ublk: remove check IO_URING_F_SQE128 in ublk_ch_uring_cmd
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 87 * a single (unsigned long) handle value.
0959c63f 88 *
bfd093f5 89 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
90 *
91 * This is made more complicated by various memory models and PAE.
92 */
93
02390b87
KS
94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
95#ifdef MAX_PHYSMEM_BITS
96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97#else
0959c63f
SJ
98/*
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100 * be PAGE_SHIFT
101 */
02390b87 102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
103#endif
104#endif
02390b87
KS
105
106#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 107
312fcae2
MK
108/*
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
114 */
115#define OBJ_ALLOCATED_TAG 1
116#define OBJ_TAG_BITS 1
117#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
118#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
a41ec880 120#define HUGE_BITS 1
cf8e0fed
JM
121#define FULLNESS_BITS 2
122#define CLASS_BITS 8
123#define ISOLATED_BITS 3
124#define MAGIC_VAL_BITS 8
125
0959c63f
SJ
126#define MAX(a, b) ((a) >= (b) ? (a) : (b))
127/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128#define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 130/* each chunk includes extra space to keep handle */
7b60a685 131#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
132
133/*
7eb52512 134 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 *
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
145 */
3783689a 146#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
147#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 149
0959c63f 150enum fullness_group {
0959c63f 151 ZS_EMPTY,
48b4800a
MK
152 ZS_ALMOST_EMPTY,
153 ZS_ALMOST_FULL,
154 ZS_FULL,
155 NR_ZS_FULLNESS,
0959c63f
SJ
156};
157
3828a764 158enum class_stat_type {
48b4800a
MK
159 CLASS_EMPTY,
160 CLASS_ALMOST_EMPTY,
161 CLASS_ALMOST_FULL,
162 CLASS_FULL,
0f050d99
GM
163 OBJ_ALLOCATED,
164 OBJ_USED,
48b4800a 165 NR_ZS_STAT_TYPE,
0f050d99
GM
166};
167
0f050d99
GM
168struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
170};
171
57244594
SS
172#ifdef CONFIG_ZSMALLOC_STAT
173static struct dentry *zs_stat_root;
0f050d99
GM
174#endif
175
0959c63f
SJ
176/*
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
6dd9737e 181 * f = fullness_threshold_frac
0959c63f
SJ
182 *
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
187 *
188 * (see: fix_fullness_group())
189 */
190static const int fullness_threshold_frac = 4;
010b495e 191static size_t huge_class_size;
0959c63f
SJ
192
193struct size_class {
48b4800a 194 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
195 /*
196 * Size of objects stored in this class. Must be multiple
197 * of ZS_ALIGN.
198 */
199 int size;
1fc6e27d 200 int objs_per_zspage;
7dfa4612
WY
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
48b4800a
MK
203
204 unsigned int index;
205 struct zs_size_stat stats;
0959c63f
SJ
206};
207
208/*
209 * Placed within free objects to form a singly linked list.
3783689a 210 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
211 *
212 * This must be power of 2 and less than or equal to ZS_ALIGN
213 */
214struct link_free {
2e40e163
MK
215 union {
216 /*
bfd093f5 217 * Free object index;
2e40e163
MK
218 * It's valid for non-allocated object
219 */
bfd093f5 220 unsigned long next;
2e40e163
MK
221 /*
222 * Handle of allocated object.
223 */
224 unsigned long handle;
225 };
0959c63f
SJ
226};
227
228struct zs_pool {
6f3526d6 229 const char *name;
0f050d99 230
cf8e0fed 231 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 232 struct kmem_cache *handle_cachep;
3783689a 233 struct kmem_cache *zspage_cachep;
0959c63f 234
13de8933 235 atomic_long_t pages_allocated;
0f050d99 236
7d3f3938 237 struct zs_pool_stats stats;
ab9d306d
SS
238
239 /* Compact classes */
240 struct shrinker shrinker;
93144ca3 241
64f768c6
NP
242#ifdef CONFIG_ZPOOL
243 /* List tracking the zspages in LRU order by most recently added object */
244 struct list_head lru;
bd0fded2
NP
245 struct zpool *zpool;
246 const struct zpool_ops *zpool_ops;
64f768c6
NP
247#endif
248
0f050d99
GM
249#ifdef CONFIG_ZSMALLOC_STAT
250 struct dentry *stat_dentry;
251#endif
48b4800a 252#ifdef CONFIG_COMPACTION
48b4800a
MK
253 struct work_struct free_work;
254#endif
c0547d0b 255 spinlock_t lock;
0959c63f 256};
61989a80 257
3783689a
MK
258struct zspage {
259 struct {
a41ec880 260 unsigned int huge:HUGE_BITS;
3783689a 261 unsigned int fullness:FULLNESS_BITS;
85d492f2 262 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
263 unsigned int isolated:ISOLATED_BITS;
264 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
265 };
266 unsigned int inuse;
bfd093f5 267 unsigned int freeobj;
3783689a
MK
268 struct page *first_page;
269 struct list_head list; /* fullness list */
64f768c6
NP
270
271#ifdef CONFIG_ZPOOL
272 /* links the zspage to the lru list in the pool */
273 struct list_head lru;
9997bc01
NP
274 bool under_reclaim;
275 /* list of unfreed handles whose objects have been reclaimed */
276 unsigned long *deferred_handles;
64f768c6
NP
277#endif
278
68f2736a 279 struct zs_pool *pool;
48b4800a 280 rwlock_t lock;
3783689a 281};
61989a80 282
f553646a 283struct mapping_area {
a3726599 284 local_lock_t lock;
f553646a 285 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
286 char *vm_addr; /* address of kmap_atomic()'ed pages */
287 enum zs_mapmode vm_mm; /* mapping mode */
288};
289
a41ec880
MK
290/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
291static void SetZsHugePage(struct zspage *zspage)
292{
293 zspage->huge = 1;
294}
295
296static bool ZsHugePage(struct zspage *zspage)
297{
298 return zspage->huge;
299}
300
48b4800a
MK
301static void migrate_lock_init(struct zspage *zspage);
302static void migrate_read_lock(struct zspage *zspage);
303static void migrate_read_unlock(struct zspage *zspage);
9997bc01
NP
304
305#ifdef CONFIG_COMPACTION
b475d42d
MK
306static void migrate_write_lock(struct zspage *zspage);
307static void migrate_write_lock_nested(struct zspage *zspage);
308static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
309static void kick_deferred_free(struct zs_pool *pool);
310static void init_deferred_free(struct zs_pool *pool);
311static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
312#else
b475d42d
MK
313static void migrate_write_lock(struct zspage *zspage) {}
314static void migrate_write_lock_nested(struct zspage *zspage) {}
315static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
316static void kick_deferred_free(struct zs_pool *pool) {}
317static void init_deferred_free(struct zs_pool *pool) {}
318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319#endif
320
3783689a 321static int create_cache(struct zs_pool *pool)
2e40e163
MK
322{
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
3783689a
MK
325 if (!pool->handle_cachep)
326 return 1;
327
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
334 }
335
336 return 0;
2e40e163
MK
337}
338
3783689a 339static void destroy_cache(struct zs_pool *pool)
2e40e163 340{
cd10add0 341 kmem_cache_destroy(pool->handle_cachep);
3783689a 342 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
343}
344
3783689a 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
346{
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
349}
350
3783689a 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
352{
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
354}
355
3783689a
MK
356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357{
f0231305 358 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 360}
3783689a
MK
361
362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363{
364 kmem_cache_free(pool->zspage_cachep, zspage);
365}
366
c0547d0b 367/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
368static void record_obj(unsigned long handle, unsigned long obj)
369{
b475d42d 370 *(unsigned long *)handle = obj;
2e40e163
MK
371}
372
c795779d
DS
373/* zpool driver */
374
375#ifdef CONFIG_ZPOOL
376
6f3526d6 377static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 378 const struct zpool_ops *zpool_ops,
479305fd 379 struct zpool *zpool)
c795779d 380{
d0d8da2d
SS
381 /*
382 * Ignore global gfp flags: zs_malloc() may be invoked from
383 * different contexts and its caller must provide a valid
384 * gfp mask.
