ublk: remove check IO_URING_F_SQE128 in ublk_ch_uring_cmd
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
12a5d395 66#include <linux/parser.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
b25806dc 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
510fc4e1 207 _KMEM,
d55f90bf 208 _TCP,
86ae53e1
GC
209};
210
a0db00fc
KS
211#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
212#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
213#define MEMFILE_ATTR(val) ((val) & 0xffff)
214
b05706f1
KT
215/*
216 * Iteration constructs for visiting all cgroups (under a tree). If
217 * loops are exited prematurely (break), mem_cgroup_iter_break() must
218 * be used for reference counting.
219 */
220#define for_each_mem_cgroup_tree(iter, root) \
221 for (iter = mem_cgroup_iter(root, NULL, NULL); \
222 iter != NULL; \
223 iter = mem_cgroup_iter(root, iter, NULL))
224
225#define for_each_mem_cgroup(iter) \
226 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(NULL, iter, NULL))
229
a4ebf1b6 230static inline bool task_is_dying(void)
7775face
TH
231{
232 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
233 (current->flags & PF_EXITING);
234}
235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
9647875b 244struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 245{
9647875b 246 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
247}
248
84c07d11 249#ifdef CONFIG_MEMCG_KMEM
0764db9b 250static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 251
4d5c8aed
RG
252bool mem_cgroup_kmem_disabled(void)
253{
254 return cgroup_memory_nokmem;
255}
256
f1286fae
MS
257static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
258 unsigned int nr_pages);
c1a660de 259
bf4f0599
RG
260static void obj_cgroup_release(struct percpu_ref *ref)
261{
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
263 unsigned int nr_bytes;
264 unsigned int nr_pages;
265 unsigned long flags;
266
267 /*
268 * At this point all allocated objects are freed, and
269 * objcg->nr_charged_bytes can't have an arbitrary byte value.
270 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
271 *
272 * The following sequence can lead to it:
273 * 1) CPU0: objcg == stock->cached_objcg
274 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
275 * PAGE_SIZE bytes are charged
276 * 3) CPU1: a process from another memcg is allocating something,
277 * the stock if flushed,
278 * objcg->nr_charged_bytes = PAGE_SIZE - 92
279 * 5) CPU0: we do release this object,
280 * 92 bytes are added to stock->nr_bytes
281 * 6) CPU0: stock is flushed,
282 * 92 bytes are added to objcg->nr_charged_bytes
283 *
284 * In the result, nr_charged_bytes == PAGE_SIZE.
285 * This page will be uncharged in obj_cgroup_release().
286 */
287 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
288 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
289 nr_pages = nr_bytes >> PAGE_SHIFT;
290
bf4f0599 291 if (nr_pages)
f1286fae 292 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 293
0764db9b 294 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 295 list_del(&objcg->list);
0764db9b 296 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300}
301
302static struct obj_cgroup *obj_cgroup_alloc(void)
303{
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319}
320
321static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323{
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
0764db9b 328 spin_lock_irq(&objcg_lock);
bf4f0599 329
9838354e
MS
330 /* 1) Ready to reparent active objcg. */
331 list_add(&objcg->list, &memcg->objcg_list);
332 /* 2) Reparent active objcg and already reparented objcgs to parent. */
333 list_for_each_entry(iter, &memcg->objcg_list, list)
334 WRITE_ONCE(iter->memcg, parent);
335 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
336 list_splice(&memcg->objcg_list, &parent->objcg_list);
337
0764db9b 338 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
339
340 percpu_ref_kill(&objcg->refcnt);
341}
342
d7f25f8a
GC
343/*
344 * A lot of the calls to the cache allocation functions are expected to be
272911a4 345 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
ef12947c 349DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 350EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 351#endif
17cc4dfe 352
ad7fa852
TH
353/**
354 * mem_cgroup_css_from_page - css of the memcg associated with a page
355 * @page: page of interest
356 *
357 * If memcg is bound to the default hierarchy, css of the memcg associated
358 * with @page is returned. The returned css remains associated with @page
359 * until it is released.
360 *
361 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
362 * is returned.
ad7fa852
TH
363 */
364struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
365{
366 struct mem_cgroup *memcg;
367
bcfe06bf 368 memcg = page_memcg(page);
ad7fa852 369
9e10a130 370 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
371 memcg = root_mem_cgroup;
372
ad7fa852
TH
373 return &memcg->css;
374}
375
2fc04524
VD
376/**
377 * page_cgroup_ino - return inode number of the memcg a page is charged to
378 * @page: the page
379 *
380 * Look up the closest online ancestor of the memory cgroup @page is charged to
381 * and return its inode number or 0 if @page is not charged to any cgroup. It
382 * is safe to call this function without holding a reference to @page.
383 *
384 * Note, this function is inherently racy, because there is nothing to prevent
385 * the cgroup inode from getting torn down and potentially reallocated a moment
386 * after page_cgroup_ino() returns, so it only should be used by callers that
387 * do not care (such as procfs interfaces).
388 */
389ino_t page_cgroup_ino(struct page *page)
390{
391 struct mem_cgroup *memcg;
392 unsigned long ino = 0;
393
394 rcu_read_lock();
bcfe06bf 395 memcg = page_memcg_check(page);
286e04b8 396
2fc04524
VD
397 while (memcg && !(memcg->css.flags & CSS_ONLINE))
398 memcg = parent_mem_cgroup(memcg);
399 if (memcg)
400 ino = cgroup_ino(memcg->css.cgroup);
401 rcu_read_unlock();
402 return ino;
403}
404
ef8f2327
MG
405static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
406 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 407 unsigned long new_usage_in_excess)
bb4cc1a8
AM
408{
409 struct rb_node **p = &mctz->rb_root.rb_node;
410 struct rb_node *parent = NULL;
ef8f2327 411 struct mem_cgroup_per_node *mz_node;
fa90b2fd 412 bool rightmost = true;
bb4cc1a8
AM
413
414 if (mz->on_tree)
415 return;
416
417 mz->usage_in_excess = new_usage_in_excess;
418 if (!mz->usage_in_excess)
419 return;
420 while (*p) {
421 parent = *p;
ef8f2327 422 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 423 tree_node);
fa90b2fd 424 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 425 p = &(*p)->rb_left;
fa90b2fd 426 rightmost = false;
378876b0 427 } else {
bb4cc1a8 428 p = &(*p)->rb_right;
378876b0 429 }
bb4cc1a8 430 }
fa90b2fd
DB
431
432 if (rightmost)
433 mctz->rb_rightmost = &mz->tree_node;
434
bb4cc1a8
AM
435 rb_link_node(&mz->tree_node, parent, p);
436 rb_insert_color(&mz->tree_node, &mctz->rb_root);
437 mz->on_tree = true;
438}
439
ef8f2327
MG
440static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
441 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
442{
443 if (!mz->on_tree)
444 return;
fa90b2fd
DB
445
446 if (&mz->tree_node == mctz->rb_rightmost)
447 mctz->rb_rightmost = rb_prev(&mz->tree_node);
448
bb4cc1a8
AM
449 rb_erase(&mz->tree_node, &mctz->rb_root);
450 mz->on_tree = false;
451}
452
ef8f2327
MG
453static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
454 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 455{
0a31bc97
JW
456 unsigned long flags;
457
458 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 459 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 460 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
461}
462
3e32cb2e
JW
463static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
464{
465 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 466 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
467 unsigned long excess = 0;
468
469 if (nr_pages > soft_limit)
470 excess = nr_pages - soft_limit;
471
472 return excess;
473}
bb4cc1a8 474
658b69c9 475static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 476{
3e32cb2e 477 unsigned long excess;
ef8f2327
MG
478 struct mem_cgroup_per_node *mz;
479 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 480
2ab082ba 481 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
482 if (!mctz)
483 return;
bb4cc1a8
AM
484 /*
485 * Necessary to update all ancestors when hierarchy is used.
486 * because their event counter is not touched.
487 */
488 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 489 mz = memcg->nodeinfo[nid];
3e32cb2e 490 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
491 /*
492 * We have to update the tree if mz is on RB-tree or
493 * mem is over its softlimit.
494 */
495 if (excess || mz->on_tree) {
0a31bc97
JW
496 unsigned long flags;
497
498 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
499 /* if on-tree, remove it */
500 if (mz->on_tree)
cf2c8127 501 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
502 /*
503 * Insert again. mz->usage_in_excess will be updated.
504 * If excess is 0, no tree ops.
505 */
cf2c8127 506 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 507 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
508 }
509 }
510}
511
512static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
513{
ef8f2327
MG
514 struct mem_cgroup_tree_per_node *mctz;
515 struct mem_cgroup_per_node *mz;
516 int nid;
bb4cc1a8 517
e231875b 518 for_each_node(nid) {
a3747b53 519 mz = memcg->nodeinfo[nid];
2ab082ba 520 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
521 if (mctz)
522 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
523 }
524}
525
ef8f2327
MG
526static struct mem_cgroup_per_node *
527__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 528{
ef8f2327 529 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
530
531retry:
532 mz = NULL;
fa90b2fd 533 if (!mctz->rb_rightmost)
bb4cc1a8
AM
534 goto done; /* Nothing to reclaim from */
535
fa90b2fd
DB
536 mz = rb_entry(mctz->rb_rightmost,
537 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
538 /*
539 * Remove the node now but someone else can add it back,
540 * we will to add it back at the end of reclaim to its correct
541 * position in the tree.
542 */
cf2c8127 543 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 544 if (!soft_limit_excess(mz->memcg) ||
8965aa28 545 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
546 goto retry;
547done:
548 return mz;
549}
550
ef8f2327
MG
551static struct mem_cgroup_per_node *
552mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 553{
ef8f2327 554 struct mem_cgroup_per_node *mz;
bb4cc1a8 555
0a31bc97 556 spin_lock_irq(&mctz->lock);
bb4cc1a8 557 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 558 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
559 return mz;
560}
561
11192d9c
SB
562/*
563 * memcg and lruvec stats flushing
564 *
565 * Many codepaths leading to stats update or read are performance sensitive and
566 * adding stats flushing in such codepaths is not desirable. So, to optimize the
567 * flushing the kernel does:
568 *
569 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
570 * rstat update tree grow unbounded.
571 *
572 * 2) Flush the stats synchronously on reader side only when there are more than
573 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
574 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
575 * only for 2 seconds due to (1).
576 */
577static void flush_memcg_stats_dwork(struct work_struct *w);
578static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
579static DEFINE_SPINLOCK(stats_flush_lock);
580static DEFINE_PER_CPU(unsigned int, stats_updates);
581static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
582static u64 flush_next_time;
583
584#define FLUSH_TIME (2UL*HZ)
11192d9c 585
be3e67b5
SAS
586/*
587 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
588 * not rely on this as part of an acquired spinlock_t lock. These functions are
589 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
590 * is sufficient.
591 */
592static void memcg_stats_lock(void)
593{
e575d401
TG
594 preempt_disable_nested();
595 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
596}
597
598static void __memcg_stats_lock(void)
599{
e575d401 600 preempt_disable_nested();
be3e67b5
SAS
601}
602
603static void memcg_stats_unlock(void)
604{
e575d401 605 preempt_enable_nested();
be3e67b5
SAS
606}
607
5b3be698 608static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 609{
5b3be698
SB
610 unsigned int x;
611
11192d9c 612 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
613
614 x = __this_cpu_add_return(stats_updates, abs(val));
615 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
616 /*
617 * If stats_flush_threshold exceeds the threshold
618 * (>num_online_cpus()), cgroup stats update will be triggered
619 * in __mem_cgroup_flush_stats(). Increasing this var further
620 * is redundant and simply adds overhead in atomic update.
