CNT];
1643 int deadlock_loop_cnt;
1644 bool clear_state;
1645 int ret;
1646
1647 sk_out_assign(sk_out);
1648 free(fd);
1649
1650 if (!o->use_thread) {
1651 setsid();
1652 td->pid = getpid();
1653 } else
1654 td->pid = gettid();
1655
1656 fio_local_clock_init();
1657
1658 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1659
1660 if (is_backend)
1661 fio_server_send_start(td);
1662
1663 INIT_FLIST_HEAD(&td->io_log_list);
1664 INIT_FLIST_HEAD(&td->io_hist_list);
1665 INIT_FLIST_HEAD(&td->verify_list);
1666 INIT_FLIST_HEAD(&td->trim_list);
1667 td->io_hist_tree = RB_ROOT;
1668
1669 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1670 if (ret) {
1671 td_verror(td, ret, "mutex_cond_init_pshared");
1672 goto err;
1673 }
1674 ret = cond_init_pshared(&td->verify_cond);
1675 if (ret) {
1676 td_verror(td, ret, "mutex_cond_pshared");
1677 goto err;
1678 }
1679
1680 td_set_runstate(td, TD_INITIALIZED);
1681 dprint(FD_MUTEX, "up startup_sem\n");
1682 fio_sem_up(startup_sem);
1683 dprint(FD_MUTEX, "wait on td->sem\n");
1684 fio_sem_down(td->sem);
1685 dprint(FD_MUTEX, "done waiting on td->sem\n");
1686
1687 /*
1688 * A new gid requires privilege, so we need to do this before setting
1689 * the uid.
1690 */
1691 if (o->gid != -1U && setgid(o->gid)) {
1692 td_verror(td, errno, "setgid");
1693 goto err;
1694 }
1695 if (o->uid != -1U && setuid(o->uid)) {
1696 td_verror(td, errno, "setuid");
1697 goto err;
1698 }
1699
1700 td_zone_gen_index(td);
1701
1702 /*
1703 * Do this early, we don't want the compress threads to be limited
1704 * to the same CPUs as the IO workers. So do this before we set
1705 * any potential CPU affinity
1706 */
1707 if (iolog_compress_init(td, sk_out))
1708 goto err;
1709
1710 /*
1711 * If we have a gettimeofday() thread, make sure we exclude that
1712 * thread from this job
1713 */
1714 if (o->gtod_cpu)
1715 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1716
1717 /*
1718 * Set affinity first, in case it has an impact on the memory
1719 * allocations.
1720 */
1721 if (fio_option_is_set(o, cpumask)) {
1722 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1723 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1724 if (!ret) {
1725 log_err("fio: no CPUs set\n");
1726 log_err("fio: Try increasing number of available CPUs\n");
1727 td_verror(td, EINVAL, "cpus_split");
1728 goto err;
1729 }
1730 }
1731 ret = fio_setaffinity(td->pid, o->cpumask);
1732 if (ret == -1) {
1733 td_verror(td, errno, "cpu_set_affinity");
1734 goto err;
1735 }
1736 }
1737
1738#ifdef CONFIG_LIBNUMA
1739 /* numa node setup */
1740 if (fio_option_is_set(o, numa_cpunodes) ||
1741 fio_option_is_set(o, numa_memnodes)) {
1742 struct bitmask *mask;
1743
1744 if (numa_available() < 0) {
1745 td_verror(td, errno, "Does not support NUMA API\n");
1746 goto err;
1747 }
1748
1749 if (fio_option_is_set(o, numa_cpunodes)) {
1750 mask = numa_parse_nodestring(o->numa_cpunodes);
1751 ret = numa_run_on_node_mask(mask);
1752 numa_free_nodemask(mask);
1753 if (ret == -1) {
1754 td_verror(td, errno, \
1755 "numa_run_on_node_mask failed\n");
1756 goto err;
1757 }
1758 }
1759
1760 if (fio_option_is_set(o, numa_memnodes)) {
1761 mask = NULL;
1762 if (o->numa_memnodes)
1763 mask = numa_parse_nodestring(o->numa_memnodes);
1764
1765 switch (o->numa_mem_mode) {
1766 case MPOL_INTERLEAVE:
1767 numa_set_interleave_mask(mask);
1768 break;
1769 case MPOL_BIND:
1770 numa_set_membind(mask);
1771 break;
1772 case MPOL_LOCAL:
1773 numa_set_localalloc();
1774 break;
1775 case MPOL_PREFERRED:
1776 numa_set_preferred(o->numa_mem_prefer_node);
1777 break;
1778 case MPOL_DEFAULT:
1779 default:
1780 break;
1781 }
1782
1783 if (mask)
1784 numa_free_nodemask(mask);
1785
1786 }
1787 }
1788#endif
1789
1790 if (fio_pin_memory(td))
1791 goto err;
1792
1793 /*
1794 * May alter parameters that init_io_u() will use, so we need to
1795 * do this first.