385 */
bd0fded2
NP
386 struct zs_pool *pool = zs_create_pool(name);
387
388 if (pool) {
389 pool->zpool = zpool;
390 pool->zpool_ops = zpool_ops;
391 }
392
393 return pool;
c795779d
DS
394}
395
396static void zs_zpool_destroy(void *pool)
397{
398 zs_destroy_pool(pool);
399}
400
401static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
402 unsigned long *handle)
403{
d0d8da2d 404 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 405
65917b53 406 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
407 return PTR_ERR((void *)*handle);
408 return 0;
c795779d
DS
409}
410static void zs_zpool_free(void *pool, unsigned long handle)
411{
412 zs_free(pool, handle);
413}
414
9997bc01
NP
415static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
416
417static int zs_zpool_shrink(void *pool, unsigned int pages,
418 unsigned int *reclaimed)
419{
420 unsigned int total = 0;
421 int ret = -EINVAL;
422
423 while (total < pages) {
424 ret = zs_reclaim_page(pool, 8);
425 if (ret < 0)
426 break;
427 total++;
428 }
429
430 if (reclaimed)
431 *reclaimed = total;
432
433 return ret;
434}
435
c795779d
DS
436static void *zs_zpool_map(void *pool, unsigned long handle,
437 enum zpool_mapmode mm)
438{
439 enum zs_mapmode zs_mm;
440
441 switch (mm) {
442 case ZPOOL_MM_RO:
443 zs_mm = ZS_MM_RO;
444 break;
445 case ZPOOL_MM_WO:
446 zs_mm = ZS_MM_WO;
447 break;
e4a9bc58 448 case ZPOOL_MM_RW:
c795779d
DS
449 default:
450 zs_mm = ZS_MM_RW;
451 break;
452 }
453
454 return zs_map_object(pool, handle, zs_mm);
455}
456static void zs_zpool_unmap(void *pool, unsigned long handle)
457{
458 zs_unmap_object(pool, handle);
459}
460
461static u64 zs_zpool_total_size(void *pool)
462{
722cdc17 463 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
464}
465
466static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
467 .type = "zsmalloc",
468 .owner = THIS_MODULE,
469 .create = zs_zpool_create,
470 .destroy = zs_zpool_destroy,
471 .malloc_support_movable = true,
472 .malloc = zs_zpool_malloc,
473 .free = zs_zpool_free,
9997bc01 474 .shrink = zs_zpool_shrink,
c165f25d
HZ
475 .map = zs_zpool_map,
476 .unmap = zs_zpool_unmap,
477 .total_size = zs_zpool_total_size,
c795779d
DS
478};
479
137f8cff 480MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
481#endif /* CONFIG_ZPOOL */
482
61989a80 483/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
484static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
485 .lock = INIT_LOCAL_LOCK(lock),
486};
61989a80 487
3457f414 488static __maybe_unused int is_first_page(struct page *page)
61989a80 489{
a27545bf 490 return PagePrivate(page);
61989a80
NG
491}
492
c0547d0b 493/* Protected by pool->lock */
3783689a 494static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 495{
3783689a 496 return zspage->inuse;
4f42047b
MK
497}
498
4f42047b 499
3783689a 500static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 501{
3783689a 502 zspage->inuse += val;
4f42047b
MK
503}
504
48b4800a 505static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 506{
48b4800a 507 struct page *first_page = zspage->first_page;
3783689a 508
48b4800a
MK
509 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
510 return first_page;
4f42047b
MK
511}
512
671f2fa8 513static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 514{
ffedd09f 515 return page->page_type;
48b4800a 516}
3783689a 517
671f2fa8 518static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 519{
ffedd09f 520 page->page_type = offset;
4f42047b
MK
521}
522
bfd093f5 523static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 524{
bfd093f5 525 return zspage->freeobj;
4f42047b
MK
526}
527
bfd093f5 528static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 529{
bfd093f5 530 zspage->freeobj = obj;
4f42047b
MK
531}
532
3783689a 533static void get_zspage_mapping(struct zspage *zspage,
a4209467 534 unsigned int *class_idx,
61989a80
NG
535 enum fullness_group *fullness)
536{
48b4800a
MK
537 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
538
3783689a
MK
539 *fullness = zspage->fullness;
540 *class_idx = zspage->class;
61989a80
NG
541}
542
67f1c9cd
MK
543static struct size_class *zspage_class(struct zs_pool *pool,
544 struct zspage *zspage)
545{
546 return pool->size_class[zspage->class];
547}
548
3783689a 549static void set_zspage_mapping(struct zspage *zspage,
a4209467 550 unsigned int class_idx,
61989a80
NG
551 enum fullness_group fullness)
552{
3783689a
MK
553 zspage->class = class_idx;
554 zspage->fullness = fullness;
61989a80
NG
555}
556
c3e3e88a
NC
557/*
558 * zsmalloc divides the pool into various size classes where each
559 * class maintains a list of zspages where each zspage is divided
560 * into equal sized chunks. Each allocation falls into one of these
561 * classes depending on its size. This function returns index of the
cb152a1a 562 * size class which has chunk size big enough to hold the given size.
c3e3e88a 563 */
61989a80
NG
564static int get_size_class_index(int size)
565{
566 int idx = 0;
567
568 if (likely(size > ZS_MIN_ALLOC_SIZE))
569 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
570 ZS_SIZE_CLASS_DELTA);
571
cf8e0fed 572 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
573}
574
3828a764
MK
575/* type can be of enum type class_stat_type or fullness_group */
576static inline void class_stat_inc(struct size_class *class,
3eb95fea 577 int type, unsigned long cnt)
248ca1b0 578{
48b4800a 579 class->stats.objs[type] += cnt;
248ca1b0
MK
580}
581
3828a764
MK
582/* type can be of enum type class_stat_type or fullness_group */
583static inline void class_stat_dec(struct size_class *class,
3eb95fea 584 int type, unsigned long cnt)
248ca1b0 585{
48b4800a 586 class->stats.objs[type] -= cnt;
248ca1b0
MK
587}
588
3828a764 589/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 590static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 591 int type)
248ca1b0 592{
48b4800a 593 return class->stats.objs[type];
248ca1b0
MK
594}
595
57244594
SS
596#ifdef CONFIG_ZSMALLOC_STAT
597
4abaac9b 598static void __init zs_stat_init(void)
248ca1b0 599{
4abaac9b
DS
600 if (!debugfs_initialized()) {
601 pr_warn("debugfs not available, stat dir not created\n");
602 return;
603 }
248ca1b0
MK
604
605 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
606}
607
608static void __exit zs_stat_exit(void)
609{
610 debugfs_remove_recursive(zs_stat_root);
611}
612
1120ed54
SS
613static unsigned long zs_can_compact(struct size_class *class);
614
248ca1b0
MK
615static int zs_stats_size_show(struct seq_file *s, void *v)
616{
617 int i;
618 struct zs_pool *pool = s->private;
619 struct size_class *class;
620 int objs_per_zspage;
621 unsigned long class_almost_full, class_almost_empty;
1120ed54 622 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
623 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
624 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 625 unsigned long total_freeable = 0;
248ca1b0 626
1120ed54 627 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
628 "class", "size", "almost_full", "almost_empty",
629 "obj_allocated", "obj_used", "pages_used",
1120ed54 630 "pages_per_zspage", "freeable");
248ca1b0 631
cf8e0fed 632 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
633 class = pool->size_class[i];
634
635 if (class->index != i)
636 continue;
637
c0547d0b 638 spin_lock(&pool->lock);
248ca1b0
MK
639 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
640 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
641 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
642 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 643 freeable = zs_can_compact(class);
c0547d0b 644 spin_unlock(&pool->lock);
248ca1b0 645
b4fd07a0 646 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
647 pages_used = obj_allocated / objs_per_zspage *
648 class->pages_per_zspage;
649
1120ed54
SS
650 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
651 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
652 i, class->size, class_almost_full, class_almost_empty,
653 obj_allocated, obj_used, pages_used,
1120ed54 654 class->pages_per_zspage, freeable);
248ca1b0
MK
655
656 total_class_almost_full += class_almost_full;
657 total_class_almost_empty += class_almost_empty;
658 total_objs += obj_allocated;
659 total_used_objs += obj_used;
660 total_pages += pages_used;
1120ed54 661 total_freeable += freeable;
248ca1b0
MK
662 }
663
664 seq_puts(s, "\n");
1120ed54 665 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
666 "Total", "", total_class_almost_full,
667 total_class_almost_empty, total_objs,
1120ed54 668 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
669
670 return 0;
671}
5ad35093 672DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 673
d34f6157 674static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 675{
4abaac9b
DS
676 if (!zs_stat_root) {
677 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 678 return;
4abaac9b 679 }
248ca1b0 680
4268509a
GKH
681 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
682
683 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
684 &zs_stats_size_fops);
248ca1b0
MK
685}
686
687static void zs_pool_stat_destroy(struct zs_pool *pool)
688{
689 debugfs_remove_recursive(pool->stat_dentry);
690}
691
692#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 693static void __init zs_stat_init(void)
248ca1b0 694{
248ca1b0
MK
695}
696
697static void __exit zs_stat_exit(void)
698{
699}
700
d34f6157 701static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 702{
248ca1b0
MK
703}
704
705static inline void zs_pool_stat_destroy(struct zs_pool *pool)
706{
707}
248ca1b0
MK
708#endif
709
48b4800a 710
c3e3e88a
NC
711/*
712 * For each size class, zspages are divided into different groups
713 * depending on how "full" they are. This was done so that we could
714 * easily find empty or nearly empty zspages when we try to shrink
715 * the pool (not yet implemented). This function returns fullness
716 * status of the given page.
717 */
1fc6e27d 718static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 719 struct zspage *zspage)
61989a80 720{
1fc6e27d 721 int inuse, objs_per_zspage;
61989a80 722 enum fullness_group fg;
830e4bc5 723
3783689a 724 inuse = get_zspage_inuse(zspage);
1fc6e27d 725 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
726
727 if (inuse == 0)
728 fg = ZS_EMPTY;
1fc6e27d 729 else if (inuse == objs_per_zspage)
61989a80 730 fg = ZS_FULL;
1fc6e27d 731 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
732 fg = ZS_ALMOST_EMPTY;
733 else
734 fg = ZS_ALMOST_FULL;
735
736 return fg;
737}
738
c3e3e88a
NC
739/*
740 * Each size class maintains various freelists and zspages are assigned
741 * to one of these freelists based on the number of live objects they
742 * have. This functions inserts the given zspage into the freelist
743 * identified by <class, fullness_group>.
744 */
251cbb95 745static void insert_zspage(struct size_class *class,
3783689a
MK
746 struct zspage *zspage,
747 enum fullness_group fullness)
61989a80 748{
3783689a 749 struct zspage *head;
61989a80 750
3828a764 751 class_stat_inc(class, fullness, 1);
3783689a
MK
752 head = list_first_entry_or_null(&class->fullness_list[fullness],
753 struct zspage, list);
58f17117 754 /*
3783689a
MK
755 * We want to see more ZS_FULL pages and less almost empty/full.
756 * Put pages with higher ->inuse first.
58f17117 757 */
110ceb82
ML
758 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
759 list_add(&zspage->list, &head->list);
760 else
761 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
762}
763
c3e3e88a
NC
764/*
765 * This function removes the given zspage from the freelist identified
766 * by <class, fullness_group>.
767 */
251cbb95 768static void remove_zspage(struct size_class *class,
3783689a
MK
769 struct zspage *zspage,
770 enum fullness_group fullness)
61989a80 771{
3783689a 772 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 773
3783689a 774 list_del_init(&zspage->list);
3828a764 775 class_stat_dec(class, fullness, 1);
61989a80
NG
776}
777
c3e3e88a
NC
778/*
779 * Each size class maintains zspages in different fullness groups depending
780 * on the number of live objects they contain. When allocating or freeing
781 * objects, the fullness status of the page can change, say, from ALMOST_FULL
782 * to ALMOST_EMPTY when freeing an object. This function checks if such
783 * a status change has occurred for the given page and accordingly moves the
784 * page from the freelist of the old fullness group to that of the new
785 * fullness group.