621 */
622 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
623 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
624 __this_cpu_write(stats_updates, 0);
625 }
11192d9c
SB
626}
627
628static void __mem_cgroup_flush_stats(void)
629{
fd25a9e0
SB
630 unsigned long flag;
631
632 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
633 return;
634
9b301615 635 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
11192d9c
SB
636 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
637 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 638 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
639}
640
641void mem_cgroup_flush_stats(void)
642{
643 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
644 __mem_cgroup_flush_stats();
645}
646
9b301615
SB
647void mem_cgroup_flush_stats_delayed(void)
648{
649 if (time_after64(jiffies_64, flush_next_time))
650 mem_cgroup_flush_stats();
651}
652
11192d9c
SB
653static void flush_memcg_stats_dwork(struct work_struct *w)
654{
5b3be698 655 __mem_cgroup_flush_stats();
9b301615 656 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
657}
658
d396def5
SB
659/* Subset of vm_event_item to report for memcg event stats */
660static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
661 PGPGIN,
662 PGPGOUT,
d396def5
SB
663 PGSCAN_KSWAPD,
664 PGSCAN_DIRECT,
57e9cc50 665 PGSCAN_KHUGEPAGED,
d396def5
SB
666 PGSTEAL_KSWAPD,
667 PGSTEAL_DIRECT,
57e9cc50 668 PGSTEAL_KHUGEPAGED,
d396def5
SB
669 PGFAULT,
670 PGMAJFAULT,
671 PGREFILL,
672 PGACTIVATE,
673 PGDEACTIVATE,
674 PGLAZYFREE,
675 PGLAZYFREED,
676#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
677 ZSWPIN,
678 ZSWPOUT,
679#endif
680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
681 THP_FAULT_ALLOC,
682 THP_COLLAPSE_ALLOC,
683#endif
684};
685
8278f1c7
SB
686#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
687static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
688
689static void init_memcg_events(void)
690{
691 int i;
692
693 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
694 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
695}
696
697static inline int memcg_events_index(enum vm_event_item idx)
698{
699 return mem_cgroup_events_index[idx] - 1;
700}
701
410f8e82
SB
702struct memcg_vmstats_percpu {
703 /* Local (CPU and cgroup) page state & events */
704 long state[MEMCG_NR_STAT];
8278f1c7 705 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
706
707 /* Delta calculation for lockless upward propagation */
708 long state_prev[MEMCG_NR_STAT];
8278f1c7 709 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
710
711 /* Cgroup1: threshold notifications & softlimit tree updates */
712 unsigned long nr_page_events;
713 unsigned long targets[MEM_CGROUP_NTARGETS];
714};
715
716struct memcg_vmstats {
717 /* Aggregated (CPU and subtree) page state & events */
718 long state[MEMCG_NR_STAT];
8278f1c7 719 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
720
721 /* Pending child counts during tree propagation */
722 long state_pending[MEMCG_NR_STAT];
8278f1c7 723 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
724};
725
726unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
727{
728 long x = READ_ONCE(memcg->vmstats->state[idx]);
729#ifdef CONFIG_SMP
730 if (x < 0)
731 x = 0;
732#endif
733 return x;
734}
735
db9adbcb
JW
736/**
737 * __mod_memcg_state - update cgroup memory statistics
738 * @memcg: the memory cgroup
739 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
740 * @val: delta to add to the counter, can be negative
741 */
742void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
743{
db9adbcb
JW
744 if (mem_cgroup_disabled())
745 return;
746
2d146aa3 747 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 748 memcg_rstat_updated(memcg, val);
db9adbcb
JW
749}
750
2d146aa3 751/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
752static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
753{
754 long x = 0;
755 int cpu;
756
757 for_each_possible_cpu(cpu)
2d146aa3 758 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
759#ifdef CONFIG_SMP
760 if (x < 0)
761 x = 0;
762#endif
763 return x;
764}
765
eedc4e5a
RG
766void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
767 int val)
db9adbcb
JW
768{
769 struct mem_cgroup_per_node *pn;
42a30035 770 struct mem_cgroup *memcg;
db9adbcb 771
db9adbcb 772 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 773 memcg = pn->memcg;
db9adbcb 774
be3e67b5
SAS
775 /*
776 * The caller from rmap relay on disabled preemption becase they never
777 * update their counter from in-interrupt context. For these two
778 * counters we check that the update is never performed from an
779 * interrupt context while other caller need to have disabled interrupt.
780 */
781 __memcg_stats_lock();
e575d401 782 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
783 switch (idx) {
784 case NR_ANON_MAPPED:
785 case NR_FILE_MAPPED:
786 case NR_ANON_THPS:
787 case NR_SHMEM_PMDMAPPED:
788 case NR_FILE_PMDMAPPED:
789 WARN_ON_ONCE(!in_task());
790 break;
791 default:
e575d401 792 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
793 }
794 }
795
db9adbcb 796 /* Update memcg */
11192d9c 797 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 798
b4c46484 799 /* Update lruvec */
7e1c0d6f 800 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 801
5b3be698 802 memcg_rstat_updated(memcg, val);
be3e67b5 803 memcg_stats_unlock();
db9adbcb
JW
804}
805
eedc4e5a
RG
806/**
807 * __mod_lruvec_state - update lruvec memory statistics
808 * @lruvec: the lruvec
809 * @idx: the stat item
810 * @val: delta to add to the counter, can be negative
811 *
812 * The lruvec is the intersection of the NUMA node and a cgroup. This
813 * function updates the all three counters that are affected by a
814 * change of state at this level: per-node, per-cgroup, per-lruvec.
815 */
816void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
817 int val)
818{
819 /* Update node */
820 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
821
822 /* Update memcg and lruvec */
823 if (!mem_cgroup_disabled())
824 __mod_memcg_lruvec_state(lruvec, idx, val);
825}
826
c47d5032
SB
827void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
828 int val)
829{
830 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 831 struct mem_cgroup *memcg;
c47d5032
SB
832 pg_data_t *pgdat = page_pgdat(page);
833 struct lruvec *lruvec;
834
b4e0b68f
MS
835 rcu_read_lock();
836 memcg = page_memcg(head);
c47d5032 837 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 838 if (!memcg) {
b4e0b68f 839 rcu_read_unlock();
c47d5032
SB
840 __mod_node_page_state(pgdat, idx, val);
841 return;
842 }
843
d635a69d 844 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 845 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 846 rcu_read_unlock();
c47d5032 847}
f0c0c115 848EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 849
da3ceeff 850void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 851{
4f103c63 852 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
853 struct mem_cgroup *memcg;
854 struct lruvec *lruvec;
855
856 rcu_read_lock();
fc4db90f 857 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 858
8faeb1ff
MS
859 /*
860 * Untracked pages have no memcg, no lruvec. Update only the
861 * node. If we reparent the slab objects to the root memcg,
862 * when we free the slab object, we need to update the per-memcg
863 * vmstats to keep it correct for the root memcg.
864 */
865 if (!memcg) {
ec9f0238
RG
866 __mod_node_page_state(pgdat, idx, val);
867 } else {
867e5e1d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
869 __mod_lruvec_state(lruvec, idx, val);
870 }
871 rcu_read_unlock();
872}
873
db9adbcb
JW
874/**
875 * __count_memcg_events - account VM events in a cgroup
876 * @memcg: the memory cgroup
877 * @idx: the event item
f0953a1b 878 * @count: the number of events that occurred
db9adbcb
JW
879 */
880void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
881 unsigned long count)
882{
8278f1c7
SB
883 int index = memcg_events_index(idx);
884
885 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
886 return;
887
be3e67b5 888 memcg_stats_lock();
8278f1c7 889 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 890 memcg_rstat_updated(memcg, count);
be3e67b5 891 memcg_stats_unlock();
db9adbcb
JW
892}
893
42a30035 894static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 895{
8278f1c7
SB
896 int index = memcg_events_index(event);
897
898 if (index < 0)
899 return 0;
900 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
901}
902
42a30035
JW
903static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
904{
815744d7
JW
905 long x = 0;
906 int cpu;
8278f1c7
SB
907 int index = memcg_events_index(event);
908
909 if (index < 0)
910 return 0;
815744d7
JW
911
912 for_each_possible_cpu(cpu)
8278f1c7 913 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 914 return x;
42a30035
JW
915}
916
c0ff4b85 917static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 918 int nr_pages)
d52aa412 919{
e401f176
KH
920 /* pagein of a big page is an event. So, ignore page size */
921 if (nr_pages > 0)
c9019e9b 922 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 923 else {
c9019e9b 924 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
925 nr_pages = -nr_pages; /* for event */
926 }
e401f176 927
871789d4 928 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
929}
930
f53d7ce3
JW
931static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
932 enum mem_cgroup_events_target target)
7a159cc9
JW
933{
934 unsigned long val, next;
935
871789d4
CD
936 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
937 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 938 /* from time_after() in jiffies.h */
6a1a8b80 939 if ((long)(next - val) < 0) {
f53d7ce3
JW
940 switch (target) {
941 case MEM_CGROUP_TARGET_THRESH:
942 next = val + THRESHOLDS_EVENTS_TARGET;
943 break;
bb4cc1a8
AM
944 case MEM_CGROUP_TARGET_SOFTLIMIT:
945 next = val + SOFTLIMIT_EVENTS_TARGET;
946 break;
f53d7ce3
JW
947 default:
948 break;
949 }
871789d4 950 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 951 return true;
7a159cc9 952 }
f53d7ce3 953 return false;
d2265e6f
KH
954}
955
956/*
957 * Check events in order.
958 *
959 */
8e88bd2d 960static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 961{
2343e88d
SAS
962 if (IS_ENABLED(CONFIG_PREEMPT_RT))
963 return;
964
d2265e6f 965 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
966 if (unlikely(mem_cgroup_event_ratelimit(memcg,
967 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 968 bool do_softlimit;
f53d7ce3 969
bb4cc1a8
AM
970 do_softlimit = mem_cgroup_event_ratelimit(memcg,
971 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 972 mem_cgroup_threshold(memcg);
bb4cc1a8 973 if (unlikely(do_softlimit))
8e88bd2d 974 mem_cgroup_update_tree(memcg, nid);
0a31bc97 975 }
d2265e6f
KH
976}
977
cf475ad2 978struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 979{
31a78f23
BS
980 /*
981 * mm_update_next_owner() may clear mm->owner to NULL
982 * if it races with swapoff, page migration, etc.
983 * So this can be called with p == NULL.
984 */
985 if (unlikely(!p))
986 return NULL;
987
073219e9 988 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 989}
33398cf2 990EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 991
04f94e3f
DS
992static __always_inline struct mem_cgroup *active_memcg(void)
993{
55a68c82 994 if (!in_task())
04f94e3f
DS
995 return this_cpu_read(int_active_memcg);
996 else
997 return current->active_memcg;
998}
999
d46eb14b
SB
1000/**
1001 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1002 * @mm: mm from which memcg should be extracted. It can be NULL.
1003 *
04f94e3f
DS
1004 * Obtain a reference on mm->memcg and returns it if successful. If mm
1005 * is NULL, then the memcg is chosen as follows:
1006 * 1) The active memcg, if set.
1007 * 2) current->mm->memcg, if available
1008 * 3) root memcg
1009 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1010 */
1011struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1012{
d46eb14b
SB
1013 struct mem_cgroup *memcg;
1014
1015 if (mem_cgroup_disabled())
1016 return NULL;
0b7f569e 1017
2884b6b7
MS
1018 /*
1019 * Page cache insertions can happen without an
1020 * actual mm context, e.g. during disk probing
1021 * on boot, loopback IO, acct() writes etc.
1022 *
1023 * No need to css_get on root memcg as the reference
1024 * counting is disabled on the root level in the
1025 * cgroup core. See CSS_NO_REF.
1026 */
04f94e3f
DS
1027 if (unlikely(!mm)) {
1028 memcg = active_memcg();
1029 if (unlikely(memcg)) {
1030 /* remote memcg must hold a ref */
1031 css_get(&memcg->css);
1032 return memcg;
1033 }
1034 mm = current->mm;
1035 if (unlikely(!mm))
1036 return root_mem_cgroup;
1037 }
2884b6b7 1038
54595fe2
KH
1039 rcu_read_lock();
1040 do {
2884b6b7
MS
1041 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042 if (unlikely(!memcg))
df381975 1043 memcg = root_mem_cgroup;
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
4127c650
RG
1050static __always_inline bool memcg_kmem_bypass(void)
1051{
1052 /* Allow remote memcg charging from any context. */
1053 if (unlikely(active_memcg()))
1054 return false;
1055
1056 /* Memcg to charge can't be determined. */
6126891c 1057 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1058 return true;
1059
1060 return false;
1061}
1062
5660048c
JW
1063/**
1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1065 * @root: hierarchy root
1066 * @prev: previously returned memcg, NULL on first invocation
1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
05bdc520
ML
1076 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1077 * in the hierarchy among all concurrent reclaimers operating on the
1078 * same node.
5660048c 1079 */
694fbc0f 1080struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1081 struct mem_cgroup *prev,
694fbc0f 1082 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1083{
3f649ab7 1084 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1085 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1086 struct mem_cgroup *memcg = NULL;
5ac8fb31 1087 struct mem_cgroup *pos = NULL;
711d3d2c 1088
694fbc0f
AM
1089 if (mem_cgroup_disabled())
1090 return NULL;
5660048c 1091
9f3a0d09
JW
1092 if (!root)
1093 root = root_mem_cgroup;
7d74b06f 1094
542f85f9 1095 rcu_read_lock();
5f578161 1096
5ac8fb31 1097 if (reclaim) {
ef8f2327 1098 struct mem_cgroup_per_node *mz;
5ac8fb31 1099
a3747b53 1100 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1101 iter = &mz->iter;
5ac8fb31 1102
a9320aae
WY
1103 /*
1104 * On start, join the current reclaim iteration cycle.
1105 * Exit when a concurrent walker completes it.
1106 */
1107 if (!prev)
1108 reclaim->generation = iter->generation;
1109 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1110 goto out_unlock;
1111
6df38689 1112 while (1) {
4db0c3c2 1113 pos = READ_ONCE(iter->position);
6df38689
VD
1114 if (!pos || css_tryget(&pos->css))
1115 break;
5ac8fb31 1116 /*
6df38689
VD
1117 * css reference reached zero, so iter->position will
1118 * be cleared by ->css_released. However, we should not
1119 * rely on this happening soon, because ->css_released
1120 * is called from a work queue, and by busy-waiting we
1121 * might block it. So we clear iter->position right
1122 * away.
5ac8fb31 1123 */
6df38689
VD
1124 (void)cmpxchg(&iter->position, pos, NULL);
1125 }
89d8330c
WY
1126 } else if (prev) {
1127 pos = prev;
5ac8fb31
JW
1128 }
1129
1130 if (pos)
1131 css = &pos->css;
1132
1133 for (;;) {
1134 css = css_next_descendant_pre(css, &root->css);
1135 if (!css) {
1136 /*
1137 * Reclaimers share the hierarchy walk, and a
1138 * new one might jump in right at the end of
1139 * the hierarchy - make sure they see at least
1140 * one group and restart from the beginning.
1141 */
1142 if (!prev)
1143 continue;
1144 break;
527a5ec9 1145 }
7d74b06f 1146
5ac8fb31
JW
1147 /*
1148 * Verify the css and acquire a reference. The root
1149 * is provided by the caller, so we know it's alive
1150 * and kicking, and don't take an extra reference.