1796 */
1797 if (!init_iolog(td))
1798 goto err;
1799
1800 /* ioprio_set() has to be done before td_io_init() */
1801 if (fio_option_is_set(o, ioprio) ||
1802 fio_option_is_set(o, ioprio_class) ||
1803 fio_option_is_set(o, ioprio_hint)) {
1804 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class,
1805 o->ioprio, o->ioprio_hint);
1806 if (ret == -1) {
1807 td_verror(td, errno, "ioprio_set");
1808 goto err;
1809 }
1810 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio,
1811 o->ioprio_hint);
1812 td->ts.ioprio = td->ioprio;
1813 }
1814
1815 if (td_io_init(td))
1816 goto err;
1817
1818 if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1 && td->o.io_submit_mode != IO_MODE_OFFLOAD) {
1819 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1820 "are selected, queue depth will be capped at 1\n");
1821 }
1822
1823 if (init_io_u(td))
1824 goto err;
1825
1826 if (td->io_ops->post_init && td->io_ops->post_init(td))
1827 goto err;
1828
1829 if (o->verify_async && verify_async_init(td))
1830 goto err;
1831
1832 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1833 goto err;
1834
1835 errno = 0;
1836 if (nice(o->nice) == -1 && errno != 0) {
1837 td_verror(td, errno, "nice");
1838 goto err;
1839 }
1840
1841 if (o->ioscheduler && switch_ioscheduler(td))
1842 goto err;
1843
1844 if (!o->create_serialize && setup_files(td))
1845 goto err;
1846
1847 if (!init_random_map(td))
1848 goto err;
1849
1850 if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1851 goto err;
1852
1853 if (o->pre_read && !pre_read_files(td))
1854 goto err;
1855
1856 fio_verify_init(td);
1857
1858 if (rate_submit_init(td, sk_out))
1859 goto err;
1860
1861 set_epoch_time(td, o->log_unix_epoch | o->log_alternate_epoch, o->log_alternate_epoch_clock_id);
1862 fio_getrusage(&td->ru_start);
1863 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1864 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1865 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1866
1867 init_thinktime(td);
1868
1869 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1870 o->ratemin[DDIR_TRIM]) {
1871 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1872 sizeof(td->bw_sample_time));
1873 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1874 sizeof(td->bw_sample_time));
1875 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1876 sizeof(td->bw_sample_time));
1877 }
1878
1879 memset(bytes_done, 0, sizeof(bytes_done));
1880 clear_state = false;
1881
1882 while (keep_running(td)) {
1883 uint64_t verify_bytes;
1884
1885 fio_gettime(&td->start, NULL);
1886 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1887
1888 if (clear_state) {
1889 clear_io_state(td, 0);
1890
1891 if (o->unlink_each_loop && unlink_all_files(td))
1892 break;
1893 }
1894
1895 prune_io_piece_log(td);
1896
1897 if (td->o.verify_only && td_write(td))
1898 verify_bytes = do_dry_run(td);
1899 else {
1900 if (!td->o.rand_repeatable)
1901 /* save verify rand state to replay hdr seeds later at verify */
1902 frand_copy(&td->verify_state_last_do_io, &td->verify_state);
1903 do_io(td, bytes_done);
1904 if (!td->o.rand_repeatable)
1905 frand_copy(&td->verify_state, &td->verify_state_last_do_io);
1906 if (!ddir_rw_sum(bytes_done)) {
1907 fio_mark_td_terminate(td);
1908 verify_bytes = 0;
1909 } else {
1910 verify_bytes = bytes_done[DDIR_WRITE] +
1911 bytes_done[DDIR_TRIM];
1912 }
1913 }
1914
1915 /*
1916 * If we took too long to shut down, the main thread could
1917 * already consider us reaped/exited. If that happens, break
1918 * out and clean up.