786 */
c7806261 787static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 788 struct zspage *zspage)
61989a80
NG
789{
790 int class_idx;
61989a80
NG
791 enum fullness_group currfg, newfg;
792
3783689a
MK
793 get_zspage_mapping(zspage, &class_idx, &currfg);
794 newfg = get_fullness_group(class, zspage);
61989a80
NG
795 if (newfg == currfg)
796 goto out;
797
c4549b87
MK
798 remove_zspage(class, zspage, currfg);
799 insert_zspage(class, zspage, newfg);
3783689a 800 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
801out:
802 return newfg;
803}
804
805/*
806 * We have to decide on how many pages to link together
807 * to form a zspage for each size class. This is important
808 * to reduce wastage due to unusable space left at end of
809 * each zspage which is given as:
888fa374
YX
810 * wastage = Zp % class_size
811 * usage = Zp - wastage
61989a80
NG
812 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
813 *
814 * For example, for size class of 3/8 * PAGE_SIZE, we should
815 * link together 3 PAGE_SIZE sized pages to form a zspage
816 * since then we can perfectly fit in 8 such objects.
817 */
2e3b6154 818static int get_pages_per_zspage(int class_size)
61989a80
NG
819{
820 int i, max_usedpc = 0;
821 /* zspage order which gives maximum used size per KB */
822 int max_usedpc_order = 1;
823
84d4faab 824 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
825 int zspage_size;
826 int waste, usedpc;
827
828 zspage_size = i * PAGE_SIZE;
829 waste = zspage_size % class_size;
830 usedpc = (zspage_size - waste) * 100 / zspage_size;
831
832 if (usedpc > max_usedpc) {
833 max_usedpc = usedpc;
834 max_usedpc_order = i;
835 }
836 }
837
838 return max_usedpc_order;
839}
840
3783689a 841static struct zspage *get_zspage(struct page *page)
61989a80 842{
a6c5e0f7 843 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
844
845 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
846 return zspage;
61989a80
NG
847}
848
849static struct page *get_next_page(struct page *page)
850{
a41ec880
MK
851 struct zspage *zspage = get_zspage(page);
852
853 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
854 return NULL;
855
ffedd09f 856 return (struct page *)page->index;
61989a80
NG
857}
858
bfd093f5
MK
859/**
860 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 861 * @obj: the encoded object value
bfd093f5
MK
862 * @page: page object resides in zspage
863 * @obj_idx: object index
67296874 864 */
bfd093f5
MK
865static void obj_to_location(unsigned long obj, struct page **page,
866 unsigned int *obj_idx)
61989a80 867{
bfd093f5
MK
868 obj >>= OBJ_TAG_BITS;
869 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
870 *obj_idx = (obj & OBJ_INDEX_MASK);
871}
61989a80 872
67f1c9cd
MK
873static void obj_to_page(unsigned long obj, struct page **page)
874{
875 obj >>= OBJ_TAG_BITS;
876 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
877}
878
bfd093f5
MK
879/**
880 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
881 * @page: page object resides in zspage
882 * @obj_idx: object index
883 */
884static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
885{
886 unsigned long obj;
61989a80 887
312fcae2 888 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 889 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 890 obj <<= OBJ_TAG_BITS;
61989a80 891
bfd093f5 892 return obj;
61989a80
NG
893}
894
2e40e163
MK
895static unsigned long handle_to_obj(unsigned long handle)
896{
897 return *(unsigned long *)handle;
898}
899
3ae92ac2 900static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 901{
3ae92ac2 902 unsigned long handle;
a41ec880 903 struct zspage *zspage = get_zspage(page);
3ae92ac2 904
a41ec880 905 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 906 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 907 handle = page->index;
7b60a685 908 } else
3ae92ac2
MK
909 handle = *(unsigned long *)obj;
910
911 if (!(handle & OBJ_ALLOCATED_TAG))
912 return false;
913
914 *phandle = handle & ~OBJ_ALLOCATED_TAG;
915 return true;
312fcae2
MK
916}
917
f4477e90
NG
918static void reset_page(struct page *page)
919{
48b4800a 920 __ClearPageMovable(page);
18fd06bf 921 ClearPagePrivate(page);
f4477e90 922 set_page_private(page, 0);
48b4800a 923 page_mapcount_reset(page);
ffedd09f 924 page->index = 0;
48b4800a
MK
925}
926
4d0a5402 927static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
928{
929 struct page *cursor, *fail;
930
931 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
932 get_next_page(cursor)) {
933 if (!trylock_page(cursor)) {
934 fail = cursor;
935 goto unlock;
936 }
937 }
938
939 return 1;
940unlock:
941 for (cursor = get_first_page(zspage); cursor != fail; cursor =
942 get_next_page(cursor))
943 unlock_page(cursor);
944
945 return 0;
f4477e90
NG
946}
947
9997bc01
NP
948#ifdef CONFIG_ZPOOL
949/*
950 * Free all the deferred handles whose objects are freed in zs_free.
951 */
952static void free_handles(struct zs_pool *pool, struct zspage *zspage)
953{
954 unsigned long handle = (unsigned long)zspage->deferred_handles;
955
956 while (handle) {
957 unsigned long nxt_handle = handle_to_obj(handle);
958
959 cache_free_handle(pool, handle);
960 handle = nxt_handle;
961 }
962}
963#else
964static inline void free_handles(struct zs_pool *pool, struct zspage *zspage) {}
965#endif
966
48b4800a
MK
967static void __free_zspage(struct zs_pool *pool, struct size_class *class,
968 struct zspage *zspage)
61989a80 969{
3783689a 970 struct page *page, *next;
48b4800a
MK
971 enum fullness_group fg;
972 unsigned int class_idx;
973
974 get_zspage_mapping(zspage, &class_idx, &fg);
975
c0547d0b 976 assert_spin_locked(&pool->lock);
61989a80 977
3783689a 978 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 979 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 980
9997bc01
NP
981 /* Free all deferred handles from zs_free */
982 free_handles(pool, zspage);
983
48b4800a 984 next = page = get_first_page(zspage);
3783689a 985 do {
48b4800a
MK
986 VM_BUG_ON_PAGE(!PageLocked(page), page);
987 next = get_next_page(page);
3783689a 988 reset_page(page);
48b4800a 989 unlock_page(page);
91537fee 990 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
991 put_page(page);
992 page = next;
993 } while (page != NULL);
61989a80 994
3783689a 995 cache_free_zspage(pool, zspage);
48b4800a 996
3828a764 997 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
998 atomic_long_sub(class->pages_per_zspage,
999 &pool->pages_allocated);
1000}
1001
1002static void free_zspage(struct zs_pool *pool, struct size_class *class,
1003 struct zspage *zspage)
1004{
1005 VM_BUG_ON(get_zspage_inuse(zspage));
1006 VM_BUG_ON(list_empty(&zspage->list));
1007
b475d42d
MK
1008 /*
1009 * Since zs_free couldn't be sleepable, this function cannot call
1010 * lock_page. The page locks trylock_zspage got will be released
1011 * by __free_zspage.
1012 */
48b4800a
MK
1013 if (!trylock_zspage(zspage)) {
1014 kick_deferred_free(pool);
1015 return;
1016 }
1017
1018 remove_zspage(class, zspage, ZS_EMPTY);
64f768c6
NP
1019#ifdef CONFIG_ZPOOL
1020 list_del(&zspage->lru);
1021#endif
48b4800a 1022 __free_zspage(pool, class, zspage);
61989a80
NG
1023}
1024
1025/* Initialize a newly allocated zspage */
3783689a 1026static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1027{
bfd093f5 1028 unsigned int freeobj = 1;
61989a80 1029 unsigned long off = 0;
48b4800a 1030 struct page *page = get_first_page(zspage);
830e4bc5 1031
61989a80
NG
1032 while (page) {
1033 struct page *next_page;
1034 struct link_free *link;
af4ee5e9 1035 void *vaddr;
61989a80 1036
3783689a 1037 set_first_obj_offset(page, off);
61989a80 1038
af4ee5e9
MK
1039 vaddr = kmap_atomic(page);
1040 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1041
1042 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1043 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1044 link += class->size / sizeof(*link);
61989a80
NG
1045 }
1046
1047 /*
1048 * We now come to the last (full or partial) object on this
1049 * page, which must point to the first object on the next
1050 * page (if present)
1051 */
1052 next_page = get_next_page(page);
bfd093f5 1053 if (next_page) {
3b1d9ca6 1054 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1055 } else {
1056 /*
3b1d9ca6 1057 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1058 * whether it's allocated object or not.
1059 */
01a6ad9a 1060 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1061 }
af4ee5e9 1062 kunmap_atomic(vaddr);
61989a80 1063 page = next_page;
5538c562 1064 off %= PAGE_SIZE;
61989a80 1065 }
bdb0af7c 1066
64f768c6
NP
1067#ifdef CONFIG_ZPOOL
1068 INIT_LIST_HEAD(&zspage->lru);
9997bc01
NP
1069 zspage->under_reclaim = false;
1070 zspage->deferred_handles = NULL;
64f768c6
NP
1071#endif
1072
bfd093f5 1073 set_freeobj(zspage, 0);
61989a80
NG
1074}
1075
48b4800a
MK
1076static void create_page_chain(struct size_class *class, struct zspage *zspage,
1077 struct page *pages[])
61989a80 1078{
bdb0af7c
MK
1079 int i;
1080 struct page *page;
1081 struct page *prev_page = NULL;
48b4800a 1082 int nr_pages = class->pages_per_zspage;
61989a80
NG
1083
1084 /*
1085 * Allocate individual pages and link them together as:
ffedd09f 1086 * 1. all pages are linked together using page->index
3783689a 1087 * 2. each sub-page point to zspage using page->private
61989a80 1088 *
3783689a 1089 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1090 * has this flag set).