1151 */
41555dad
WY
1152 if (css == &root->css || css_tryget(css)) {
1153 memcg = mem_cgroup_from_css(css);
0b8f73e1 1154 break;
41555dad 1155 }
9f3a0d09 1156 }
5ac8fb31
JW
1157
1158 if (reclaim) {
5ac8fb31 1159 /*
6df38689
VD
1160 * The position could have already been updated by a competing
1161 * thread, so check that the value hasn't changed since we read
1162 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1163 */
6df38689
VD
1164 (void)cmpxchg(&iter->position, pos, memcg);
1165
5ac8fb31
JW
1166 if (pos)
1167 css_put(&pos->css);
1168
1169 if (!memcg)
1170 iter->generation++;
9f3a0d09 1171 }
5ac8fb31 1172
542f85f9
MH
1173out_unlock:
1174 rcu_read_unlock();
c40046f3
MH
1175 if (prev && prev != root)
1176 css_put(&prev->css);
1177
9f3a0d09 1178 return memcg;
14067bb3 1179}
7d74b06f 1180
5660048c
JW
1181/**
1182 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1183 * @root: hierarchy root
1184 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1185 */
1186void mem_cgroup_iter_break(struct mem_cgroup *root,
1187 struct mem_cgroup *prev)
9f3a0d09
JW
1188{
1189 if (!root)
1190 root = root_mem_cgroup;
1191 if (prev && prev != root)
1192 css_put(&prev->css);
1193}
7d74b06f 1194
54a83d6b
MC
1195static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1196 struct mem_cgroup *dead_memcg)
6df38689 1197{
6df38689 1198 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1199 struct mem_cgroup_per_node *mz;
1200 int nid;
6df38689 1201
54a83d6b 1202 for_each_node(nid) {
a3747b53 1203 mz = from->nodeinfo[nid];
9da83f3f
YS
1204 iter = &mz->iter;
1205 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1206 }
1207}
1208
54a83d6b
MC
1209static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1210{
1211 struct mem_cgroup *memcg = dead_memcg;
1212 struct mem_cgroup *last;
1213
1214 do {
1215 __invalidate_reclaim_iterators(memcg, dead_memcg);
1216 last = memcg;
1217 } while ((memcg = parent_mem_cgroup(memcg)));
1218
1219 /*
b8dd3ee9 1220 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1221 * parent_mem_cgroup() does not walk all the way up to the
1222 * cgroup root (root_mem_cgroup). So we have to handle
1223 * dead_memcg from cgroup root separately.
1224 */
7848ed62 1225 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1226 __invalidate_reclaim_iterators(root_mem_cgroup,
1227 dead_memcg);
1228}
1229
7c5f64f8
VD
1230/**
1231 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1232 * @memcg: hierarchy root
1233 * @fn: function to call for each task
1234 * @arg: argument passed to @fn
1235 *
1236 * This function iterates over tasks attached to @memcg or to any of its
1237 * descendants and calls @fn for each task. If @fn returns a non-zero
1238 * value, the function breaks the iteration loop and returns the value.
1239 * Otherwise, it will iterate over all tasks and return 0.
1240 *
1241 * This function must not be called for the root memory cgroup.
1242 */
1243int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1244 int (*fn)(struct task_struct *, void *), void *arg)
1245{
1246 struct mem_cgroup *iter;
1247 int ret = 0;
1248
7848ed62 1249 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1250
1251 for_each_mem_cgroup_tree(iter, memcg) {
1252 struct css_task_iter it;
1253 struct task_struct *task;
1254
f168a9a5 1255 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1256 while (!ret && (task = css_task_iter_next(&it)))
1257 ret = fn(task, arg);
1258 css_task_iter_end(&it);
1259 if (ret) {
1260 mem_cgroup_iter_break(memcg, iter);
1261 break;
1262 }
1263 }
1264 return ret;
1265}
1266
6168d0da 1267#ifdef CONFIG_DEBUG_VM
e809c3fe 1268void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1269{
1270 struct mem_cgroup *memcg;
1271
1272 if (mem_cgroup_disabled())
1273 return;
1274
e809c3fe 1275 memcg = folio_memcg(folio);
6168d0da
AS
1276
1277 if (!memcg)
7848ed62 1278 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1279 else
e809c3fe 1280 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1281}
1282#endif
1283
6168d0da 1284/**
e809c3fe
MWO
1285 * folio_lruvec_lock - Lock the lruvec for a folio.
1286 * @folio: Pointer to the folio.
6168d0da 1287 *
d7e3aba5 1288 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1289 * - folio locked
1290 * - folio_test_lru false
1291 * - folio_memcg_lock()
1292 * - folio frozen (refcount of 0)
1293 *
1294 * Return: The lruvec this folio is on with its lock held.
6168d0da 1295 */
e809c3fe 1296struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1297{
e809c3fe 1298 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1299
6168d0da 1300 spin_lock(&lruvec->lru_lock);
e809c3fe 1301 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1302
1303 return lruvec;
1304}
1305
e809c3fe
MWO
1306/**
1307 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1308 * @folio: Pointer to the folio.
1309 *
1310 * These functions are safe to use under any of the following conditions:
1311 * - folio locked
1312 * - folio_test_lru false
1313 * - folio_memcg_lock()
1314 * - folio frozen (refcount of 0)
1315 *
1316 * Return: The lruvec this folio is on with its lock held and interrupts
1317 * disabled.
1318 */
1319struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1320{
e809c3fe 1321 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1322
6168d0da 1323 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1324 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1325
1326 return lruvec;
1327}
1328
e809c3fe
MWO
1329/**
1330 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1331 * @folio: Pointer to the folio.
1332 * @flags: Pointer to irqsave flags.
1333 *
1334 * These functions are safe to use under any of the following conditions:
1335 * - folio locked
1336 * - folio_test_lru false
1337 * - folio_memcg_lock()
1338 * - folio frozen (refcount of 0)
1339 *
1340 * Return: The lruvec this folio is on with its lock held and interrupts
1341 * disabled.
1342 */
1343struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1344 unsigned long *flags)
6168d0da 1345{
e809c3fe 1346 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1347
6168d0da 1348 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1349 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1350
1351 return lruvec;
1352}
1353
925b7673 1354/**
fa9add64
HD
1355 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1356 * @lruvec: mem_cgroup per zone lru vector
1357 * @lru: index of lru list the page is sitting on
b4536f0c 1358 * @zid: zone id of the accounted pages
fa9add64 1359 * @nr_pages: positive when adding or negative when removing
925b7673 1360 *
ca707239 1361 * This function must be called under lru_lock, just before a page is added
07ca7606 1362 * to or just after a page is removed from an lru list.
3f58a829 1363 */
fa9add64 1364void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1365 int zid, int nr_pages)
3f58a829 1366{
ef8f2327 1367 struct mem_cgroup_per_node *mz;
fa9add64 1368 unsigned long *lru_size;
ca707239 1369 long size;
3f58a829
MK
1370
1371 if (mem_cgroup_disabled())
1372 return;
1373
ef8f2327 1374 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1375 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1376
1377 if (nr_pages < 0)
1378 *lru_size += nr_pages;
1379
1380 size = *lru_size;
b4536f0c
MH
1381 if (WARN_ONCE(size < 0,
1382 "%s(%p, %d, %d): lru_size %ld\n",
1383 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1384 VM_BUG_ON(1);
1385 *lru_size = 0;
1386 }
1387
1388 if (nr_pages > 0)
1389 *lru_size += nr_pages;
08e552c6 1390}
544122e5 1391
19942822 1392/**
9d11ea9f 1393 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1394 * @memcg: the memory cgroup
19942822 1395 *
9d11ea9f 1396 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1397 * pages.
19942822 1398 */
c0ff4b85 1399static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1400{
3e32cb2e
JW
1401 unsigned long margin = 0;
1402 unsigned long count;
1403 unsigned long limit;
9d11ea9f 1404
3e32cb2e 1405 count = page_counter_read(&memcg->memory);
bbec2e15 1406 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1407 if (count < limit)
1408 margin = limit - count;
1409
7941d214 1410 if (do_memsw_account()) {
3e32cb2e 1411 count = page_counter_read(&memcg->memsw);
bbec2e15 1412 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1413 if (count < limit)
3e32cb2e 1414 margin = min(margin, limit - count);
cbedbac3
LR
1415 else
1416 margin = 0;
3e32cb2e
JW
1417 }
1418
1419 return margin;
19942822
JW
1420}
1421
32047e2a 1422/*
bdcbb659 1423 * A routine for checking "mem" is under move_account() or not.
32047e2a 1424 *
bdcbb659
QH
1425 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1426 * moving cgroups. This is for waiting at high-memory pressure
1427 * caused by "move".
32047e2a 1428 */
c0ff4b85 1429static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1430{
2bd9bb20
KH
1431 struct mem_cgroup *from;
1432 struct mem_cgroup *to;
4b534334 1433 bool ret = false;
2bd9bb20
KH
1434 /*
1435 * Unlike task_move routines, we access mc.to, mc.from not under
1436 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1437 */
1438 spin_lock(&mc.lock);
1439 from = mc.from;
1440 to = mc.to;
1441 if (!from)
1442 goto unlock;
3e92041d 1443
2314b42d
JW
1444 ret = mem_cgroup_is_descendant(from, memcg) ||
1445 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1446unlock:
1447 spin_unlock(&mc.lock);
4b534334
KH
1448 return ret;
1449}
1450
c0ff4b85 1451static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1452{
1453 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1454 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1455 DEFINE_WAIT(wait);
1456 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1457 /* moving charge context might have finished. */
1458 if (mc.moving_task)
1459 schedule();
1460 finish_wait(&mc.waitq, &wait);
1461 return true;
1462 }
1463 }
1464 return false;
1465}
1466
5f9a4f4a
MS
1467struct memory_stat {
1468 const char *name;
5f9a4f4a
MS
1469 unsigned int idx;
1470};
1471
57b2847d 1472static const struct memory_stat memory_stats[] = {
fff66b79
MS
1473 { "anon", NR_ANON_MAPPED },
1474 { "file", NR_FILE_PAGES },
a8c49af3 1475 { "kernel", MEMCG_KMEM },
fff66b79
MS
1476 { "kernel_stack", NR_KERNEL_STACK_KB },
1477 { "pagetables", NR_PAGETABLE },
ebc97a52 1478 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1479 { "percpu", MEMCG_PERCPU_B },
1480 { "sock", MEMCG_SOCK },
4e5aa1f4 1481 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1482 { "shmem", NR_SHMEM },
f4840ccf
JW
1483#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1484 { "zswap", MEMCG_ZSWAP_B },
1485 { "zswapped", MEMCG_ZSWAPPED },
1486#endif
fff66b79
MS
1487 { "file_mapped", NR_FILE_MAPPED },
1488 { "file_dirty", NR_FILE_DIRTY },
1489 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1490#ifdef CONFIG_SWAP
1491 { "swapcached", NR_SWAPCACHE },
1492#endif
5f9a4f4a 1493#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1494 { "anon_thp", NR_ANON_THPS },
1495 { "file_thp", NR_FILE_THPS },
1496 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1497#endif
fff66b79
MS
1498 { "inactive_anon", NR_INACTIVE_ANON },
1499 { "active_anon", NR_ACTIVE_ANON },
1500 { "inactive_file", NR_INACTIVE_FILE },
1501 { "active_file", NR_ACTIVE_FILE },
1502 { "unevictable", NR_UNEVICTABLE },
1503 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1504 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1505
1506 /* The memory events */
fff66b79
MS
1507 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1508 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1509 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1510 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1511 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1512 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1513 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1514};
1515
fff66b79
MS
1516/* Translate stat items to the correct unit for memory.stat output */
1517static int memcg_page_state_unit(int item)
1518{
1519 switch (item) {
1520 case MEMCG_PERCPU_B:
f4840ccf 1521 case MEMCG_ZSWAP_B:
fff66b79
MS
1522 case NR_SLAB_RECLAIMABLE_B:
1523 case NR_SLAB_UNRECLAIMABLE_B:
1524 case WORKINGSET_REFAULT_ANON:
1525 case WORKINGSET_REFAULT_FILE:
1526 case WORKINGSET_ACTIVATE_ANON:
1527 case WORKINGSET_ACTIVATE_FILE:
1528 case WORKINGSET_RESTORE_ANON:
1529 case WORKINGSET_RESTORE_FILE:
1530 case WORKINGSET_NODERECLAIM:
1531 return 1;
1532 case NR_KERNEL_STACK_KB:
1533 return SZ_1K;
1534 default:
1535 return PAGE_SIZE;
1536 }
1537}
1538
1539static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1540 int item)
1541{
1542 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1543}
1544
68aaee14 1545static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1546{
1547 struct seq_buf s;
1548 int i;
71cd3113 1549
68aaee14 1550 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1551
1552 /*
1553 * Provide statistics on the state of the memory subsystem as
1554 * well as cumulative event counters that show past behavior.
