t/zbd: Combine write and read fio commands for test case #16
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32#include <pthread.h>
33
34#include "fio.h"
35#include "smalloc.h"
36#include "verify.h"
37#include "diskutil.h"
38#include "cgroup.h"
39#include "profile.h"
40#include "lib/rand.h"
41#include "lib/memalign.h"
42#include "server.h"
43#include "lib/getrusage.h"
44#include "idletime.h"
45#include "err.h"
46#include "workqueue.h"
47#include "lib/mountcheck.h"
48#include "rate-submit.h"
49#include "helper_thread.h"
50#include "pshared.h"
51#include "zone-dist.h"
52
53static struct fio_sem *startup_sem;
54static struct flist_head *cgroup_list;
55static struct cgroup_mnt *cgroup_mnt;
56static int exit_value;
57static volatile bool fio_abort;
58static unsigned int nr_process = 0;
59static unsigned int nr_thread = 0;
60
61struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63int groupid = 0;
64unsigned int thread_number = 0;
65unsigned int stat_number = 0;
66int shm_id = 0;
67int temp_stall_ts;
68unsigned long done_secs = 0;
69#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
70pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
71#else
72pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
73#endif
74
75#define JOB_START_TIMEOUT (5 * 1000)
76
77static void sig_int(int sig)
78{
79 if (threads) {
80 if (is_backend)
81 fio_server_got_signal(sig);
82 else {
83 log_info("\nfio: terminating on signal %d\n", sig);
84 log_info_flush();
85 exit_value = 128;
86 }
87
88 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
89 }
90}
91
92void sig_show_status(int sig)
93{
94 show_running_run_stats();
95}
96
97static void set_sig_handlers(void)
98{
99 struct sigaction act;
100
101 memset(&act, 0, sizeof(act));
102 act.sa_handler = sig_int;
103 act.sa_flags = SA_RESTART;
104 sigaction(SIGINT, &act, NULL);
105
106 memset(&act, 0, sizeof(act));
107 act.sa_handler = sig_int;
108 act.sa_flags = SA_RESTART;
109 sigaction(SIGTERM, &act, NULL);
110
111/* Windows uses SIGBREAK as a quit signal from other applications */
112#ifdef WIN32
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGBREAK, &act, NULL);
117#endif
118
119 memset(&act, 0, sizeof(act));
120 act.sa_handler = sig_show_status;
121 act.sa_flags = SA_RESTART;
122 sigaction(SIGUSR1, &act, NULL);
123
124 if (is_backend) {
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGPIPE, &act, NULL);
129 }
130}
131
132/*
133 * Check if we are above the minimum rate given.
134 */
135static bool __check_min_rate(struct thread_data *td, struct timespec *now,
136 enum fio_ddir ddir)
137{
138 unsigned long long bytes = 0;
139 unsigned long iops = 0;
140 unsigned long spent;
141 unsigned long long rate;
142 unsigned long long ratemin = 0;
143 unsigned int rate_iops = 0;
144 unsigned int rate_iops_min = 0;
145
146 assert(ddir_rw(ddir));
147
148 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
149 return false;
150
151 /*
152 * allow a 2 second settle period in the beginning
153 */
154 if (mtime_since(&td->start, now) < 2000)
155 return false;
156
157 iops += td->this_io_blocks[ddir];
158 bytes += td->this_io_bytes[ddir];
159 ratemin += td->o.ratemin[ddir];
160 rate_iops += td->o.rate_iops[ddir];
161 rate_iops_min += td->o.rate_iops_min[ddir];
162
163 /*
164 * if rate blocks is set, sample is running
165 */
166 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
167 spent = mtime_since(&td->lastrate[ddir], now);
168 if (spent < td->o.ratecycle)
169 return false;
170
171 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
172 /*
173 * check bandwidth specified rate
174 */
175 if (bytes < td->rate_bytes[ddir]) {
176 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
177 td->o.name, ratemin, bytes);
178 return true;
179 } else {
180 if (spent)
181 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
182 else
183 rate = 0;
184
185 if (rate < ratemin ||
186 bytes < td->rate_bytes[ddir]) {
187 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
188 td->o.name, ratemin, rate);
189 return true;
190 }
191 }
192 } else {
193 /*
194 * checks iops specified rate
195 */
196 if (iops < rate_iops) {
197 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
198 td->o.name, rate_iops, iops);
199 return true;
200 } else {
201 if (spent)
202 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
203 else
204 rate = 0;
205
206 if (rate < rate_iops_min ||
207 iops < td->rate_blocks[ddir]) {
208 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
209 td->o.name, rate_iops_min, rate);
210 return true;
211 }
212 }
213 }
214 }
215
216 td->rate_bytes[ddir] = bytes;
217 td->rate_blocks[ddir] = iops;
218 memcpy(&td->lastrate[ddir], now, sizeof(*now));
219 return false;
220}
221
222static bool check_min_rate(struct thread_data *td, struct timespec *now)
223{
224 bool ret = false;
225
226 if (td->bytes_done[DDIR_READ])
227 ret |= __check_min_rate(td, now, DDIR_READ);
228 if (td->bytes_done[DDIR_WRITE])
229 ret |= __check_min_rate(td, now, DDIR_WRITE);
230 if (td->bytes_done[DDIR_TRIM])
231 ret |= __check_min_rate(td, now, DDIR_TRIM);
232
233 return ret;
234}
235
236/*
237 * When job exits, we can cancel the in-flight IO if we are using async
238 * io. Attempt to do so.
239 */
240static void cleanup_pending_aio(struct thread_data *td)
241{
242 int r;
243
244 /*
245 * get immediately available events, if any
246 */
247 r = io_u_queued_complete(td, 0);
248
249 /*
250 * now cancel remaining active events
251 */
252 if (td->io_ops->cancel) {
253 struct io_u *io_u;
254 int i;
255
256 io_u_qiter(&td->io_u_all, io_u, i) {
257 if (io_u->flags & IO_U_F_FLIGHT) {
258 r = td->io_ops->cancel(td, io_u);
259 if (!r)
260 put_io_u(td, io_u);
261 }
262 }
263 }
264
265 if (td->cur_depth)
266 r = io_u_queued_complete(td, td->cur_depth);
267}
268
269/*
270 * Helper to handle the final sync of a file. Works just like the normal
271 * io path, just does everything sync.
272 */
273static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
274{
275 struct io_u *io_u = __get_io_u(td);
276 enum fio_q_status ret;
277
278 if (!io_u)
279 return true;
280
281 io_u->ddir = DDIR_SYNC;
282 io_u->file = f;
283 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
284
285 if (td_io_prep(td, io_u)) {
286 put_io_u(td, io_u);
287 return true;
288 }
289
290requeue:
291 ret = td_io_queue(td, io_u);
292 switch (ret) {
293 case FIO_Q_QUEUED:
294 td_io_commit(td);
295 if (io_u_queued_complete(td, 1) < 0)
296 return true;
297 break;
298 case FIO_Q_COMPLETED:
299 if (io_u->error) {
300 td_verror(td, io_u->error, "td_io_queue");
301 return true;
302 }
303
304 if (io_u_sync_complete(td, io_u) < 0)
305 return true;
306 break;
307 case FIO_Q_BUSY:
308 td_io_commit(td);
309 goto requeue;
310 }
311
312 return false;
313}
314
315static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
316{
317 int ret, ret2;
318
319 if (fio_file_open(f))
320 return fio_io_sync(td, f);
321
322 if (td_io_open_file(td, f))
323 return 1;
324
325 ret = fio_io_sync(td, f);
326 ret2 = 0;
327 if (fio_file_open(f))
328 ret2 = td_io_close_file(td, f);
329 return (ret || ret2);
330}
331
332static inline void __update_ts_cache(struct thread_data *td)
333{
334 fio_gettime(&td->ts_cache, NULL);
335}
336
337static inline void update_ts_cache(struct thread_data *td)
338{
339 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
340 __update_ts_cache(td);
341}
342
343static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
344{
345 if (in_ramp_time(td))
346 return false;
347 if (!td->o.timeout)
348 return false;
349 if (utime_since(&td->epoch, t) >= td->o.timeout)
350 return true;
351
352 return false;
353}
354
355/*
356 * We need to update the runtime consistently in ms, but keep a running
357 * tally of the current elapsed time in microseconds for sub millisecond
358 * updates.