61989a80 1091 */
bdb0af7c
MK
1092 for (i = 0; i < nr_pages; i++) {
1093 page = pages[i];
3783689a 1094 set_page_private(page, (unsigned long)zspage);
ffedd09f 1095 page->index = 0;
bdb0af7c 1096 if (i == 0) {
3783689a 1097 zspage->first_page = page;
a27545bf 1098 SetPagePrivate(page);
48b4800a
MK
1099 if (unlikely(class->objs_per_zspage == 1 &&
1100 class->pages_per_zspage == 1))
a41ec880 1101 SetZsHugePage(zspage);
3783689a 1102 } else {
ffedd09f 1103 prev_page->index = (unsigned long)page;
61989a80 1104 }
61989a80
NG
1105 prev_page = page;
1106 }
bdb0af7c 1107}
61989a80 1108
bdb0af7c
MK
1109/*
1110 * Allocate a zspage for the given size class
1111 */
3783689a
MK
1112static struct zspage *alloc_zspage(struct zs_pool *pool,
1113 struct size_class *class,
1114 gfp_t gfp)
bdb0af7c
MK
1115{
1116 int i;
bdb0af7c 1117 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1118 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119
1120 if (!zspage)
1121 return NULL;
1122
48b4800a
MK
1123 zspage->magic = ZSPAGE_MAGIC;
1124 migrate_lock_init(zspage);
61989a80 1125
bdb0af7c
MK
1126 for (i = 0; i < class->pages_per_zspage; i++) {
1127 struct page *page;
61989a80 1128
3783689a 1129 page = alloc_page(gfp);
bdb0af7c 1130 if (!page) {
91537fee
MK
1131 while (--i >= 0) {
1132 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1133 __free_page(pages[i]);
91537fee 1134 }
3783689a 1135 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1136 return NULL;
1137 }
91537fee
MK
1138
1139 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1140 pages[i] = page;
61989a80
NG
1141 }
1142
48b4800a 1143 create_page_chain(class, zspage, pages);
3783689a 1144 init_zspage(class, zspage);
68f2736a 1145 zspage->pool = pool;
bdb0af7c 1146
3783689a 1147 return zspage;
61989a80
NG
1148}
1149
3783689a 1150static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1151{
1152 int i;
3783689a 1153 struct zspage *zspage;
61989a80 1154
48b4800a 1155 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1156 zspage = list_first_entry_or_null(&class->fullness_list[i],
1157 struct zspage, list);
1158 if (zspage)
61989a80
NG
1159 break;
1160 }
1161
3783689a 1162 return zspage;
61989a80
NG
1163}
1164
f553646a
SJ
1165static inline int __zs_cpu_up(struct mapping_area *area)
1166{
1167 /*
1168 * Make sure we don't leak memory if a cpu UP notification
1169 * and zs_init() race and both call zs_cpu_up() on the same cpu
1170 */
1171 if (area->vm_buf)
1172 return 0;
40f9fb8c 1173 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1174 if (!area->vm_buf)
1175 return -ENOMEM;
1176 return 0;
1177}
1178
1179static inline void __zs_cpu_down(struct mapping_area *area)
1180{
40f9fb8c 1181 kfree(area->vm_buf);
f553646a
SJ
1182 area->vm_buf = NULL;
1183}
1184
1185static void *__zs_map_object(struct mapping_area *area,
1186 struct page *pages[2], int off, int size)
5f601902 1187{
5f601902
SJ
1188 int sizes[2];
1189 void *addr;
f553646a 1190 char *buf = area->vm_buf;
5f601902 1191
f553646a
SJ
1192 /* disable page faults to match kmap_atomic() return conditions */
1193 pagefault_disable();
1194
1195 /* no read fastpath */
1196 if (area->vm_mm == ZS_MM_WO)
1197 goto out;
5f601902
SJ
1198
1199 sizes[0] = PAGE_SIZE - off;
1200 sizes[1] = size - sizes[0];
1201
5f601902
SJ
1202 /* copy object to per-cpu buffer */
1203 addr = kmap_atomic(pages[0]);
1204 memcpy(buf, addr + off, sizes[0]);
1205 kunmap_atomic(addr);
1206 addr = kmap_atomic(pages[1]);
1207 memcpy(buf + sizes[0], addr, sizes[1]);
1208 kunmap_atomic(addr);
f553646a
SJ
1209out:
1210 return area->vm_buf;
5f601902
SJ
1211}
1212
f553646a
SJ
1213static void __zs_unmap_object(struct mapping_area *area,
1214 struct page *pages[2], int off, int size)
5f601902 1215{
5f601902
SJ
1216 int sizes[2];
1217 void *addr;
2e40e163 1218 char *buf;
5f601902 1219
f553646a
SJ
1220 /* no write fastpath */
1221 if (area->vm_mm == ZS_MM_RO)
1222 goto out;
5f601902 1223
7b60a685 1224 buf = area->vm_buf;
a82cbf07
YX
1225 buf = buf + ZS_HANDLE_SIZE;
1226 size -= ZS_HANDLE_SIZE;
1227 off += ZS_HANDLE_SIZE;
2e40e163 1228
5f601902
SJ
1229 sizes[0] = PAGE_SIZE - off;
1230 sizes[1] = size - sizes[0];
1231
1232 /* copy per-cpu buffer to object */
1233 addr = kmap_atomic(pages[0]);
1234 memcpy(addr + off, buf, sizes[0]);
1235 kunmap_atomic(addr);
1236 addr = kmap_atomic(pages[1]);
1237 memcpy(addr, buf + sizes[0], sizes[1]);
1238 kunmap_atomic(addr);
f553646a
SJ
1239
1240out:
1241 /* enable page faults to match kunmap_atomic() return conditions */
1242 pagefault_enable();
5f601902 1243}
61989a80 1244
215c89d0 1245static int zs_cpu_prepare(unsigned int cpu)
61989a80 1246{
61989a80
NG
1247 struct mapping_area *area;
1248
215c89d0
SAS
1249 area = &per_cpu(zs_map_area, cpu);
1250 return __zs_cpu_up(area);
61989a80
NG
1251}
1252
215c89d0 1253static int zs_cpu_dead(unsigned int cpu)
61989a80 1254{
215c89d0 1255 struct mapping_area *area;
40f9fb8c 1256
215c89d0
SAS
1257 area = &per_cpu(zs_map_area, cpu);
1258 __zs_cpu_down(area);
1259 return 0;
b1b00a5b
SS
1260}
1261
64d90465
GM
1262static bool can_merge(struct size_class *prev, int pages_per_zspage,
1263 int objs_per_zspage)
9eec4cd5 1264{
64d90465
GM
1265 if (prev->pages_per_zspage == pages_per_zspage &&
1266 prev->objs_per_zspage == objs_per_zspage)
1267 return true;
9eec4cd5 1268
64d90465 1269 return false;
9eec4cd5
JK
1270}
1271
3783689a 1272static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1273{
3783689a 1274 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1275}
7c2af309
AR
1276
1277/**
1278 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1279 * that hold objects of the provided size.
1280 * @pool: zsmalloc pool to use
1281 * @size: object size
1282 *
1283 * Context: Any context.
1284 *
1285 * Return: the index of the zsmalloc &size_class that hold objects of the
1286 * provided size.
1287 */
1288unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1289{
1290 struct size_class *class;
1291
1292 class = pool->size_class[get_size_class_index(size)];
1293
1294 return class->index;
1295}
1296EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1297
66cdef66
GM
1298unsigned long zs_get_total_pages(struct zs_pool *pool)
1299{
1300 return atomic_long_read(&pool->pages_allocated);
1301}
1302EXPORT_SYMBOL_GPL(zs_get_total_pages);
1303
4bbc0bc0 1304/**
66cdef66
GM
1305 * zs_map_object - get address of allocated object from handle.
1306 * @pool: pool from which the object was allocated
1307 * @handle: handle returned from zs_malloc
f0953a1b 1308 * @mm: mapping mode to use
4bbc0bc0 1309 *
66cdef66
GM
1310 * Before using an object allocated from zs_malloc, it must be mapped using
1311 * this function. When done with the object, it must be unmapped using
1312 * zs_unmap_object.
4bbc0bc0 1313 *
66cdef66
GM
1314 * Only one object can be mapped per cpu at a time. There is no protection
1315 * against nested mappings.
1316 *
1317 * This function returns with preemption and page faults disabled.
4bbc0bc0 1318 */
66cdef66
GM
1319void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1320 enum zs_mapmode mm)
61989a80 1321{
3783689a 1322 struct zspage *zspage;
66cdef66 1323 struct page *page;
bfd093f5
MK
1324 unsigned long obj, off;
1325 unsigned int obj_idx;
61989a80 1326
66cdef66
GM
1327 struct size_class *class;
1328 struct mapping_area *area;
1329 struct page *pages[2];
2e40e163 1330 void *ret;
61989a80 1331
9eec4cd5 1332 /*
66cdef66
GM
1333 * Because we use per-cpu mapping areas shared among the
1334 * pools/users, we can't allow mapping in interrupt context
1335 * because it can corrupt another users mappings.
9eec4cd5 1336 */
1aedcafb 1337 BUG_ON(in_interrupt());
61989a80 1338
b475d42d 1339 /* It guarantees it can get zspage from handle safely */
c0547d0b 1340 spin_lock(&pool->lock);
2e40e163
MK
1341 obj = handle_to_obj(handle);
1342 obj_to_location(obj, &page, &obj_idx);
3783689a 1343 zspage = get_zspage(page);
48b4800a 1344
64f768c6
NP
1345#ifdef CONFIG_ZPOOL
1346 /*
1347 * Move the zspage to front of pool's LRU.
1348 *
1349 * Note that this is swap-specific, so by definition there are no ongoing
1350 * accesses to the memory while the page is swapped out that would make
1351 * it "hot". A new entry is hot, then ages to the tail until it gets either
1352 * written back or swaps back in.
1353 *
1354 * Furthermore, map is also called during writeback. We must not put an
1355 * isolated page on the LRU mid-reclaim.
1356 *
1357 * As a result, only update the LRU when the page is mapped for write
1358 * when it's first instantiated.
1359 *
1360 * This is a deviation from the other backends, which perform this update
1361 * in the allocation function (zbud_alloc, z3fold_alloc).
1362 */
1363 if (mm == ZS_MM_WO) {
1364 if (!list_empty(&zspage->lru))
1365 list_del(&zspage->lru);
1366 list_add(&zspage->lru, &pool->lru);
1367 }
1368#endif
1369
b475d42d 1370 /*
c0547d0b 1371 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1372 * is too heavy since callers would take some time until they calls
1373 * zs_unmap_object API so delegate the locking from class to zspage
1374 * which is smaller granularity.
