blk-cgroup: hold queue_lock when removing blkg->q_node
[linux-block.git] / sound / firewire / amdtp-stream.c
CommitLineData
da607e19 1// SPDX-License-Identifier: GPL-2.0-only
31ef9134
CL
2/*
3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4 * with Common Isochronous Packet (IEC 61883-1) headers
5 *
6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
31ef9134
CL
7 */
8
9#include <linux/device.h>
10#include <linux/err.h>
11#include <linux/firewire.h>
acfedcbe 12#include <linux/firewire-constants.h>
31ef9134
CL
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <sound/pcm.h>
7b2d99fa 16#include <sound/pcm_params.h>
d67c46b9 17#include "amdtp-stream.h"
31ef9134
CL
18
19#define TICKS_PER_CYCLE 3072
20#define CYCLES_PER_SECOND 8000
21#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
3e106f4f 23#define OHCI_SECOND_MODULUS 8
10aa8e4a 24
0c95c1d6
TS
25/* Always support Linux tracing subsystem. */
26#define CREATE_TRACE_POINTS
27#include "amdtp-stream-trace.h"
28
ca5b5050 29#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
31ef9134 30
b445db44
TS
31/* isochronous header parameters */
32#define ISO_DATA_LENGTH_SHIFT 16
3b196c39 33#define TAG_NO_CIP_HEADER 0
31ef9134
CL
34#define TAG_CIP 1
35
67d92ee7
TS
36// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37#define CIP_HEADER_QUADLETS 2
9a2820c1
TS
38#define CIP_EOH_SHIFT 31
39#define CIP_EOH (1u << CIP_EOH_SHIFT)
b445db44 40#define CIP_EOH_MASK 0x80000000
9a2820c1
TS
41#define CIP_SID_SHIFT 24
42#define CIP_SID_MASK 0x3f000000
43#define CIP_DBS_MASK 0x00ff0000
44#define CIP_DBS_SHIFT 16
9863874f
TS
45#define CIP_SPH_MASK 0x00000400
46#define CIP_SPH_SHIFT 10
9a2820c1
TS
47#define CIP_DBC_MASK 0x000000ff
48#define CIP_FMT_SHIFT 24
b445db44 49#define CIP_FMT_MASK 0x3f000000
9a2820c1
TS
50#define CIP_FDF_MASK 0x00ff0000
51#define CIP_FDF_SHIFT 16
fb25dcc8 52#define CIP_FDF_NO_DATA 0xff
b445db44
TS
53#define CIP_SYT_MASK 0x0000ffff
54#define CIP_SYT_NO_INFO 0xffff
f9e5ecdf 55#define CIP_SYT_CYCLE_MODULUS 16
fb25dcc8 56#define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
b445db44 57
67d92ee7
TS
58#define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
51c29fd2 60/* Audio and Music transfer protocol specific parameters */
414ba022 61#define CIP_FMT_AM 0x10
2b3fc456 62#define AMDTP_FDF_NO_DATA 0xff
31ef9134 63
f11453c7 64// For iso header and tstamp.
67d92ee7
TS
65#define IR_CTX_HEADER_DEFAULT_QUADLETS 2
66// Add nothing.
67#define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68// Add two quadlets CIP header.
69#define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
cc4f8e91 70#define HEADER_TSTAMP_MASK 0x0000ffff
4b7da117 71
67d92ee7 72#define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
b18f0cfa
TS
73#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
74
6a3ce97d
TS
75// The initial firmware of OXFW970 can postpone transmission of packet during finishing
76// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77// overrun. Actual device can skip more, then this module stops the packet streaming.
78#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
79
31ef9134 80/**
be4a2894
TS
81 * amdtp_stream_init - initialize an AMDTP stream structure
82 * @s: the AMDTP stream to initialize
31ef9134 83 * @unit: the target of the stream
3ff7e8f0 84 * @dir: the direction of stream
ffe66bbe 85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
5955815e 86 * @fmt: the value of fmt field in CIP header
9a738ad1 87 * @process_ctx_payloads: callback handler to process payloads of isoc context
df075fee 88 * @protocol_size: the size to allocate newly for protocol
31ef9134 89 */
be4a2894 90int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
ffe66bbe 91 enum amdtp_stream_direction dir, unsigned int flags,
df075fee 92 unsigned int fmt,
9a738ad1 93 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
df075fee 94 unsigned int protocol_size)
31ef9134 95{
9a738ad1 96 if (process_ctx_payloads == NULL)
df075fee
TS
97 return -EINVAL;
98
99 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
100 if (!s->protocol)
101 return -ENOMEM;
102
c6f224dc 103 s->unit = unit;
3ff7e8f0 104 s->direction = dir;
31ef9134
CL
105 s->flags = flags;
106 s->context = ERR_PTR(-1);
107 mutex_init(&s->mutex);
ec00f5e4 108 s->packet_index = 0;
31ef9134 109
bdaedca7 110 init_waitqueue_head(&s->ready_wait);
7b3b0d85 111
5955815e 112 s->fmt = fmt;
9a738ad1 113 s->process_ctx_payloads = process_ctx_payloads;
414ba022 114
31ef9134
CL
115 return 0;
116}
be4a2894 117EXPORT_SYMBOL(amdtp_stream_init);
31ef9134
CL
118
119/**
be4a2894
TS
120 * amdtp_stream_destroy - free stream resources
121 * @s: the AMDTP stream to destroy
31ef9134 122 */
be4a2894 123void amdtp_stream_destroy(struct amdtp_stream *s)
31ef9134 124{
44c376b9
TS
125 /* Not initialized. */
126 if (s->protocol == NULL)
127 return;
128
be4a2894 129 WARN_ON(amdtp_stream_running(s));
df075fee 130 kfree(s->protocol);
31ef9134 131 mutex_destroy(&s->mutex);
31ef9134 132}
be4a2894 133EXPORT_SYMBOL(amdtp_stream_destroy);
31ef9134 134
c5280e99 135const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
a7304e3b
CL
136 [CIP_SFC_32000] = 8,
137 [CIP_SFC_44100] = 8,
138 [CIP_SFC_48000] = 8,
139 [CIP_SFC_88200] = 16,
140 [CIP_SFC_96000] = 16,
141 [CIP_SFC_176400] = 32,
142 [CIP_SFC_192000] = 32,
143};
144EXPORT_SYMBOL(amdtp_syt_intervals);
145
f9503a68 146const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
1017abed
TS
147 [CIP_SFC_32000] = 32000,
148 [CIP_SFC_44100] = 44100,
149 [CIP_SFC_48000] = 48000,
150 [CIP_SFC_88200] = 88200,
151 [CIP_SFC_96000] = 96000,
152 [CIP_SFC_176400] = 176400,
153 [CIP_SFC_192000] = 192000,
154};
155EXPORT_SYMBOL(amdtp_rate_table);
156
59502295
TS
157static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
158 struct snd_pcm_hw_rule *rule)
159{
160 struct snd_interval *s = hw_param_interval(params, rule->var);
161 const struct snd_interval *r =
162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
826b5de9
TS
163 struct snd_interval t = {0};
164 unsigned int step = 0;
59502295
TS
165 int i;
166
167 for (i = 0; i < CIP_SFC_COUNT; ++i) {
826b5de9
TS
168 if (snd_interval_test(r, amdtp_rate_table[i]))
169 step = max(step, amdtp_syt_intervals[i]);
59502295
TS
170 }
171
826b5de9
TS
172 t.min = roundup(s->min, step);
173 t.max = rounddown(s->max, step);
174 t.integer = 1;
59502295
TS
175
176 return snd_interval_refine(s, &t);
177}
178
7b2d99fa
TS
179/**
180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
181 * @s: the AMDTP stream, which must be initialized.
182 * @runtime: the PCM substream runtime
183 */
184int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
185 struct snd_pcm_runtime *runtime)
186{
55799c5a 187 struct snd_pcm_hardware *hw = &runtime->hw;
99921ec6
TS
188 unsigned int ctx_header_size;
189 unsigned int maximum_usec_per_period;
7b2d99fa
TS
190 int err;
191
d360870a 192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
55799c5a
TS
193 SNDRV_PCM_INFO_INTERLEAVED |
194 SNDRV_PCM_INFO_JOINT_DUPLEX |
195 SNDRV_PCM_INFO_MMAP |
d360870a
TS
196 SNDRV_PCM_INFO_MMAP_VALID |
197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
55799c5a 198
55799c5a
TS
199 hw->periods_min = 2;
200 hw->periods_max = UINT_MAX;
201
202 /* bytes for a frame */
203 hw->period_bytes_min = 4 * hw->channels_max;
204
205 /* Just to prevent from allocating much pages. */
206 hw->period_bytes_max = hw->period_bytes_min * 2048;
207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
208
99921ec6
TS
209 // Linux driver for 1394 OHCI controller voluntarily flushes isoc
210 // context when total size of accumulated context header reaches
2b3d2987 211 // PAGE_SIZE. This kicks work for the isoc context and brings
99921ec6
TS
212 // callback in the middle of scheduled interrupts.
213 // Although AMDTP streams in the same domain use the same events per
214 // IRQ, use the largest size of context header between IT/IR contexts.
215 // Here, use the value of context header in IR context is for both
216 // contexts.
217 if (!(s->flags & CIP_NO_HEADER))
218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
219 else
220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
222 CYCLES_PER_SECOND / ctx_header_size;
223
f706df4f
TS
224 // In IEC 61883-6, one isoc packet can transfer events up to the value
225 // of syt interval. This comes from the interval of isoc cycle. As 1394
226 // OHCI controller can generate hardware IRQ per isoc packet, the
227 // interval is 125 usec.
228 // However, there are two ways of transmission in IEC 61883-6; blocking
229 // and non-blocking modes. In blocking mode, the sequence of isoc packet
230 // includes 'empty' or 'NODATA' packets which include no event. In
231 // non-blocking mode, the number of events per packet is variable up to
232 // the syt interval.
233 // Due to the above protocol design, the minimum PCM frames per
234 // interrupt should be double of the value of syt interval, thus it is
235 // 250 usec.