1919 */
1920 if (td->runstate >= TD_EXITED)
1921 break;
1922
1923 clear_state = true;
1924
1925 /*
1926 * Make sure we've successfully updated the rusage stats
1927 * before waiting on the stat mutex. Otherwise we could have
1928 * the stat thread holding stat mutex and waiting for
1929 * the rusage_sem, which would never get upped because
1930 * this thread is waiting for the stat mutex.
1931 */
1932 deadlock_loop_cnt = 0;
1933 do {
1934 check_update_rusage(td);
1935 if (!fio_sem_down_trylock(stat_sem))
1936 break;
1937 usleep(1000);
1938 if (deadlock_loop_cnt++ > 5000) {
1939 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1940 td->error = EDEADLK;
1941 goto err;
1942 }
1943 } while (1);
1944
1945 if (td->io_bytes[DDIR_READ] && (td_read(td) ||
1946 ((td->flags & TD_F_VER_BACKLOG) && td_write(td))))
1947 update_runtime(td, elapsed_us, DDIR_READ);
1948 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1949 update_runtime(td, elapsed_us, DDIR_WRITE);
1950 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1951 update_runtime(td, elapsed_us, DDIR_TRIM);
1952 fio_gettime(&td->start, NULL);
1953 fio_sem_up(stat_sem);
1954
1955 if (td->error || td->terminate)
1956 break;
1957
1958 if (!o->do_verify ||
1959 o->verify == VERIFY_NONE ||
1960 td_ioengine_flagged(td, FIO_UNIDIR))
1961 continue;
1962
1963 clear_io_state(td, 0);
1964
1965 fio_gettime(&td->start, NULL);
1966
1967 do_verify(td, verify_bytes);
1968
1969 /*
1970 * See comment further up for why this is done here.
1971 */
1972 check_update_rusage(td);
1973
1974 fio_sem_down(stat_sem);
1975 update_runtime(td, elapsed_us, DDIR_READ);
1976 fio_gettime(&td->start, NULL);
1977 fio_sem_up(stat_sem);
1978
1979 if (td->error || td->terminate)
1980 break;
1981 }
1982
1983 /*
1984 * Acquire this lock if we were doing overlap checking in
1985 * offload mode so that we don't clean up this job while
1986 * another thread is checking its io_u's for overlap
1987 */
1988 if (td_offload_overlap(td)) {
1989 int res;
1990
1991 res = pthread_mutex_lock(&overlap_check);
1992 if (res) {
1993 td->error = errno;
1994 goto err;
1995 }
1996 }
1997 td_set_runstate(td, TD_FINISHING);
1998 if (td_offload_overlap(td)) {
1999 int res;
2000
2001 res = pthread_mutex_unlock(&overlap_check);
2002 if (res) {
2003 td->error = errno;
2004 goto err;
2005 }
2006 }
2007
2008 update_rusage_stat(td);
2009 td->ts.total_run_time = mtime_since_now(&td->epoch);
2010 for_each_rw_ddir(ddir) {
2011 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2012 }
2013
2014 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
2015 (td->o.verify != VERIFY_NONE && td_write(td)))
2016 verify_save_state(td->thread_number);
2017
2018 fio_unpin_memory(td);
2019
2020 td_writeout_logs(td, true);
2021
2022 iolog_compress_exit(td);
2023 rate_submit_exit(td);
2024
2025 if (o->exec_postrun)
2026 exec_string(o, o->exec_postrun, "postrun");
2027