1555 *
1556 * This list is ordered following a combination of these gradients:
1557 * 1) generic big picture -> specifics and details
1558 * 2) reflecting userspace activity -> reflecting kernel heuristics
1559 *
1560 * Current memory state:
1561 */
fd25a9e0 1562 mem_cgroup_flush_stats();
c8713d0b 1563
5f9a4f4a
MS
1564 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1565 u64 size;
c8713d0b 1566
fff66b79 1567 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1568 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1569
5f9a4f4a 1570 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1571 size += memcg_page_state_output(memcg,
1572 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1573 seq_buf_printf(&s, "slab %llu\n", size);
1574 }
1575 }
c8713d0b
JW
1576
1577 /* Accumulated memory events */
c8713d0b
JW
1578 seq_buf_printf(&s, "pgscan %lu\n",
1579 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1580 memcg_events(memcg, PGSCAN_DIRECT) +
1581 memcg_events(memcg, PGSCAN_KHUGEPAGED));
c8713d0b
JW
1582 seq_buf_printf(&s, "pgsteal %lu\n",
1583 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1584 memcg_events(memcg, PGSTEAL_DIRECT) +
1585 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1586
8278f1c7
SB
1587 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1588 if (memcg_vm_event_stat[i] == PGPGIN ||
1589 memcg_vm_event_stat[i] == PGPGOUT)
1590 continue;
1591
673520f8
QZ
1592 seq_buf_printf(&s, "%s %lu\n",
1593 vm_event_name(memcg_vm_event_stat[i]),
1594 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1595 }
c8713d0b
JW
1596
1597 /* The above should easily fit into one page */
1598 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1599}
71cd3113 1600
58cf188e 1601#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1602/**
f0c867d9 1603 * mem_cgroup_print_oom_context: Print OOM information relevant to
1604 * memory controller.
e222432b
BS
1605 * @memcg: The memory cgroup that went over limit
1606 * @p: Task that is going to be killed
1607 *
1608 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1609 * enabled
1610 */
f0c867d9 1611void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1612{
e222432b
BS
1613 rcu_read_lock();
1614
f0c867d9 1615 if (memcg) {
1616 pr_cont(",oom_memcg=");
1617 pr_cont_cgroup_path(memcg->css.cgroup);
1618 } else
1619 pr_cont(",global_oom");
2415b9f5 1620 if (p) {
f0c867d9 1621 pr_cont(",task_memcg=");
2415b9f5 1622 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1623 }
e222432b 1624 rcu_read_unlock();
f0c867d9 1625}
1626
1627/**
1628 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1629 * memory controller.
1630 * @memcg: The memory cgroup that went over limit
1631 */
1632void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1633{
68aaee14
TH
1634 /* Use static buffer, for the caller is holding oom_lock. */
1635 static char buf[PAGE_SIZE];
1636
1637 lockdep_assert_held(&oom_lock);
e222432b 1638
3e32cb2e
JW
1639 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1640 K((u64)page_counter_read(&memcg->memory)),
15b42562 1641 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1642 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1643 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1644 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1645 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1646 else {
1647 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1648 K((u64)page_counter_read(&memcg->memsw)),
1649 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1650 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1651 K((u64)page_counter_read(&memcg->kmem)),
1652 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1653 }
c8713d0b
JW
1654
1655 pr_info("Memory cgroup stats for ");
1656 pr_cont_cgroup_path(memcg->css.cgroup);
1657 pr_cont(":");
68aaee14 1658 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1659 pr_info("%s", buf);
e222432b
BS
1660}
1661
a63d83f4
DR
1662/*
1663 * Return the memory (and swap, if configured) limit for a memcg.
1664 */
bbec2e15 1665unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1666{
8d387a5f
WL
1667 unsigned long max = READ_ONCE(memcg->memory.max);
1668
b94c4e94 1669 if (do_memsw_account()) {
8d387a5f
WL
1670 if (mem_cgroup_swappiness(memcg)) {
1671 /* Calculate swap excess capacity from memsw limit */
1672 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1673
1674 max += min(swap, (unsigned long)total_swap_pages);
1675 }
b94c4e94
JW
1676 } else {
1677 if (mem_cgroup_swappiness(memcg))
1678 max += min(READ_ONCE(memcg->swap.max),
1679 (unsigned long)total_swap_pages);
9a5a8f19 1680 }
bbec2e15 1681 return max;
a63d83f4
DR
1682}
1683
9783aa99
CD
1684unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1685{
1686 return page_counter_read(&memcg->memory);
1687}
1688
b6e6edcf 1689static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1690 int order)
9cbb78bb 1691{
6e0fc46d
DR
1692 struct oom_control oc = {
1693 .zonelist = NULL,
1694 .nodemask = NULL,
2a966b77 1695 .memcg = memcg,
6e0fc46d
DR
1696 .gfp_mask = gfp_mask,
1697 .order = order,
6e0fc46d 1698 };
1378b37d 1699 bool ret = true;
9cbb78bb 1700
7775face
TH
1701 if (mutex_lock_killable(&oom_lock))
1702 return true;
1378b37d
YS
1703
1704 if (mem_cgroup_margin(memcg) >= (1 << order))
1705 goto unlock;
1706
7775face
TH
1707 /*
1708 * A few threads which were not waiting at mutex_lock_killable() can
1709 * fail to bail out. Therefore, check again after holding oom_lock.
1710 */
a4ebf1b6 1711 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1712
1713unlock:
dc56401f 1714 mutex_unlock(&oom_lock);
7c5f64f8 1715 return ret;
9cbb78bb
DR
1716}
1717
0608f43d 1718static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1719 pg_data_t *pgdat,
0608f43d
AM
1720 gfp_t gfp_mask,
1721 unsigned long *total_scanned)
1722{
1723 struct mem_cgroup *victim = NULL;
1724 int total = 0;
1725 int loop = 0;
1726 unsigned long excess;
1727 unsigned long nr_scanned;
1728 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1729 .pgdat = pgdat,
0608f43d
AM
1730 };
1731
3e32cb2e 1732 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1733
1734 while (1) {
1735 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1736 if (!victim) {
1737 loop++;
1738 if (loop >= 2) {
1739 /*
1740 * If we have not been able to reclaim
1741 * anything, it might because there are
1742 * no reclaimable pages under this hierarchy
1743 */
1744 if (!total)
1745 break;
1746 /*
1747 * We want to do more targeted reclaim.
1748 * excess >> 2 is not to excessive so as to
1749 * reclaim too much, nor too less that we keep
1750 * coming back to reclaim from this cgroup
1751 */
1752 if (total >= (excess >> 2) ||
1753 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1754 break;
1755 }
1756 continue;
1757 }
a9dd0a83 1758 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1759 pgdat, &nr_scanned);
0608f43d 1760 *total_scanned += nr_scanned;
3e32cb2e 1761 if (!soft_limit_excess(root_memcg))
0608f43d 1762 break;
6d61ef40 1763 }
0608f43d
AM
1764 mem_cgroup_iter_break(root_memcg, victim);
1765 return total;
6d61ef40
BS
1766}
1767
0056f4e6
JW
1768#ifdef CONFIG_LOCKDEP
1769static struct lockdep_map memcg_oom_lock_dep_map = {
1770 .name = "memcg_oom_lock",
1771};
1772#endif
1773
fb2a6fc5
JW
1774static DEFINE_SPINLOCK(memcg_oom_lock);
1775
867578cb
KH
1776/*
1777 * Check OOM-Killer is already running under our hierarchy.
1778 * If someone is running, return false.
1779 */
fb2a6fc5 1780static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1781{
79dfdacc 1782 struct mem_cgroup *iter, *failed = NULL;
a636b327 1783
fb2a6fc5
JW
1784 spin_lock(&memcg_oom_lock);
1785
9f3a0d09 1786 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1787 if (iter->oom_lock) {
79dfdacc
MH
1788 /*
1789 * this subtree of our hierarchy is already locked
1790 * so we cannot give a lock.
1791 */
79dfdacc 1792 failed = iter;
9f3a0d09
JW
1793 mem_cgroup_iter_break(memcg, iter);
1794 break;
23751be0
JW
1795 } else
1796 iter->oom_lock = true;
7d74b06f 1797 }
867578cb 1798
fb2a6fc5
JW
1799 if (failed) {
1800 /*
1801 * OK, we failed to lock the whole subtree so we have
1802 * to clean up what we set up to the failing subtree
1803 */
1804 for_each_mem_cgroup_tree(iter, memcg) {
1805 if (iter == failed) {
1806 mem_cgroup_iter_break(memcg, iter);
1807 break;
1808 }
1809 iter->oom_lock = false;
79dfdacc 1810 }
0056f4e6
JW
1811 } else
1812 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1813
1814 spin_unlock(&memcg_oom_lock);
1815
1816 return !failed;
a636b327 1817}
0b7f569e 1818
fb2a6fc5 1819static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1820{
7d74b06f
KH
1821 struct mem_cgroup *iter;
1822
fb2a6fc5 1823 spin_lock(&memcg_oom_lock);
5facae4f 1824 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1825 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1826 iter->oom_lock = false;
fb2a6fc5 1827 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1828}
1829
c0ff4b85 1830static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1831{
1832 struct mem_cgroup *iter;
1833
c2b42d3c 1834 spin_lock(&memcg_oom_lock);
c0ff4b85 1835 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1836 iter->under_oom++;
1837 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1838}
1839
c0ff4b85 1840static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1841{
1842 struct mem_cgroup *iter;
1843
867578cb 1844 /*
f0953a1b 1845 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1846 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1847 */
c2b42d3c 1848 spin_lock(&memcg_oom_lock);
c0ff4b85 1849 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1850 if (iter->under_oom > 0)
1851 iter->under_oom--;
1852 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1853}
1854
867578cb
KH
1855static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1856
dc98df5a 1857struct oom_wait_info {
d79154bb 1858 struct mem_cgroup *memcg;
ac6424b9 1859 wait_queue_entry_t wait;
dc98df5a
KH
1860};
1861
ac6424b9 1862static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1863 unsigned mode, int sync, void *arg)
1864{
d79154bb
HD
1865 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1866 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1867 struct oom_wait_info *oom_wait_info;
1868
1869 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1870 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1871
2314b42d
JW
1872 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1873 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1874 return 0;
dc98df5a
KH
1875 return autoremove_wake_function(wait, mode, sync, arg);
1876}
1877
c0ff4b85 1878static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1879{
c2b42d3c
TH
1880 /*
1881 * For the following lockless ->under_oom test, the only required
1882 * guarantee is that it must see the state asserted by an OOM when
1883 * this function is called as a result of userland actions
1884 * triggered by the notification of the OOM. This is trivially
1885 * achieved by invoking mem_cgroup_mark_under_oom() before
1886 * triggering notification.
1887 */
1888 if (memcg && memcg->under_oom)
f4b90b70 1889 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1890}
1891
becdf89d
SB
1892/*
1893 * Returns true if successfully killed one or more processes. Though in some
1894 * corner cases it can return true even without killing any process.
1895 */
1896static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1897{
becdf89d 1898 bool locked, ret;
7056d3a3 1899
29ef680a 1900 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1901 return false;
29ef680a 1902
7a1adfdd
RG
1903 memcg_memory_event(memcg, MEMCG_OOM);
1904
867578cb 1905 /*
49426420
JW
1906 * We are in the middle of the charge context here, so we
1907 * don't want to block when potentially sitting on a callstack
1908 * that holds all kinds of filesystem and mm locks.
1909 *
29ef680a
MH
1910 * cgroup1 allows disabling the OOM killer and waiting for outside
1911 * handling until the charge can succeed; remember the context and put
1912 * the task to sleep at the end of the page fault when all locks are
1913 * released.
49426420 1914 *
29ef680a
MH
1915 * On the other hand, in-kernel OOM killer allows for an async victim
1916 * memory reclaim (oom_reaper) and that means that we are not solely
1917 * relying on the oom victim to make a forward progress and we can
1918 * invoke the oom killer here.
1919 *
1920 * Please note that mem_cgroup_out_of_memory might fail to find a
1921 * victim and then we have to bail out from the charge path.
867578cb 1922 */
29ef680a 1923 if (memcg->oom_kill_disable) {
becdf89d
SB
1924 if (current->in_user_fault) {
1925 css_get(&memcg->css);
1926 current->memcg_in_oom = memcg;
1927 current->memcg_oom_gfp_mask = mask;
1928 current->memcg_oom_order = order;
1929 }
1930 return false;
29ef680a
MH
1931 }
1932
7056d3a3
MH
1933 mem_cgroup_mark_under_oom(memcg);
1934
1935 locked = mem_cgroup_oom_trylock(memcg);
1936
1937 if (locked)
1938 mem_cgroup_oom_notify(memcg);
1939
1940 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1941 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1942
1943 if (locked)
1944 mem_cgroup_oom_unlock(memcg);
29ef680a 1945
7056d3a3 1946 return ret;
3812c8c8
JW
1947}
1948
1949/**
1950 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1951 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1952 *
49426420
JW
1953 * This has to be called at the end of a page fault if the memcg OOM
1954 * handler was enabled.
3812c8c8 1955 *
49426420 1956 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1957 * sleep on a waitqueue until the userspace task resolves the
1958 * situation. Sleeping directly in the charge context with all kinds
1959 * of locks held is not a good idea, instead we remember an OOM state
1960 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1961 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1962 *
1963 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1964 * completed, %false otherwise.
3812c8c8 1965 */
49426420 1966bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1967{
626ebc41 1968 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1969 struct oom_wait_info owait;
49426420 1970 bool locked;
3812c8c8
JW
1971
1972 /* OOM is global, do not handle */
3812c8c8 1973 if (!memcg)
49426420 1974 return false;
3812c8c8 1975
7c5f64f8 1976 if (!handle)
49426420 1977 goto cleanup;
3812c8c8
JW
1978
1979 owait.memcg = memcg;
1980 owait.wait.flags = 0;
1981 owait.wait.func = memcg_oom_wake_function;
1982 owait.wait.private = current;
2055da97 1983 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1984
3812c8c8 1985 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1986 mem_cgroup_mark_under_oom(memcg);
1987
1988 locked = mem_cgroup_oom_trylock(memcg);
1989
1990 if (locked)
1991 mem_cgroup_oom_notify(memcg);
1992
1993 if (locked && !memcg->oom_kill_disable) {
1994 mem_cgroup_unmark_under_oom(memcg);
1995 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1996 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1997 current->memcg_oom_order);
49426420 1998 } else {
3812c8c8 1999 schedule();
49426420
JW
2000 mem_cgroup_unmark_under_oom(memcg);
2001 finish_wait(&memcg_oom_waitq, &owait.wait);
2002 }
2003
2004 if (locked) {
fb2a6fc5
JW
2005 mem_cgroup_oom_unlock(memcg);
2006 /*
2007 * There is no guarantee that an OOM-lock contender
2008 * sees the wakeups triggered by the OOM kill
f0953a1b 2009 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2010 */
2011 memcg_oom_recover(memcg);
2012 }
49426420 2013cleanup:
626ebc41 2014 current->memcg_in_oom = NULL;
3812c8c8 2015 css_put(&memcg->css);
867578cb 2016 return true;
0b7f569e
KH
2017}
2018
3d8b38eb
RG
2019/**
2020 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2021 * @victim: task to be killed by the OOM killer
2022 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2023 *
2024 * Returns a pointer to a memory cgroup, which has to be cleaned up
2025 * by killing all belonging OOM-killable tasks.