7b2d99fa
TS
236 err = snd_pcm_hw_constraint_minmax(runtime,
237 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
f706df4f 238 250, maximum_usec_per_period);
7b2d99fa
TS
239 if (err < 0)
240 goto end;
241
242 /* Non-Blocking stream has no more constraints */
243 if (!(s->flags & CIP_BLOCKING))
244 goto end;
245
246 /*
247 * One AMDTP packet can include some frames. In blocking mode, the
248 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
249 * depending on its sampling rate. For accurate period interrupt, it's
ce991981 250 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
7b2d99fa 251 */
59502295
TS
252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
253 apply_constraint_to_size, NULL,
826b5de9 254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
59502295
TS
255 SNDRV_PCM_HW_PARAM_RATE, -1);
256 if (err < 0)
257 goto end;
59502295
TS
258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
259 apply_constraint_to_size, NULL,
826b5de9 260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
59502295
TS
261 SNDRV_PCM_HW_PARAM_RATE, -1);
262 if (err < 0)
263 goto end;
7b2d99fa
TS
264end:
265 return err;
266}
267EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
268
31ef9134 269/**
be4a2894
TS
270 * amdtp_stream_set_parameters - set stream parameters
271 * @s: the AMDTP stream to configure
31ef9134 272 * @rate: the sample rate
df075fee 273 * @data_block_quadlets: the size of a data block in quadlet unit
a36183f6
TS
274 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
275 * events.
31ef9134 276 *
a7304e3b 277 * The parameters must be set before the stream is started, and must not be
31ef9134
CL
278 * changed while the stream is running.
279 */
df075fee 280int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
a36183f6 281 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
31ef9134 282{
df075fee 283 unsigned int sfc;
31ef9134 284
547e631c 285 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
1017abed 286 if (amdtp_rate_table[sfc] == rate)
547e631c
TS
287 break;
288 }
289 if (sfc == ARRAY_SIZE(amdtp_rate_table))
290 return -EINVAL;
e84d15f6 291
e84d15f6 292 s->sfc = sfc;
df075fee 293 s->data_block_quadlets = data_block_quadlets;
a7304e3b 294 s->syt_interval = amdtp_syt_intervals[sfc];
e84d15f6 295
d3d10a4a 296 // default buffering in the device.
13d11f14
TS
297 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
298
299 // additional buffering needed to adjust for no-data packets.
300 if (s->flags & CIP_BLOCKING)
301 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
77d2a8a4 302
a36183f6
TS
303 s->pcm_frame_multiplier = pcm_frame_multiplier;
304
547e631c 305 return 0;
31ef9134 306}
be4a2894 307EXPORT_SYMBOL(amdtp_stream_set_parameters);
31ef9134 308
c75f3678
TS
309// The CIP header is processed in context header apart from context payload.
310static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
311{
312 unsigned int multiplier;
313
314 if (s->flags & CIP_JUMBO_PAYLOAD)
315 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
316 else
317 multiplier = 1;
318
319 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
320}
321
31ef9134 322/**
be4a2894
TS
323 * amdtp_stream_get_max_payload - get the stream's packet size
324 * @s: the AMDTP stream
31ef9134
CL
325 *
326 * This function must not be called before the stream has been configured
be4a2894 327 * with amdtp_stream_set_parameters().
31ef9134 328 */
be4a2894 329unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
31ef9134 330{
c75f3678 331 unsigned int cip_header_size;
a2064710 332
3b196c39 333 if (!(s->flags & CIP_NO_HEADER))
67d92ee7 334 cip_header_size = CIP_HEADER_SIZE;
c75f3678
TS
335 else
336 cip_header_size = 0;
a2064710 337
c75f3678 338 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
31ef9134 339}
be4a2894 340EXPORT_SYMBOL(amdtp_stream_get_max_payload);
31ef9134 341
76fb8789 342/**
be4a2894
TS
343 * amdtp_stream_pcm_prepare - prepare PCM device for running
344 * @s: the AMDTP stream
76fb8789
CL
345 *
346 * This function should be called from the PCM device's .prepare callback.
347 */
be4a2894 348void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
76fb8789 349{
76fb8789
CL
350 s->pcm_buffer_pointer = 0;
351 s->pcm_period_pointer = 0;
352}
be4a2894 353EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
76fb8789 354
af13842c
TS
355#define prev_packet_desc(s, desc) \
356 list_prev_entry_circular(desc, &s->packet_descs_list, link)
357
c9f3ac2a 358static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
119c446a 359 unsigned int size, unsigned int pos, unsigned int count)
31ef9134 360{
c9f3ac2a
TS
361 const unsigned int syt_interval = s->syt_interval;
362 int i;
31ef9134 363
c9f3ac2a 364 for (i = 0; i < count; ++i) {
119c446a 365 struct seq_desc *desc = descs + pos;
c9f3ac2a
TS
366
367 if (desc->syt_offset != CIP_SYT_NO_INFO)
368 desc->data_blocks = syt_interval;
875be091 369 else
c9f3ac2a
TS
370 desc->data_blocks = 0;
371
119c446a 372 pos = (pos + 1) % size;
c9f3ac2a
TS
373 }
374}
375
376static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
119c446a 377 unsigned int size, unsigned int pos,
c9f3ac2a
TS
378 unsigned int count)
379{
380 const enum cip_sfc sfc = s->sfc;
381 unsigned int state = s->ctx_data.rx.data_block_state;
382 int i;
383
384 for (i = 0; i < count; ++i) {
119c446a 385 struct seq_desc *desc = descs + pos;
c9f3ac2a 386
274fc355 387 if (!cip_sfc_is_base_44100(sfc)) {
d3d10a4a 388 // Sample_rate / 8000 is an integer, and precomputed.
c9f3ac2a 389 desc->data_blocks = state;
875be091 390 } else {
c9f3ac2a 391 unsigned int phase = state;
31ef9134
CL
392
393 /*
394 * This calculates the number of data blocks per packet so that
395 * 1) the overall rate is correct and exactly synchronized to
396 * the bus clock, and
397 * 2) packets with a rounded-up number of blocks occur as early
398 * as possible in the sequence (to prevent underruns of the
399 * device's buffer).
400 */
274fc355 401 if (sfc == CIP_SFC_44100)
875be091 402 /* 6 6 5 6 5 6 5 ... */
c9f3ac2a 403 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
875be091
TS
404 else
405 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
c9f3ac2a 406 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
274fc355 407 if (++phase >= (80 >> (sfc >> 1)))
875be091 408 phase = 0;
c9f3ac2a 409 state = phase;
875be091 410 }
c9f3ac2a 411
119c446a 412 pos = (pos + 1) % size;
31ef9134
CL
413 }
414
c9f3ac2a 415 s->ctx_data.rx.data_block_state = state;
31ef9134
CL
416}
417
816d8482
TS
418static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
419 unsigned int *syt_offset_state, enum cip_sfc sfc)
31ef9134 420{
816d8482 421 unsigned int syt_offset;
31ef9134 422
816d8482
TS
423 if (*last_syt_offset < TICKS_PER_CYCLE) {
424 if (!cip_sfc_is_base_44100(sfc))
425 syt_offset = *last_syt_offset + *syt_offset_state;
31ef9134
CL
426 else {
427 /*
428 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
429 * n * SYT_INTERVAL * 24576000 / sample_rate
430 * Modulo TICKS_PER_CYCLE, the difference between successive
431 * elements is about 1386.23. Rounding the results of this
432 * formula to the SYT precision results in a sequence of
433 * differences that begins with:
434 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
435 * This code generates _exactly_ the same sequence.
436 */
816d8482
TS
437 unsigned int phase = *syt_offset_state;
438 unsigned int index = phase % 13;
439
440 syt_offset = *last_syt_offset;
31ef9134
CL
441 syt_offset += 1386 + ((index && !(index & 3)) ||
442 phase == 146);
443 if (++phase >= 147)
444 phase = 0;
816d8482 445 *syt_offset_state = phase;
31ef9134
CL
446 }
447 } else
816d8482
TS
448 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
449 *last_syt_offset = syt_offset;
31ef9134 450
83cfb5c5
TS
451 if (syt_offset >= TICKS_PER_CYCLE)
452 syt_offset = CIP_SYT_NO_INFO;
31ef9134 453
83cfb5c5 454 return syt_offset;
31ef9134
CL
455}
456
c79b7158 457static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
119c446a 458 unsigned int size, unsigned int pos, unsigned int count)
c79b7158
TS
459{
460 const enum cip_sfc sfc = s->sfc;
461 unsigned int last = s->ctx_data.rx.last_syt_offset;
462 unsigned int state = s->ctx_data.rx.syt_offset_state;
463 int i;
464
465 for (i = 0; i < count; ++i) {
119c446a 466 struct seq_desc *desc = descs + pos;
c79b7158
TS
467
468 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
469
119c446a 470 pos = (pos + 1) % size;
c79b7158
TS
471 }
472
473 s->ctx_data.rx.last_syt_offset = last;
474 s->ctx_data.rx.syt_offset_state = state;
475}
476
f9e5ecdf
TS
477static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
478 unsigned int transfer_delay)
479{
480 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
481 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
482 unsigned int syt_offset;
483
484 // Round up.
485 if (syt_cycle_lo < cycle_lo)
486 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
487 syt_cycle_lo -= cycle_lo;
488
489 // Subtract transfer delay so that the synchronization offset is not so large
490 // at transmission.
491 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
492 if (syt_offset < transfer_delay)
493 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
494
495 return syt_offset - transfer_delay;
496}
497
39c2649c
TS
498// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
499// Additionally, the sequence of tx packets is severely checked against any discontinuity
500// before filling entries in the queue. The calculation is safe even if it looks fragile by
501// overrun.