2028 if (exitall_on_terminate || (o->exitall_error && td->error))
2029 fio_terminate_threads(td->groupid, td->o.exit_what);
2030
2031err:
2032 if (td->error)
2033 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
2034 td->verror);
2035
2036 if (o->verify_async)
2037 verify_async_exit(td);
2038
2039 close_and_free_files(td);
2040 cleanup_io_u(td);
2041 close_ioengine(td);
2042 cgroup_shutdown(td, cgroup_mnt);
2043 verify_free_state(td);
2044 td_zone_free_index(td);
2045
2046 if (fio_option_is_set(o, cpumask)) {
2047 ret = fio_cpuset_exit(&o->cpumask);
2048 if (ret)
2049 td_verror(td, ret, "fio_cpuset_exit");
2050 }
2051
2052 /*
2053 * do this very late, it will log file closing as well
2054 */
2055 if (o->write_iolog_file)
2056 write_iolog_close(td);
2057 if (td->io_log_rfile)
2058 fclose(td->io_log_rfile);
2059
2060 td_set_runstate(td, TD_EXITED);
2061
2062 /*
2063 * Do this last after setting our runstate to exited, so we
2064 * know that the stat thread is signaled.
2065 */
2066 check_update_rusage(td);
2067
2068 sk_out_drop();
2069 return (void *) (uintptr_t) td->error;
2070}
2071
2072/*
2073 * Run over the job map and reap the threads that have exited, if any.
2074 */
2075static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2076 uint64_t *m_rate)
2077{
2078 unsigned int cputhreads, realthreads, pending;
2079 int status, ret;
2080
2081 /*
2082 * reap exited threads (TD_EXITED -> TD_REAPED)
2083 */
2084 realthreads = pending = cputhreads = 0;
2085 for_each_td(td) {
2086 int flags = 0;
2087
2088 if (!strcmp(td->o.ioengine, "cpuio"))
2089 cputhreads++;
2090 else
2091 realthreads++;
2092
2093 if (!td->pid) {
2094 pending++;
2095 continue;
2096 }
2097 if (td->runstate == TD_REAPED)
2098 continue;
2099 if (td->o.use_thread) {
2100 if (td->runstate == TD_EXITED) {
2101 td_set_runstate(td, TD_REAPED);
2102 goto reaped;
2103 }
2104 continue;
2105 }
2106
2107 flags = WNOHANG;
2108 if (td->runstate == TD_EXITED)
2109 flags = 0;
2110
2111 /*
2112 * check if someone quit or got killed in an unusual way
2113 */
2114 ret = waitpid(td->pid, &status, flags);
2115 if (ret < 0) {
2116 if (errno == ECHILD) {
2117 log_err("fio: pid=%d disappeared %d\n",
2118 (int) td->pid, td->runstate);
2119 td->sig = ECHILD;
2120 td_set_runstate(td, TD_REAPED);
2121 goto reaped;
2122 }
2123 perror("waitpid");
2124 } else if (ret == td->pid) {
2125 if (WIFSIGNALED(status)) {
2126 int sig = WTERMSIG(status);
2127
2128 if (sig != SIGTERM && sig != SIGUSR2)
2129 log_err("fio: pid=%d, got signal=%d\n",
2130 (int) td->pid, sig);
2131 td->sig = sig;
2132 td_set_runstate(td, TD_REAPED);
2133 goto reaped;
2134 }
2135 if (WIFEXITED(status)) {
2136 if (WEXITSTATUS(status) && !td->error)
2137 td->error = WEXITSTATUS(status);
2138
2139 td_set_runstate(td, TD_REAPED);
2140 goto reaped;
2141 }
2142 }
2143
2144 /*
2145 * If the job is stuck, do a forceful timeout of it and
2146 * move on.