1375 */
48b4800a 1376 migrate_read_lock(zspage);
c0547d0b 1377 spin_unlock(&pool->lock);
48b4800a 1378
67f1c9cd 1379 class = zspage_class(pool, zspage);
bfd093f5 1380 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1381
a3726599
MG
1382 local_lock(&zs_map_area.lock);
1383 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1384 area->vm_mm = mm;
1385 if (off + class->size <= PAGE_SIZE) {
1386 /* this object is contained entirely within a page */
1387 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1388 ret = area->vm_addr + off;
1389 goto out;
61989a80
NG
1390 }
1391
66cdef66
GM
1392 /* this object spans two pages */
1393 pages[0] = page;
1394 pages[1] = get_next_page(page);
1395 BUG_ON(!pages[1]);
9eec4cd5 1396
2e40e163
MK
1397 ret = __zs_map_object(area, pages, off, class->size);
1398out:
a41ec880 1399 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1400 ret += ZS_HANDLE_SIZE;
1401
1402 return ret;
61989a80 1403}
66cdef66 1404EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1405
66cdef66 1406void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1407{
3783689a 1408 struct zspage *zspage;
66cdef66 1409 struct page *page;
bfd093f5
MK
1410 unsigned long obj, off;
1411 unsigned int obj_idx;
61989a80 1412
66cdef66
GM
1413 struct size_class *class;
1414 struct mapping_area *area;
9eec4cd5 1415
2e40e163
MK
1416 obj = handle_to_obj(handle);
1417 obj_to_location(obj, &page, &obj_idx);
3783689a 1418 zspage = get_zspage(page);
67f1c9cd 1419 class = zspage_class(pool, zspage);
bfd093f5 1420 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1421
66cdef66
GM
1422 area = this_cpu_ptr(&zs_map_area);
1423 if (off + class->size <= PAGE_SIZE)
1424 kunmap_atomic(area->vm_addr);
1425 else {
1426 struct page *pages[2];
40f9fb8c 1427
66cdef66
GM
1428 pages[0] = page;
1429 pages[1] = get_next_page(page);
1430 BUG_ON(!pages[1]);
1431
1432 __zs_unmap_object(area, pages, off, class->size);
1433 }
a3726599 1434 local_unlock(&zs_map_area.lock);
48b4800a
MK
1435
1436 migrate_read_unlock(zspage);
61989a80 1437}
66cdef66 1438EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1439
010b495e
SS
1440/**
1441 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1442 * zsmalloc &size_class.
1443 * @pool: zsmalloc pool to use
1444 *
1445 * The function returns the size of the first huge class - any object of equal
1446 * or bigger size will be stored in zspage consisting of a single physical
1447 * page.
1448 *
1449 * Context: Any context.
1450 *
1451 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1452 */
1453size_t zs_huge_class_size(struct zs_pool *pool)
1454{
1455 return huge_class_size;
1456}
1457EXPORT_SYMBOL_GPL(zs_huge_class_size);
1458
0a5f079b 1459static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1460 struct zspage *zspage, unsigned long handle)
c7806261 1461{
bfd093f5 1462 int i, nr_page, offset;
c7806261
MK
1463 unsigned long obj;
1464 struct link_free *link;
0a5f079b 1465 struct size_class *class;
c7806261
MK
1466
1467 struct page *m_page;
bfd093f5 1468 unsigned long m_offset;
c7806261
MK
1469 void *vaddr;
1470
0a5f079b 1471 class = pool->size_class[zspage->class];
312fcae2 1472 handle |= OBJ_ALLOCATED_TAG;
3783689a 1473 obj = get_freeobj(zspage);
bfd093f5
MK
1474
1475 offset = obj * class->size;
1476 nr_page = offset >> PAGE_SHIFT;
1477 m_offset = offset & ~PAGE_MASK;
1478 m_page = get_first_page(zspage);
1479
1480 for (i = 0; i < nr_page; i++)
1481 m_page = get_next_page(m_page);
c7806261
MK
1482
1483 vaddr = kmap_atomic(m_page);
1484 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1485 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1486 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1487 /* record handle in the header of allocated chunk */
1488 link->handle = handle;
1489 else
3783689a
MK
1490 /* record handle to page->index */
1491 zspage->first_page->index = handle;
1492
c7806261 1493 kunmap_atomic(vaddr);
3783689a 1494 mod_zspage_inuse(zspage, 1);
c7806261 1495
bfd093f5
MK
1496 obj = location_to_obj(m_page, obj);
1497
c7806261
MK
1498 return obj;
1499}
1500
1501
61989a80
NG
1502/**
1503 * zs_malloc - Allocate block of given size from pool.
1504 * @pool: pool to allocate from
1505 * @size: size of block to allocate
fd854463 1506 * @gfp: gfp flags when allocating object
61989a80 1507 *
00a61d86 1508 * On success, handle to the allocated object is returned,
c7e6f17b 1509 * otherwise an ERR_PTR().
61989a80
NG
1510 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1511 */
d0d8da2d 1512unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1513{
2e40e163 1514 unsigned long handle, obj;
61989a80 1515 struct size_class *class;
48b4800a 1516 enum fullness_group newfg;
3783689a 1517 struct zspage *zspage;
61989a80 1518
7b60a685 1519 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1520 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1521
3783689a 1522 handle = cache_alloc_handle(pool, gfp);
2e40e163 1523 if (!handle)
c7e6f17b 1524 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1525
2e40e163
MK
1526 /* extra space in chunk to keep the handle */
1527 size += ZS_HANDLE_SIZE;
9eec4cd5 1528 class = pool->size_class[get_size_class_index(size)];
61989a80 1529
c0547d0b
NP
1530 /* pool->lock effectively protects the zpage migration */
1531 spin_lock(&pool->lock);
3783689a 1532 zspage = find_get_zspage(class);
48b4800a 1533 if (likely(zspage)) {
0a5f079b 1534 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1535 /* Now move the zspage to another fullness group, if required */
1536 fix_fullness_group(class, zspage);
1537 record_obj(handle, obj);
0a5f079b 1538 class_stat_inc(class, OBJ_USED, 1);
c0547d0b 1539 spin_unlock(&pool->lock);
61989a80 1540
48b4800a
MK
1541 return handle;
1542 }
0f050d99 1543
c0547d0b 1544 spin_unlock(&pool->lock);
48b4800a
MK
1545
1546 zspage = alloc_zspage(pool, class, gfp);
1547 if (!zspage) {
1548 cache_free_handle(pool, handle);
c7e6f17b 1549 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1550 }
1551
c0547d0b 1552 spin_lock(&pool->lock);
0a5f079b 1553 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1554 newfg = get_fullness_group(class, zspage);
1555 insert_zspage(class, zspage, newfg);
1556 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1557 record_obj(handle, obj);
48b4800a
MK
1558 atomic_long_add(class->pages_per_zspage,
1559 &pool->pages_allocated);
3828a764 1560 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1561 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1562
1563 /* We completely set up zspage so mark them as movable */
1564 SetZsPageMovable(pool, zspage);
c0547d0b 1565 spin_unlock(&pool->lock);
61989a80 1566
2e40e163 1567 return handle;
61989a80
NG
1568}
1569EXPORT_SYMBOL_GPL(zs_malloc);
1570
0a5f079b 1571static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1572{
1573 struct link_free *link;
3783689a
MK
1574 struct zspage *zspage;
1575 struct page *f_page;
bfd093f5
MK
1576 unsigned long f_offset;
1577 unsigned int f_objidx;
af4ee5e9 1578 void *vaddr;
61989a80 1579
2e40e163 1580 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1581 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1582 zspage = get_zspage(f_page);
61989a80 1583
c7806261 1584 vaddr = kmap_atomic(f_page);
61989a80
NG
1585
1586 /* Insert this object in containing zspage's freelist */
af4ee5e9 1587 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1588 if (likely(!ZsHugePage(zspage)))
1589 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1590 else
1591 f_page->index = 0;
af4ee5e9 1592 kunmap_atomic(vaddr);
bfd093f5 1593 set_freeobj(zspage, f_objidx);
3783689a 1594 mod_zspage_inuse(zspage, -1);
c7806261
MK
1595}
1596
1597void zs_free(struct zs_pool *pool, unsigned long handle)
1598{
3783689a
MK
1599 struct zspage *zspage;
1600 struct page *f_page;
bfd093f5 1601 unsigned long obj;
c7806261
MK
1602 struct size_class *class;
1603 enum fullness_group fullness;
1604
a5d21721 1605 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1606 return;
1607
b475d42d 1608 /*
c0547d0b 1609 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1610 * so it's safe to get the page from handle.
1611 */
c0547d0b 1612 spin_lock(&pool->lock);
c7806261 1613 obj = handle_to_obj(handle);
67f1c9cd 1614 obj_to_page(obj, &f_page);
3783689a 1615 zspage = get_zspage(f_page);
67f1c9cd 1616 class = zspage_class(pool, zspage);
b475d42d 1617
0a5f079b
MK
1618 obj_free(class->size, obj);
1619 class_stat_dec(class, OBJ_USED, 1);
9997bc01
NP
1620
1621#ifdef CONFIG_ZPOOL
1622 if (zspage->under_reclaim) {
1623 /*
1624 * Reclaim needs the handles during writeback. It'll free
1625 * them along with the zspage when it's done with them.
1626 *
1627 * Record current deferred handle at the memory location
1628 * whose address is given by handle.
1629 */
1630 record_obj(handle, (unsigned long)zspage->deferred_handles);
1631 zspage->deferred_handles = (unsigned long *)handle;
1632 spin_unlock(&pool->lock);
1633 return;
1634 }
1635#endif
3783689a 1636 fullness = fix_fullness_group(class, zspage);
9997bc01
NP
1637 if (fullness == ZS_EMPTY)
1638 free_zspage(pool, class, zspage);
48b4800a 1639
c0547d0b 1640 spin_unlock(&pool->lock);
3783689a 1641 cache_free_handle(pool, handle);
312fcae2
MK
1642}
1643EXPORT_SYMBOL_GPL(zs_free);
1644
251cbb95
MK
1645static void zs_object_copy(struct size_class *class, unsigned long dst,
1646 unsigned long src)
312fcae2
MK
1647{
1648 struct page *s_page, *d_page;
bfd093f5 1649 unsigned int s_objidx, d_objidx;
312fcae2
MK
1650 unsigned long s_off, d_off;
1651 void *s_addr, *d_addr;
1652 int s_size, d_size, size;
1653 int written = 0;
1654
1655 s_size = d_size = class->size;
1656
1657 obj_to_location(src, &s_page, &s_objidx);
1658 obj_to_location(dst, &d_page, &d_objidx);
1659
bfd093f5
MK
1660 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1661 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1662
1663 if (s_off + class->size > PAGE_SIZE)
1664 s_size = PAGE_SIZE - s_off;
1665
1666 if (d_off + class->size > PAGE_SIZE)
1667 d_size = PAGE_SIZE - d_off;
1668
1669 s_addr = kmap_atomic(s_page);
1670 d_addr = kmap_atomic(d_page);
1671
1672 while (1) {
1673 size = min(s_size, d_size);
1674 memcpy(d_addr + d_off, s_addr + s_off, size);
1675 written += size;
1676
1677 if (written == class->size)
1678 break;
1679
495819ea
SS
1680 s_off += size;
1681 s_size -= size;
1682 d_off += size;
1683 d_size -= size;
1684
050a388b
AR
1685 /*
1686 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1687 * calls must occurs in reverse order of calls to kmap_atomic().