502static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
503{
504 const unsigned int cache_size = s->ctx_data.tx.cache.size;
cccddec4 505 unsigned int cycles = s->ctx_data.tx.cache.pos;
39c2649c
TS
506
507 if (cycles < head)
508 cycles += cache_size;
509 cycles -= head;
510
511 return cycles;
512}
513
cec371ff 514static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
f9e5ecdf
TS
515{
516 const unsigned int transfer_delay = s->transfer_delay;
517 const unsigned int cache_size = s->ctx_data.tx.cache.size;
518 struct seq_desc *cache = s->ctx_data.tx.cache.descs;
cccddec4 519 unsigned int cache_pos = s->ctx_data.tx.cache.pos;
f9e5ecdf
TS
520 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
521 int i;
522
523 for (i = 0; i < desc_count; ++i) {
cccddec4 524 struct seq_desc *dst = cache + cache_pos;
f9e5ecdf
TS
525
526 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
527 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
528 else
529 dst->syt_offset = CIP_SYT_NO_INFO;
530 dst->data_blocks = src->data_blocks;
531
cccddec4 532 cache_pos = (cache_pos + 1) % cache_size;
cec371ff 533 src = amdtp_stream_next_packet_desc(s, src);
f9e5ecdf
TS
534 }
535
cccddec4 536 s->ctx_data.tx.cache.pos = cache_pos;
f9e5ecdf
TS
537}
538
119c446a
TS
539static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
540 unsigned int pos, unsigned int count)
6f24bb8a 541{
119c446a 542 pool_ideal_syt_offsets(s, descs, size, pos, count);
c79b7158 543
c9f3ac2a 544 if (s->flags & CIP_BLOCKING)
119c446a 545 pool_blocking_data_blocks(s, descs, size, pos, count);
c9f3ac2a 546 else
119c446a 547 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
6f24bb8a
TS
548}
549
119c446a
TS
550static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
551 unsigned int pos, unsigned int count)
39c2649c
TS
552{
553 struct amdtp_stream *target = s->ctx_data.rx.replay_target;
554 const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
555 const unsigned int cache_size = target->ctx_data.tx.cache.size;
c38d8cff 556 unsigned int cache_pos = s->ctx_data.rx.cache_pos;
39c2649c
TS
557 int i;
558
559 for (i = 0; i < count; ++i) {
c38d8cff
TS
560 descs[pos] = cache[cache_pos];
561 cache_pos = (cache_pos + 1) % cache_size;
119c446a 562 pos = (pos + 1) % size;
39c2649c
TS
563 }
564
c38d8cff 565 s->ctx_data.rx.cache_pos = cache_pos;
39c2649c
TS
566}
567
f2bdee85
TS
568static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
569 unsigned int pos, unsigned int count)
39c2649c
TS
570{
571 struct amdtp_domain *d = s->domain;
119c446a
TS
572 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
573 unsigned int pos, unsigned int count);
39c2649c 574
2f21a177 575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
119c446a 576 pool_seq_descs = pool_ideal_seq_descs;
2f21a177
TS
577 } else {
578 if (!d->replay.on_the_fly) {
119c446a 579 pool_seq_descs = pool_replayed_seq;
2f21a177
TS
580 } else {
581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
582 const unsigned int cache_size = tx->ctx_data.tx.cache.size;
c38d8cff
TS
583 const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
2f21a177
TS
585
586 if (cached_cycles > count && cached_cycles > cache_size / 2)
119c446a 587 pool_seq_descs = pool_replayed_seq;
2f21a177 588 else
119c446a 589 pool_seq_descs = pool_ideal_seq_descs;
2f21a177
TS
590 }
591 }
119c446a
TS
592
593 pool_seq_descs(s, descs, size, pos, count);
39c2649c
TS
594}
595
4b7da117
TS
596static void update_pcm_pointers(struct amdtp_stream *s,
597 struct snd_pcm_substream *pcm,
598 unsigned int frames)
65845f29
TS
599{
600 unsigned int ptr;
601
4b7da117
TS
602 ptr = s->pcm_buffer_pointer + frames;
603 if (ptr >= pcm->runtime->buffer_size)
604 ptr -= pcm->runtime->buffer_size;
6aa7de05 605 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
4b7da117
TS
606
607 s->pcm_period_pointer += frames;
608 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
609 s->pcm_period_pointer -= pcm->runtime->period_size;
d360870a
TS
610
611 // The program in user process should periodically check the status of intermediate
612 // buffer associated to PCM substream to process PCM frames in the buffer, instead
613 // of receiving notification of period elapsed by poll wait.
7ba5ca32 614 if (!pcm->runtime->no_period_wakeup) {
3b86ec63 615 if (in_softirq()) {
7ba5ca32
TS
616 // In software IRQ context for 1394 OHCI.
617 snd_pcm_period_elapsed(pcm);
618 } else {
619 // In process context of ALSA PCM application under acquired lock of
620 // PCM substream.
621 snd_pcm_period_elapsed_under_stream_lock(pcm);
622 }
623 }
4b7da117
TS
624 }
625}
626
e229853d
TS
627static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
628 bool sched_irq)
4b7da117 629{
6007bf54 630 int err;
df9160b9 631
e229853d 632 params->interrupt = sched_irq;
6007bf54
TS
633 params->tag = s->tag;
634 params->sy = 0;
df9160b9 635
6007bf54 636 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
4b7da117
TS
637 s->buffer.packets[s->packet_index].offset);
638 if (err < 0) {
639 dev_err(&s->unit->device, "queueing error: %d\n", err);
640 goto end;
641 }
642
a0e02331 643 if (++s->packet_index >= s->queue_size)
4b7da117
TS
644 s->packet_index = 0;
645end:
646 return err;
647}
648
649static inline int queue_out_packet(struct amdtp_stream *s,
e229853d 650 struct fw_iso_packet *params, bool sched_irq)
4b7da117 651{
b18f0cfa
TS
652 params->skip =
653 !!(params->header_length == 0 && params->payload_length == 0);
e229853d 654 return queue_packet(s, params, sched_irq);
4b7da117
TS
655}
656
6007bf54 657static inline int queue_in_packet(struct amdtp_stream *s,
60dd4929 658 struct fw_iso_packet *params)
2b3fc456 659{
6007bf54
TS
660 // Queue one packet for IR context.
661 params->header_length = s->ctx_data.tx.ctx_header_size;
662 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
663 params->skip = false;
60dd4929 664 return queue_packet(s, params, false);
2b3fc456
TS
665}
666
252219c7 667static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
860d798c 668 unsigned int data_block_counter, unsigned int syt)
252219c7
TS
669{
670 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
671 (s->data_block_quadlets << CIP_DBS_SHIFT) |
672 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
860d798c 673 data_block_counter);
252219c7
TS
674 cip_header[1] = cpu_to_be32(CIP_EOH |
675 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
676 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
677 (syt & CIP_SYT_MASK));
678}
679
6bc1a269 680static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
233dbbc7 681 struct fw_iso_packet *params, unsigned int header_length,
860d798c
TS
682 unsigned int data_blocks,
683 unsigned int data_block_counter,
fef4e61b 684 unsigned int syt, unsigned int index, u32 curr_cycle_time)
31ef9134 685{
0ebf3ceb 686 unsigned int payload_length;
16be4589 687 __be32 *cip_header;
20e44577 688
0ebf3ceb
TS
689 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
690 params->payload_length = payload_length;
691
233dbbc7 692 if (header_length > 0) {
6bc1a269 693 cip_header = (__be32 *)params->header;
860d798c 694 generate_cip_header(s, cip_header, data_block_counter, syt);
233dbbc7 695 params->header_length = header_length;
b18f0cfa
TS
696 } else {
697 cip_header = NULL;
698 }
31ef9134 699
233dbbc7 700 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
fef4e61b 701 data_block_counter, s->packet_index, index, curr_cycle_time);
3b196c39
TS
702}
703
e335425b
TS
704static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
705 unsigned int payload_length,
a35463d1
TS
706 unsigned int *data_blocks,
707 unsigned int *data_block_counter, unsigned int *syt)
2b3fc456
TS
708{
709 u32 cip_header[2];
e335425b
TS
710 unsigned int sph;
711 unsigned int fmt;
712 unsigned int fdf;
a35463d1 713 unsigned int dbc;
c8bdf49b 714 bool lost;
2b3fc456 715
e335425b
TS
716 cip_header[0] = be32_to_cpu(buf[0]);
717 cip_header[1] = be32_to_cpu(buf[1]);
2b3fc456
TS
718
719 /*
720 * This module supports 'Two-quadlet CIP header with SYT field'.
77d2a8a4 721 * For convenience, also check FMT field is AM824 or not.