2147 */
2148 if (td->terminate &&
2149 td->runstate < TD_FSYNCING &&
2150 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2151 log_err("fio: job '%s' (state=%d) hasn't exited in "
2152 "%lu seconds, it appears to be stuck. Doing "
2153 "forceful exit of this job.\n",
2154 td->o.name, td->runstate,
2155 (unsigned long) time_since_now(&td->terminate_time));
2156 td_set_runstate(td, TD_REAPED);
2157 goto reaped;
2158 }
2159
2160 /*
2161 * thread is not dead, continue
2162 */
2163 pending++;
2164 continue;
2165reaped:
2166 (*nr_running)--;
2167 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2168 (*t_rate) -= ddir_rw_sum(td->o.rate);
2169 if (!td->pid)
2170 pending--;
2171
2172 if (td->error)
2173 exit_value++;
2174
2175 done_secs += mtime_since_now(&td->epoch) / 1000;
2176 profile_td_exit(td);
2177 flow_exit_job(td);
2178 } end_for_each();
2179
2180 if (*nr_running == cputhreads && !pending && realthreads)
2181 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2182}
2183
2184static bool __check_trigger_file(void)
2185{
2186 struct stat sb;
2187
2188 if (!trigger_file)
2189 return false;
2190
2191 if (stat(trigger_file, &sb))
2192 return false;
2193
2194 if (unlink(trigger_file) < 0)
2195 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2196 strerror(errno));
2197
2198 return true;
2199}
2200
2201static bool trigger_timedout(void)
2202{
2203 if (trigger_timeout)
2204 if (time_since_genesis() >= trigger_timeout) {
2205 trigger_timeout = 0;
2206 return true;
2207 }
2208
2209 return false;
2210}
2211
2212void exec_trigger(const char *cmd)
2213{
2214 int ret;
2215
2216 if (!cmd || cmd[0] == '\0')
2217 return;
2218
2219 ret = system(cmd);
2220 if (ret == -1)
2221 log_err("fio: failed executing %s trigger\n", cmd);
2222}
2223
2224void check_trigger_file(void)
2225{
2226 if (__check_trigger_file() || trigger_timedout()) {
2227 if (nr_clients)
2228 fio_clients_send_trigger(trigger_remote_cmd);
2229 else {
2230 verify_save_state(IO_LIST_ALL);
2231 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2232 exec_trigger(trigger_cmd);
2233 }
2234 }
2235}
2236
2237static int fio_verify_load_state(struct thread_data *td)
2238{
2239 int ret;
2240
2241 if (!td->o.verify_state)
2242 return 0;
2243
2244 if (is_backend) {
2245 void *data;
2246
2247 ret = fio_server_get_verify_state(td->o.name,
2248 td->thread_number - 1, &data);
2249 if (!ret)
2250 verify_assign_state(td, data);
2251 } else {
2252 char prefix[PATH_MAX];
2253
2254 if (aux_path)
2255 sprintf(prefix, "%s%clocal", aux_path,
2256 FIO_OS_PATH_SEPARATOR);
2257 else
2258 strcpy(prefix, "local");
2259 ret = verify_load_state(td, prefix);
2260 }
2261
2262 return ret;
2263}
2264
2265static void do_usleep(unsigned int usecs)
2266{
2267 check_for_running_stats();
2268 check_trigger_file();
2269 usleep(usecs);
2270}
2271
2272static bool check_mount_writes(struct thread_data *td)
2273{
2274 struct fio_file *f;
2275 unsigned int i;
2276
2277 if (!td_write(td) || td->o.allow_mounted_write)
2278 return false;
2279
2280 /*
2281 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2282 * are mkfs'd and mounted.