2026 *
2027 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2028 */
2029struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2030 struct mem_cgroup *oom_domain)
2031{
2032 struct mem_cgroup *oom_group = NULL;
2033 struct mem_cgroup *memcg;
2034
2035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2036 return NULL;
2037
2038 if (!oom_domain)
2039 oom_domain = root_mem_cgroup;
2040
2041 rcu_read_lock();
2042
2043 memcg = mem_cgroup_from_task(victim);
7848ed62 2044 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2045 goto out;
2046
48fe267c
RG
2047 /*
2048 * If the victim task has been asynchronously moved to a different
2049 * memory cgroup, we might end up killing tasks outside oom_domain.
2050 * In this case it's better to ignore memory.group.oom.
2051 */
2052 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2053 goto out;
2054
3d8b38eb
RG
2055 /*
2056 * Traverse the memory cgroup hierarchy from the victim task's
2057 * cgroup up to the OOMing cgroup (or root) to find the
2058 * highest-level memory cgroup with oom.group set.
2059 */
2060 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2061 if (memcg->oom_group)
2062 oom_group = memcg;
2063
2064 if (memcg == oom_domain)
2065 break;
2066 }
2067
2068 if (oom_group)
2069 css_get(&oom_group->css);
2070out:
2071 rcu_read_unlock();
2072
2073 return oom_group;
2074}
2075
2076void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2077{
2078 pr_info("Tasks in ");
2079 pr_cont_cgroup_path(memcg->css.cgroup);
2080 pr_cont(" are going to be killed due to memory.oom.group set\n");
2081}
2082
d7365e78 2083/**
f70ad448
MWO
2084 * folio_memcg_lock - Bind a folio to its memcg.
2085 * @folio: The folio.
32047e2a 2086 *
f70ad448 2087 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2088 * another cgroup.
2089 *
f70ad448
MWO
2090 * It ensures lifetime of the bound memcg. The caller is responsible
2091 * for the lifetime of the folio.
d69b042f 2092 */
f70ad448 2093void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2094{
2095 struct mem_cgroup *memcg;
6de22619 2096 unsigned long flags;
89c06bd5 2097
6de22619
JW
2098 /*
2099 * The RCU lock is held throughout the transaction. The fast
2100 * path can get away without acquiring the memcg->move_lock
2101 * because page moving starts with an RCU grace period.
739f79fc 2102 */
d7365e78
JW
2103 rcu_read_lock();
2104
2105 if (mem_cgroup_disabled())
1c824a68 2106 return;
89c06bd5 2107again:
f70ad448 2108 memcg = folio_memcg(folio);
29833315 2109 if (unlikely(!memcg))
1c824a68 2110 return;
d7365e78 2111
20ad50d6
AS
2112#ifdef CONFIG_PROVE_LOCKING
2113 local_irq_save(flags);
2114 might_lock(&memcg->move_lock);
2115 local_irq_restore(flags);
2116#endif
2117
bdcbb659 2118 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2119 return;
89c06bd5 2120
6de22619 2121 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2122 if (memcg != folio_memcg(folio)) {
6de22619 2123 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2124 goto again;
2125 }
6de22619
JW
2126
2127 /*
1c824a68
JW
2128 * When charge migration first begins, we can have multiple
2129 * critical sections holding the fast-path RCU lock and one
2130 * holding the slowpath move_lock. Track the task who has the
2131 * move_lock for unlock_page_memcg().
6de22619
JW
2132 */
2133 memcg->move_lock_task = current;
2134 memcg->move_lock_flags = flags;
89c06bd5 2135}
f70ad448
MWO
2136
2137void lock_page_memcg(struct page *page)
2138{
2139 folio_memcg_lock(page_folio(page));
2140}
89c06bd5 2141
f70ad448 2142static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2143{
6de22619
JW
2144 if (memcg && memcg->move_lock_task == current) {
2145 unsigned long flags = memcg->move_lock_flags;
2146
2147 memcg->move_lock_task = NULL;
2148 memcg->move_lock_flags = 0;
2149
2150 spin_unlock_irqrestore(&memcg->move_lock, flags);
2151 }
89c06bd5 2152
d7365e78 2153 rcu_read_unlock();
89c06bd5 2154}
739f79fc
JW
2155
2156/**
f70ad448
MWO
2157 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2158 * @folio: The folio.
2159 *
2160 * This releases the binding created by folio_memcg_lock(). This does
2161 * not change the accounting of this folio to its memcg, but it does
2162 * permit others to change it.
739f79fc 2163 */
f70ad448 2164void folio_memcg_unlock(struct folio *folio)
739f79fc 2165{
f70ad448
MWO
2166 __folio_memcg_unlock(folio_memcg(folio));
2167}
9da7b521 2168
f70ad448
MWO
2169void unlock_page_memcg(struct page *page)
2170{
2171 folio_memcg_unlock(page_folio(page));
739f79fc 2172}
89c06bd5 2173
fead2b86 2174struct memcg_stock_pcp {
56751146 2175 local_lock_t stock_lock;
fead2b86
MH
2176 struct mem_cgroup *cached; /* this never be root cgroup */
2177 unsigned int nr_pages;
2178
bf4f0599
RG
2179#ifdef CONFIG_MEMCG_KMEM
2180 struct obj_cgroup *cached_objcg;
68ac5b3c 2181 struct pglist_data *cached_pgdat;
bf4f0599 2182 unsigned int nr_bytes;
68ac5b3c
WL
2183 int nr_slab_reclaimable_b;
2184 int nr_slab_unreclaimable_b;
bf4f0599
RG
2185#endif
2186
cdec2e42 2187 struct work_struct work;
26fe6168 2188 unsigned long flags;
a0db00fc 2189#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2190};
56751146
SAS
2191static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2192 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2193};
9f50fad6 2194static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2195
bf4f0599 2196#ifdef CONFIG_MEMCG_KMEM
56751146 2197static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2198static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2199 struct mem_cgroup *root_memcg);
a8c49af3 2200static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2201
2202#else
56751146 2203static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2204{
56751146 2205 return NULL;
bf4f0599
RG
2206}
2207static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208 struct mem_cgroup *root_memcg)
2209{
2210 return false;
2211}
a8c49af3
YA
2212static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2213{
2214}
bf4f0599
RG
2215#endif
2216
a0956d54
SS
2217/**
2218 * consume_stock: Try to consume stocked charge on this cpu.
2219 * @memcg: memcg to consume from.
2220 * @nr_pages: how many pages to charge.
2221 *
2222 * The charges will only happen if @memcg matches the current cpu's memcg
2223 * stock, and at least @nr_pages are available in that stock. Failure to
2224 * service an allocation will refill the stock.
2225 *
2226 * returns true if successful, false otherwise.
cdec2e42 2227 */
a0956d54 2228static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2229{
2230 struct memcg_stock_pcp *stock;
db2ba40c 2231 unsigned long flags;
3e32cb2e 2232 bool ret = false;
cdec2e42 2233
a983b5eb 2234 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2235 return ret;
a0956d54 2236
56751146 2237 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2238
2239 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2240 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2241 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2242 ret = true;
2243 }
db2ba40c 2244
56751146 2245 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2246
cdec2e42
KH
2247 return ret;
2248}
2249
2250/*
3e32cb2e 2251 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2252 */
2253static void drain_stock(struct memcg_stock_pcp *stock)
2254{
2255 struct mem_cgroup *old = stock->cached;
2256
1a3e1f40
JW
2257 if (!old)
2258 return;
2259
11c9ea4e 2260 if (stock->nr_pages) {
3e32cb2e 2261 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2262 if (do_memsw_account())
3e32cb2e 2263 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2264 stock->nr_pages = 0;
cdec2e42 2265 }
1a3e1f40
JW
2266
2267 css_put(&old->css);
cdec2e42 2268 stock->cached = NULL;
cdec2e42
KH
2269}
2270
cdec2e42
KH
2271static void drain_local_stock(struct work_struct *dummy)
2272{
db2ba40c 2273 struct memcg_stock_pcp *stock;
56751146 2274 struct obj_cgroup *old = NULL;
db2ba40c
JW
2275 unsigned long flags;
2276
72f0184c 2277 /*
5c49cf9a
MH
2278 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2279 * drain_stock races is that we always operate on local CPU stock
2280 * here with IRQ disabled
72f0184c 2281 */
56751146 2282 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2283
2284 stock = this_cpu_ptr(&memcg_stock);
56751146 2285 old = drain_obj_stock(stock);
cdec2e42 2286 drain_stock(stock);
26fe6168 2287 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2288
56751146
SAS
2289 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2290 if (old)
2291 obj_cgroup_put(old);
cdec2e42
KH
2292}
2293
2294/*
3e32cb2e 2295 * Cache charges(val) to local per_cpu area.
320cc51d 2296 * This will be consumed by consume_stock() function, later.
cdec2e42 2297 */
af9a3b69 2298static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2299{
db2ba40c 2300 struct memcg_stock_pcp *stock;
cdec2e42 2301
db2ba40c 2302 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2303 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2304 drain_stock(stock);
1a3e1f40 2305 css_get(&memcg->css);
c0ff4b85 2306 stock->cached = memcg;
cdec2e42 2307 }
11c9ea4e 2308 stock->nr_pages += nr_pages;
db2ba40c 2309
a983b5eb 2310 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2311 drain_stock(stock);
af9a3b69
JW
2312}
2313
2314static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2315{
2316 unsigned long flags;
475d0487 2317
56751146 2318 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2319 __refill_stock(memcg, nr_pages);
56751146 2320 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2321}
2322
2323/*
c0ff4b85 2324 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2325 * of the hierarchy under it.
cdec2e42 2326 */
6d3d6aa2 2327static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2328{
26fe6168 2329 int cpu, curcpu;
d38144b7 2330
6d3d6aa2
JW
2331 /* If someone's already draining, avoid adding running more workers. */
2332 if (!mutex_trylock(&percpu_charge_mutex))
2333 return;
72f0184c
MH
2334 /*
2335 * Notify other cpus that system-wide "drain" is running
2336 * We do not care about races with the cpu hotplug because cpu down
2337 * as well as workers from this path always operate on the local
2338 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2339 */
0790ed62
SAS
2340 migrate_disable();
2341 curcpu = smp_processor_id();
cdec2e42
KH
2342 for_each_online_cpu(cpu) {
2343 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2344 struct mem_cgroup *memcg;
e1a366be 2345 bool flush = false;
26fe6168 2346
e1a366be 2347 rcu_read_lock();
c0ff4b85 2348 memcg = stock->cached;
e1a366be
RG
2349 if (memcg && stock->nr_pages &&
2350 mem_cgroup_is_descendant(memcg, root_memcg))
2351 flush = true;
27fb0956 2352 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2353 flush = true;
e1a366be
RG
2354 rcu_read_unlock();
2355
2356 if (flush &&
2357 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2358 if (cpu == curcpu)
2359 drain_local_stock(&stock->work);
2360 else
2361 schedule_work_on(cpu, &stock->work);
2362 }
cdec2e42 2363 }
0790ed62 2364 migrate_enable();
9f50fad6 2365 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2366}
2367
2cd21c89
JW
2368static int memcg_hotplug_cpu_dead(unsigned int cpu)
2369{
2370 struct memcg_stock_pcp *stock;
a3d4c05a 2371
2cd21c89
JW
2372 stock = &per_cpu(memcg_stock, cpu);
2373 drain_stock(stock);
a3d4c05a 2374
308167fc 2375 return 0;
cdec2e42
KH
2376}
2377
b3ff9291
CD
2378static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379 unsigned int nr_pages,
2380 gfp_t gfp_mask)
f7e1cb6e 2381{
b3ff9291
CD
2382 unsigned long nr_reclaimed = 0;
2383
f7e1cb6e 2384 do {
e22c6ed9
JW
2385 unsigned long pflags;
2386
d1663a90
JK
2387 if (page_counter_read(&memcg->memory) <=
2388 READ_ONCE(memcg->memory.high))
f7e1cb6e 2389 continue;
e22c6ed9 2390
e27be240 2391 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2392
2393 psi_memstall_enter(&pflags);
b3ff9291 2394 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2395 gfp_mask,
12a5d395
MA
2396 MEMCG_RECLAIM_MAY_SWAP,
2397 NULL);
e22c6ed9 2398 psi_memstall_leave(&pflags);
4bf17307
CD
2399 } while ((memcg = parent_mem_cgroup(memcg)) &&
2400 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2401
2402 return nr_reclaimed;
f7e1cb6e
JW
2403}
2404
2405static void high_work_func(struct work_struct *work)
2406{
2407 struct mem_cgroup *memcg;
2408
2409 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2410 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2411}
2412
0e4b01df
CD
2413/*
2414 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2415 * enough to still cause a significant slowdown in most cases, while still
2416 * allowing diagnostics and tracing to proceed without becoming stuck.