359 */
360static inline void update_runtime(struct thread_data *td,
361 unsigned long long *elapsed_us,
362 const enum fio_ddir ddir)
363{
364 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
365 return;
366
367 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
368 elapsed_us[ddir] += utime_since_now(&td->start);
369 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
370}
371
372static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
373 int *retptr)
374{
375 int ret = *retptr;
376
377 if (ret < 0 || td->error) {
378 int err = td->error;
379 enum error_type_bit eb;
380
381 if (ret < 0)
382 err = -ret;
383
384 eb = td_error_type(ddir, err);
385 if (!(td->o.continue_on_error & (1 << eb)))
386 return true;
387
388 if (td_non_fatal_error(td, eb, err)) {
389 /*
390 * Continue with the I/Os in case of
391 * a non fatal error.
392 */
393 update_error_count(td, err);
394 td_clear_error(td);
395 *retptr = 0;
396 return false;
397 } else if (td->o.fill_device && err == ENOSPC) {
398 /*
399 * We expect to hit this error if
400 * fill_device option is set.
401 */
402 td_clear_error(td);
403 fio_mark_td_terminate(td);
404 return true;
405 } else {
406 /*
407 * Stop the I/O in case of a fatal
408 * error.
409 */
410 update_error_count(td, err);
411 return true;
412 }
413 }
414
415 return false;
416}
417
418static void check_update_rusage(struct thread_data *td)
419{
420 if (td->update_rusage) {
421 td->update_rusage = 0;
422 update_rusage_stat(td);
423 fio_sem_up(td->rusage_sem);
424 }
425}
426
427static int wait_for_completions(struct thread_data *td, struct timespec *time)
428{
429 const int full = queue_full(td);
430 int min_evts = 0;
431 int ret;
432
433 if (td->flags & TD_F_REGROW_LOGS)
434 return io_u_quiesce(td);
435
436 /*
437 * if the queue is full, we MUST reap at least 1 event
438 */
439 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
440 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
441 min_evts = 1;
442
443 if (time && __should_check_rate(td))
444 fio_gettime(time, NULL);
445
446 do {
447 ret = io_u_queued_complete(td, min_evts);
448 if (ret < 0)
449 break;
450 } while (full && (td->cur_depth > td->o.iodepth_low));
451
452 return ret;
453}
454
455int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
456 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
457 struct timespec *comp_time)
458{
459 switch (*ret) {
460 case FIO_Q_COMPLETED:
461 if (io_u->error) {
462 *ret = -io_u->error;
463 clear_io_u(td, io_u);
464 } else if (io_u->resid) {
465 long long bytes = io_u->xfer_buflen - io_u->resid;
466 struct fio_file *f = io_u->file;
467
468 if (bytes_issued)
469 *bytes_issued += bytes;
470
471 if (!from_verify)
472 trim_io_piece(io_u);
473
474 /*
475 * zero read, fail
476 */
477 if (!bytes) {
478 if (!from_verify)
479 unlog_io_piece(td, io_u);
480 td_verror(td, EIO, "full resid");
481 put_io_u(td, io_u);
482 break;
483 }
484
485 io_u->xfer_buflen = io_u->resid;
486 io_u->xfer_buf += bytes;
487 io_u->offset += bytes;
488
489 if (ddir_rw(io_u->ddir))
490 td->ts.short_io_u[io_u->ddir]++;
491
492 if (io_u->offset == f->real_file_size)
493 goto sync_done;
494
495 requeue_io_u(td, &io_u);
496 } else {
497sync_done:
498 if (comp_time && __should_check_rate(td))
499 fio_gettime(comp_time, NULL);
500
501 *ret = io_u_sync_complete(td, io_u);
502 if (*ret < 0)
503 break;
504 }
505
506 if (td->flags & TD_F_REGROW_LOGS)
507 regrow_logs(td);
508
509 /*
510 * when doing I/O (not when verifying),
511 * check for any errors that are to be ignored
512 */
513 if (!from_verify)
514 break;
515
516 return 0;
517 case FIO_Q_QUEUED:
518 /*
519 * if the engine doesn't have a commit hook,
520 * the io_u is really queued. if it does have such
521 * a hook, it has to call io_u_queued() itself.
522 */
523 if (td->io_ops->commit == NULL)
524 io_u_queued(td, io_u);
525 if (bytes_issued)
526 *bytes_issued += io_u->xfer_buflen;
527 break;
528 case FIO_Q_BUSY:
529 if (!from_verify)
530 unlog_io_piece(td, io_u);
531 requeue_io_u(td, &io_u);
532 td_io_commit(td);
533 break;
534 default:
535 assert(*ret < 0);
536 td_verror(td, -(*ret), "td_io_queue");
537 break;
538 }
539
540 if (break_on_this_error(td, ddir, ret))
541 return 1;
542
543 return 0;
544}
545
546static inline bool io_in_polling(struct thread_data *td)
547{
548 return !td->o.iodepth_batch_complete_min &&
549 !td->o.iodepth_batch_complete_max;
550}
551/*
552 * Unlinks files from thread data fio_file structure
553 */
554static int unlink_all_files(struct thread_data *td)
555{
556 struct fio_file *f;
557 unsigned int i;
558 int ret = 0;
559
560 for_each_file(td, f, i) {
561 if (f->filetype != FIO_TYPE_FILE)
562 continue;
563 ret = td_io_unlink_file(td, f);
564 if (ret)
565 break;
566 }
567
568 if (ret)
569 td_verror(td, ret, "unlink_all_files");
570
571 return ret;
572}
573
574/*
575 * Check if io_u will overlap an in-flight IO in the queue
576 */
577bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
578{
579 bool overlap;
580 struct io_u *check_io_u;
581 unsigned long long x1, x2, y1, y2;
582 int i;
583
584 x1 = io_u->offset;
585 x2 = io_u->offset + io_u->buflen;
586 overlap = false;
587 io_u_qiter(q, check_io_u, i) {
588 if (check_io_u->flags & IO_U_F_FLIGHT) {
589 y1 = check_io_u->offset;
590 y2 = check_io_u->offset + check_io_u->buflen;
591
592 if (x1 < y2 && y1 < x2) {
593 overlap = true;
594 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
595 x1, io_u->buflen,
596 y1, check_io_u->buflen);
597 break;
598 }
599 }
600 }
601
602 return overlap;
603}
604
605static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
606{
607 /*
608 * Check for overlap if the user asked us to, and we have
609 * at least one IO in flight besides this one.
610 */
611 if (td->o.serialize_overlap && td->cur_depth > 1 &&
612 in_flight_overlap(&td->io_u_all, io_u))
613 return FIO_Q_BUSY;
614
615 return td_io_queue(td, io_u);
616}
617
618/*
619 * The main verify engine. Runs over the writes we previously submitted,
620 * reads the blocks back in, and checks the crc/md5 of the data.
621 */
622static void do_verify(struct thread_data *td, uint64_t verify_bytes)
623{
624 struct fio_file *f;
625 struct io_u *io_u;
626 int ret, min_events;
627 unsigned int i;
628
629 dprint(FD_VERIFY, "starting loop\n");
630
631 /*
632 * sync io first and invalidate cache, to make sure we really
633 * read from disk.
634 */
635 for_each_file(td, f, i) {
636 if (!fio_file_open(f))
637 continue;
638 if (fio_io_sync(td, f))
639 break;
640 if (file_invalidate_cache(td, f))
641 break;
642 }
643
644 check_update_rusage(td);
645
646 if (td->error)
647 return;
648
649 /*
650 * verify_state needs to be reset before verification
651 * proceeds so that expected random seeds match actual
652 * random seeds in headers. The main loop will reset
653 * all random number generators if randrepeat is set.
654 */
655 if (!td->o.rand_repeatable)
656 td_fill_verify_state_seed(td);
657
658 td_set_runstate(td, TD_VERIFYING);
659
660 io_u = NULL;
661 while (!td->terminate) {
662 enum fio_ddir ddir;
663 int full;
664
665 update_ts_cache(td);
666 check_update_rusage(td);
667
668 if (runtime_exceeded(td, &td->ts_cache)) {
669 __update_ts_cache(td);
670 if (runtime_exceeded(td, &td->ts_cache)) {
671 fio_mark_td_terminate(td);
672 break;
673 }
674 }
675
676 if (flow_threshold_exceeded(td))
677 continue;
678
679 if (!td->o.experimental_verify) {
680 io_u = __get_io_u(td);
681 if (!io_u)
682 break;
683
684 if (get_next_verify(td, io_u)) {
685 put_io_u(td, io_u);
686 break;
687 }
688
689 if (td_io_prep(td, io_u)) {
690 put_io_u(td, io_u);
691 break;
692 }
693 } else {
694 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
695 break;
696
697 while ((io_u = get_io_u(td)) != NULL) {
698 if (IS_ERR_OR_NULL(io_u)) {
699 io_u = NULL;
700 ret = FIO_Q_BUSY;
701 goto reap;
702 }
703
704 /*
705 * We are only interested in the places where
706 * we wrote or trimmed IOs. Turn those into
707 * reads for verification purposes.