2b3fc456 722 */
2128f78f
TS
723 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
724 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
725 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
2b3fc456
TS
726 dev_info_ratelimited(&s->unit->device,
727 "Invalid CIP header for AMDTP: %08X:%08X\n",
728 cip_header[0], cip_header[1]);
e335425b 729 return -EAGAIN;
2b3fc456
TS
730 }
731
414ba022 732 /* Check valid protocol or not. */
9863874f 733 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
414ba022 734 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
9863874f 735 if (sph != s->sph || fmt != s->fmt) {
2a7e1713
TS
736 dev_info_ratelimited(&s->unit->device,
737 "Detect unexpected protocol: %08x %08x\n",
738 cip_header[0], cip_header[1]);
e335425b 739 return -EAGAIN;
414ba022
TS
740 }
741
2b3fc456 742 /* Calculate data blocks */
414ba022 743 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
4fd18787 744 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
e335425b 745 *data_blocks = 0;
2b3fc456 746 } else {
e335425b
TS
747 unsigned int data_block_quadlets =
748 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
2b3fc456
TS
749 /* avoid division by zero */
750 if (data_block_quadlets == 0) {
12e0f438 751 dev_err(&s->unit->device,
2b3fc456
TS
752 "Detect invalid value in dbs field: %08X\n",
753 cip_header[0]);
a9007054 754 return -EPROTO;
2b3fc456 755 }
69702239
TS
756 if (s->flags & CIP_WRONG_DBS)
757 data_block_quadlets = s->data_block_quadlets;
2b3fc456 758
4fd18787 759 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
2b3fc456
TS
760 }
761
762 /* Check data block counter continuity */
a35463d1 763 dbc = cip_header[0] & CIP_DBC_MASK;
e335425b 764 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
a35463d1
TS
765 *data_block_counter != UINT_MAX)
766 dbc = *data_block_counter;
9d59124c 767
a35463d1
TS
768 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
769 *data_block_counter == UINT_MAX) {
b84b1a27
TS
770 lost = false;
771 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
a35463d1 772 lost = dbc != *data_block_counter;
d9cd0065 773 } else {
e335425b
TS
774 unsigned int dbc_interval;
775
776 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
d3d10a4a 777 dbc_interval = s->ctx_data.tx.dbc_interval;
d9cd0065 778 else
e335425b 779 dbc_interval = *data_blocks;
d9cd0065 780
a35463d1 781 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
d9cd0065 782 }
c8bdf49b
TS
783
784 if (lost) {
12e0f438
TS
785 dev_err(&s->unit->device,
786 "Detect discontinuity of CIP: %02X %02X\n",
a35463d1 787 *data_block_counter, dbc);
6fc6b9ce 788 return -EIO;
2b3fc456
TS
789 }
790
753e7179
TS
791 *data_block_counter = dbc;
792
8070d265
TS
793 if (!(s->flags & CIP_UNAWARE_SYT))
794 *syt = cip_header[1] & CIP_SYT_MASK;
2b3fc456 795
e335425b
TS
796 return 0;
797}
798
98e3e43b
TS
799static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
800 const __be32 *ctx_header,
a35463d1
TS
801 unsigned int *data_blocks,
802 unsigned int *data_block_counter,
fef4e61b
TS
803 unsigned int *syt, unsigned int packet_index, unsigned int index,
804 u32 curr_cycle_time)
e335425b 805{
ebd2a647 806 unsigned int payload_length;
f11453c7 807 const __be32 *cip_header;
395f41e2 808 unsigned int cip_header_size;
e335425b 809
ebd2a647 810 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
395f41e2
TS
811
812 if (!(s->flags & CIP_NO_HEADER))
67d92ee7 813 cip_header_size = CIP_HEADER_SIZE;
395f41e2
TS
814 else
815 cip_header_size = 0;
816
ebd2a647 817 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
e335425b
TS
818 dev_err(&s->unit->device,
819 "Detect jumbo payload: %04x %04x\n",
ebd2a647 820 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
e335425b
TS
821 return -EIO;
822 }
823
395f41e2 824 if (cip_header_size > 0) {
ebd2a647 825 if (payload_length >= cip_header_size) {
344f0f82
TS
826 int err;
827
67d92ee7 828 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
4fd18787
TS
829 err = check_cip_header(s, cip_header, payload_length - cip_header_size,
830 data_blocks, data_block_counter, syt);
c09010ee
TS
831 if (err < 0)
832 return err;
833 } else {
834 // Handle the cycle so that empty packet arrives.
835 cip_header = NULL;
836 *data_blocks = 0;
837 *syt = 0;
838 }
947b437e
TS
839 } else {
840 cip_header = NULL;
ebd2a647 841 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
98e3e43b 842 *syt = 0;
7fbf9096 843
a35463d1
TS
844 if (*data_block_counter == UINT_MAX)
845 *data_block_counter = 0;
e335425b
TS
846 }
847
ebd2a647 848 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
fef4e61b 849 *data_block_counter, packet_index, index, curr_cycle_time);
e335425b 850
344f0f82 851 return 0;
2b3fc456
TS
852}
853
26cd1e58
TS
854// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
855// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
856// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
af13842c
TS
857static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
858{
859 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
860}
861
3e106f4f 862static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
73fc7f08 863{
26cd1e58 864 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
af13842c 865 return compute_ohci_iso_ctx_cycle_count(tstamp);
73fc7f08
TS
866}
867
3e106f4f 868static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
73fc7f08
TS
869{
870 cycle += addend;
3e106f4f
TS
871 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
872 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
73fc7f08
TS
873 return cycle;
874}
875
af13842c
TS
876static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
877{
878 if (minuend < subtrahend)
879 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
880
881 return minuend - subtrahend;
882}
883
705794c5
TS
884static int compare_ohci_cycle_count(u32 lval, u32 rval)
885{
886 if (lval == rval)
887 return 0;
888 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
889 return -1;
890 else
891 return 1;
892}
893
26cd1e58 894// Align to actual cycle count for the packet which is going to be scheduled.
a0e02331
TS
895// This module queued the same number of isochronous cycle as the size of queue
896// to kip isochronous cycle, therefore it's OK to just increment the cycle by
897// the size of queue for scheduled cycle.
3e106f4f
TS
898static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
899 unsigned int queue_size)
26cd1e58 900{
3e106f4f
TS
901 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
902 return increment_ohci_cycle_count(cycle, queue_size);
26cd1e58
TS
903}
904
cec371ff 905static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
cccddec4
TS
906 const __be32 *ctx_header, unsigned int packet_count,
907 unsigned int *desc_count)
753e7179 908{
705794c5 909 unsigned int next_cycle = s->next_cycle;
753e7179 910 unsigned int dbc = s->data_block_counter;
814b4312
TS
911 unsigned int packet_index = s->packet_index;
912 unsigned int queue_size = s->queue_size;
d8dc8720 913 u32 curr_cycle_time = 0;
753e7179
TS
914 int i;
915 int err;
916
fef4e61b
TS
917 if (trace_amdtp_packet_enabled())
918 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
919
73246fc4 920 *desc_count = 0;
cccddec4 921 for (i = 0; i < packet_count; ++i) {
753e7179 922 unsigned int cycle;
705794c5 923 bool lost;
753e7179
TS
924 unsigned int data_blocks;
925 unsigned int syt;
926
3e106f4f 927 cycle = compute_ohci_cycle_count(ctx_header[1]);
705794c5
TS
928 lost = (next_cycle != cycle);
929 if (lost) {
930 if (s->flags & CIP_NO_HEADER) {
931 // Fireface skips transmission just for an isoc cycle corresponding
932 // to empty packet.
73246fc4
TS
933 unsigned int prev_cycle = next_cycle;
934
705794c5
TS
935 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
936 lost = (next_cycle != cycle);
73246fc4
TS
937 if (!lost) {
938 // Prepare a description for the skipped cycle for
939 // sequence replay.
940 desc->cycle = prev_cycle;
941 desc->syt = 0;
942 desc->data_blocks = 0;
943 desc->data_block_counter = dbc;
944 desc->ctx_payload = NULL;
cec371ff 945 desc = amdtp_stream_next_packet_desc(s, desc);
73246fc4
TS
946 ++(*desc_count);
947 }
705794c5
TS
948 } else if (s->flags & CIP_JUMBO_PAYLOAD) {
949 // OXFW970 skips transmission for several isoc cycles during
73246fc4
TS
950 // asynchronous transaction. The sequence replay is impossible due
951 // to the reason.
705794c5
TS
952 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
953 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
954 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
955 }
956 if (lost) {
957 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
958 next_cycle, cycle);
959 return -EIO;
960 }
961 }
753e7179 962
ebd2a647 963 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
fef4e61b 964 packet_index, i, curr_cycle_time);
753e7179
TS
965 if (err < 0)
966 return err;
967
968 desc->cycle = cycle;
969 desc->syt = syt;
970 desc->data_blocks = data_blocks;
971 desc->data_block_counter = dbc;
814b4312 972 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
753e7179
TS
973
974 if (!(s->flags & CIP_DBC_IS_END_EVENT))
975 dbc = (dbc + desc->data_blocks) & 0xff;
976
705794c5 977 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
cec371ff 978 desc = amdtp_stream_next_packet_desc(s, desc);
73246fc4 979 ++(*desc_count);
705794c5 980 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
814b4312 981 packet_index = (packet_index + 1) % queue_size;
753e7179
TS
982 }
983
705794c5 984 s->next_cycle = next_cycle;
753e7179
TS
985 s->data_block_counter = dbc;
986
987 return 0;
988}
989
83cfb5c5
TS
990static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
991 unsigned int transfer_delay)
992{
993 unsigned int syt;
994
995 syt_offset += transfer_delay;
996 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
997 (syt_offset % TICKS_PER_CYCLE);
998 return syt & CIP_SYT_MASK;
999}
1000
cec371ff 1001static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
f2bdee85 1002 const __be32 *ctx_header, unsigned int packet_count)
f4f6ae7b 1003{
f2bdee85
TS
1004 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1005 unsigned int seq_size = s->ctx_data.rx.seq.size;
1006 unsigned int seq_pos = s->ctx_data.rx.seq.pos;
f4f6ae7b 1007 unsigned int dbc = s->data_block_counter;
8070d265 1008 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
f4f6ae7b
TS
1009 int i;
1010
f2bdee85
TS
1011 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1012
1013 for (i = 0; i < packet_count; ++i) {
a0e02331 1014 unsigned int index = (s->packet_index + i) % s->queue_size;
f2bdee85 1015 const struct seq_desc *seq = seq_descs + seq_pos;
f4f6ae7b 1016
3e106f4f 1017 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
69efd5c4 1018
13d11f14
TS
1019 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1020 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1021 else
8070d265 1022 desc->syt = CIP_SYT_NO_INFO;
8070d265 1023
69efd5c4 1024 desc->data_blocks = seq->data_blocks;
f4f6ae7b
TS
1025
1026 if (s->flags & CIP_DBC_IS_END_EVENT)
1027 dbc = (dbc + desc->data_blocks) & 0xff;
1028
1029 desc->data_block_counter = dbc;
1030
1031 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1032 dbc = (dbc + desc->data_blocks) & 0xff;
1033
1034 desc->ctx_payload = s->buffer.packets[index].buffer;
1035
f2bdee85 1036 seq_pos = (seq_pos + 1) % seq_size;
cec371ff 1037 desc = amdtp_stream_next_packet_desc(s, desc);
69efd5c4 1038
f4f6ae7b
TS
1039 ++ctx_header;
1040 }
1041
1042 s->data_block_counter = dbc;
f2bdee85 1043 s->ctx_data.rx.seq.pos = seq_pos;
f4f6ae7b
TS
1044}
1045
fce9b013
TS
1046static inline void cancel_stream(struct amdtp_stream *s)
1047{
1048 s->packet_index = -1;
3b86ec63 1049 if (in_softirq())
fce9b013
TS
1050 amdtp_stream_pcm_abort(s);
1051 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1052}
1053
af13842c
TS
1054static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1055 const struct pkt_desc *desc, unsigned int count)
1056{
1057 unsigned int data_block_count = 0;
1058 u32 latest_cycle;
1059 u32 cycle_time;
1060 u32 curr_cycle;
1061 u32 cycle_gap;
1062 int i, err;
1063
1064 if (count == 0)
1065 goto end;
1066
1067 // Forward to the latest record.