1688 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1689 * kunmap_atomic(d_addr). For more details see
1690 * Documentation/mm/highmem.rst.
050a388b 1691 */
495819ea 1692 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1693 kunmap_atomic(d_addr);
1694 kunmap_atomic(s_addr);
1695 s_page = get_next_page(s_page);
312fcae2
MK
1696 s_addr = kmap_atomic(s_page);
1697 d_addr = kmap_atomic(d_page);
1698 s_size = class->size - written;
1699 s_off = 0;
312fcae2
MK
1700 }
1701
495819ea 1702 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1703 kunmap_atomic(d_addr);
1704 d_page = get_next_page(d_page);
312fcae2
MK
1705 d_addr = kmap_atomic(d_page);
1706 d_size = class->size - written;
1707 d_off = 0;
312fcae2
MK
1708 }
1709 }
1710
1711 kunmap_atomic(d_addr);
1712 kunmap_atomic(s_addr);
1713}
1714
1715/*
1716 * Find alloced object in zspage from index object and
1717 * return handle.
1718 */
251cbb95 1719static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1720 struct page *page, int *obj_idx)
312fcae2 1721{
671f2fa8 1722 unsigned int offset;
cf675acb 1723 int index = *obj_idx;
312fcae2
MK
1724 unsigned long handle = 0;
1725 void *addr = kmap_atomic(page);
1726
3783689a 1727 offset = get_first_obj_offset(page);
312fcae2
MK
1728 offset += class->size * index;
1729
1730 while (offset < PAGE_SIZE) {
b475d42d
MK
1731 if (obj_allocated(page, addr + offset, &handle))
1732 break;
312fcae2
MK
1733
1734 offset += class->size;
1735 index++;
1736 }
1737
1738 kunmap_atomic(addr);
cf675acb
GM
1739
1740 *obj_idx = index;
1741
312fcae2
MK
1742 return handle;
1743}
1744
1745struct zs_compact_control {
3783689a 1746 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1747 struct page *s_page;
1748 /* Destination page for migration which should be a first page
1749 * of zspage. */
1750 struct page *d_page;
1751 /* Starting object index within @s_page which used for live object
1752 * in the subpage. */
41b88e14 1753 int obj_idx;
312fcae2
MK
1754};
1755
1756static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1757 struct zs_compact_control *cc)
1758{
1759 unsigned long used_obj, free_obj;
1760 unsigned long handle;
1761 struct page *s_page = cc->s_page;
1762 struct page *d_page = cc->d_page;
41b88e14 1763 int obj_idx = cc->obj_idx;
312fcae2
MK
1764 int ret = 0;
1765
1766 while (1) {
cf675acb 1767 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1768 if (!handle) {
1769 s_page = get_next_page(s_page);
1770 if (!s_page)
1771 break;
41b88e14 1772 obj_idx = 0;
312fcae2
MK
1773 continue;
1774 }
1775
1776 /* Stop if there is no more space */
3783689a 1777 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1778 ret = -ENOMEM;
1779 break;
1780 }
1781
1782 used_obj = handle_to_obj(handle);
0a5f079b 1783 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1784 zs_object_copy(class, free_obj, used_obj);
41b88e14 1785 obj_idx++;
312fcae2 1786 record_obj(handle, free_obj);
0a5f079b 1787 obj_free(class->size, used_obj);
312fcae2
MK
1788 }
1789
1790 /* Remember last position in this iteration */
1791 cc->s_page = s_page;
41b88e14 1792 cc->obj_idx = obj_idx;
312fcae2
MK
1793
1794 return ret;
1795}
1796
3783689a 1797static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1798{
1799 int i;
3783689a
MK
1800 struct zspage *zspage;
1801 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1802
3783689a
MK
1803 if (!source) {
1804 fg[0] = ZS_ALMOST_FULL;
1805 fg[1] = ZS_ALMOST_EMPTY;
1806 }
1807
1808 for (i = 0; i < 2; i++) {
1809 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1810 struct zspage, list);
1811 if (zspage) {
1812 remove_zspage(class, zspage, fg[i]);
1813 return zspage;
312fcae2
MK
1814 }
1815 }
1816
3783689a 1817 return zspage;
312fcae2
MK
1818}
1819
860c707d 1820/*
3783689a 1821 * putback_zspage - add @zspage into right class's fullness list
860c707d 1822 * @class: destination class
3783689a 1823 * @zspage: target page
860c707d 1824 *
3783689a 1825 * Return @zspage's fullness_group
860c707d 1826 */
4aa409ca 1827static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1828 struct zspage *zspage)
312fcae2 1829{
312fcae2
MK
1830 enum fullness_group fullness;
1831
3783689a
MK
1832 fullness = get_fullness_group(class, zspage);
1833 insert_zspage(class, zspage, fullness);
1834 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1835
860c707d 1836 return fullness;
61989a80 1837}
312fcae2 1838
9997bc01 1839#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
4d0a5402
CIK
1840/*
1841 * To prevent zspage destroy during migration, zspage freeing should
1842 * hold locks of all pages in the zspage.
1843 */
1844static void lock_zspage(struct zspage *zspage)
1845{
2505a981 1846 struct page *curr_page, *page;
4d0a5402 1847
2505a981
SA
1848 /*
1849 * Pages we haven't locked yet can be migrated off the list while we're
1850 * trying to lock them, so we need to be careful and only attempt to
1851 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1852 * may no longer belong to the zspage. This means that we may wait for
1853 * the wrong page to unlock, so we must take a reference to the page
1854 * prior to waiting for it to unlock outside migrate_read_lock().
1855 */
1856 while (1) {
1857 migrate_read_lock(zspage);
1858 page = get_first_page(zspage);
1859 if (trylock_page(page))
1860 break;
1861 get_page(page);
1862 migrate_read_unlock(zspage);
1863 wait_on_page_locked(page);
1864 put_page(page);
1865 }
1866
1867 curr_page = page;
1868 while ((page = get_next_page(curr_page))) {
1869 if (trylock_page(page)) {
1870 curr_page = page;
1871 } else {
1872 get_page(page);
1873 migrate_read_unlock(zspage);
1874 wait_on_page_locked(page);
1875 put_page(page);
1876 migrate_read_lock(zspage);
1877 }
1878 }
1879 migrate_read_unlock(zspage);
4d0a5402 1880}
9997bc01
NP
1881#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1882
1883#ifdef CONFIG_ZPOOL
1884/*
1885 * Unlocks all the pages of the zspage.
1886 *
1887 * pool->lock must be held before this function is called
1888 * to prevent the underlying pages from migrating.
1889 */
1890static void unlock_zspage(struct zspage *zspage)
1891{
1892 struct page *page = get_first_page(zspage);
1893
1894 do {
1895 unlock_page(page);
1896 } while ((page = get_next_page(page)) != NULL);
1897}
1898#endif /* CONFIG_ZPOOL */
4d0a5402 1899
48b4800a
MK
1900static void migrate_lock_init(struct zspage *zspage)
1901{
1902 rwlock_init(&zspage->lock);
1903}
1904
cfc451cf 1905static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1906{
1907 read_lock(&zspage->lock);
1908}
1909
8a374ccc 1910static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1911{
1912 read_unlock(&zspage->lock);
1913}
1914
9997bc01 1915#ifdef CONFIG_COMPACTION
48b4800a
MK
1916static void migrate_write_lock(struct zspage *zspage)
1917{
1918 write_lock(&zspage->lock);
1919}
1920
b475d42d
MK
1921static void migrate_write_lock_nested(struct zspage *zspage)
1922{
1923 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1924}
1925
48b4800a
MK
1926static void migrate_write_unlock(struct zspage *zspage)
1927{
1928 write_unlock(&zspage->lock);
1929}
1930
1931/* Number of isolated subpage for *page migration* in this zspage */
1932static void inc_zspage_isolation(struct zspage *zspage)
1933{
1934 zspage->isolated++;
1935}
1936
1937static void dec_zspage_isolation(struct zspage *zspage)
1938{
c4549b87 1939 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1940 zspage->isolated--;
1941}
1942
68f2736a
MWO
1943static const struct movable_operations zsmalloc_mops;
1944
48b4800a
MK
1945static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1946 struct page *newpage, struct page *oldpage)
1947{
1948 struct page *page;
1949 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1950 int idx = 0;
1951
1952 page = get_first_page(zspage);
1953 do {
1954 if (page == oldpage)
1955 pages[idx] = newpage;
1956 else
1957 pages[idx] = page;
1958 idx++;
1959 } while ((page = get_next_page(page)) != NULL);
1960
1961 create_page_chain(class, zspage, pages);
1962 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1963 if (unlikely(ZsHugePage(zspage)))
48b4800a 1964 newpage->index = oldpage->index;
68f2736a 1965 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1966}
1967
4d0a5402 1968static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1969{
48b4800a 1970 struct zspage *zspage;
48b4800a
MK
1971
1972 /*
1973 * Page is locked so zspage couldn't be destroyed. For detail, look at
1974 * lock_zspage in free_zspage.
1975 */
1976 VM_BUG_ON_PAGE(!PageMovable(page), page);
1977 VM_BUG_ON_PAGE(PageIsolated(page), page);
1978
1979 zspage = get_zspage(page);
c4549b87 1980 migrate_write_lock(zspage);
48b4800a 1981 inc_zspage_isolation(zspage);
c4549b87 1982 migrate_write_unlock(zspage);
48b4800a
MK
1983
1984 return true;
1985}
1986
68f2736a
MWO
1987static int zs_page_migrate(struct page *newpage, struct page *page,
1988 enum migrate_mode mode)
48b4800a
MK
1989{
1990 struct zs_pool *pool;
1991 struct size_class *class;
48b4800a
MK
1992 struct zspage *zspage;
1993 struct page *dummy;
1994 void *s_addr, *d_addr, *addr;
671f2fa8 1995 unsigned int offset;
3ae92ac2 1996 unsigned long handle;
48b4800a
MK
1997 unsigned long old_obj, new_obj;
1998 unsigned int obj_idx;
48b4800a 1999
2916ecc0
JG
2000 /*
2001 * We cannot support the _NO_COPY case here, because copy needs to
2002 * happen under the zs lock, which does not work with
2003 * MIGRATE_SYNC_NO_COPY workflow.