708 */
709 if (io_u->ddir == DDIR_READ) {
710 /*
711 * Pretend we issued it for rwmix
712 * accounting
713 */
714 td->io_issues[DDIR_READ]++;
715 put_io_u(td, io_u);
716 continue;
717 } else if (io_u->ddir == DDIR_TRIM) {
718 io_u->ddir = DDIR_READ;
719 io_u_set(td, io_u, IO_U_F_TRIMMED);
720 break;
721 } else if (io_u->ddir == DDIR_WRITE) {
722 io_u->ddir = DDIR_READ;
723 populate_verify_io_u(td, io_u);
724 break;
725 } else {
726 put_io_u(td, io_u);
727 continue;
728 }
729 }
730
731 if (!io_u)
732 break;
733 }
734
735 if (verify_state_should_stop(td, io_u)) {
736 put_io_u(td, io_u);
737 break;
738 }
739
740 if (td->o.verify_async)
741 io_u->end_io = verify_io_u_async;
742 else
743 io_u->end_io = verify_io_u;
744
745 ddir = io_u->ddir;
746 if (!td->o.disable_slat)
747 fio_gettime(&io_u->start_time, NULL);
748
749 ret = io_u_submit(td, io_u);
750
751 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
752 break;
753
754 /*
755 * if we can queue more, do so. but check if there are
756 * completed io_u's first. Note that we can get BUSY even
757 * without IO queued, if the system is resource starved.
758 */
759reap:
760 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
761 if (full || io_in_polling(td))
762 ret = wait_for_completions(td, NULL);
763
764 if (ret < 0)
765 break;
766 }
767
768 check_update_rusage(td);
769
770 if (!td->error) {
771 min_events = td->cur_depth;
772
773 if (min_events)
774 ret = io_u_queued_complete(td, min_events);
775 } else
776 cleanup_pending_aio(td);
777
778 td_set_runstate(td, TD_RUNNING);
779
780 dprint(FD_VERIFY, "exiting loop\n");
781}
782
783static bool exceeds_number_ios(struct thread_data *td)
784{
785 unsigned long long number_ios;
786
787 if (!td->o.number_ios)
788 return false;
789
790 number_ios = ddir_rw_sum(td->io_blocks);
791 number_ios += td->io_u_queued + td->io_u_in_flight;
792
793 return number_ios >= (td->o.number_ios * td->loops);
794}
795
796static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
797{
798 unsigned long long bytes, limit;
799
800 if (td_rw(td))
801 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
802 else if (td_write(td))
803 bytes = this_bytes[DDIR_WRITE];
804 else if (td_read(td))
805 bytes = this_bytes[DDIR_READ];
806 else
807 bytes = this_bytes[DDIR_TRIM];
808
809 if (td->o.io_size)
810 limit = td->o.io_size;
811 else
812 limit = td->o.size;
813
814 limit *= td->loops;
815 return bytes >= limit || exceeds_number_ios(td);
816}
817
818static bool io_issue_bytes_exceeded(struct thread_data *td)
819{
820 return io_bytes_exceeded(td, td->io_issue_bytes);
821}
822
823static bool io_complete_bytes_exceeded(struct thread_data *td)
824{
825 return io_bytes_exceeded(td, td->this_io_bytes);
826}
827
828/*
829 * used to calculate the next io time for rate control
830 *
831 */
832static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
833{
834 uint64_t bps = td->rate_bps[ddir];
835
836 assert(!(td->flags & TD_F_CHILD));
837
838 if (td->o.rate_process == RATE_PROCESS_POISSON) {
839 uint64_t val, iops;
840
841 iops = bps / td->o.bs[ddir];
842 val = (int64_t) (1000000 / iops) *
843 -logf(__rand_0_1(&td->poisson_state[ddir]));
844 if (val) {
845 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
846 (unsigned long long) 1000000 / val,
847 ddir);
848 }
849 td->last_usec[ddir] += val;
850 return td->last_usec[ddir];
851 } else if (bps) {
852 uint64_t bytes = td->rate_io_issue_bytes[ddir];
853 uint64_t secs = bytes / bps;
854 uint64_t remainder = bytes % bps;
855
856 return remainder * 1000000 / bps + secs * 1000000;
857 }
858
859 return 0;
860}
861
862static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
863{
864 unsigned long long b;
865 uint64_t total;
866 int left;
867
868 b = ddir_rw_sum(td->io_blocks);
869 if (b % td->o.thinktime_blocks)
870 return;
871
872 io_u_quiesce(td);
873
874 total = 0;
875 if (td->o.thinktime_spin)
876 total = usec_spin(td->o.thinktime_spin);
877
878 left = td->o.thinktime - total;
879 if (left)
880 total += usec_sleep(td, left);
881
882 /*
883 * If we're ignoring thinktime for the rate, add the number of bytes
884 * we would have done while sleeping, minus one block to ensure we
885 * start issuing immediately after the sleep.
886 */
887 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
888 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
889 uint64_t bs = td->o.min_bs[ddir];
890 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
891 uint64_t over;
892
893 if (usperop <= total)
894 over = bs;
895 else
896 over = (usperop - total) / usperop * -bs;
897
898 td->rate_io_issue_bytes[ddir] += (missed - over);
899 /* adjust for rate_process=poisson */
900 td->last_usec[ddir] += total;
901 }
902}
903
904/*
905 * Main IO worker function. It retrieves io_u's to process and queues
906 * and reaps them, checking for rate and errors along the way.
907 *
908 * Returns number of bytes written and trimmed.
909 */
910static void do_io(struct thread_data *td, uint64_t *bytes_done)
911{
912 unsigned int i;
913 int ret = 0;
914 uint64_t total_bytes, bytes_issued = 0;
915
916 for (i = 0; i < DDIR_RWDIR_CNT; i++)
917 bytes_done[i] = td->bytes_done[i];
918
919 if (in_ramp_time(td))
920 td_set_runstate(td, TD_RAMP);
921 else
922 td_set_runstate(td, TD_RUNNING);
923
924 lat_target_init(td);
925
926 total_bytes = td->o.size;
927 /*
928 * Allow random overwrite workloads to write up to io_size
929 * before starting verification phase as 'size' doesn't apply.
930 */
931 if (td_write(td) && td_random(td) && td->o.norandommap)
932 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
933 /*
934 * If verify_backlog is enabled, we'll run the verify in this
935 * handler as well. For that case, we may need up to twice the
936 * amount of bytes.
937 */
938 if (td->o.verify != VERIFY_NONE &&
939 (td_write(td) && td->o.verify_backlog))
940 total_bytes += td->o.size;
941
942 /* In trimwrite mode, each byte is trimmed and then written, so
943 * allow total_bytes to be twice as big */
944 if (td_trimwrite(td))
945 total_bytes += td->total_io_size;
946
947 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
948 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
949 td->o.time_based) {
950 struct timespec comp_time;
951 struct io_u *io_u;
952 int full;
953 enum fio_ddir ddir;
954
955 check_update_rusage(td);
956
957 if (td->terminate || td->done)
958 break;
959
960 update_ts_cache(td);
961
962 if (runtime_exceeded(td, &td->ts_cache)) {
963 __update_ts_cache(td);
964 if (runtime_exceeded(td, &td->ts_cache)) {
965 fio_mark_td_terminate(td);
966 break;
967 }
968 }
969
970 if (flow_threshold_exceeded(td))
971 continue;
972
973 /*
974 * Break if we exceeded the bytes. The exception is time
975 * based runs, but we still need to break out of the loop
976 * for those to run verification, if enabled.
977 * Jobs read from iolog do not use this stop condition.
978 */
979 if (bytes_issued >= total_bytes &&
980 !td->o.read_iolog_file &&
981 (!td->o.time_based ||
982 (td->o.time_based && td->o.verify != VERIFY_NONE)))
983 break;
984
985 io_u = get_io_u(td);
986 if (IS_ERR_OR_NULL(io_u)) {
987 int err = PTR_ERR(io_u);
988
989 io_u = NULL;
990 ddir = DDIR_INVAL;
991 if (err == -EBUSY) {
992 ret = FIO_Q_BUSY;
993 goto reap;
994 }
995 if (td->o.latency_target)
996 goto reap;
997 break;
998 }
999
1000 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1001 populate_verify_io_u(td, io_u);
1002
1003 ddir = io_u->ddir;
1004
1005 /*
1006 * Add verification end_io handler if:
1007 * - Asked to verify (!td_rw(td))
1008 * - Or the io_u is from our verify list (mixed write/ver)
1009 */
1010 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1011 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1012
1013 if (verify_state_should_stop(td, io_u)) {
1014 put_io_u(td, io_u);
1015 break;
1016 }
1017
1018 if (td->o.verify_async)
1019 io_u->end_io = verify_io_u_async;
1020 else
1021 io_u->end_io = verify_io_u;
1022 td_set_runstate(td, TD_VERIFYING);
1023 } else if (in_ramp_time(td))
1024 td_set_runstate(td, TD_RAMP);
1025 else
1026 td_set_runstate(td, TD_RUNNING);
1027
1028 /*
1029 * Always log IO before it's issued, so we know the specific
1030 * order of it. The logged unit will track when the IO has
1031 * completed.