1068 for (i = 0; i < count - 1; ++i)
1069 desc = amdtp_stream_next_packet_desc(s, desc);
1070 latest_cycle = desc->cycle;
1071
1072 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1073 if (err < 0)
1074 goto end;
1075
1076 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1077 // format of 1394 OHCI isochronous context.
1078 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1079
1080 if (s->direction == AMDTP_IN_STREAM) {
1081 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1082 // it corresponds to arrived isochronous packet.
1083 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1084 goto end;
1085 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1086
1087 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1088 // value expectedly corresponds to a few packets (0-2) since the packet arrived at
1089 // the most recent isochronous cycle has been already processed.
1090 for (i = 0; i < cycle_gap; ++i) {
1091 desc = amdtp_stream_next_packet_desc(s, desc);
1092 data_block_count += desc->data_blocks;
1093 }
1094 } else {
1095 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1096 // since it was already scheduled.
1097 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1098 goto end;
1099 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1100
1101 // NOTE: use history of scheduled packets.
1102 for (i = 0; i < cycle_gap; ++i) {
1103 data_block_count += desc->data_blocks;
1104 desc = prev_packet_desc(s, desc);
1105 }
1106 }
1107end:
1108 return data_block_count * s->pcm_frame_multiplier;
1109}
1110
0f5cfcb2 1111static void process_ctx_payloads(struct amdtp_stream *s,
a36183f6 1112 const struct pkt_desc *desc,
0cac60c7 1113 unsigned int count)
31ef9134 1114{
9a738ad1 1115 struct snd_pcm_substream *pcm;
a36183f6 1116 int i;
5e2ece0f 1117
9a738ad1 1118 pcm = READ_ONCE(s->pcm);
7fc693e4 1119 s->process_ctx_payloads(s, desc, count, pcm);
a36183f6
TS
1120
1121 if (pcm) {
1122 unsigned int data_block_count = 0;
1123
af13842c
TS
1124 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1125
a36183f6
TS
1126 for (i = 0; i < count; ++i) {
1127 data_block_count += desc->data_blocks;
1128 desc = amdtp_stream_next_packet_desc(s, desc);
1129 }
1130
1131 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1132 }
0f5cfcb2
TS
1133}
1134
9b1fcd9b
TS
1135static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1136 void *header, void *private_data)
0f5cfcb2
TS
1137{
1138 struct amdtp_stream *s = private_data;
69efd5c4 1139 const struct amdtp_domain *d = s->domain;
0f5cfcb2 1140 const __be32 *ctx_header = header;
9b1fcd9b 1141 const unsigned int events_per_period = d->events_per_period;
60dd4929 1142 unsigned int event_count = s->ctx_data.rx.event_count;
f0117128 1143 struct pkt_desc *desc = s->packet_descs_cursor;
233dbbc7 1144 unsigned int pkt_header_length;
a0e02331 1145 unsigned int packets;
fef4e61b 1146 u32 curr_cycle_time;
d360870a 1147 bool need_hw_irq;
0f5cfcb2
TS
1148 int i;
1149
1150 if (s->packet_index < 0)
1151 return;
1152
a0e02331
TS
1153 // Calculate the number of packets in buffer and check XRUN.
1154 packets = header_length / sizeof(*ctx_header);
1155
cec371ff 1156 generate_rx_packet_descs(s, desc, ctx_header, packets);
0f5cfcb2 1157
cec371ff 1158 process_ctx_payloads(s, desc, packets);
5e2ece0f 1159
233dbbc7
TS
1160 if (!(s->flags & CIP_NO_HEADER))
1161 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1162 else
1163 pkt_header_length = 0;
1164
d360870a
TS
1165 if (s == d->irq_target) {
1166 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1167 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1168 // with some requests, instead of scheduled hardware IRQ of an IT context.
1169 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1170 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1171 } else {
1172 need_hw_irq = false;
1173 }
1174
fef4e61b
TS
1175 if (trace_amdtp_packet_enabled())
1176 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1177
5e2ece0f 1178 for (i = 0; i < packets; ++i) {
6bc1a269
TS
1179 struct {
1180 struct fw_iso_packet params;
67d92ee7 1181 __be32 header[CIP_HEADER_QUADLETS];
6bc1a269 1182 } template = { {0}, {0} };
e229853d 1183 bool sched_irq = false;
31ef9134 1184
233dbbc7 1185 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
f4f6ae7b 1186 desc->data_blocks, desc->data_block_counter,
fef4e61b 1187 desc->syt, i, curr_cycle_time);
6bc1a269 1188
2472cfb3 1189 if (s == s->domain->irq_target) {
60dd4929
TS
1190 event_count += desc->data_blocks;
1191 if (event_count >= events_per_period) {
1192 event_count -= events_per_period;
d360870a 1193 sched_irq = need_hw_irq;
60dd4929 1194 }
e229853d
TS
1195 }
1196
1197 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
fce9b013 1198 cancel_stream(s);
a4103bd7
TS
1199 return;
1200 }
cec371ff
TS
1201
1202 desc = amdtp_stream_next_packet_desc(s, desc);
ccccad86 1203 }
a4103bd7 1204
60dd4929 1205 s->ctx_data.rx.event_count = event_count;
f0117128 1206 s->packet_descs_cursor = desc;
31ef9134
CL
1207}
1208
9b1fcd9b
TS
1209static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1210 void *header, void *private_data)
1211{
1212 struct amdtp_stream *s = private_data;
1213 struct amdtp_domain *d = s->domain;
1214 const __be32 *ctx_header = header;
1215 unsigned int packets;
1216 unsigned int cycle;
1217 int i;
1218
1219 if (s->packet_index < 0)
1220 return;
1221
1222 packets = header_length / sizeof(*ctx_header);
1223
1224 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1225 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1226
1227 for (i = 0; i < packets; ++i) {
1228 struct fw_iso_packet params = {
1229 .header_length = 0,
1230 .payload_length = 0,
1231 };
1232 bool sched_irq = (s == d->irq_target && i == packets - 1);
1233
1234 if (queue_out_packet(s, &params, sched_irq) < 0) {
1235 cancel_stream(s);
1236 return;
1237 }
1238 }
1239}
1240
1241static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1242 void *header, void *private_data);
1243
1244static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1245 size_t header_length, void *header, void *private_data)
1246{
1247 struct amdtp_stream *s = private_data;
1248 struct amdtp_domain *d = s->domain;
1249 __be32 *ctx_header = header;
1250 const unsigned int queue_size = s->queue_size;
1251 unsigned int packets;
1252 unsigned int offset;
1253
1254 if (s->packet_index < 0)
1255 return;
1256
1257 packets = header_length / sizeof(*ctx_header);
1258
1259 offset = 0;
1260 while (offset < packets) {
1261 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1262
1263 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1264 break;
1265
1266 ++offset;
1267 }
1268
1269 if (offset > 0) {
1270 unsigned int length = sizeof(*ctx_header) * offset;
1271
1272 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1273 if (amdtp_streaming_error(s))
1274 return;
1275
1276 ctx_header += offset;
1277 header_length -= length;
1278 }
1279
1280 if (offset < packets) {
bdaedca7
TS
1281 s->ready_processing = true;
1282 wake_up(&s->ready_wait);
1283
c38d8cff
TS
1284 if (d->replay.enable)
1285 s->ctx_data.rx.cache_pos = 0;
1286
9b1fcd9b
TS
1287 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1288 if (amdtp_streaming_error(s))
1289 return;
1290
1291 if (s == d->irq_target)
1292 s->context->callback.sc = irq_target_callback;
1293 else
1294 s->context->callback.sc = process_rx_packets;
1295 }
1296}
1297
da3623ab
TS
1298static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1299 void *header, void *private_data)
2b3fc456
TS
1300{
1301 struct amdtp_stream *s = private_data;
cc4f8e91 1302 __be32 *ctx_header = header;
f0117128 1303 struct pkt_desc *desc = s->packet_descs_cursor;
cccddec4 1304 unsigned int packet_count;
73246fc4 1305 unsigned int desc_count;
753e7179
TS
1306 int i;
1307 int err;
2b3fc456 1308
a4103bd7
TS
1309 if (s->packet_index < 0)
1310 return;
1311
a0e02331 1312 // Calculate the number of packets in buffer and check XRUN.