2417 */
2418#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2419
2420/*
2421 * When calculating the delay, we use these either side of the exponentiation to
2422 * maintain precision and scale to a reasonable number of jiffies (see the table
2423 * below.
2424 *
2425 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2426 * overage ratio to a delay.
ac5ddd0f 2427 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2428 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2429 * to produce a reasonable delay curve.
2430 *
2431 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2432 * reasonable delay curve compared to precision-adjusted overage, not
2433 * penalising heavily at first, but still making sure that growth beyond the
2434 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2435 * example, with a high of 100 megabytes:
2436 *
2437 * +-------+------------------------+
2438 * | usage | time to allocate in ms |
2439 * +-------+------------------------+
2440 * | 100M | 0 |
2441 * | 101M | 6 |
2442 * | 102M | 25 |
2443 * | 103M | 57 |
2444 * | 104M | 102 |
2445 * | 105M | 159 |
2446 * | 106M | 230 |
2447 * | 107M | 313 |
2448 * | 108M | 409 |
2449 * | 109M | 518 |
2450 * | 110M | 639 |
2451 * | 111M | 774 |
2452 * | 112M | 921 |
2453 * | 113M | 1081 |
2454 * | 114M | 1254 |
2455 * | 115M | 1439 |
2456 * | 116M | 1638 |
2457 * | 117M | 1849 |
2458 * | 118M | 2000 |
2459 * | 119M | 2000 |
2460 * | 120M | 2000 |
2461 * +-------+------------------------+
2462 */
2463 #define MEMCG_DELAY_PRECISION_SHIFT 20
2464 #define MEMCG_DELAY_SCALING_SHIFT 14
2465
8a5dbc65 2466static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2467{
8a5dbc65 2468 u64 overage;
b23afb93 2469
8a5dbc65
JK
2470 if (usage <= high)
2471 return 0;
e26733e0 2472
8a5dbc65
JK
2473 /*
2474 * Prevent division by 0 in overage calculation by acting as if
2475 * it was a threshold of 1 page
2476 */
2477 high = max(high, 1UL);
9b8b1754 2478
8a5dbc65
JK
2479 overage = usage - high;
2480 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2481 return div64_u64(overage, high);
2482}
e26733e0 2483
8a5dbc65
JK
2484static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2485{
2486 u64 overage, max_overage = 0;
e26733e0 2487
8a5dbc65
JK
2488 do {
2489 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2490 READ_ONCE(memcg->memory.high));
8a5dbc65 2491 max_overage = max(overage, max_overage);
e26733e0
CD
2492 } while ((memcg = parent_mem_cgroup(memcg)) &&
2493 !mem_cgroup_is_root(memcg));
2494
8a5dbc65
JK
2495 return max_overage;
2496}
2497
4b82ab4f
JK
2498static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2499{
2500 u64 overage, max_overage = 0;
2501
2502 do {
2503 overage = calculate_overage(page_counter_read(&memcg->swap),
2504 READ_ONCE(memcg->swap.high));
2505 if (overage)
2506 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2507 max_overage = max(overage, max_overage);
2508 } while ((memcg = parent_mem_cgroup(memcg)) &&
2509 !mem_cgroup_is_root(memcg));
2510
2511 return max_overage;
2512}
2513
8a5dbc65
JK
2514/*
2515 * Get the number of jiffies that we should penalise a mischievous cgroup which
2516 * is exceeding its memory.high by checking both it and its ancestors.
2517 */
2518static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2519 unsigned int nr_pages,
2520 u64 max_overage)
2521{
2522 unsigned long penalty_jiffies;
2523
e26733e0
CD
2524 if (!max_overage)
2525 return 0;
0e4b01df
CD
2526
2527 /*
0e4b01df
CD
2528 * We use overage compared to memory.high to calculate the number of
2529 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2530 * fairly lenient on small overages, and increasingly harsh when the
2531 * memcg in question makes it clear that it has no intention of stopping
2532 * its crazy behaviour, so we exponentially increase the delay based on
2533 * overage amount.
2534 */
e26733e0
CD
2535 penalty_jiffies = max_overage * max_overage * HZ;
2536 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2537 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2538
2539 /*
2540 * Factor in the task's own contribution to the overage, such that four
2541 * N-sized allocations are throttled approximately the same as one
2542 * 4N-sized allocation.
2543 *
2544 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2545 * larger the current charge patch is than that.
2546 */
ff144e69 2547 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2548}
2549
2550/*
2551 * Scheduled by try_charge() to be executed from the userland return path
2552 * and reclaims memory over the high limit.
2553 */
2554void mem_cgroup_handle_over_high(void)
2555{
2556 unsigned long penalty_jiffies;
2557 unsigned long pflags;
b3ff9291 2558 unsigned long nr_reclaimed;
e26733e0 2559 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2560 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2561 struct mem_cgroup *memcg;
b3ff9291 2562 bool in_retry = false;
e26733e0
CD
2563
2564 if (likely(!nr_pages))
2565 return;
2566
2567 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2568 current->memcg_nr_pages_over_high = 0;
2569
b3ff9291
CD
2570retry_reclaim:
2571 /*
2572 * The allocating task should reclaim at least the batch size, but for
2573 * subsequent retries we only want to do what's necessary to prevent oom
2574 * or breaching resource isolation.
2575 *
2576 * This is distinct from memory.max or page allocator behaviour because
2577 * memory.high is currently batched, whereas memory.max and the page
2578 * allocator run every time an allocation is made.
2579 */
2580 nr_reclaimed = reclaim_high(memcg,
2581 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2582 GFP_KERNEL);
2583
e26733e0
CD
2584 /*
2585 * memory.high is breached and reclaim is unable to keep up. Throttle
2586 * allocators proactively to slow down excessive growth.
2587 */
8a5dbc65
JK
2588 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2589 mem_find_max_overage(memcg));
0e4b01df 2590
4b82ab4f
JK
2591 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2592 swap_find_max_overage(memcg));
2593
ff144e69
JK
2594 /*
2595 * Clamp the max delay per usermode return so as to still keep the
2596 * application moving forwards and also permit diagnostics, albeit
2597 * extremely slowly.
2598 */
2599 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2600
0e4b01df
CD
2601 /*
2602 * Don't sleep if the amount of jiffies this memcg owes us is so low
2603 * that it's not even worth doing, in an attempt to be nice to those who
2604 * go only a small amount over their memory.high value and maybe haven't
2605 * been aggressively reclaimed enough yet.
2606 */
2607 if (penalty_jiffies <= HZ / 100)
2608 goto out;
2609
b3ff9291
CD
2610 /*
2611 * If reclaim is making forward progress but we're still over
2612 * memory.high, we want to encourage that rather than doing allocator
2613 * throttling.
2614 */
2615 if (nr_reclaimed || nr_retries--) {
2616 in_retry = true;
2617 goto retry_reclaim;
2618 }
2619
0e4b01df
CD
2620 /*
2621 * If we exit early, we're guaranteed to die (since
2622 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2623 * need to account for any ill-begotten jiffies to pay them off later.
2624 */
2625 psi_memstall_enter(&pflags);
2626 schedule_timeout_killable(penalty_jiffies);
2627 psi_memstall_leave(&pflags);
2628
2629out:
2630 css_put(&memcg->css);
b23afb93
TH
2631}
2632
c5c8b16b
MS
2633static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634 unsigned int nr_pages)
8a9f3ccd 2635{
a983b5eb 2636 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2637 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2638 struct mem_cgroup *mem_over_limit;
3e32cb2e 2639 struct page_counter *counter;
6539cc05 2640 unsigned long nr_reclaimed;
a4ebf1b6 2641 bool passed_oom = false;
73b73bac 2642 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2643 bool drained = false;
d6e103a7 2644 bool raised_max_event = false;
e22c6ed9 2645 unsigned long pflags;
a636b327 2646
6539cc05 2647retry:
b6b6cc72 2648 if (consume_stock(memcg, nr_pages))
10d53c74 2649 return 0;
8a9f3ccd 2650
7941d214 2651 if (!do_memsw_account() ||
6071ca52
JW
2652 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2653 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2654 goto done_restock;
7941d214 2655 if (do_memsw_account())
3e32cb2e
JW
2656 page_counter_uncharge(&memcg->memsw, batch);
2657 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2658 } else {
3e32cb2e 2659 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2660 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2661 }
7a81b88c 2662
6539cc05
JW
2663 if (batch > nr_pages) {
2664 batch = nr_pages;
2665 goto retry;
2666 }
6d61ef40 2667
89a28483
JW
2668 /*
2669 * Prevent unbounded recursion when reclaim operations need to
2670 * allocate memory. This might exceed the limits temporarily,
2671 * but we prefer facilitating memory reclaim and getting back
2672 * under the limit over triggering OOM kills in these cases.
2673 */
2674 if (unlikely(current->flags & PF_MEMALLOC))
2675 goto force;
2676
06b078fc
JW
2677 if (unlikely(task_in_memcg_oom(current)))
2678 goto nomem;
2679
d0164adc 2680 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2681 goto nomem;
4b534334 2682
e27be240 2683 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2684 raised_max_event = true;
241994ed 2685
e22c6ed9 2686 psi_memstall_enter(&pflags);
b70a2a21 2687 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
12a5d395
MA
2688 gfp_mask, reclaim_options,
2689 NULL);
e22c6ed9 2690 psi_memstall_leave(&pflags);
6539cc05 2691
61e02c74 2692 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2693 goto retry;
28c34c29 2694
b70a2a21 2695 if (!drained) {
6d3d6aa2 2696 drain_all_stock(mem_over_limit);
b70a2a21
JW
2697 drained = true;
2698 goto retry;
2699 }
2700
28c34c29
JW
2701 if (gfp_mask & __GFP_NORETRY)
2702 goto nomem;
6539cc05
JW
2703 /*
2704 * Even though the limit is exceeded at this point, reclaim
2705 * may have been able to free some pages. Retry the charge
2706 * before killing the task.
2707 *
2708 * Only for regular pages, though: huge pages are rather
2709 * unlikely to succeed so close to the limit, and we fall back
2710 * to regular pages anyway in case of failure.
2711 */
61e02c74 2712 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2713 goto retry;
2714 /*
2715 * At task move, charge accounts can be doubly counted. So, it's
2716 * better to wait until the end of task_move if something is going on.
2717 */
2718 if (mem_cgroup_wait_acct_move(mem_over_limit))
2719 goto retry;
2720
9b130619
JW
2721 if (nr_retries--)
2722 goto retry;
2723
38d38493 2724 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2725 goto nomem;
2726
a4ebf1b6
VA
2727 /* Avoid endless loop for tasks bypassed by the oom killer */
2728 if (passed_oom && task_is_dying())
2729 goto nomem;
6539cc05 2730
29ef680a
MH
2731 /*
2732 * keep retrying as long as the memcg oom killer is able to make
2733 * a forward progress or bypass the charge if the oom killer
2734 * couldn't make any progress.
2735 */
becdf89d
SB
2736 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2737 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2738 passed_oom = true;
d977aa93 2739 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2740 goto retry;
29ef680a 2741 }
7a81b88c 2742nomem:
1461e8c2
SB
2743 /*
2744 * Memcg doesn't have a dedicated reserve for atomic
2745 * allocations. But like the global atomic pool, we need to
2746 * put the burden of reclaim on regular allocation requests
2747 * and let these go through as privileged allocations.
2748 */
2749 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2750 return -ENOMEM;
10d53c74 2751force:
d6e103a7
RG
2752 /*
2753 * If the allocation has to be enforced, don't forget to raise
2754 * a MEMCG_MAX event.
2755 */
2756 if (!raised_max_event)
2757 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2758
10d53c74
TH
2759 /*
2760 * The allocation either can't fail or will lead to more memory
2761 * being freed very soon. Allow memory usage go over the limit
2762 * temporarily by force charging it.
2763 */
2764 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2765 if (do_memsw_account())
10d53c74 2766 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2767
2768 return 0;
6539cc05
JW
2769
2770done_restock:
2771 if (batch > nr_pages)
2772 refill_stock(memcg, batch - nr_pages);
b23afb93 2773
241994ed 2774 /*
b23afb93
TH
2775 * If the hierarchy is above the normal consumption range, schedule
2776 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2777 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2778 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2779 * not recorded as it most likely matches current's and won't
2780 * change in the meantime. As high limit is checked again before
2781 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2782 */
2783 do {
4b82ab4f
JK
2784 bool mem_high, swap_high;
2785
2786 mem_high = page_counter_read(&memcg->memory) >
2787 READ_ONCE(memcg->memory.high);
2788 swap_high = page_counter_read(&memcg->swap) >
2789 READ_ONCE(memcg->swap.high);
2790
2791 /* Don't bother a random interrupted task */
086f694a 2792 if (!in_task()) {
4b82ab4f 2793 if (mem_high) {
f7e1cb6e
JW
2794 schedule_work(&memcg->high_work);
2795 break;
2796 }
4b82ab4f
JK
2797 continue;
2798 }
2799
2800 if (mem_high || swap_high) {
2801 /*
2802 * The allocating tasks in this cgroup will need to do
2803 * reclaim or be throttled to prevent further growth
2804 * of the memory or swap footprints.
2805 *
2806 * Target some best-effort fairness between the tasks,
2807 * and distribute reclaim work and delay penalties
2808 * based on how much each task is actually allocating.