1032 */
1033 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1034 td->o.do_verify &&
1035 td->o.verify != VERIFY_NONE &&
1036 !td->o.experimental_verify)
1037 log_io_piece(td, io_u);
1038
1039 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1040 const unsigned long long blen = io_u->xfer_buflen;
1041 const enum fio_ddir __ddir = acct_ddir(io_u);
1042
1043 if (td->error)
1044 break;
1045
1046 workqueue_enqueue(&td->io_wq, &io_u->work);
1047 ret = FIO_Q_QUEUED;
1048
1049 if (ddir_rw(__ddir)) {
1050 td->io_issues[__ddir]++;
1051 td->io_issue_bytes[__ddir] += blen;
1052 td->rate_io_issue_bytes[__ddir] += blen;
1053 }
1054
1055 if (should_check_rate(td))
1056 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1057
1058 } else {
1059 ret = io_u_submit(td, io_u);
1060
1061 if (should_check_rate(td))
1062 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1063
1064 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1065 break;
1066
1067 /*
1068 * See if we need to complete some commands. Note that
1069 * we can get BUSY even without IO queued, if the
1070 * system is resource starved.
1071 */
1072reap:
1073 full = queue_full(td) ||
1074 (ret == FIO_Q_BUSY && td->cur_depth);
1075 if (full || io_in_polling(td))
1076 ret = wait_for_completions(td, &comp_time);
1077 }
1078 if (ret < 0)
1079 break;
1080 if (!ddir_rw_sum(td->bytes_done) &&
1081 !td_ioengine_flagged(td, FIO_NOIO))
1082 continue;
1083
1084 if (!in_ramp_time(td) && should_check_rate(td)) {
1085 if (check_min_rate(td, &comp_time)) {
1086 if (exitall_on_terminate || td->o.exitall_error)
1087 fio_terminate_threads(td->groupid, td->o.exit_what);
1088 td_verror(td, EIO, "check_min_rate");
1089 break;
1090 }
1091 }
1092 if (!in_ramp_time(td) && td->o.latency_target)
1093 lat_target_check(td);
1094
1095 if (ddir_rw(ddir) && td->o.thinktime)
1096 handle_thinktime(td, ddir);
1097 }
1098
1099 check_update_rusage(td);
1100
1101 if (td->trim_entries)
1102 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1103
1104 if (td->o.fill_device && td->error == ENOSPC) {
1105 td->error = 0;
1106 fio_mark_td_terminate(td);
1107 }
1108 if (!td->error) {
1109 struct fio_file *f;
1110
1111 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1112 workqueue_flush(&td->io_wq);
1113 i = 0;
1114 } else
1115 i = td->cur_depth;
1116
1117 if (i) {
1118 ret = io_u_queued_complete(td, i);
1119 if (td->o.fill_device && td->error == ENOSPC)
1120 td->error = 0;
1121 }
1122
1123 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1124 td_set_runstate(td, TD_FSYNCING);
1125
1126 for_each_file(td, f, i) {
1127 if (!fio_file_fsync(td, f))
1128 continue;
1129
1130 log_err("fio: end_fsync failed for file %s\n",
1131 f->file_name);
1132 }
1133 }
1134 } else
1135 cleanup_pending_aio(td);
1136
1137 /*
1138 * stop job if we failed doing any IO
1139 */
1140 if (!ddir_rw_sum(td->this_io_bytes))
1141 td->done = 1;
1142
1143 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1144 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1145}
1146
1147static void free_file_completion_logging(struct thread_data *td)
1148{
1149 struct fio_file *f;
1150 unsigned int i;
1151
1152 for_each_file(td, f, i) {
1153 if (!f->last_write_comp)
1154 break;
1155 sfree(f->last_write_comp);
1156 }
1157}
1158
1159static int init_file_completion_logging(struct thread_data *td,
1160 unsigned int depth)
1161{
1162 struct fio_file *f;
1163 unsigned int i;
1164
1165 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1166 return 0;
1167
1168 for_each_file(td, f, i) {
1169 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1170 if (!f->last_write_comp)
1171 goto cleanup;
1172 }
1173
1174 return 0;
1175
1176cleanup:
1177 free_file_completion_logging(td);
1178 log_err("fio: failed to alloc write comp data\n");
1179 return 1;
1180}
1181
1182static void cleanup_io_u(struct thread_data *td)
1183{
1184 struct io_u *io_u;
1185
1186 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1187
1188 if (td->io_ops->io_u_free)
1189 td->io_ops->io_u_free(td, io_u);
1190
1191 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1192 }
1193
1194 free_io_mem(td);
1195
1196 io_u_rexit(&td->io_u_requeues);
1197 io_u_qexit(&td->io_u_freelist, false);
1198 io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1199
1200 free_file_completion_logging(td);
1201}
1202
1203static int init_io_u(struct thread_data *td)
1204{
1205 struct io_u *io_u;
1206 int cl_align, i, max_units;
1207 int err;
1208
1209 max_units = td->o.iodepth;
1210
1211 err = 0;
1212 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1213 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1214 err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1215
1216 if (err) {
1217 log_err("fio: failed setting up IO queues\n");
1218 return 1;
1219 }
1220
1221 cl_align = os_cache_line_size();
1222
1223 for (i = 0; i < max_units; i++) {
1224 void *ptr;
1225
1226 if (td->terminate)
1227 return 1;
1228
1229 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1230 if (!ptr) {
1231 log_err("fio: unable to allocate aligned memory\n");
1232 return 1;
1233 }
1234
1235 io_u = ptr;
1236 memset(io_u, 0, sizeof(*io_u));
1237 INIT_FLIST_HEAD(&io_u->verify_list);
1238 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1239
1240 io_u->index = i;
1241 io_u->flags = IO_U_F_FREE;
1242 io_u_qpush(&td->io_u_freelist, io_u);
1243
1244 /*
1245 * io_u never leaves this stack, used for iteration of all
1246 * io_u buffers.
1247 */
1248 io_u_qpush(&td->io_u_all, io_u);
1249
1250 if (td->io_ops->io_u_init) {
1251 int ret = td->io_ops->io_u_init(td, io_u);
1252
1253 if (ret) {
1254 log_err("fio: failed to init engine data: %d\n", ret);
1255 return 1;
1256 }
1257 }
1258 }
1259
1260 init_io_u_buffers(td);
1261
1262 if (init_file_completion_logging(td, max_units))
1263 return 1;
1264
1265 return 0;
1266}
1267
1268int init_io_u_buffers(struct thread_data *td)
1269{
1270 struct io_u *io_u;
1271 unsigned long long max_bs, min_write;
1272 int i, max_units;
1273 int data_xfer = 1;
1274 char *p;
1275
1276 max_units = td->o.iodepth;
1277 max_bs = td_max_bs(td);
1278 min_write = td->o.min_bs[DDIR_WRITE];
1279 td->orig_buffer_size = (unsigned long long) max_bs
1280 * (unsigned long long) max_units;
1281
1282 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1283 data_xfer = 0;
1284
1285 /*
1286 * if we may later need to do address alignment, then add any
1287 * possible adjustment here so that we don't cause a buffer
1288 * overflow later. this adjustment may be too much if we get
1289 * lucky and the allocator gives us an aligned address.
1290 */
1291 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1292 td_ioengine_flagged(td, FIO_RAWIO))
1293 td->orig_buffer_size += page_mask + td->o.mem_align;
1294
1295 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1296 unsigned long long bs;
1297
1298 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1299 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1300 }
1301
1302 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1303 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1304 return 1;
1305 }
1306
1307 if (data_xfer && allocate_io_mem(td))
1308 return 1;
1309
1310 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1311 td_ioengine_flagged(td, FIO_RAWIO))
1312 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1313 else
1314 p = td->orig_buffer;
1315
1316 for (i = 0; i < max_units; i++) {
1317 io_u = td->io_u_all.io_us[i];
1318 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1319
1320 if (data_xfer) {
1321 io_u->buf = p;
1322 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1323
1324 if (td_write(td))
1325 io_u_fill_buffer(td, io_u, min_write, max_bs);
1326 if (td_write(td) && td->o.verify_pattern_bytes) {
1327 /*
1328 * Fill the buffer with the pattern if we are
1329 * going to be doing writes.