cccddec4 1313 packet_count = header_length / s->ctx_data.tx.ctx_header_size;
f90e2ded 1314
73246fc4 1315 desc_count = 0;
cec371ff 1316 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
753e7179
TS
1317 if (err < 0) {
1318 if (err != -EAGAIN) {
1319 cancel_stream(s);
1320 return;
1321 }
5e2ece0f 1322 } else {
f9e5ecdf
TS
1323 struct amdtp_domain *d = s->domain;
1324
cec371ff 1325 process_ctx_payloads(s, desc, desc_count);
f9e5ecdf
TS
1326
1327 if (d->replay.enable)
cec371ff 1328 cache_seq(s, desc, desc_count);
f0117128
TS
1329
1330 for (i = 0; i < desc_count; ++i)
1331 desc = amdtp_stream_next_packet_desc(s, desc);
1332 s->packet_descs_cursor = desc;
5e2ece0f
TS
1333 }
1334
cccddec4 1335 for (i = 0; i < packet_count; ++i) {
5e2ece0f 1336 struct fw_iso_packet params = {0};
2b3fc456 1337
60dd4929 1338 if (queue_in_packet(s, &params) < 0) {
753e7179
TS
1339 cancel_stream(s);
1340 return;
1341 }
7b3b0d85 1342 }
60dd4929
TS
1343}
1344
da3623ab
TS
1345static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1346 void *header, void *private_data)
1347{
1348 struct amdtp_stream *s = private_data;
1349 const __be32 *ctx_header = header;
1350 unsigned int packets;
1351 unsigned int cycle;
1352 int i;
1353
1354 if (s->packet_index < 0)
1355 return;
1356
1357 packets = header_length / s->ctx_data.tx.ctx_header_size;
1358
1359 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1360 cycle = compute_ohci_cycle_count(ctx_header[1]);
1361 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1362
1363 for (i = 0; i < packets; ++i) {
1364 struct fw_iso_packet params = {0};
1365
1366 if (queue_in_packet(s, &params) < 0) {
1367 cancel_stream(s);
1368 return;
1369 }
1370 }
1371}
1372
1373static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1374 size_t header_length, void *header, void *private_data)
1375{
1376 struct amdtp_stream *s = private_data;
1377 struct amdtp_domain *d = s->domain;
1378 __be32 *ctx_header;
1379 unsigned int packets;
1380 unsigned int offset;
1381
1382 if (s->packet_index < 0)
1383 return;
1384
1385 packets = header_length / s->ctx_data.tx.ctx_header_size;
1386
1387 offset = 0;
1388 ctx_header = header;
1389 while (offset < packets) {
1390 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1391
1392 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1393 break;
1394
1395 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1396 ++offset;
1397 }
1398
1399 ctx_header = header;
1400
1401 if (offset > 0) {
1402 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1403
1404 drop_tx_packets(context, tstamp, length, ctx_header, s);
1405 if (amdtp_streaming_error(s))
1406 return;
1407
1408 ctx_header += length / sizeof(*ctx_header);
1409 header_length -= length;
1410 }
1411
1412 if (offset < packets) {
bdaedca7
TS
1413 s->ready_processing = true;
1414 wake_up(&s->ready_wait);
1415
da3623ab
TS
1416 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1417 if (amdtp_streaming_error(s))
1418 return;
1419
1420 context->callback.sc = process_tx_packets;
1421 }
1422}
1423
fb25dcc8
TS
1424static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1425 size_t header_length, void *header, void *private_data)
1426{
1427 struct amdtp_stream *s = private_data;
1428 struct amdtp_domain *d = s->domain;
1429 __be32 *ctx_header;
1430 unsigned int count;
1431 unsigned int events;
1432 int i;
1433
1434 if (s->packet_index < 0)
1435 return;
1436
1437 count = header_length / s->ctx_data.tx.ctx_header_size;
1438
1439 // Attempt to detect any event in the batch of packets.
1440 events = 0;
1441 ctx_header = header;
1442 for (i = 0; i < count; ++i) {
1443 unsigned int payload_quads =
1444 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1445 unsigned int data_blocks;
1446
1447 if (s->flags & CIP_NO_HEADER) {
1448 data_blocks = payload_quads / s->data_block_quadlets;
1449 } else {
1450 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1451
1452 if (payload_quads < CIP_HEADER_QUADLETS) {
1453 data_blocks = 0;
1454 } else {
1455 payload_quads -= CIP_HEADER_QUADLETS;
1456
1457 if (s->flags & CIP_UNAWARE_SYT) {
1458 data_blocks = payload_quads / s->data_block_quadlets;
1459 } else {
1460 u32 cip1 = be32_to_cpu(cip_headers[1]);
1461
1462 // NODATA packet can includes any data blocks but they are
1463 // not available as event.
1464 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1465 data_blocks = 0;
1466 else
1467 data_blocks = payload_quads / s->data_block_quadlets;
1468 }
1469 }
1470 }
1471
1472 events += data_blocks;
1473
1474 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1475 }
1476
1477 drop_tx_packets(context, tstamp, header_length, header, s);
1478
1479 if (events > 0)
1480 s->ctx_data.tx.event_starts = true;
1481
1482 // Decide the cycle count to begin processing content of packet in IR contexts.
1483 {
1484 unsigned int stream_count = 0;
1485 unsigned int event_starts_count = 0;
1486 unsigned int cycle = UINT_MAX;
1487
1488 list_for_each_entry(s, &d->streams, list) {
1489 if (s->direction == AMDTP_IN_STREAM) {
1490 ++stream_count;
1491 if (s->ctx_data.tx.event_starts)
1492 ++event_starts_count;
1493 }
1494 }
1495
1496 if (stream_count == event_starts_count) {
1497 unsigned int next_cycle;
1498
1499 list_for_each_entry(s, &d->streams, list) {
1500 if (s->direction != AMDTP_IN_STREAM)
1501 continue;
1502
1503 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1504 d->processing_cycle.tx_init_skip);
1505 if (cycle == UINT_MAX ||
1506 compare_ohci_cycle_count(next_cycle, cycle) > 0)
1507 cycle = next_cycle;
1508
1509 s->context->callback.sc = process_tx_packets_intermediately;
1510 }
1511
1512 d->processing_cycle.tx_start = cycle;
1513 }
1514 }
1515}
1516
9b1fcd9b 1517static void process_ctxs_in_domain(struct amdtp_domain *d)
60dd4929 1518{
60dd4929
TS
1519 struct amdtp_stream *s;
1520
60dd4929 1521 list_for_each_entry(s, &d->streams, list) {
9b1fcd9b 1522 if (s != d->irq_target && amdtp_stream_running(s))
60dd4929 1523 fw_iso_context_flush_completions(s->context);
9b1fcd9b
TS
1524
1525 if (amdtp_streaming_error(s))
1526 goto error;
60dd4929
TS
1527 }
1528
1529 return;
1530error:
9b1fcd9b
TS
1531 if (amdtp_stream_running(d->irq_target))
1532 cancel_stream(d->irq_target);
60dd4929
TS
1533
1534 list_for_each_entry(s, &d->streams, list) {
1535 if (amdtp_stream_running(s))
1536 cancel_stream(s);
1537 }
2b3fc456
TS
1538}
1539
9b1fcd9b
TS
1540static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1541 void *header, void *private_data)
1542{
1543 struct amdtp_stream *s = private_data;
1544 struct amdtp_domain *d = s->domain;
9b1fcd9b
TS
1545
1546 process_rx_packets(context, tstamp, header_length, header, private_data);
1547 process_ctxs_in_domain(d);
1548}
1549
1550static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1551 size_t header_length, void *header, void *private_data)
1552{
1553 struct amdtp_stream *s = private_data;
1554 struct amdtp_domain *d = s->domain;
9b1fcd9b
TS
1555
1556 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1557 process_ctxs_in_domain(d);
1558}
1559
1560static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1561 size_t header_length, void *header, void *private_data)
1562{
1563 struct amdtp_stream *s = private_data;
1564 struct amdtp_domain *d = s->domain;
39c2649c 1565 bool ready_to_start;
9b1fcd9b
TS
1566
1567 skip_rx_packets(context, tstamp, header_length, header, private_data);
1568 process_ctxs_in_domain(d);
1569
2f21a177 1570 if (d->replay.enable && !d->replay.on_the_fly) {
39c2649c
TS
1571 unsigned int rx_count = 0;
1572 unsigned int rx_ready_count = 0;
1573 struct amdtp_stream *rx;
1574
1575 list_for_each_entry(rx, &d->streams, list) {
1576 struct amdtp_stream *tx;
1577 unsigned int cached_cycles;
1578
1579 if (rx->direction != AMDTP_OUT_STREAM)
1580 continue;
1581 ++rx_count;
1582
1583 tx = rx->ctx_data.rx.replay_target;
1584 cached_cycles = calculate_cached_cycle_count(tx, 0);
1585 if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1586 ++rx_ready_count;
1587 }
1588
1589 ready_to_start = (rx_count == rx_ready_count);
1590 } else {
1591 ready_to_start = true;
1592 }
1593
9b1fcd9b
TS
1594 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1595 // contexts are expected to start and get callback when reaching here.
39c2649c
TS
1596 if (ready_to_start) {
1597 unsigned int cycle = s->next_cycle;
1598 list_for_each_entry(s, &d->streams, list) {
1599 if (s->direction != AMDTP_OUT_STREAM)
1600 continue;
9b1fcd9b 1601
39c2649c
TS
1602 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1603 cycle = s->next_cycle;
9b1fcd9b 1604
39c2649c
TS
1605 if (s == d->irq_target)
1606 s->context->callback.sc = irq_target_callback_intermediately;
1607 else
1608 s->context->callback.sc = process_rx_packets_intermediately;
1609 }
9b1fcd9b 1610
39c2649c
TS
1611 d->processing_cycle.rx_start = cycle;
1612 }
9b1fcd9b
TS
1613}
1614
b7c7699b
TS
1615// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1616// transmit first packet.
7b3b0d85 1617static void amdtp_stream_first_callback(struct fw_iso_context *context,
73fc7f08 1618 u32 tstamp, size_t header_length,
7b3b0d85
TS
1619 void *header, void *private_data)
1620{
1621 struct amdtp_stream *s = private_data;
da3623ab 1622 struct amdtp_domain *d = s->domain;
7b3b0d85 1623
a04513f8 1624 if (s->direction == AMDTP_IN_STREAM) {
fb25dcc8 1625 context->callback.sc = drop_tx_packets_initially;
a04513f8 1626 } else {
da3623ab 1627 if (s == d->irq_target)
9b1fcd9b 1628 context->callback.sc = irq_target_callback_skip;
2472cfb3 1629 else
9b1fcd9b 1630 context->callback.sc = skip_rx_packets;
a04513f8
TS
1631 }
1632
73fc7f08 1633 context->callback.sc(context, tstamp, header_length, header, s);
7b3b0d85
TS
1634}
1635
31ef9134 1636/**
be4a2894
TS
1637 * amdtp_stream_start - start transferring packets
1638 * @s: the AMDTP stream to start
31ef9134
CL
1639 * @channel: the isochronous channel on the bus
1640 * @speed: firewire speed code
af86b0b1
TS
1641 * @queue_size: The number of packets in the queue.