2283 */
2284 for_each_file(td, f, i) {
2285#ifdef FIO_HAVE_CHARDEV_SIZE
2286 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2287#else
2288 if (f->filetype != FIO_TYPE_BLOCK)
2289#endif
2290 continue;
2291 if (device_is_mounted(f->file_name))
2292 goto mounted;
2293 }
2294
2295 return false;
2296mounted:
2297 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2298 return true;
2299}
2300
2301static bool waitee_running(struct thread_data *me)
2302{
2303 const char *waitee = me->o.wait_for;
2304 const char *self = me->o.name;
2305
2306 if (!waitee)
2307 return false;
2308
2309 for_each_td(td) {
2310 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2311 continue;
2312
2313 if (td->runstate < TD_EXITED) {
2314 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2315 self, td->o.name,
2316 runstate_to_name(td->runstate));
2317 return true;
2318 }
2319 } end_for_each();
2320
2321 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2322 return false;
2323}
2324
2325/*
2326 * Main function for kicking off and reaping jobs, as needed.
2327 */
2328static void run_threads(struct sk_out *sk_out)
2329{
2330 struct thread_data *td;
2331 unsigned int i, todo, nr_running, nr_started;
2332 uint64_t m_rate, t_rate;
2333 uint64_t spent;
2334
2335 if (fio_gtod_offload && fio_start_gtod_thread())
2336 return;
2337
2338 fio_idle_prof_init();
2339
2340 set_sig_handlers();
2341
2342 nr_thread = nr_process = 0;
2343 for_each_td(td) {
2344 if (check_mount_writes(td))
2345 return;
2346 if (td->o.use_thread)
2347 nr_thread++;
2348 else
2349 nr_process++;
2350 } end_for_each();
2351
2352 if (output_format & FIO_OUTPUT_NORMAL) {
2353 struct buf_output out;
2354
2355 buf_output_init(&out);
2356 __log_buf(&out, "Starting ");
2357 if (nr_thread)
2358 __log_buf(&out, "%d thread%s", nr_thread,
2359 nr_thread > 1 ? "s" : "");
2360 if (nr_process) {
2361 if (nr_thread)
2362 __log_buf(&out, " and ");
2363 __log_buf(&out, "%d process%s", nr_process,
2364 nr_process > 1 ? "es" : "");
2365 }
2366 __log_buf(&out, "\n");
2367 log_info_buf(out.buf, out.buflen);
2368 buf_output_free(&out);
2369 }
2370
2371 todo = thread_number;
2372 nr_running = 0;
2373 nr_started = 0;
2374 m_rate = t_rate = 0;
2375
2376 for_each_td(td) {
2377 print_status_init(td->thread_number - 1);
2378
2379 if (!td->o.create_serialize)
2380 continue;
2381
2382 if (fio_verify_load_state(td))
2383 goto reap;
2384
2385 /*
2386 * do file setup here so it happens sequentially,
2387 * we don't want X number of threads getting their
2388 * client data interspersed on disk
2389 */
2390 if (setup_files(td)) {
2391reap:
2392 exit_value++;
2393 if (td->error)
2394 log_err("fio: pid=%d, err=%d/%s\n",
2395 (int) td->pid, td->error, td->verror);
2396 td_set_runstate(td, TD_REAPED);
2397 todo--;
2398 } else {
2399 struct fio_file *f;
2400 unsigned int j;
2401
2402 /*
2403 * for sharing to work, each job must always open