1330 */
1331 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1332 }
1333 }
1334 p += max_bs;
1335 }
1336
1337 return 0;
1338}
1339
1340/*
1341 * This function is Linux specific.
1342 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1343 */
1344static int switch_ioscheduler(struct thread_data *td)
1345{
1346#ifdef FIO_HAVE_IOSCHED_SWITCH
1347 char tmp[256], tmp2[128], *p;
1348 FILE *f;
1349 int ret;
1350
1351 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1352 return 0;
1353
1354 assert(td->files && td->files[0]);
1355 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1356
1357 f = fopen(tmp, "r+");
1358 if (!f) {
1359 if (errno == ENOENT) {
1360 log_err("fio: os or kernel doesn't support IO scheduler"
1361 " switching\n");
1362 return 0;
1363 }
1364 td_verror(td, errno, "fopen iosched");
1365 return 1;
1366 }
1367
1368 /*
1369 * Set io scheduler.
1370 */
1371 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1372 if (ferror(f) || ret != 1) {
1373 td_verror(td, errno, "fwrite");
1374 fclose(f);
1375 return 1;
1376 }
1377
1378 rewind(f);
1379
1380 /*
1381 * Read back and check that the selected scheduler is now the default.
1382 */
1383 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1384 if (ferror(f) || ret < 0) {
1385 td_verror(td, errno, "fread");
1386 fclose(f);
1387 return 1;
1388 }
1389 tmp[ret] = '\0';
1390 /*
1391 * either a list of io schedulers or "none\n" is expected. Strip the
1392 * trailing newline.
1393 */
1394 p = tmp;
1395 strsep(&p, "\n");
1396
1397 /*
1398 * Write to "none" entry doesn't fail, so check the result here.
1399 */
1400 if (!strcmp(tmp, "none")) {
1401 log_err("fio: io scheduler is not tunable\n");
1402 fclose(f);
1403 return 0;
1404 }
1405
1406 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1407 if (!strstr(tmp, tmp2)) {
1408 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1409 td_verror(td, EINVAL, "iosched_switch");
1410 fclose(f);
1411 return 1;
1412 }
1413
1414 fclose(f);
1415 return 0;
1416#else
1417 return 0;
1418#endif
1419}
1420
1421static bool keep_running(struct thread_data *td)
1422{
1423 unsigned long long limit;
1424
1425 if (td->done)
1426 return false;
1427 if (td->terminate)
1428 return false;
1429 if (td->o.time_based)
1430 return true;
1431 if (td->o.loops) {
1432 td->o.loops--;
1433 return true;
1434 }
1435 if (exceeds_number_ios(td))
1436 return false;
1437
1438 if (td->o.io_size)
1439 limit = td->o.io_size;
1440 else
1441 limit = td->o.size;
1442
1443 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1444 uint64_t diff;
1445
1446 /*
1447 * If the difference is less than the maximum IO size, we
1448 * are done.
1449 */
1450 diff = limit - ddir_rw_sum(td->io_bytes);
1451 if (diff < td_max_bs(td))
1452 return false;
1453
1454 if (fio_files_done(td) && !td->o.io_size)
1455 return false;
1456
1457 return true;
1458 }
1459
1460 return false;
1461}
1462
1463static int exec_string(struct thread_options *o, const char *string, const char *mode)
1464{
1465 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 13 + 1;
1466 int ret;
1467 char *str;
1468
1469 str = malloc(newlen);
1470 sprintf(str, "%s > %s.%s.txt 2>&1", string, o->name, mode);
1471
1472 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1473 ret = system(str);
1474 if (ret == -1)
1475 log_err("fio: exec of cmd <%s> failed\n", str);
1476
1477 free(str);
1478 return ret;
1479}
1480
1481/*
1482 * Dry run to compute correct state of numberio for verification.
1483 */
1484static uint64_t do_dry_run(struct thread_data *td)
1485{
1486 td_set_runstate(td, TD_RUNNING);
1487
1488 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1489 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1490 struct io_u *io_u;
1491 int ret;
1492
1493 if (td->terminate || td->done)
1494 break;
1495
1496 io_u = get_io_u(td);
1497 if (IS_ERR_OR_NULL(io_u))
1498 break;
1499
1500 io_u_set(td, io_u, IO_U_F_FLIGHT);
1501 io_u->error = 0;
1502 io_u->resid = 0;
1503 if (ddir_rw(acct_ddir(io_u)))
1504 td->io_issues[acct_ddir(io_u)]++;
1505 if (ddir_rw(io_u->ddir)) {
1506 io_u_mark_depth(td, 1);
1507 td->ts.total_io_u[io_u->ddir]++;
1508 }
1509
1510 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1511 td->o.do_verify &&
1512 td->o.verify != VERIFY_NONE &&
1513 !td->o.experimental_verify)
1514 log_io_piece(td, io_u);
1515
1516 ret = io_u_sync_complete(td, io_u);
1517 (void) ret;
1518 }
1519
1520 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1521}
1522
1523struct fork_data {
1524 struct thread_data *td;
1525 struct sk_out *sk_out;
1526};
1527
1528/*
1529 * Entry point for the thread based jobs. The process based jobs end up
1530 * here as well, after a little setup.
1531 */
1532static void *thread_main(void *data)
1533{
1534 struct fork_data *fd = data;
1535 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1536 struct thread_data *td = fd->td;
1537 struct thread_options *o = &td->o;
1538 struct sk_out *sk_out = fd->sk_out;
1539 uint64_t bytes_done[DDIR_RWDIR_CNT];
1540 int deadlock_loop_cnt;
1541 bool clear_state;
1542 int res, ret;
1543
1544 sk_out_assign(sk_out);
1545 free(fd);
1546
1547 if (!o->use_thread) {
1548 setsid();
1549 td->pid = getpid();
1550 } else
1551 td->pid = gettid();
1552
1553 fio_local_clock_init();
1554
1555 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1556
1557 if (is_backend)
1558 fio_server_send_start(td);
1559
1560 INIT_FLIST_HEAD(&td->io_log_list);
1561 INIT_FLIST_HEAD(&td->io_hist_list);
1562 INIT_FLIST_HEAD(&td->verify_list);
1563 INIT_FLIST_HEAD(&td->trim_list);
1564 td->io_hist_tree = RB_ROOT;
1565
1566 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1567 if (ret) {
1568 td_verror(td, ret, "mutex_cond_init_pshared");
1569 goto err;
1570 }
1571 ret = cond_init_pshared(&td->verify_cond);
1572 if (ret) {
1573 td_verror(td, ret, "mutex_cond_pshared");
1574 goto err;
1575 }
1576
1577 td_set_runstate(td, TD_INITIALIZED);
1578 dprint(FD_MUTEX, "up startup_sem\n");
1579 fio_sem_up(startup_sem);
1580 dprint(FD_MUTEX, "wait on td->sem\n");
1581 fio_sem_down(td->sem);
1582 dprint(FD_MUTEX, "done waiting on td->sem\n");
1583
1584 /*
1585 * A new gid requires privilege, so we need to do this before setting
1586 * the uid.
1587 */
1588 if (o->gid != -1U && setgid(o->gid)) {
1589 td_verror(td, errno, "setgid");
1590 goto err;
1591 }
1592 if (o->uid != -1U && setuid(o->uid)) {
1593 td_verror(td, errno, "setuid");
1594 goto err;
1595 }
1596
1597 td_zone_gen_index(td);
1598
1599 /*
1600 * Do this early, we don't want the compress threads to be limited
1601 * to the same CPUs as the IO workers. So do this before we set
1602 * any potential CPU affinity
1603 */
1604 if (iolog_compress_init(td, sk_out))
1605 goto err;
1606
1607 /*
1608 * If we have a gettimeofday() thread, make sure we exclude that
1609 * thread from this job
1610 */
1611 if (o->gtod_cpu)
1612 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1613
1614 /*
1615 * Set affinity first, in case it has an impact on the memory
1616 * allocations.