2004 */
2005 if (mode == MIGRATE_SYNC_NO_COPY)
2006 return -EINVAL;
2007
48b4800a
MK
2008 VM_BUG_ON_PAGE(!PageMovable(page), page);
2009 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2010
68f2736a
MWO
2011 /* The page is locked, so this pointer must remain valid */
2012 zspage = get_zspage(page);
2013 pool = zspage->pool;
b475d42d
MK
2014
2015 /*
c0547d0b 2016 * The pool's lock protects the race between zpage migration
b475d42d
MK
2017 * and zs_free.
2018 */
c0547d0b 2019 spin_lock(&pool->lock);
67f1c9cd 2020 class = zspage_class(pool, zspage);
48b4800a 2021
b475d42d
MK
2022 /* the migrate_write_lock protects zpage access via zs_map_object */
2023 migrate_write_lock(zspage);
48b4800a 2024
b475d42d 2025 offset = get_first_obj_offset(page);
48b4800a 2026 s_addr = kmap_atomic(page);
48b4800a
MK
2027
2028 /*
2029 * Here, any user cannot access all objects in the zspage so let's move.
2030 */
2031 d_addr = kmap_atomic(newpage);
2032 memcpy(d_addr, s_addr, PAGE_SIZE);
2033 kunmap_atomic(d_addr);
2034
b475d42d 2035 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 2036 addr += class->size) {
3ae92ac2 2037 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
2038
2039 old_obj = handle_to_obj(handle);
2040 obj_to_location(old_obj, &dummy, &obj_idx);
2041 new_obj = (unsigned long)location_to_obj(newpage,
2042 obj_idx);
48b4800a
MK
2043 record_obj(handle, new_obj);
2044 }
2045 }
b475d42d 2046 kunmap_atomic(s_addr);
48b4800a
MK
2047
2048 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
2049 /*
2050 * Since we complete the data copy and set up new zspage structure,
c0547d0b 2051 * it's okay to release the pool's lock.
b475d42d 2052 */
c0547d0b 2053 spin_unlock(&pool->lock);
48b4800a 2054 dec_zspage_isolation(zspage);
b475d42d 2055 migrate_write_unlock(zspage);
48b4800a 2056
b475d42d 2057 get_page(newpage);
ac8f05da
CM
2058 if (page_zone(newpage) != page_zone(page)) {
2059 dec_zone_page_state(page, NR_ZSPAGES);
2060 inc_zone_page_state(newpage, NR_ZSPAGES);
2061 }
2062
48b4800a
MK
2063 reset_page(page);
2064 put_page(page);
48b4800a 2065
b475d42d 2066 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
2067}
2068
4d0a5402 2069static void zs_page_putback(struct page *page)
48b4800a 2070{
48b4800a
MK
2071 struct zspage *zspage;
2072
2073 VM_BUG_ON_PAGE(!PageMovable(page), page);
2074 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2075
2076 zspage = get_zspage(page);
c4549b87 2077 migrate_write_lock(zspage);
48b4800a 2078 dec_zspage_isolation(zspage);
c4549b87 2079 migrate_write_unlock(zspage);
48b4800a
MK
2080}
2081
68f2736a 2082static const struct movable_operations zsmalloc_mops = {
48b4800a 2083 .isolate_page = zs_page_isolate,
68f2736a 2084 .migrate_page = zs_page_migrate,
48b4800a
MK
2085 .putback_page = zs_page_putback,
2086};
2087
48b4800a
MK
2088/*
2089 * Caller should hold page_lock of all pages in the zspage
2090 * In here, we cannot use zspage meta data.
2091 */
2092static void async_free_zspage(struct work_struct *work)
2093{
2094 int i;
2095 struct size_class *class;
2096 unsigned int class_idx;
2097 enum fullness_group fullness;
2098 struct zspage *zspage, *tmp;
2099 LIST_HEAD(free_pages);
2100 struct zs_pool *pool = container_of(work, struct zs_pool,
2101 free_work);
2102
cf8e0fed 2103 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2104 class = pool->size_class[i];
2105 if (class->index != i)
2106 continue;
2107
c0547d0b 2108 spin_lock(&pool->lock);
48b4800a 2109 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
c0547d0b 2110 spin_unlock(&pool->lock);
48b4800a
MK
2111 }
2112
48b4800a
MK
2113 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2114 list_del(&zspage->list);
2115 lock_zspage(zspage);
2116
2117 get_zspage_mapping(zspage, &class_idx, &fullness);
2118 VM_BUG_ON(fullness != ZS_EMPTY);
2119 class = pool->size_class[class_idx];
c0547d0b 2120 spin_lock(&pool->lock);
64f768c6
NP
2121#ifdef CONFIG_ZPOOL
2122 list_del(&zspage->lru);
2123#endif
33848337 2124 __free_zspage(pool, class, zspage);
c0547d0b 2125 spin_unlock(&pool->lock);
48b4800a
MK
2126 }
2127};
2128
2129static void kick_deferred_free(struct zs_pool *pool)
2130{
2131 schedule_work(&pool->free_work);
2132}
2133
68f2736a
MWO
2134static void zs_flush_migration(struct zs_pool *pool)
2135{
2136 flush_work(&pool->free_work);
2137}
2138
48b4800a
MK
2139static void init_deferred_free(struct zs_pool *pool)
2140{
2141 INIT_WORK(&pool->free_work, async_free_zspage);
2142}
2143
2144static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2145{
2146 struct page *page = get_first_page(zspage);
2147
2148 do {
2149 WARN_ON(!trylock_page(page));
68f2736a 2150 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2151 unlock_page(page);
2152 } while ((page = get_next_page(page)) != NULL);
2153}
68f2736a
MWO
2154#else
2155static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2156#endif
2157
04f05909
SS
2158/*
2159 *
2160 * Based on the number of unused allocated objects calculate
2161 * and return the number of pages that we can free.
04f05909
SS
2162 */
2163static unsigned long zs_can_compact(struct size_class *class)
2164{
2165 unsigned long obj_wasted;
44f43e99
SS
2166 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2167 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2168
44f43e99
SS
2169 if (obj_allocated <= obj_used)
2170 return 0;
04f05909 2171
44f43e99 2172 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2173 obj_wasted /= class->objs_per_zspage;
04f05909 2174
6cbf16b3 2175 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2176}
2177
23959281
RY
2178static unsigned long __zs_compact(struct zs_pool *pool,
2179 struct size_class *class)
312fcae2 2180{
312fcae2 2181 struct zs_compact_control cc;
3783689a
MK
2182 struct zspage *src_zspage;
2183 struct zspage *dst_zspage = NULL;
23959281 2184 unsigned long pages_freed = 0;
312fcae2 2185
c0547d0b
NP
2186 /*
2187 * protect the race between zpage migration and zs_free
2188 * as well as zpage allocation/free
2189 */
2190 spin_lock(&pool->lock);
3783689a 2191 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2192 /* protect someone accessing the zspage(i.e., zs_map_object) */
2193 migrate_write_lock(src_zspage);
312fcae2 2194
04f05909
SS
2195 if (!zs_can_compact(class))
2196 break;
2197
41b88e14 2198 cc.obj_idx = 0;
48b4800a 2199 cc.s_page = get_first_page(src_zspage);
312fcae2 2200
3783689a 2201 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2202 migrate_write_lock_nested(dst_zspage);
2203
48b4800a 2204 cc.d_page = get_first_page(dst_zspage);
312fcae2 2205 /*
0dc63d48
SS
2206 * If there is no more space in dst_page, resched
2207 * and see if anyone had allocated another zspage.
312fcae2
MK
2208 */
2209 if (!migrate_zspage(pool, class, &cc))
2210 break;
2211
4aa409ca 2212 putback_zspage(class, dst_zspage);
b475d42d
MK
2213 migrate_write_unlock(dst_zspage);
2214 dst_zspage = NULL;
c0547d0b 2215 if (spin_is_contended(&pool->lock))
b475d42d 2216 break;
312fcae2
MK
2217 }
2218
2219 /* Stop if we couldn't find slot */
3783689a 2220 if (dst_zspage == NULL)
312fcae2
MK
2221 break;
2222
4aa409ca 2223 putback_zspage(class, dst_zspage);
b475d42d
MK
2224 migrate_write_unlock(dst_zspage);
2225
4aa409ca 2226 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2227 migrate_write_unlock(src_zspage);
48b4800a 2228 free_zspage(pool, class, src_zspage);
23959281 2229 pages_freed += class->pages_per_zspage;
b475d42d
MK
2230 } else
2231 migrate_write_unlock(src_zspage);
c0547d0b 2232 spin_unlock(&pool->lock);
312fcae2 2233 cond_resched();
c0547d0b 2234 spin_lock(&pool->lock);
312fcae2
MK
2235 }
2236
b475d42d 2237 if (src_zspage) {
4aa409ca 2238 putback_zspage(class, src_zspage);
b475d42d
MK
2239 migrate_write_unlock(src_zspage);
2240 }
312fcae2 2241
c0547d0b 2242 spin_unlock(&pool->lock);
23959281
RY
2243
2244 return pages_freed;
312fcae2
MK
2245}
2246
2247unsigned long zs_compact(struct zs_pool *pool)
2248{
2249 int i;
312fcae2 2250 struct size_class *class;
23959281 2251 unsigned long pages_freed = 0;
312fcae2 2252
cf8e0fed 2253 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2254 class = pool->size_class[i];
312fcae2
MK
2255 if (class->index != i)
2256 continue;
23959281 2257 pages_freed += __zs_compact(pool, class);
312fcae2 2258 }
23959281 2259 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2260
23959281 2261 return pages_freed;
312fcae2
MK
2262}
2263EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2264
7d3f3938
SS
2265void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2266{
2267 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2268}
2269EXPORT_SYMBOL_GPL(zs_pool_stats);
2270
ab9d306d
SS
2271static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2272 struct shrink_control *sc)
2273{
2274 unsigned long pages_freed;
2275 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2276 shrinker);
2277
ab9d306d
SS
2278 /*
2279 * Compact classes and calculate compaction delta.