1642 * @idle_irq_interval: the interval to queue packet during initial state.
31ef9134
CL
1643 *
1644 * The stream cannot be started until it has been configured with
be4a2894
TS
1645 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1646 * device can be started.
31ef9134 1647 */
a0e02331 1648static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
bd165079 1649 unsigned int queue_size, unsigned int idle_irq_interval)
31ef9134 1650{
2472cfb3 1651 bool is_irq_target = (s == s->domain->irq_target);
d3d10a4a 1652 unsigned int ctx_header_size;
f11453c7 1653 unsigned int max_ctx_payload_size;
2b3fc456 1654 enum dma_data_direction dir;
cec371ff
TS
1655 struct pkt_desc *descs;
1656 int i, type, tag, err;
31ef9134
CL
1657
1658 mutex_lock(&s->mutex);
1659
be4a2894 1660 if (WARN_ON(amdtp_stream_running(s) ||
4b7da117 1661 (s->data_block_quadlets < 1))) {
31ef9134
CL
1662 err = -EBADFD;
1663 goto err_unlock;
1664 }
1665
d3d10a4a 1666 if (s->direction == AMDTP_IN_STREAM) {
60dd4929
TS
1667 // NOTE: IT context should be used for constant IRQ.
1668 if (is_irq_target) {
1669 err = -EINVAL;
1670 goto err_unlock;
1671 }
1672
b6bc8123 1673 s->data_block_counter = UINT_MAX;
d3d10a4a 1674 } else {
b6bc8123 1675 s->data_block_counter = 0;
d3d10a4a 1676 }
31ef9134 1677
1be4f21d 1678 // initialize packet buffer.
2b3fc456
TS
1679 if (s->direction == AMDTP_IN_STREAM) {
1680 dir = DMA_FROM_DEVICE;
1681 type = FW_ISO_CONTEXT_RECEIVE;
c75f3678 1682 if (!(s->flags & CIP_NO_HEADER))
f11453c7 1683 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
c75f3678 1684 else
f11453c7 1685 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
2b3fc456
TS
1686 } else {
1687 dir = DMA_TO_DEVICE;
1688 type = FW_ISO_CONTEXT_TRANSMIT;
df9160b9 1689 ctx_header_size = 0; // No effect for IT context.
b18f0cfa 1690 }
c75f3678 1691 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
f11453c7 1692
c75f3678 1693 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
31ef9134
CL
1694 if (err < 0)
1695 goto err_unlock;
af86b0b1 1696 s->queue_size = queue_size;
60dd4929 1697
31ef9134 1698 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
d3d10a4a 1699 type, channel, speed, ctx_header_size,
2472cfb3 1700 amdtp_stream_first_callback, s);
31ef9134
CL
1701 if (IS_ERR(s->context)) {
1702 err = PTR_ERR(s->context);
1703 if (err == -EBUSY)
1704 dev_err(&s->unit->device,
be4a2894 1705 "no free stream on this controller\n");
31ef9134
CL
1706 goto err_buffer;
1707 }
1708
be4a2894 1709 amdtp_stream_update(s);
31ef9134 1710
d3d10a4a 1711 if (s->direction == AMDTP_IN_STREAM) {
f11453c7 1712 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
d3d10a4a 1713 s->ctx_data.tx.ctx_header_size = ctx_header_size;
fb25dcc8 1714 s->ctx_data.tx.event_starts = false;
f9e5ecdf
TS
1715
1716 if (s->domain->replay.enable) {
1717 // struct fw_iso_context.drop_overflow_headers is false therefore it's
1718 // possible to cache much unexpectedly.
1719 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1720 queue_size * 3 / 2);
cccddec4 1721 s->ctx_data.tx.cache.pos = 0;
f9e5ecdf
TS
1722 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1723 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
8b6e2193
DC
1724 if (!s->ctx_data.tx.cache.descs) {
1725 err = -ENOMEM;
f9e5ecdf 1726 goto err_context;
8b6e2193 1727 }
f9e5ecdf 1728 }
bd165079 1729 } else {
6f24bb8a
TS
1730 static const struct {
1731 unsigned int data_block;
1732 unsigned int syt_offset;
1733 } *entry, initial_state[] = {
1734 [CIP_SFC_32000] = { 4, 3072 },
1735 [CIP_SFC_48000] = { 6, 1024 },
1736 [CIP_SFC_96000] = { 12, 1024 },
1737 [CIP_SFC_192000] = { 24, 1024 },
1738 [CIP_SFC_44100] = { 0, 67 },
1739 [CIP_SFC_88200] = { 0, 67 },
1740 [CIP_SFC_176400] = { 0, 67 },
1741 };
1742
1743 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
8b6e2193
DC
1744 if (!s->ctx_data.rx.seq.descs) {
1745 err = -ENOMEM;
6f24bb8a 1746 goto err_context;
8b6e2193 1747 }
6f24bb8a 1748 s->ctx_data.rx.seq.size = queue_size;
119c446a 1749 s->ctx_data.rx.seq.pos = 0;
6f24bb8a
TS
1750
1751 entry = &initial_state[s->sfc];
1752 s->ctx_data.rx.data_block_state = entry->data_block;
1753 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1754 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1755
bd165079 1756 s->ctx_data.rx.event_count = 0;
d3d10a4a 1757 }
52759c09 1758
3b196c39
TS
1759 if (s->flags & CIP_NO_HEADER)
1760 s->tag = TAG_NO_CIP_HEADER;
1761 else
1762 s->tag = TAG_CIP;
1763
af13842c
TS
1764 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1765 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1766 // could take a round over queue of AMDTP packet descriptors and small loss of history. For
1767 // safe, keep more 8 elements for the queue, equivalent to 1 ms.
1768 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
cec371ff 1769 if (!descs) {
04130cf8
TS
1770 err = -ENOMEM;
1771 goto err_context;
1772 }
f0117128 1773 s->packet_descs = descs;
cec371ff
TS
1774
1775 INIT_LIST_HEAD(&s->packet_descs_list);
1776 for (i = 0; i < s->queue_size; ++i) {
1777 INIT_LIST_HEAD(&descs->link);
1778 list_add_tail(&descs->link, &s->packet_descs_list);
1779 ++descs;
1780 }
f0117128 1781 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
04130cf8 1782
ec00f5e4 1783 s->packet_index = 0;
4b7da117 1784 do {
6007bf54 1785 struct fw_iso_packet params;
e229853d 1786
b18f0cfa 1787 if (s->direction == AMDTP_IN_STREAM) {
60dd4929 1788 err = queue_in_packet(s, &params);
b18f0cfa 1789 } else {
60dd4929
TS
1790 bool sched_irq = false;
1791
b18f0cfa
TS
1792 params.header_length = 0;
1793 params.payload_length = 0;
60dd4929
TS
1794
1795 if (is_irq_target) {
1796 sched_irq = !((s->packet_index + 1) %
1797 idle_irq_interval);
1798 }
1799
e229853d 1800 err = queue_out_packet(s, &params, sched_irq);
b18f0cfa 1801 }
4b7da117 1802 if (err < 0)
04130cf8 1803 goto err_pkt_descs;
4b7da117 1804 } while (s->packet_index > 0);
31ef9134 1805
2b3fc456 1806 /* NOTE: TAG1 matches CIP. This just affects in stream. */
7ab56645 1807 tag = FW_ISO_CONTEXT_MATCH_TAG1;
3b196c39 1808 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
7ab56645
TS
1809 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1810
bdaedca7 1811 s->ready_processing = false;
bd165079 1812 err = fw_iso_context_start(s->context, -1, 0, tag);
31ef9134 1813 if (err < 0)
04130cf8 1814 goto err_pkt_descs;
31ef9134
CL
1815
1816 mutex_unlock(&s->mutex);
1817
1818 return 0;
04130cf8 1819err_pkt_descs:
f0117128
TS
1820 kfree(s->packet_descs);
1821 s->packet_descs = NULL;
31ef9134 1822err_context:
f9e5ecdf 1823 if (s->direction == AMDTP_OUT_STREAM) {
6f24bb8a 1824 kfree(s->ctx_data.rx.seq.descs);
f9e5ecdf
TS
1825 } else {
1826 if (s->domain->replay.enable)
1827 kfree(s->ctx_data.tx.cache.descs);
1828 }
31ef9134
CL
1829 fw_iso_context_destroy(s->context);
1830 s->context = ERR_PTR(-1);
1831err_buffer:
1832 iso_packets_buffer_destroy(&s->buffer, s->unit);
1833err_unlock:
1834 mutex_unlock(&s->mutex);
1835
1836 return err;
1837}
31ef9134 1838
e9148ddd 1839/**
f890f9a0
TS
1840 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1841 * @d: the AMDTP domain.
be4a2894 1842 * @s: the AMDTP stream that transports the PCM data
e9148ddd
CL
1843 *
1844 * Returns the current buffer position, in frames.
1845 */
f890f9a0
TS
1846unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1847 struct amdtp_stream *s)
e9148ddd 1848{
f890f9a0
TS
1849 struct amdtp_stream *irq_target = d->irq_target;
1850
7ba5ca32 1851 // Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
f890f9a0 1852 if (irq_target && amdtp_stream_running(irq_target)) {
7ba5ca32
TS
1853 // In software IRQ context, the call causes dead-lock to disable the tasklet
1854 // synchronously.
3b86ec63 1855 if (!in_softirq())
f890f9a0 1856 fw_iso_context_flush_completions(irq_target->context);
f890f9a0 1857 }
e9148ddd 1858
6aa7de05 1859 return READ_ONCE(s->pcm_buffer_pointer);
e9148ddd 1860}
f890f9a0 1861EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
e9148ddd 1862
875becf8 1863/**
e6dcc92f
TS
1864 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1865 * @d: the AMDTP domain.
875becf8
TS
1866 * @s: the AMDTP stream that transfers the PCM frames
1867 *
1868 * Returns zero always.