2404 * its own files. so close them, if we opened them
2405 * for creation
2406 */
2407 for_each_file(td, f, j) {
2408 if (fio_file_open(f))
2409 td_io_close_file(td, f);
2410 }
2411 }
2412 } end_for_each();
2413
2414 /* start idle threads before io threads start to run */
2415 fio_idle_prof_start();
2416
2417 set_genesis_time();
2418
2419 while (todo) {
2420 struct thread_data *map[REAL_MAX_JOBS];
2421 struct timespec this_start;
2422 int this_jobs = 0, left;
2423 struct fork_data *fd;
2424
2425 /*
2426 * create threads (TD_NOT_CREATED -> TD_CREATED)
2427 */
2428 for_each_td(td) {
2429 if (td->runstate != TD_NOT_CREATED)
2430 continue;
2431
2432 /*
2433 * never got a chance to start, killed by other
2434 * thread for some reason
2435 */
2436 if (td->terminate) {
2437 todo--;
2438 continue;
2439 }
2440
2441 if (td->o.start_delay) {
2442 spent = utime_since_genesis();
2443
2444 if (td->o.start_delay > spent)
2445 continue;
2446 }
2447
2448 if (td->o.stonewall && (nr_started || nr_running)) {
2449 dprint(FD_PROCESS, "%s: stonewall wait\n",
2450 td->o.name);
2451 break;
2452 }
2453
2454 if (waitee_running(td)) {
2455 dprint(FD_PROCESS, "%s: waiting for %s\n",
2456 td->o.name, td->o.wait_for);
2457 continue;
2458 }
2459
2460 init_disk_util(td);
2461
2462 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2463 td->update_rusage = 0;
2464
2465 /*
2466 * Set state to created. Thread will transition
2467 * to TD_INITIALIZED when it's done setting up.
2468 */
2469 td_set_runstate(td, TD_CREATED);
2470 map[this_jobs++] = td;
2471 nr_started++;
2472
2473 fd = calloc(1, sizeof(*fd));
2474 fd->td = td;
2475 fd->sk_out = sk_out;
2476
2477 if (td->o.use_thread) {
2478 int ret;
2479
2480 dprint(FD_PROCESS, "will pthread_create\n");
2481 ret = pthread_create(&td->thread, NULL,
2482 thread_main, fd);
2483 if (ret) {
2484 log_err("pthread_create: %s\n",
2485 strerror(ret));
2486 free(fd);
2487 nr_started--;
2488 break;
2489 }
2490 fd = NULL;
2491 ret = pthread_detach(td->thread);
2492 if (ret)
2493 log_err("pthread_detach: %s",
2494 strerror(ret));
2495 } else {
2496 pid_t pid;
2497 void *eo;
2498 dprint(FD_PROCESS, "will fork\n");
2499 eo = td->eo;
2500 read_barrier();
2501 pid = fork();
2502 if (!pid) {
2503 int ret;
2504
2505 ret = (int)(uintptr_t)thread_main(fd);
2506 _exit(ret);
2507 } else if (__td_index == fio_debug_jobno)
2508 *fio_debug_jobp = pid;
2509 free(eo);
2510 free(fd);
2511 fd = NULL;
2512 }
2513 dprint(FD_MUTEX, "wait on startup_sem\n");
2514 if (fio_sem_down_timeout(startup_sem, 10000)) {
2515 log_err("fio: job startup hung? exiting.\n");
2516 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2517 fio_abort = true;
2518 nr_started--;
2519 free(fd);
2520 break;
2521 }
2522 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2523 } end_for_each();
2524
2525 /*
2526 * Wait for the started threads to transition to
2527 * TD_INITIALIZED.