1617 */
1618 if (fio_option_is_set(o, cpumask)) {
1619 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1620 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1621 if (!ret) {
1622 log_err("fio: no CPUs set\n");
1623 log_err("fio: Try increasing number of available CPUs\n");
1624 td_verror(td, EINVAL, "cpus_split");
1625 goto err;
1626 }
1627 }
1628 ret = fio_setaffinity(td->pid, o->cpumask);
1629 if (ret == -1) {
1630 td_verror(td, errno, "cpu_set_affinity");
1631 goto err;
1632 }
1633 }
1634
1635#ifdef CONFIG_LIBNUMA
1636 /* numa node setup */
1637 if (fio_option_is_set(o, numa_cpunodes) ||
1638 fio_option_is_set(o, numa_memnodes)) {
1639 struct bitmask *mask;
1640
1641 if (numa_available() < 0) {
1642 td_verror(td, errno, "Does not support NUMA API\n");
1643 goto err;
1644 }
1645
1646 if (fio_option_is_set(o, numa_cpunodes)) {
1647 mask = numa_parse_nodestring(o->numa_cpunodes);
1648 ret = numa_run_on_node_mask(mask);
1649 numa_free_nodemask(mask);
1650 if (ret == -1) {
1651 td_verror(td, errno, \
1652 "numa_run_on_node_mask failed\n");
1653 goto err;
1654 }
1655 }
1656
1657 if (fio_option_is_set(o, numa_memnodes)) {
1658 mask = NULL;
1659 if (o->numa_memnodes)
1660 mask = numa_parse_nodestring(o->numa_memnodes);
1661
1662 switch (o->numa_mem_mode) {
1663 case MPOL_INTERLEAVE:
1664 numa_set_interleave_mask(mask);
1665 break;
1666 case MPOL_BIND:
1667 numa_set_membind(mask);
1668 break;
1669 case MPOL_LOCAL:
1670 numa_set_localalloc();
1671 break;
1672 case MPOL_PREFERRED:
1673 numa_set_preferred(o->numa_mem_prefer_node);
1674 break;
1675 case MPOL_DEFAULT:
1676 default:
1677 break;
1678 }
1679
1680 if (mask)
1681 numa_free_nodemask(mask);
1682
1683 }
1684 }
1685#endif
1686
1687 if (fio_pin_memory(td))
1688 goto err;
1689
1690 /*
1691 * May alter parameters that init_io_u() will use, so we need to
1692 * do this first.
1693 */
1694 if (!init_iolog(td))
1695 goto err;
1696
1697 if (td_io_init(td))
1698 goto err;
1699
1700 if (init_io_u(td))
1701 goto err;
1702
1703 if (td->io_ops->post_init && td->io_ops->post_init(td))
1704 goto err;
1705
1706 if (o->verify_async && verify_async_init(td))
1707 goto err;
1708
1709 if (fio_option_is_set(o, ioprio) ||
1710 fio_option_is_set(o, ioprio_class)) {
1711 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1712 if (ret == -1) {
1713 td_verror(td, errno, "ioprio_set");
1714 goto err;
1715 }
1716 }
1717
1718 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1719 goto err;
1720
1721 errno = 0;
1722 if (nice(o->nice) == -1 && errno != 0) {
1723 td_verror(td, errno, "nice");
1724 goto err;
1725 }
1726
1727 if (o->ioscheduler && switch_ioscheduler(td))
1728 goto err;
1729
1730 if (!o->create_serialize && setup_files(td))
1731 goto err;
1732
1733 if (!init_random_map(td))
1734 goto err;
1735
1736 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1737 goto err;
1738
1739 if (o->pre_read && !pre_read_files(td))
1740 goto err;
1741
1742 fio_verify_init(td);
1743
1744 if (rate_submit_init(td, sk_out))
1745 goto err;
1746
1747 set_epoch_time(td, o->log_unix_epoch);
1748 fio_getrusage(&td->ru_start);
1749 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1750 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1751 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1752
1753 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1754 o->ratemin[DDIR_TRIM]) {
1755 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1756 sizeof(td->bw_sample_time));
1757 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1758 sizeof(td->bw_sample_time));
1759 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1760 sizeof(td->bw_sample_time));
1761 }
1762
1763 memset(bytes_done, 0, sizeof(bytes_done));
1764 clear_state = false;
1765
1766 while (keep_running(td)) {
1767 uint64_t verify_bytes;
1768
1769 fio_gettime(&td->start, NULL);
1770 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1771
1772 if (clear_state) {
1773 clear_io_state(td, 0);
1774
1775 if (o->unlink_each_loop && unlink_all_files(td))
1776 break;
1777 }
1778
1779 prune_io_piece_log(td);
1780
1781 if (td->o.verify_only && td_write(td))
1782 verify_bytes = do_dry_run(td);
1783 else {
1784 do_io(td, bytes_done);
1785
1786 if (!ddir_rw_sum(bytes_done)) {
1787 fio_mark_td_terminate(td);
1788 verify_bytes = 0;
1789 } else {
1790 verify_bytes = bytes_done[DDIR_WRITE] +
1791 bytes_done[DDIR_TRIM];
1792 }
1793 }
1794
1795 /*
1796 * If we took too long to shut down, the main thread could
1797 * already consider us reaped/exited. If that happens, break
1798 * out and clean up.
1799 */
1800 if (td->runstate >= TD_EXITED)
1801 break;
1802
1803 clear_state = true;
1804
1805 /*
1806 * Make sure we've successfully updated the rusage stats
1807 * before waiting on the stat mutex. Otherwise we could have
1808 * the stat thread holding stat mutex and waiting for
1809 * the rusage_sem, which would never get upped because
1810 * this thread is waiting for the stat mutex.
1811 */
1812 deadlock_loop_cnt = 0;
1813 do {
1814 check_update_rusage(td);
1815 if (!fio_sem_down_trylock(stat_sem))
1816 break;
1817 usleep(1000);
1818 if (deadlock_loop_cnt++ > 5000) {
1819 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1820 td->error = EDEADLK;
1821 goto err;
1822 }
1823 } while (1);
1824
1825 if (td_read(td) && td->io_bytes[DDIR_READ])
1826 update_runtime(td, elapsed_us, DDIR_READ);
1827 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1828 update_runtime(td, elapsed_us, DDIR_WRITE);
1829 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1830 update_runtime(td, elapsed_us, DDIR_TRIM);
1831 fio_gettime(&td->start, NULL);
1832 fio_sem_up(stat_sem);
1833
1834 if (td->error || td->terminate)
1835 break;
1836
1837 if (!o->do_verify ||
1838 o->verify == VERIFY_NONE ||
1839 td_ioengine_flagged(td, FIO_UNIDIR))
1840 continue;
1841
1842 clear_io_state(td, 0);
1843
1844 fio_gettime(&td->start, NULL);
1845
1846 do_verify(td, verify_bytes);
1847
1848 /*
1849 * See comment further up for why this is done here.
1850 */
1851 check_update_rusage(td);
1852
1853 fio_sem_down(stat_sem);
1854 update_runtime(td, elapsed_us, DDIR_READ);
1855 fio_gettime(&td->start, NULL);
1856 fio_sem_up(stat_sem);
1857
1858 if (td->error || td->terminate)
1859 break;
1860 }
1861
1862 /*
1863 * Acquire this lock if we were doing overlap checking in
1864 * offload mode so that we don't clean up this job while
1865 * another thread is checking its io_u's for overlap
1866 */
1867 if (td_offload_overlap(td)) {
1868 int res = pthread_mutex_lock(&overlap_check);
1869 assert(res == 0);
1870 }
1871 td_set_runstate(td, TD_FINISHING);
1872 if (td_offload_overlap(td)) {
1873 res = pthread_mutex_unlock(&overlap_check);
1874 assert(res == 0);
1875 }
1876
1877 update_rusage_stat(td);
1878 td->ts.total_run_time = mtime_since_now(&td->epoch);
1879 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1880 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1881 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1882
1883 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1884 (td->o.verify != VERIFY_NONE && td_write(td)))
1885 verify_save_state(td->thread_number);
1886
1887 fio_unpin_memory(td);
1888
1889 td_writeout_logs(td, true);
1890
1891 iolog_compress_exit(td);
1892 rate_submit_exit(td);
1893
1894 if (o->exec_postrun)
1895 exec_string(o, o->exec_postrun, (const char *)"postrun");
1896
1897 if (exitall_on_terminate || (o->exitall_error && td->error))
1898 fio_terminate_threads(td->groupid, td->o.exit_what);
1899
1900err:
1901 if (td->error)
1902 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1903 td->verror);
1904
1905 if (o->verify_async)
1906 verify_async_exit(td);
1907
1908 close_and_free_files(td);
1909 cleanup_io_u(td);
1910 close_ioengine(td);
1911 cgroup_shutdown(td, cgroup_mnt);
1912 verify_free_state(td);
1913 td_zone_free_index(td);
1914
1915 if (fio_option_is_set(o, cpumask)) {
1916 ret = fio_cpuset_exit(&o->cpumask);
1917 if (ret)
1918 td_verror(td, ret, "fio_cpuset_exit");
1919 }
1920
1921 /*
1922 * do this very late, it will log file closing as well
1923 */
1924 if (o->write_iolog_file)
1925 write_iolog_close(td);
1926 if (td->io_log_rfile)
1927 fclose(td->io_log_rfile);
1928
1929 td_set_runstate(td, TD_EXITED);
1930
1931 /*
1932 * Do this last after setting our runstate to exited, so we
1933 * know that the stat thread is signaled.