2809 */
9516a18a 2810 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2811 set_notify_resume(current);
2812 break;
2813 }
241994ed 2814 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2815
c9afe31e
SB
2816 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2817 !(current->flags & PF_MEMALLOC) &&
2818 gfpflags_allow_blocking(gfp_mask)) {
2819 mem_cgroup_handle_over_high();
2820 }
10d53c74 2821 return 0;
7a81b88c 2822}
8a9f3ccd 2823
c5c8b16b
MS
2824static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2825 unsigned int nr_pages)
2826{
2827 if (mem_cgroup_is_root(memcg))
2828 return 0;
2829
2830 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2831}
2832
58056f77 2833static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2834{
ce00a967
JW
2835 if (mem_cgroup_is_root(memcg))
2836 return;
2837
3e32cb2e 2838 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2839 if (do_memsw_account())
3e32cb2e 2840 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2841}
2842
118f2875 2843static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2844{
118f2875 2845 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2846 /*
a5eb011a 2847 * Any of the following ensures page's memcg stability:
0a31bc97 2848 *
a0b5b414
JW
2849 * - the page lock
2850 * - LRU isolation
2851 * - lock_page_memcg()
2852 * - exclusive reference
018ee47f 2853 * - mem_cgroup_trylock_pages()
0a31bc97 2854 */
118f2875 2855 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2856}
66e1707b 2857
84c07d11 2858#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2859/*
2860 * The allocated objcg pointers array is not accounted directly.
2861 * Moreover, it should not come from DMA buffer and is not readily
2862 * reclaimable. So those GFP bits should be masked off.
2863 */
2864#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2865
a7ebf564
WL
2866/*
2867 * mod_objcg_mlstate() may be called with irq enabled, so
2868 * mod_memcg_lruvec_state() should be used.
2869 */
2870static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2871 struct pglist_data *pgdat,
2872 enum node_stat_item idx, int nr)
2873{
2874 struct mem_cgroup *memcg;
2875 struct lruvec *lruvec;
2876
2877 rcu_read_lock();
2878 memcg = obj_cgroup_memcg(objcg);
2879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2880 mod_memcg_lruvec_state(lruvec, idx, nr);
2881 rcu_read_unlock();
2882}
2883
4b5f8d9a
VB
2884int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2885 gfp_t gfp, bool new_slab)
10befea9 2886{
4b5f8d9a 2887 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2888 unsigned long memcg_data;
10befea9
RG
2889 void *vec;
2890
41eb5df1 2891 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2892 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2893 slab_nid(slab));
10befea9
RG
2894 if (!vec)
2895 return -ENOMEM;
2896
2e9bd483 2897 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2898 if (new_slab) {
2e9bd483 2899 /*
4b5f8d9a
VB
2900 * If the slab is brand new and nobody can yet access its
2901 * memcg_data, no synchronization is required and memcg_data can
2902 * be simply assigned.
2e9bd483 2903 */
4b5f8d9a
VB
2904 slab->memcg_data = memcg_data;
2905 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2906 /*
4b5f8d9a
VB
2907 * If the slab is already in use, somebody can allocate and
2908 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2909 * objcg vector should be reused.
2910 */
10befea9 2911 kfree(vec);
2e9bd483
RG
2912 return 0;
2913 }
10befea9 2914
2e9bd483 2915 kmemleak_not_leak(vec);
10befea9
RG
2916 return 0;
2917}
2918
fc4db90f
RG
2919static __always_inline
2920struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2921{
8380ce47 2922 /*
9855609b
RG
2923 * Slab objects are accounted individually, not per-page.
2924 * Memcg membership data for each individual object is saved in
4b5f8d9a 2925 * slab->memcg_data.
8380ce47 2926 */
4b5f8d9a
VB
2927 if (folio_test_slab(folio)) {
2928 struct obj_cgroup **objcgs;
2929 struct slab *slab;
9855609b
RG
2930 unsigned int off;
2931
4b5f8d9a
VB
2932 slab = folio_slab(folio);
2933 objcgs = slab_objcgs(slab);
2934 if (!objcgs)
2935 return NULL;
2936
2937 off = obj_to_index(slab->slab_cache, slab, p);
2938 if (objcgs[off])
2939 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2940
2941 return NULL;
9855609b 2942 }
8380ce47 2943
bcfe06bf 2944 /*
4b5f8d9a
VB
2945 * page_memcg_check() is used here, because in theory we can encounter
2946 * a folio where the slab flag has been cleared already, but
2947 * slab->memcg_data has not been freed yet
bcfe06bf
RG
2948 * page_memcg_check(page) will guarantee that a proper memory
2949 * cgroup pointer or NULL will be returned.
2950 */
4b5f8d9a 2951 return page_memcg_check(folio_page(folio, 0));
8380ce47
RG
2952}
2953
fc4db90f
RG
2954/*
2955 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2956 *
2957 * A passed kernel object can be a slab object, vmalloc object or a generic
2958 * kernel page, so different mechanisms for getting the memory cgroup pointer
2959 * should be used.
2960 *
2961 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2962 * can not know for sure how the kernel object is implemented.
2963 * mem_cgroup_from_obj() can be safely used in such cases.
2964 *
2965 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2966 * cgroup_mutex, etc.
2967 */
2968struct mem_cgroup *mem_cgroup_from_obj(void *p)
2969{
2970 struct folio *folio;
2971
2972 if (mem_cgroup_disabled())
2973 return NULL;
2974
2975 if (unlikely(is_vmalloc_addr(p)))
2976 folio = page_folio(vmalloc_to_page(p));
2977 else
2978 folio = virt_to_folio(p);
2979
2980 return mem_cgroup_from_obj_folio(folio, p);
2981}
2982
2983/*
2984 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2985 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2986 * allocated using vmalloc().
2987 *
2988 * A passed kernel object must be a slab object or a generic kernel page.
2989 *
2990 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2991 * cgroup_mutex, etc.
2992 */
2993struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2994{
2995 if (mem_cgroup_disabled())
2996 return NULL;
2997
2998 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2999}
3000
f4840ccf
JW
3001static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3002{
3003 struct obj_cgroup *objcg = NULL;
3004
7848ed62 3005 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3006 objcg = rcu_dereference(memcg->objcg);
3007 if (objcg && obj_cgroup_tryget(objcg))
3008 break;
3009 objcg = NULL;
3010 }
3011 return objcg;
3012}
3013
bf4f0599
RG
3014__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3015{
3016 struct obj_cgroup *objcg = NULL;
3017 struct mem_cgroup *memcg;
3018
279c3393
RG
3019 if (memcg_kmem_bypass())
3020 return NULL;
3021
bf4f0599 3022 rcu_read_lock();
37d5985c
RG
3023 if (unlikely(active_memcg()))
3024 memcg = active_memcg();
bf4f0599
RG
3025 else
3026 memcg = mem_cgroup_from_task(current);
f4840ccf 3027 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3028 rcu_read_unlock();
f4840ccf
JW
3029 return objcg;
3030}
3031
3032struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3033{
3034 struct obj_cgroup *objcg;
3035
cd08d80e 3036 if (!memcg_kmem_enabled())
f4840ccf
JW
3037 return NULL;
3038
3039 if (PageMemcgKmem(page)) {
3040 objcg = __folio_objcg(page_folio(page));
3041 obj_cgroup_get(objcg);
3042 } else {
3043 struct mem_cgroup *memcg;
bf4f0599 3044
f4840ccf
JW
3045 rcu_read_lock();
3046 memcg = __folio_memcg(page_folio(page));
3047 if (memcg)
3048 objcg = __get_obj_cgroup_from_memcg(memcg);
3049 else
3050 objcg = NULL;
3051 rcu_read_unlock();
3052 }
bf4f0599
RG
3053 return objcg;
3054}
3055
a8c49af3
YA
3056static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3057{
3058 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3060 if (nr_pages > 0)
3061 page_counter_charge(&memcg->kmem, nr_pages);
3062 else
3063 page_counter_uncharge(&memcg->kmem, -nr_pages);
3064 }
3065}
3066
3067
f1286fae
MS
3068/*
3069 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3070 * @objcg: object cgroup to uncharge
3071 * @nr_pages: number of pages to uncharge
3072 */
e74d2259
MS
3073static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3074 unsigned int nr_pages)
3075{
3076 struct mem_cgroup *memcg;
3077
3078 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3079
a8c49af3 3080 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3081 refill_stock(memcg, nr_pages);
e74d2259 3082
e74d2259 3083 css_put(&memcg->css);
e74d2259
MS
3084}
3085
f1286fae
MS
3086/*
3087 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3088 * @objcg: object cgroup to charge
45264778 3089 * @gfp: reclaim mode
92d0510c 3090 * @nr_pages: number of pages to charge
45264778
VD
3091 *
3092 * Returns 0 on success, an error code on failure.
3093 */
f1286fae
MS
3094static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3095 unsigned int nr_pages)
7ae1e1d0 3096{
f1286fae 3097 struct mem_cgroup *memcg;
7ae1e1d0
GC
3098 int ret;
3099
f1286fae
MS
3100 memcg = get_mem_cgroup_from_objcg(objcg);
3101
c5c8b16b 3102 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3103 if (ret)
f1286fae 3104 goto out;
52c29b04 3105
a8c49af3 3106 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3107out:
3108 css_put(&memcg->css);
4b13f64d 3109
f1286fae 3110 return ret;
4b13f64d
RG
3111}
3112
45264778 3113/**
f4b00eab 3114 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3115 * @page: page to charge
3116 * @gfp: reclaim mode
3117 * @order: allocation order
3118 *
3119 * Returns 0 on success, an error code on failure.
3120 */
f4b00eab 3121int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3122{
b4e0b68f 3123 struct obj_cgroup *objcg;
fcff7d7e 3124 int ret = 0;
7ae1e1d0 3125
b4e0b68f
MS
3126 objcg = get_obj_cgroup_from_current();
3127 if (objcg) {
3128 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3129 if (!ret) {
b4e0b68f 3130 page->memcg_data = (unsigned long)objcg |
18b2db3b 3131 MEMCG_DATA_KMEM;
1a3e1f40 3132 return 0;
4d96ba35 3133 }
b4e0b68f 3134 obj_cgroup_put(objcg);
c4159a75 3135 }
d05e83a6 3136 return ret;
7ae1e1d0 3137}
49a18eae 3138
45264778 3139/**
f4b00eab 3140 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3141 * @page: page to uncharge
3142 * @order: allocation order
3143 */
f4b00eab 3144void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3145{
1b7e4464 3146 struct folio *folio = page_folio(page);
b4e0b68f 3147 struct obj_cgroup *objcg;
f3ccb2c4 3148 unsigned int nr_pages = 1 << order;
7ae1e1d0 3149
1b7e4464 3150 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3151 return;
3152
1b7e4464 3153 objcg = __folio_objcg(folio);
b4e0b68f 3154 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3155 folio->memcg_data = 0;
b4e0b68f 3156 obj_cgroup_put(objcg);
60d3fd32 3157}
bf4f0599 3158
68ac5b3c
WL
3159void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3160 enum node_stat_item idx, int nr)
3161{
fead2b86 3162 struct memcg_stock_pcp *stock;
56751146 3163 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3164 unsigned long flags;
3165 int *bytes;
3166
56751146 3167 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3168 stock = this_cpu_ptr(&memcg_stock);
3169
68ac5b3c
WL
3170 /*
3171 * Save vmstat data in stock and skip vmstat array update unless
3172 * accumulating over a page of vmstat data or when pgdat or idx
3173 * changes.
3174 */
3175 if (stock->cached_objcg != objcg) {
56751146 3176 old = drain_obj_stock(stock);
68ac5b3c
WL
3177 obj_cgroup_get(objcg);
3178 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3179 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3180 stock->cached_objcg = objcg;
3181 stock->cached_pgdat = pgdat;
3182 } else if (stock->cached_pgdat != pgdat) {
3183 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3184 struct pglist_data *oldpg = stock->cached_pgdat;
3185
68ac5b3c 3186 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3187 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3188 stock->nr_slab_reclaimable_b);
3189 stock->nr_slab_reclaimable_b = 0;
3190 }
3191 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3192 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3193 stock->nr_slab_unreclaimable_b);
3194 stock->nr_slab_unreclaimable_b = 0;
3195 }
3196 stock->cached_pgdat = pgdat;
3197 }
3198
3199 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3200 : &stock->nr_slab_unreclaimable_b;
3201 /*
3202 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3203 * cached locally at least once before pushing it out.
3204 */
3205 if (!*bytes) {
3206 *bytes = nr;
3207 nr = 0;
3208 } else {
3209 *bytes += nr;
3210 if (abs(*bytes) > PAGE_SIZE) {
3211 nr = *bytes;
3212 *bytes = 0;
3213 } else {
3214 nr = 0;
3215 }
3216 }
3217 if (nr)
3218 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3219
56751146
SAS
3220 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3221 if (old)
3222 obj_cgroup_put(old);
68ac5b3c
WL
3223}
3224
bf4f0599
RG
3225static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3226{
fead2b86 3227 struct memcg_stock_pcp *stock;
bf4f0599
RG
3228 unsigned long flags;
3229 bool ret = false;
3230
56751146 3231 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3232
3233 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3234 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3235 stock->nr_bytes -= nr_bytes;
3236 ret = true;
3237 }
3238
56751146 3239 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3240
3241 return ret;
3242}
3243
56751146 3244static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3245{
3246 struct obj_cgroup *old = stock->cached_objcg;
3247
3248 if (!old)
56751146 3249 return NULL;
bf4f0599
RG
3250
3251 if (stock->nr_bytes) {
3252 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3254
af9a3b69
JW
3255 if (nr_pages) {
3256 struct mem_cgroup *memcg;
3257
3258 memcg = get_mem_cgroup_from_objcg(old);
3259
3260 memcg_account_kmem(memcg, -nr_pages);
3261 __refill_stock(memcg, nr_pages);
3262
3263 css_put(&memcg->css);
3264 }
bf4f0599
RG
3265
3266 /*
3267 * The leftover is flushed to the centralized per-memcg value.