2528 */
2529 fio_gettime(&this_start, NULL);
2530 left = this_jobs;
2531 while (left && !fio_abort) {
2532 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2533 break;
2534
2535 do_usleep(100000);
2536
2537 for (i = 0; i < this_jobs; i++) {
2538 td = map[i];
2539 if (!td)
2540 continue;
2541 if (td->runstate == TD_INITIALIZED) {
2542 map[i] = NULL;
2543 left--;
2544 } else if (td->runstate >= TD_EXITED) {
2545 map[i] = NULL;
2546 left--;
2547 todo--;
2548 nr_running++; /* work-around... */
2549 }
2550 }
2551 }
2552
2553 if (left) {
2554 log_err("fio: %d job%s failed to start\n", left,
2555 left > 1 ? "s" : "");
2556 for (i = 0; i < this_jobs; i++) {
2557 td = map[i];
2558 if (!td)
2559 continue;
2560 kill(td->pid, SIGTERM);
2561 }
2562 break;
2563 }
2564
2565 /*
2566 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2567 */
2568 for_each_td(td) {
2569 if (td->runstate != TD_INITIALIZED)
2570 continue;
2571
2572 if (in_ramp_time(td))
2573 td_set_runstate(td, TD_RAMP);
2574 else
2575 td_set_runstate(td, TD_RUNNING);
2576 nr_running++;
2577 nr_started--;
2578 m_rate += ddir_rw_sum(td->o.ratemin);
2579 t_rate += ddir_rw_sum(td->o.rate);
2580 todo--;
2581 fio_sem_up(td->sem);
2582 } end_for_each();
2583
2584 reap_threads(&nr_running, &t_rate, &m_rate);
2585
2586 if (todo)
2587 do_usleep(100000);
2588 }
2589
2590 while (nr_running) {
2591 reap_threads(&nr_running, &t_rate, &m_rate);
2592 do_usleep(10000);
2593 }
2594
2595 fio_idle_prof_stop();
2596
2597 update_io_ticks();
2598}
2599
2600static void free_disk_util(void)
2601{
2602 disk_util_prune_entries();
2603 helper_thread_destroy();
2604}
2605
2606int fio_backend(struct sk_out *sk_out)
2607{
2608 int i;
2609 if (exec_profile) {
2610 if (load_profile(exec_profile))
2611 return 1;
2612 free(exec_profile);
2613 exec_profile = NULL;
2614 }
2615 if (!thread_number)
2616 return 0;
2617
2618 if (write_bw_log) {
2619 struct log_params p = {
2620 .log_type = IO_LOG_TYPE_BW,
2621 };
2622
2623 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2624 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2625 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2626 }
2627
2628 if (init_global_dedupe_working_set_seeds()) {
2629 log_err("fio: failed to initialize global dedupe working set\n");
2630 return 1;
2631 }
2632
2633 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2634 if (!sk_out)
2635 is_local_backend = true;
2636 if (startup_sem == NULL)
2637 return 1;
2638
2639 set_genesis_time();
2640 stat_init();
2641 if (helper_thread_create(startup_sem, sk_out))
2642 log_err("fio: failed to create helper thread\n");
2643
2644 cgroup_list = smalloc(sizeof(*cgroup_list));
2645 if (cgroup_list)
2646 INIT_FLIST_HEAD(cgroup_list);
2647
2648 run_threads(sk_out);
2649
2650 helper_thread_exit();
2651
2652 if (!fio_abort) {
2653 __show_run_stats();
2654 if (write_bw_log) {
2655 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2656 struct io_log *log = agg_io_log[i];
2657
2658 flush_log(log, false);
2659 free_log(log);
2660 }
2661 }
2662 }
2663
2664 for_each_td(td) {
2665 struct thread_stat *ts = &td->ts;
2666
2667 free_clat_prio_stats(ts);
2668 steadystate_free(td);
2669 fio_options_free(td);
2670 fio_dump_options_free(td);
2671 if (td->rusage_sem) {
2672 fio_sem_remove(td->rusage_sem);
2673 td->rusage_sem = NULL;
2674 }
2675 fio_sem_remove(td->sem);
2676 td->sem = NULL;
2677 } end_for_each();
2678
2679 free_disk_util();
2680 if (cgroup_list) {
2681 cgroup_kill(cgroup_list);
2682 sfree(cgroup_list);
2683 }
2684
2685 fio_sem_remove(startup_sem);
2686 stat_exit();
2687 return exit_value;
2688}