2280 * Can run concurrently with a manually triggered
2281 * (by user) compaction.
2282 */
23959281 2283 pages_freed = zs_compact(pool);
ab9d306d
SS
2284
2285 return pages_freed ? pages_freed : SHRINK_STOP;
2286}
2287
2288static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2289 struct shrink_control *sc)
2290{
2291 int i;
2292 struct size_class *class;
2293 unsigned long pages_to_free = 0;
2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295 shrinker);
2296
cf8e0fed 2297 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2298 class = pool->size_class[i];
ab9d306d
SS
2299 if (class->index != i)
2300 continue;
2301
ab9d306d 2302 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2303 }
2304
2305 return pages_to_free;
2306}
2307
2308static void zs_unregister_shrinker(struct zs_pool *pool)
2309{
93144ca3 2310 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2311}
2312
2313static int zs_register_shrinker(struct zs_pool *pool)
2314{
2315 pool->shrinker.scan_objects = zs_shrinker_scan;
2316 pool->shrinker.count_objects = zs_shrinker_count;
2317 pool->shrinker.batch = 0;
2318 pool->shrinker.seeks = DEFAULT_SEEKS;
2319
e33c267a
RG
2320 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2321 pool->name);
ab9d306d
SS
2322}
2323
00a61d86 2324/**
66cdef66 2325 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2326 * @name: pool name to be created
166cfda7 2327 *
66cdef66
GM
2328 * This function must be called before anything when using
2329 * the zsmalloc allocator.
166cfda7 2330 *
66cdef66
GM
2331 * On success, a pointer to the newly created pool is returned,
2332 * otherwise NULL.
396b7fd6 2333 */
d0d8da2d 2334struct zs_pool *zs_create_pool(const char *name)
61989a80 2335{
66cdef66
GM
2336 int i;
2337 struct zs_pool *pool;
2338 struct size_class *prev_class = NULL;
61989a80 2339
66cdef66
GM
2340 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2341 if (!pool)
2342 return NULL;
61989a80 2343
48b4800a 2344 init_deferred_free(pool);
c0547d0b 2345 spin_lock_init(&pool->lock);
61989a80 2346
2e40e163
MK
2347 pool->name = kstrdup(name, GFP_KERNEL);
2348 if (!pool->name)
2349 goto err;
2350
3783689a 2351 if (create_cache(pool))
2e40e163
MK
2352 goto err;
2353
c60369f0 2354 /*
399d8eeb 2355 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2356 * for merging should be larger or equal to current size.
c60369f0 2357 */
cf8e0fed 2358 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2359 int size;
2360 int pages_per_zspage;
64d90465 2361 int objs_per_zspage;
66cdef66 2362 struct size_class *class;
3783689a 2363 int fullness = 0;
c60369f0 2364
66cdef66
GM
2365 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2366 if (size > ZS_MAX_ALLOC_SIZE)
2367 size = ZS_MAX_ALLOC_SIZE;
2368 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2369 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2370
010b495e
SS
2371 /*
2372 * We iterate from biggest down to smallest classes,
2373 * so huge_class_size holds the size of the first huge
2374 * class. Any object bigger than or equal to that will
2375 * endup in the huge class.
2376 */
2377 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2378 !huge_class_size) {
2379 huge_class_size = size;
2380 /*
2381 * The object uses ZS_HANDLE_SIZE bytes to store the
2382 * handle. We need to subtract it, because zs_malloc()
2383 * unconditionally adds handle size before it performs
2384 * size class search - so object may be smaller than
2385 * huge class size, yet it still can end up in the huge
2386 * class because it grows by ZS_HANDLE_SIZE extra bytes
2387 * right before class lookup.
2388 */
2389 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2390 }
2391
66cdef66
GM
2392 /*
2393 * size_class is used for normal zsmalloc operation such
2394 * as alloc/free for that size. Although it is natural that we
2395 * have one size_class for each size, there is a chance that we
2396 * can get more memory utilization if we use one size_class for
2397 * many different sizes whose size_class have same
2398 * characteristics. So, we makes size_class point to
2399 * previous size_class if possible.
2400 */
2401 if (prev_class) {
64d90465 2402 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2403 pool->size_class[i] = prev_class;
2404 continue;
2405 }
2406 }
2407
2408 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2409 if (!class)
2410 goto err;
2411
2412 class->size = size;
2413 class->index = i;
2414 class->pages_per_zspage = pages_per_zspage;
64d90465 2415 class->objs_per_zspage = objs_per_zspage;
66cdef66 2416 pool->size_class[i] = class;
48b4800a
MK
2417 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2418 fullness++)
3783689a 2419 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2420
2421 prev_class = class;
61989a80
NG
2422 }
2423
d34f6157
DS
2424 /* debug only, don't abort if it fails */
2425 zs_pool_stat_create(pool, name);
0f050d99 2426
ab9d306d 2427 /*
93144ca3
AK
2428 * Not critical since shrinker is only used to trigger internal
2429 * defragmentation of the pool which is pretty optional thing. If
2430 * registration fails we still can use the pool normally and user can
2431 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2432 */
93144ca3
AK
2433 zs_register_shrinker(pool);
2434
64f768c6
NP
2435#ifdef CONFIG_ZPOOL
2436 INIT_LIST_HEAD(&pool->lru);
2437#endif
2438
66cdef66
GM
2439 return pool;
2440
2441err:
2442 zs_destroy_pool(pool);
2443 return NULL;
61989a80 2444}
66cdef66 2445EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2446
66cdef66 2447void zs_destroy_pool(struct zs_pool *pool)
61989a80 2448{
66cdef66 2449 int i;
61989a80 2450
ab9d306d 2451 zs_unregister_shrinker(pool);
68f2736a 2452 zs_flush_migration(pool);
0f050d99
GM
2453 zs_pool_stat_destroy(pool);
2454
cf8e0fed 2455 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2456 int fg;
2457 struct size_class *class = pool->size_class[i];
61989a80 2458
4249a05f
AR
2459 if (!class)
2460 continue;
2461
66cdef66
GM
2462 if (class->index != i)
2463 continue;
61989a80 2464
48b4800a 2465 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2466 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2467 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2468 class->size, fg);
2469 }
2470 }
2471 kfree(class);
2472 }
f553646a 2473
3783689a 2474 destroy_cache(pool);
0f050d99 2475 kfree(pool->name);
66cdef66
GM
2476 kfree(pool);
2477}
2478EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2479
9997bc01
NP
2480#ifdef CONFIG_ZPOOL
2481static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2482{
2483 int i, obj_idx, ret = 0;
2484 unsigned long handle;
2485 struct zspage *zspage;
2486 struct page *page;
2487 enum fullness_group fullness;
2488
2489 /* Lock LRU and fullness list */
2490 spin_lock(&pool->lock);
2491 if (list_empty(&pool->lru)) {
2492 spin_unlock(&pool->lock);
2493 return -EINVAL;
2494 }
2495
2496 for (i = 0; i < retries; i++) {
2497 struct size_class *class;
2498
2499 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2500 list_del(&zspage->lru);
2501
2502 /* zs_free may free objects, but not the zspage and handles */
2503 zspage->under_reclaim = true;
2504
2505 class = zspage_class(pool, zspage);
2506 fullness = get_fullness_group(class, zspage);
2507
2508 /* Lock out object allocations and object compaction */
2509 remove_zspage(class, zspage, fullness);
2510
2511 spin_unlock(&pool->lock);
2512 cond_resched();
2513
2514 /* Lock backing pages into place */
2515 lock_zspage(zspage);
2516
2517 obj_idx = 0;
2518 page = get_first_page(zspage);
2519 while (1) {
2520 handle = find_alloced_obj(class, page, &obj_idx);
2521 if (!handle) {
2522 page = get_next_page(page);
2523 if (!page)
2524 break;
2525 obj_idx = 0;
2526 continue;
2527 }
2528
2529 /*
2530 * This will write the object and call zs_free.
2531 *
2532 * zs_free will free the object, but the
2533 * under_reclaim flag prevents it from freeing
2534 * the zspage altogether. This is necessary so
2535 * that we can continue working with the
2536 * zspage potentially after the last object
2537 * has been freed.
2538 */
2539 ret = pool->zpool_ops->evict(pool->zpool, handle);
2540 if (ret)
2541 goto next;
2542
2543 obj_idx++;
2544 }
2545
2546next:
2547 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2548 spin_lock(&pool->lock);
2549 zspage->under_reclaim = false;
2550
2551 if (!get_zspage_inuse(zspage)) {
2552 /*
2553 * Fullness went stale as zs_free() won't touch it
2554 * while the page is removed from the pool. Fix it
2555 * up for the check in __free_zspage().
2556 */
2557 zspage->fullness = ZS_EMPTY;
2558
2559 __free_zspage(pool, class, zspage);
2560 spin_unlock(&pool->lock);
2561 return 0;
2562 }
2563
2564 putback_zspage(class, zspage);
2565 list_add(&zspage->lru, &pool->lru);
2566 unlock_zspage(zspage);
2567 }
2568
2569 spin_unlock(&pool->lock);
2570 return -EAGAIN;
2571}
2572#endif /* CONFIG_ZPOOL */
2573
66cdef66
GM
2574static int __init zs_init(void)
2575{
48b4800a
MK
2576 int ret;
2577
215c89d0
SAS
2578 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2579 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2580 if (ret)
68f2736a 2581 goto out;
66cdef66 2582
66cdef66
GM
2583#ifdef CONFIG_ZPOOL
2584 zpool_register_driver(&zs_zpool_driver);
2585#endif
0f050d99 2586
4abaac9b
DS
2587 zs_stat_init();
2588
66cdef66 2589 return 0;
0f050d99 2590
48b4800a 2591out:
0f050d99 2592 return ret;
61989a80 2593}
61989a80 2594
66cdef66 2595static void __exit zs_exit(void)
61989a80 2596{
66cdef66
GM
2597#ifdef CONFIG_ZPOOL
2598 zpool_unregister_driver(&zs_zpool_driver);
2599#endif
215c89d0 2600 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2601
2602 zs_stat_exit();
61989a80 2603}
069f101f
BH
2604
2605module_init(zs_init);
2606module_exit(zs_exit);
2607
2608MODULE_LICENSE("Dual BSD/GPL");
2609MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");