1934 */
1935 check_update_rusage(td);
1936
1937 sk_out_drop();
1938 return (void *) (uintptr_t) td->error;
1939}
1940
1941/*
1942 * Run over the job map and reap the threads that have exited, if any.
1943 */
1944static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1945 uint64_t *m_rate)
1946{
1947 struct thread_data *td;
1948 unsigned int cputhreads, realthreads, pending;
1949 int i, status, ret;
1950
1951 /*
1952 * reap exited threads (TD_EXITED -> TD_REAPED)
1953 */
1954 realthreads = pending = cputhreads = 0;
1955 for_each_td(td, i) {
1956 int flags = 0;
1957
1958 if (!strcmp(td->o.ioengine, "cpuio"))
1959 cputhreads++;
1960 else
1961 realthreads++;
1962
1963 if (!td->pid) {
1964 pending++;
1965 continue;
1966 }
1967 if (td->runstate == TD_REAPED)
1968 continue;
1969 if (td->o.use_thread) {
1970 if (td->runstate == TD_EXITED) {
1971 td_set_runstate(td, TD_REAPED);
1972 goto reaped;
1973 }
1974 continue;
1975 }
1976
1977 flags = WNOHANG;
1978 if (td->runstate == TD_EXITED)
1979 flags = 0;
1980
1981 /*
1982 * check if someone quit or got killed in an unusual way
1983 */
1984 ret = waitpid(td->pid, &status, flags);
1985 if (ret < 0) {
1986 if (errno == ECHILD) {
1987 log_err("fio: pid=%d disappeared %d\n",
1988 (int) td->pid, td->runstate);
1989 td->sig = ECHILD;
1990 td_set_runstate(td, TD_REAPED);
1991 goto reaped;
1992 }
1993 perror("waitpid");
1994 } else if (ret == td->pid) {
1995 if (WIFSIGNALED(status)) {
1996 int sig = WTERMSIG(status);
1997
1998 if (sig != SIGTERM && sig != SIGUSR2)
1999 log_err("fio: pid=%d, got signal=%d\n",
2000 (int) td->pid, sig);
2001 td->sig = sig;
2002 td_set_runstate(td, TD_REAPED);
2003 goto reaped;
2004 }
2005 if (WIFEXITED(status)) {
2006 if (WEXITSTATUS(status) && !td->error)
2007 td->error = WEXITSTATUS(status);
2008
2009 td_set_runstate(td, TD_REAPED);
2010 goto reaped;
2011 }
2012 }
2013
2014 /*
2015 * If the job is stuck, do a forceful timeout of it and
2016 * move on.
2017 */
2018 if (td->terminate &&
2019 td->runstate < TD_FSYNCING &&
2020 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2021 log_err("fio: job '%s' (state=%d) hasn't exited in "
2022 "%lu seconds, it appears to be stuck. Doing "
2023 "forceful exit of this job.\n",
2024 td->o.name, td->runstate,
2025 (unsigned long) time_since_now(&td->terminate_time));
2026 td_set_runstate(td, TD_REAPED);
2027 goto reaped;
2028 }
2029
2030 /*
2031 * thread is not dead, continue
2032 */
2033 pending++;
2034 continue;
2035reaped:
2036 (*nr_running)--;
2037 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2038 (*t_rate) -= ddir_rw_sum(td->o.rate);
2039 if (!td->pid)
2040 pending--;
2041
2042 if (td->error)
2043 exit_value++;
2044
2045 done_secs += mtime_since_now(&td->epoch) / 1000;
2046 profile_td_exit(td);
2047 }
2048
2049 if (*nr_running == cputhreads && !pending && realthreads)
2050 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2051}
2052
2053static bool __check_trigger_file(void)
2054{
2055 struct stat sb;
2056
2057 if (!trigger_file)
2058 return false;
2059
2060 if (stat(trigger_file, &sb))
2061 return false;
2062
2063 if (unlink(trigger_file) < 0)
2064 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2065 strerror(errno));
2066
2067 return true;
2068}
2069
2070static bool trigger_timedout(void)
2071{
2072 if (trigger_timeout)
2073 if (time_since_genesis() >= trigger_timeout) {
2074 trigger_timeout = 0;
2075 return true;
2076 }
2077
2078 return false;
2079}
2080
2081void exec_trigger(const char *cmd)
2082{
2083 int ret;
2084
2085 if (!cmd || cmd[0] == '\0')
2086 return;
2087
2088 ret = system(cmd);
2089 if (ret == -1)
2090 log_err("fio: failed executing %s trigger\n", cmd);
2091}
2092
2093void check_trigger_file(void)
2094{
2095 if (__check_trigger_file() || trigger_timedout()) {
2096 if (nr_clients)
2097 fio_clients_send_trigger(trigger_remote_cmd);
2098 else {
2099 verify_save_state(IO_LIST_ALL);
2100 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2101 exec_trigger(trigger_cmd);
2102 }
2103 }
2104}
2105
2106static int fio_verify_load_state(struct thread_data *td)
2107{
2108 int ret;
2109
2110 if (!td->o.verify_state)
2111 return 0;
2112
2113 if (is_backend) {
2114 void *data;
2115
2116 ret = fio_server_get_verify_state(td->o.name,
2117 td->thread_number - 1, &data);
2118 if (!ret)
2119 verify_assign_state(td, data);
2120 } else {
2121 char prefix[PATH_MAX];
2122
2123 if (aux_path)
2124 sprintf(prefix, "%s%clocal", aux_path,
2125 FIO_OS_PATH_SEPARATOR);
2126 else
2127 strcpy(prefix, "local");
2128 ret = verify_load_state(td, prefix);
2129 }
2130
2131 return ret;
2132}
2133
2134static void do_usleep(unsigned int usecs)
2135{
2136 check_for_running_stats();
2137 check_trigger_file();
2138 usleep(usecs);
2139}
2140
2141static bool check_mount_writes(struct thread_data *td)
2142{
2143 struct fio_file *f;
2144 unsigned int i;
2145
2146 if (!td_write(td) || td->o.allow_mounted_write)
2147 return false;
2148
2149 /*
2150 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2151 * are mkfs'd and mounted.
2152 */
2153 for_each_file(td, f, i) {
2154#ifdef FIO_HAVE_CHARDEV_SIZE
2155 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2156#else
2157 if (f->filetype != FIO_TYPE_BLOCK)
2158#endif
2159 continue;
2160 if (device_is_mounted(f->file_name))
2161 goto mounted;
2162 }
2163
2164 return false;
2165mounted:
2166 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2167 return true;
2168}
2169
2170static bool waitee_running(struct thread_data *me)
2171{
2172 const char *waitee = me->o.wait_for;
2173 const char *self = me->o.name;
2174 struct thread_data *td;
2175 int i;
2176
2177 if (!waitee)
2178 return false;
2179
2180 for_each_td(td, i) {
2181 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2182 continue;
2183
2184 if (td->runstate < TD_EXITED) {
2185 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2186 self, td->o.name,
2187 runstate_to_name(td->runstate));
2188 return true;
2189 }
2190 }
2191
2192 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2193 return false;
2194}
2195
2196/*
2197 * Main function for kicking off and reaping jobs, as needed.