1869 */
e6dcc92f 1870int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
875becf8 1871{
e6dcc92f
TS
1872 struct amdtp_stream *irq_target = d->irq_target;
1873
1874 // Process isochronous packets for recent isochronous cycle to handle
1875 // queued PCM frames.
987b705b 1876 if (irq_target && amdtp_stream_running(irq_target))
e6dcc92f 1877 fw_iso_context_flush_completions(irq_target->context);
875becf8
TS
1878
1879 return 0;
1880}
e6dcc92f 1881EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
875becf8 1882
31ef9134 1883/**
be4a2894
TS
1884 * amdtp_stream_update - update the stream after a bus reset
1885 * @s: the AMDTP stream
31ef9134 1886 */
be4a2894 1887void amdtp_stream_update(struct amdtp_stream *s)
31ef9134 1888{
9a2820c1 1889 /* Precomputing. */
6aa7de05
MR
1890 WRITE_ONCE(s->source_node_id_field,
1891 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
31ef9134 1892}
be4a2894 1893EXPORT_SYMBOL(amdtp_stream_update);
31ef9134
CL
1894
1895/**
be4a2894
TS
1896 * amdtp_stream_stop - stop sending packets
1897 * @s: the AMDTP stream to stop
31ef9134
CL
1898 *
1899 * All PCM and MIDI devices of the stream must be stopped before the stream
1900 * itself can be stopped.
1901 */
74f94e41 1902static void amdtp_stream_stop(struct amdtp_stream *s)
31ef9134
CL
1903{
1904 mutex_lock(&s->mutex);
1905
be4a2894 1906 if (!amdtp_stream_running(s)) {
31ef9134
CL
1907 mutex_unlock(&s->mutex);
1908 return;
1909 }
1910
1911 fw_iso_context_stop(s->context);
1912 fw_iso_context_destroy(s->context);
1913 s->context = ERR_PTR(-1);
1914 iso_packets_buffer_destroy(&s->buffer, s->unit);
f0117128
TS
1915 kfree(s->packet_descs);
1916 s->packet_descs = NULL;
31ef9134 1917
f9e5ecdf 1918 if (s->direction == AMDTP_OUT_STREAM) {
6f24bb8a 1919 kfree(s->ctx_data.rx.seq.descs);
f9e5ecdf
TS
1920 } else {
1921 if (s->domain->replay.enable)
1922 kfree(s->ctx_data.tx.cache.descs);
1923 }
7b3b0d85 1924
31ef9134
CL
1925 mutex_unlock(&s->mutex);
1926}
31ef9134
CL
1927
1928/**
be4a2894 1929 * amdtp_stream_pcm_abort - abort the running PCM device
31ef9134
CL
1930 * @s: the AMDTP stream about to be stopped
1931 *
1932 * If the isochronous stream needs to be stopped asynchronously, call this
1933 * function first to stop the PCM device.
1934 */
be4a2894 1935void amdtp_stream_pcm_abort(struct amdtp_stream *s)
31ef9134
CL
1936{
1937 struct snd_pcm_substream *pcm;
1938
6aa7de05 1939 pcm = READ_ONCE(s->pcm);
1fb8510c
TI
1940 if (pcm)
1941 snd_pcm_stop_xrun(pcm);
31ef9134 1942}
be4a2894 1943EXPORT_SYMBOL(amdtp_stream_pcm_abort);
3ec3d7a3
TS
1944
1945/**
1946 * amdtp_domain_init - initialize an AMDTP domain structure
1947 * @d: the AMDTP domain to initialize.
1948 */
1949int amdtp_domain_init(struct amdtp_domain *d)
1950{
1951 INIT_LIST_HEAD(&d->streams);
1952
d68c3123
TS
1953 d->events_per_period = 0;
1954
3ec3d7a3
TS
1955 return 0;
1956}
1957EXPORT_SYMBOL_GPL(amdtp_domain_init);
1958
1959/**
1960 * amdtp_domain_destroy - destroy an AMDTP domain structure
1961 * @d: the AMDTP domain to destroy.
1962 */
1963void amdtp_domain_destroy(struct amdtp_domain *d)
1964{
8d0d5c3f
TS
1965 // At present nothing to do.
1966 return;
3ec3d7a3
TS
1967}
1968EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
6261f90b 1969
157a53ee
TS
1970/**
1971 * amdtp_domain_add_stream - register isoc context into the domain.
1972 * @d: the AMDTP domain.
1973 * @s: the AMDTP stream.
1974 * @channel: the isochronous channel on the bus.
1975 * @speed: firewire speed code.
1976 */
1977int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1978 int channel, int speed)
1979{
1980 struct amdtp_stream *tmp;
1981
1982 list_for_each_entry(tmp, &d->streams, list) {
1983 if (s == tmp)
1984 return -EBUSY;
1985 }
1986
1987 list_add(&s->list, &d->streams);
1988
1989 s->channel = channel;
1990 s->speed = speed;
2472cfb3 1991 s->domain = d;
157a53ee
TS
1992
1993 return 0;
1994}
1995EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1996
39c2649c
TS
1997// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1998// is less than the number of rx streams, the first tx stream is selected.
1999static int make_association(struct amdtp_domain *d)
2000{
2001 unsigned int dst_index = 0;
2002 struct amdtp_stream *rx;
2003
2004 // Make association to replay target.
2005 list_for_each_entry(rx, &d->streams, list) {
2006 if (rx->direction == AMDTP_OUT_STREAM) {
2007 unsigned int src_index = 0;
2008 struct amdtp_stream *tx = NULL;
2009 struct amdtp_stream *s;
2010
2011 list_for_each_entry(s, &d->streams, list) {
2012 if (s->direction == AMDTP_IN_STREAM) {
2013 if (dst_index == src_index) {
2014 tx = s;
2015 break;
2016 }
2017
2018 ++src_index;
2019 }
2020 }
2021 if (!tx) {
2022 // Select the first entry.
2023 list_for_each_entry(s, &d->streams, list) {
2024 if (s->direction == AMDTP_IN_STREAM) {
2025 tx = s;
2026 break;
2027 }
2028 }
2029 // No target is available to replay sequence.
2030 if (!tx)
2031 return -EINVAL;
2032 }
2033
2034 rx->ctx_data.rx.replay_target = tx;
39c2649c
TS
2035
2036 ++dst_index;
2037 }
2038 }
2039
2040 return 0;
2041}
2042
9b4702b0
TS
2043/**
2044 * amdtp_domain_start - start sending packets for isoc context in the domain.
2045 * @d: the AMDTP domain.
26541cb1
TS
2046 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2047 * contexts.
f9e5ecdf
TS
2048 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2049 * IT context.
2f21a177
TS
2050 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2051 * according to arrival of events in tx packets.
9b4702b0 2052 */
2f21a177
TS
2053int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2054 bool replay_on_the_fly)
9b4702b0 2055{
af86b0b1
TS
2056 unsigned int events_per_buffer = d->events_per_buffer;
2057 unsigned int events_per_period = d->events_per_period;
af86b0b1 2058 unsigned int queue_size;
9b4702b0 2059 struct amdtp_stream *s;
0cbbeaf3 2060 bool found = false;
acfedcbe 2061 int err;
9b4702b0 2062
39c2649c
TS
2063 if (replay_seq) {
2064 err = make_association(d);
2065 if (err < 0)
2066 return err;
2067 }
f9e5ecdf 2068 d->replay.enable = replay_seq;
2f21a177 2069 d->replay.on_the_fly = replay_on_the_fly;
f9e5ecdf 2070
60dd4929 2071 // Select an IT context as IRQ target.
9b4702b0 2072 list_for_each_entry(s, &d->streams, list) {
0cbbeaf3
CJ
2073 if (s->direction == AMDTP_OUT_STREAM) {
2074 found = true;
9b4702b0 2075 break;
0cbbeaf3 2076 }
9b4702b0 2077 }
0cbbeaf3 2078 if (!found)
60dd4929
TS
2079 return -ENXIO;
2080 d->irq_target = s;
9b4702b0 2081
26541cb1
TS
2082 d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2083
af86b0b1
TS
2084 // This is a case that AMDTP streams in domain run just for MIDI
2085 // substream. Use the number of events equivalent to 10 msec as
2086 // interval of hardware IRQ.
2087 if (events_per_period == 0)
2088 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2089 if (events_per_buffer == 0)
2090 events_per_buffer = events_per_period * 3;
2091
2092 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2093 amdtp_rate_table[d->irq_target->sfc]);
2094
60dd4929 2095 list_for_each_entry(s, &d->streams, list) {
bd165079 2096 unsigned int idle_irq_interval = 0;
acfedcbe 2097
bd165079
TS
2098 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2099 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2100 amdtp_rate_table[d->irq_target->sfc]);
60dd4929 2101 }
9b4702b0 2102
bd165079
TS
2103 // Starts immediately but actually DMA context starts several hundred cycles later.
2104 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2105 if (err < 0)
2106 goto error;
2107 }
60dd4929
TS
2108
2109 return 0;
2110error:
2111 list_for_each_entry(s, &d->streams, list)
2112 amdtp_stream_stop(s);
9b4702b0
TS
2113 return err;
2114}
2115EXPORT_SYMBOL_GPL(amdtp_domain_start);
2116
6261f90b
TS
2117/**
2118 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2119 * @d: the AMDTP domain to which the isoc contexts belong.
2120 */
2121void amdtp_domain_stop(struct amdtp_domain *d)
2122{
2123 struct amdtp_stream *s, *next;
2124
60dd4929
TS
2125 if (d->irq_target)
2126 amdtp_stream_stop(d->irq_target);
2127
6261f90b
TS
2128 list_for_each_entry_safe(s, next, &d->streams, list) {
2129 list_del(&s->list);
2130
60dd4929
TS
2131 if (s != d->irq_target)
2132 amdtp_stream_stop(s);
6261f90b 2133 }
d68c3123
TS
2134
2135 d->events_per_period = 0;
60dd4929 2136 d->irq_target = NULL;
6261f90b
TS
2137}
2138EXPORT_SYMBOL_GPL(amdtp_domain_stop);