2198 */
2199static void run_threads(struct sk_out *sk_out)
2200{
2201 struct thread_data *td;
2202 unsigned int i, todo, nr_running, nr_started;
2203 uint64_t m_rate, t_rate;
2204 uint64_t spent;
2205
2206 if (fio_gtod_offload && fio_start_gtod_thread())
2207 return;
2208
2209 fio_idle_prof_init();
2210
2211 set_sig_handlers();
2212
2213 nr_thread = nr_process = 0;
2214 for_each_td(td, i) {
2215 if (check_mount_writes(td))
2216 return;
2217 if (td->o.use_thread)
2218 nr_thread++;
2219 else
2220 nr_process++;
2221 }
2222
2223 if (output_format & FIO_OUTPUT_NORMAL) {
2224 struct buf_output out;
2225
2226 buf_output_init(&out);
2227 __log_buf(&out, "Starting ");
2228 if (nr_thread)
2229 __log_buf(&out, "%d thread%s", nr_thread,
2230 nr_thread > 1 ? "s" : "");
2231 if (nr_process) {
2232 if (nr_thread)
2233 __log_buf(&out, " and ");
2234 __log_buf(&out, "%d process%s", nr_process,
2235 nr_process > 1 ? "es" : "");
2236 }
2237 __log_buf(&out, "\n");
2238 log_info_buf(out.buf, out.buflen);
2239 buf_output_free(&out);
2240 }
2241
2242 todo = thread_number;
2243 nr_running = 0;
2244 nr_started = 0;
2245 m_rate = t_rate = 0;
2246
2247 for_each_td(td, i) {
2248 print_status_init(td->thread_number - 1);
2249
2250 if (!td->o.create_serialize)
2251 continue;
2252
2253 if (fio_verify_load_state(td))
2254 goto reap;
2255
2256 /*
2257 * do file setup here so it happens sequentially,
2258 * we don't want X number of threads getting their
2259 * client data interspersed on disk
2260 */
2261 if (setup_files(td)) {
2262reap:
2263 exit_value++;
2264 if (td->error)
2265 log_err("fio: pid=%d, err=%d/%s\n",
2266 (int) td->pid, td->error, td->verror);
2267 td_set_runstate(td, TD_REAPED);
2268 todo--;
2269 } else {
2270 struct fio_file *f;
2271 unsigned int j;
2272
2273 /*
2274 * for sharing to work, each job must always open
2275 * its own files. so close them, if we opened them
2276 * for creation
2277 */
2278 for_each_file(td, f, j) {
2279 if (fio_file_open(f))
2280 td_io_close_file(td, f);
2281 }
2282 }
2283 }
2284
2285 /* start idle threads before io threads start to run */
2286 fio_idle_prof_start();
2287
2288 set_genesis_time();
2289
2290 while (todo) {
2291 struct thread_data *map[REAL_MAX_JOBS];
2292 struct timespec this_start;
2293 int this_jobs = 0, left;
2294 struct fork_data *fd;
2295
2296 /*
2297 * create threads (TD_NOT_CREATED -> TD_CREATED)
2298 */
2299 for_each_td(td, i) {
2300 if (td->runstate != TD_NOT_CREATED)
2301 continue;
2302
2303 /*
2304 * never got a chance to start, killed by other
2305 * thread for some reason
2306 */
2307 if (td->terminate) {
2308 todo--;
2309 continue;
2310 }
2311
2312 if (td->o.start_delay) {
2313 spent = utime_since_genesis();
2314
2315 if (td->o.start_delay > spent)
2316 continue;
2317 }
2318
2319 if (td->o.stonewall && (nr_started || nr_running)) {
2320 dprint(FD_PROCESS, "%s: stonewall wait\n",
2321 td->o.name);
2322 break;
2323 }
2324
2325 if (waitee_running(td)) {
2326 dprint(FD_PROCESS, "%s: waiting for %s\n",
2327 td->o.name, td->o.wait_for);
2328 continue;
2329 }
2330
2331 init_disk_util(td);
2332
2333 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2334 td->update_rusage = 0;
2335
2336 /*
2337 * Set state to created. Thread will transition
2338 * to TD_INITIALIZED when it's done setting up.
2339 */
2340 td_set_runstate(td, TD_CREATED);
2341 map[this_jobs++] = td;
2342 nr_started++;
2343
2344 fd = calloc(1, sizeof(*fd));
2345 fd->td = td;
2346 fd->sk_out = sk_out;
2347
2348 if (td->o.use_thread) {
2349 int ret;
2350
2351 dprint(FD_PROCESS, "will pthread_create\n");
2352 ret = pthread_create(&td->thread, NULL,
2353 thread_main, fd);
2354 if (ret) {
2355 log_err("pthread_create: %s\n",
2356 strerror(ret));
2357 free(fd);
2358 nr_started--;
2359 break;
2360 }
2361 fd = NULL;
2362 ret = pthread_detach(td->thread);
2363 if (ret)
2364 log_err("pthread_detach: %s",
2365 strerror(ret));
2366 } else {
2367 pid_t pid;
2368 dprint(FD_PROCESS, "will fork\n");
2369 pid = fork();
2370 if (!pid) {
2371 int ret;
2372
2373 ret = (int)(uintptr_t)thread_main(fd);
2374 _exit(ret);
2375 } else if (i == fio_debug_jobno)
2376 *fio_debug_jobp = pid;
2377 }
2378 dprint(FD_MUTEX, "wait on startup_sem\n");
2379 if (fio_sem_down_timeout(startup_sem, 10000)) {
2380 log_err("fio: job startup hung? exiting.\n");
2381 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2382 fio_abort = true;
2383 nr_started--;
2384 free(fd);
2385 break;
2386 }
2387 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2388 }
2389
2390 /*
2391 * Wait for the started threads to transition to
2392 * TD_INITIALIZED.
2393 */
2394 fio_gettime(&this_start, NULL);
2395 left = this_jobs;
2396 while (left && !fio_abort) {
2397 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2398 break;
2399
2400 do_usleep(100000);
2401
2402 for (i = 0; i < this_jobs; i++) {
2403 td = map[i];
2404 if (!td)
2405 continue;
2406 if (td->runstate == TD_INITIALIZED) {
2407 map[i] = NULL;
2408 left--;
2409 } else if (td->runstate >= TD_EXITED) {
2410 map[i] = NULL;
2411 left--;
2412 todo--;
2413 nr_running++; /* work-around... */
2414 }
2415 }
2416 }
2417
2418 if (left) {
2419 log_err("fio: %d job%s failed to start\n", left,
2420 left > 1 ? "s" : "");
2421 for (i = 0; i < this_jobs; i++) {
2422 td = map[i];
2423 if (!td)
2424 continue;
2425 kill(td->pid, SIGTERM);
2426 }
2427 break;
2428 }
2429
2430 /*
2431 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2432 */
2433 for_each_td(td, i) {
2434 if (td->runstate != TD_INITIALIZED)
2435 continue;
2436
2437 if (in_ramp_time(td))
2438 td_set_runstate(td, TD_RAMP);
2439 else
2440 td_set_runstate(td, TD_RUNNING);
2441 nr_running++;
2442 nr_started--;
2443 m_rate += ddir_rw_sum(td->o.ratemin);
2444 t_rate += ddir_rw_sum(td->o.rate);
2445 todo--;
2446 fio_sem_up(td->sem);
2447 }
2448
2449 reap_threads(&nr_running, &t_rate, &m_rate);
2450
2451 if (todo)
2452 do_usleep(100000);
2453 }
2454
2455 while (nr_running) {
2456 reap_threads(&nr_running, &t_rate, &m_rate);
2457 do_usleep(10000);
2458 }
2459
2460 fio_idle_prof_stop();
2461
2462 update_io_ticks();
2463}
2464
2465static void free_disk_util(void)
2466{
2467 disk_util_prune_entries();
2468 helper_thread_destroy();
2469}
2470
2471int fio_backend(struct sk_out *sk_out)
2472{
2473 struct thread_data *td;
2474 int i;
2475
2476 if (exec_profile) {
2477 if (load_profile(exec_profile))
2478 return 1;
2479 free(exec_profile);
2480 exec_profile = NULL;
2481 }
2482 if (!thread_number)
2483 return 0;
2484
2485 if (write_bw_log) {
2486 struct log_params p = {
2487 .log_type = IO_LOG_TYPE_BW,
2488 };
2489
2490 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2491 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2492 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2493 }
2494
2495 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2496 if (!sk_out)
2497 is_local_backend = true;
2498 if (startup_sem == NULL)
2499 return 1;
2500
2501 set_genesis_time();
2502 stat_init();
2503 if (helper_thread_create(startup_sem, sk_out))
2504 log_err("fio: failed to create helper thread\n");
2505
2506 cgroup_list = smalloc(sizeof(*cgroup_list));
2507 if (cgroup_list)
2508 INIT_FLIST_HEAD(cgroup_list);
2509
2510 run_threads(sk_out);
2511
2512 helper_thread_exit();
2513
2514 if (!fio_abort) {
2515 __show_run_stats();
2516 if (write_bw_log) {
2517 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2518 struct io_log *log = agg_io_log[i];
2519
2520 flush_log(log, false);
2521 free_log(log);
2522 }
2523 }
2524 }
2525
2526 for_each_td(td, i) {
2527 steadystate_free(td);
2528 fio_options_free(td);
2529 if (td->rusage_sem) {
2530 fio_sem_remove(td->rusage_sem);
2531 td->rusage_sem = NULL;
2532 }
2533 fio_sem_remove(td->sem);
2534 td->sem = NULL;
2535 }
2536
2537 free_disk_util();
2538 if (cgroup_list) {
2539 cgroup_kill(cgroup_list);
2540 sfree(cgroup_list);
2541 }
2542
2543 fio_sem_remove(startup_sem);
2544 stat_exit();
2545 return exit_value;
2546}