3268 * On the next attempt to refill obj stock it will be moved
3269 * to a per-cpu stock (probably, on an other CPU), see
3270 * refill_obj_stock().
3271 *
3272 * How often it's flushed is a trade-off between the memory
3273 * limit enforcement accuracy and potential CPU contention,
3274 * so it might be changed in the future.
3275 */
3276 atomic_add(nr_bytes, &old->nr_charged_bytes);
3277 stock->nr_bytes = 0;
3278 }
3279
68ac5b3c
WL
3280 /*
3281 * Flush the vmstat data in current stock
3282 */
3283 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3284 if (stock->nr_slab_reclaimable_b) {
3285 mod_objcg_mlstate(old, stock->cached_pgdat,
3286 NR_SLAB_RECLAIMABLE_B,
3287 stock->nr_slab_reclaimable_b);
3288 stock->nr_slab_reclaimable_b = 0;
3289 }
3290 if (stock->nr_slab_unreclaimable_b) {
3291 mod_objcg_mlstate(old, stock->cached_pgdat,
3292 NR_SLAB_UNRECLAIMABLE_B,
3293 stock->nr_slab_unreclaimable_b);
3294 stock->nr_slab_unreclaimable_b = 0;
3295 }
3296 stock->cached_pgdat = NULL;
3297 }
3298
bf4f0599 3299 stock->cached_objcg = NULL;
56751146
SAS
3300 /*
3301 * The `old' objects needs to be released by the caller via
3302 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3303 */
3304 return old;
bf4f0599
RG
3305}
3306
3307static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3308 struct mem_cgroup *root_memcg)
3309{
3310 struct mem_cgroup *memcg;
3311
fead2b86
MH
3312 if (stock->cached_objcg) {
3313 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3314 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3315 return true;
3316 }
3317
3318 return false;
3319}
3320
5387c904
WL
3321static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3322 bool allow_uncharge)
bf4f0599 3323{
fead2b86 3324 struct memcg_stock_pcp *stock;
56751146 3325 struct obj_cgroup *old = NULL;
bf4f0599 3326 unsigned long flags;
5387c904 3327 unsigned int nr_pages = 0;
bf4f0599 3328
56751146 3329 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3330
3331 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3332 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3333 old = drain_obj_stock(stock);
bf4f0599
RG
3334 obj_cgroup_get(objcg);
3335 stock->cached_objcg = objcg;
5387c904
WL
3336 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3337 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3338 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3339 }
3340 stock->nr_bytes += nr_bytes;
3341
5387c904
WL
3342 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3343 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3344 stock->nr_bytes &= (PAGE_SIZE - 1);
3345 }
bf4f0599 3346
56751146
SAS
3347 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3348 if (old)
3349 obj_cgroup_put(old);
5387c904
WL
3350
3351 if (nr_pages)
3352 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3353}
3354
3355int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3356{
bf4f0599
RG
3357 unsigned int nr_pages, nr_bytes;
3358 int ret;
3359
3360 if (consume_obj_stock(objcg, size))
3361 return 0;
3362
3363 /*
5387c904 3364 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3365 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3366 * flushing objcg->nr_charged_bytes requires two atomic
3367 * operations, and objcg->nr_charged_bytes can't be big.
3368 * The shared objcg->nr_charged_bytes can also become a
3369 * performance bottleneck if all tasks of the same memcg are
3370 * trying to update it. So it's better to ignore it and try
3371 * grab some new pages. The stock's nr_bytes will be flushed to
3372 * objcg->nr_charged_bytes later on when objcg changes.
3373 *
3374 * The stock's nr_bytes may contain enough pre-charged bytes
3375 * to allow one less page from being charged, but we can't rely
3376 * on the pre-charged bytes not being changed outside of
3377 * consume_obj_stock() or refill_obj_stock(). So ignore those
3378 * pre-charged bytes as well when charging pages. To avoid a
3379 * page uncharge right after a page charge, we set the
3380 * allow_uncharge flag to false when calling refill_obj_stock()
3381 * to temporarily allow the pre-charged bytes to exceed the page
3382 * size limit. The maximum reachable value of the pre-charged
3383 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3384 * race.
bf4f0599 3385 */
bf4f0599
RG
3386 nr_pages = size >> PAGE_SHIFT;
3387 nr_bytes = size & (PAGE_SIZE - 1);
3388
3389 if (nr_bytes)
3390 nr_pages += 1;
3391
e74d2259 3392 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3393 if (!ret && nr_bytes)
5387c904 3394 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3395
bf4f0599
RG
3396 return ret;
3397}
3398
3399void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3400{
5387c904 3401 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3402}
3403
84c07d11 3404#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3405
ca3e0214 3406/*
be6c8982 3407 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3408 */
be6c8982 3409void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3410{
1b7e4464
MWO
3411 struct folio *folio = page_folio(head);
3412 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3413 int i;
ca3e0214 3414
be6c8982 3415 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3416 return;
b070e65c 3417
be6c8982 3418 for (i = 1; i < nr; i++)
1b7e4464 3419 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3420
1b7e4464
MWO
3421 if (folio_memcg_kmem(folio))
3422 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3423 else
3424 css_get_many(&memcg->css, nr - 1);
ca3e0214 3425}
ca3e0214 3426
e55b9f96 3427#ifdef CONFIG_SWAP
02491447
DN
3428/**
3429 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3430 * @entry: swap entry to be moved
3431 * @from: mem_cgroup which the entry is moved from
3432 * @to: mem_cgroup which the entry is moved to
3433 *
3434 * It succeeds only when the swap_cgroup's record for this entry is the same
3435 * as the mem_cgroup's id of @from.
3436 *
3437 * Returns 0 on success, -EINVAL on failure.
3438 *
3e32cb2e 3439 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3440 * both res and memsw, and called css_get().
3441 */
3442static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3443 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3444{
3445 unsigned short old_id, new_id;
3446
34c00c31
LZ
3447 old_id = mem_cgroup_id(from);
3448 new_id = mem_cgroup_id(to);
02491447
DN
3449
3450 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3451 mod_memcg_state(from, MEMCG_SWAP, -1);
3452 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3453 return 0;
3454 }
3455 return -EINVAL;
3456}
3457#else
3458static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3459 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3460{
3461 return -EINVAL;
3462}
8c7c6e34 3463#endif
d13d1443 3464
bbec2e15 3465static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3466
bbec2e15
RG
3467static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3468 unsigned long max, bool memsw)
628f4235 3469{
3e32cb2e 3470 bool enlarge = false;
bb4a7ea2 3471 bool drained = false;
3e32cb2e 3472 int ret;
c054a78c
YZ
3473 bool limits_invariant;
3474 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3475
3e32cb2e 3476 do {
628f4235
KH
3477 if (signal_pending(current)) {
3478 ret = -EINTR;
3479 break;
3480 }
3e32cb2e 3481
bbec2e15 3482 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3483 /*
3484 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3485 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3486 */
15b42562 3487 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3488 max <= memcg->memsw.max;
c054a78c 3489 if (!limits_invariant) {
bbec2e15 3490 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3491 ret = -EINVAL;
8c7c6e34
KH
3492 break;
3493 }
bbec2e15 3494 if (max > counter->max)
3e32cb2e 3495 enlarge = true;
bbec2e15
RG
3496 ret = page_counter_set_max(counter, max);
3497 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3498
3499 if (!ret)
3500 break;
3501
bb4a7ea2
SB
3502 if (!drained) {
3503 drain_all_stock(memcg);
3504 drained = true;
3505 continue;
3506 }
3507
73b73bac 3508 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
12a5d395
MA
3509 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP,
3510 NULL)) {
1ab5c056
AR
3511 ret = -EBUSY;
3512 break;
3513 }
3514 } while (true);
3e32cb2e 3515
3c11ecf4
KH
3516 if (!ret && enlarge)
3517 memcg_oom_recover(memcg);
3e32cb2e 3518
628f4235
KH
3519 return ret;
3520}
3521
ef8f2327 3522unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3523 gfp_t gfp_mask,
3524 unsigned long *total_scanned)
3525{
3526 unsigned long nr_reclaimed = 0;
ef8f2327 3527 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3528 unsigned long reclaimed;
3529 int loop = 0;
ef8f2327 3530 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3531 unsigned long excess;
0608f43d
AM
3532
3533 if (order > 0)
3534 return 0;
3535
2ab082ba 3536 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3537
3538 /*
3539 * Do not even bother to check the largest node if the root
3540 * is empty. Do it lockless to prevent lock bouncing. Races
3541 * are acceptable as soft limit is best effort anyway.
3542 */
bfc7228b 3543 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3544 return 0;
3545
0608f43d
AM
3546 /*
3547 * This loop can run a while, specially if mem_cgroup's continuously
3548 * keep exceeding their soft limit and putting the system under
3549 * pressure
3550 */
3551 do {
3552 if (next_mz)
3553 mz = next_mz;
3554 else
3555 mz = mem_cgroup_largest_soft_limit_node(mctz);
3556 if (!mz)
3557 break;
3558
ef8f2327 3559 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3560 gfp_mask, total_scanned);
0608f43d 3561 nr_reclaimed += reclaimed;
0a31bc97 3562 spin_lock_irq(&mctz->lock);
0608f43d
AM
3563
3564 /*
3565 * If we failed to reclaim anything from this memory cgroup
3566 * it is time to move on to the next cgroup
3567 */
3568 next_mz = NULL;
bc2f2e7f
VD
3569 if (!reclaimed)
3570 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3571
3e32cb2e 3572 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3573 /*
3574 * One school of thought says that we should not add
3575 * back the node to the tree if reclaim returns 0.
3576 * But our reclaim could return 0, simply because due
3577 * to priority we are exposing a smaller subset of
3578 * memory to reclaim from. Consider this as a longer
3579 * term TODO.
3580 */
3581 /* If excess == 0, no tree ops */
cf2c8127 3582 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3583 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3584 css_put(&mz->memcg->css);
3585 loop++;
3586 /*
3587 * Could not reclaim anything and there are no more
3588 * mem cgroups to try or we seem to be looping without
3589 * reclaiming anything.
3590 */
3591 if (!nr_reclaimed &&
3592 (next_mz == NULL ||
3593 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3594 break;
3595 } while (!nr_reclaimed);
3596 if (next_mz)
3597 css_put(&next_mz->memcg->css);
3598 return nr_reclaimed;
3599}
3600
c26251f9 3601/*
51038171 3602 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3603 *
3604 * Caller is responsible for holding css reference for memcg.
3605 */
3606static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3607{
d977aa93 3608 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3609
c1e862c1
KH
3610 /* we call try-to-free pages for make this cgroup empty */
3611 lru_add_drain_all();
d12c60f6
JS
3612
3613 drain_all_stock(memcg);
3614
f817ed48 3615 /* try to free all pages in this cgroup */
3e32cb2e 3616 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3617 if (signal_pending(current))
3618 return -EINTR;
3619
73b73bac 3620 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
12a5d395
MA
3621 MEMCG_RECLAIM_MAY_SWAP,
3622 NULL))
f817ed48 3623 nr_retries--;
f817ed48 3624 }
ab5196c2
MH
3625
3626 return 0;
cc847582
KH
3627}
3628
6770c64e
TH
3629static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3630 char *buf, size_t nbytes,
3631 loff_t off)
c1e862c1 3632{
6770c64e 3633 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3634
d8423011
MH
3635 if (mem_cgroup_is_root(memcg))
3636 return -EINVAL;
6770c64e 3637 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3638}
3639
182446d0
TH
3640static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3641 struct cftype *cft)
18f59ea7 3642{
bef8620c 3643 return 1;
18f59ea7
BS
3644}
3645
182446d0
TH
3646static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3647 struct cftype *cft, u64 val)
18f59ea7 3648{
bef8620c 3649 if (val == 1)
0b8f73e1 3650 return 0;
567fb435 3651
bef8620c
RG
3652 pr_warn_once("Non-hierarchical mode is deprecated. "
3653 "Please report your usecase to linux-mm@kvack.org if you "
3654 "depend on this functionality.\n");
567fb435 3655
bef8620c 3656 return -EINVAL;
18f59ea7
BS
3657}
3658
6f646156 3659static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3660{
42a30035 3661 unsigned long val;
ce00a967 3662
3e32cb2e 3663 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3664 mem_cgroup_flush_stats();
0d1c2072 3665 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3666 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3667 if (swap)
3668 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3669 } else {
ce00a967 3670 if (!swap)
3e32cb2e 3671 val = page_counter_read(&memcg->memory);
ce00a967 3672 else
3e32cb2e 3673 val = page_counter_read(&memcg->memsw);
ce00a967 3674 }
c12176d3 3675 return val;
ce00a967
JW
3676}
3677
3e32cb2e
JW
3678enum {
3679 RES_USAGE,
3680 RES_LIMIT,
3681 RES_MAX_USAGE,
3682 RES_FAILCNT,
3683 RES_SOFT_LIMIT,
3684};
ce00a967 3685
791badbd 3686static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3687 struct cftype *cft)
8cdea7c0 3688{
182446d0 3689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3690 struct page_counter *counter;
af36f906 3691
3e32cb2e 3692 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3693 case _MEM:
3e32cb2e
JW
3694 counter = &memcg->memory;
3695 break;
8c7c6e34 3696 case _MEMSWAP:
3e32cb2e
JW
3697 counter = &memcg->memsw;
3698 break;
510fc4e1 3699 case _KMEM:
3e32cb2e 3700 counter = &memcg->kmem;
510fc4e1 3701 break;
d55f90bf 3702 case _TCP:
0db15298 3703 counter = &memcg->tcpmem;
d55f90bf 3704 break;
8c7c6e34
KH
3705 default:
3706 BUG();
8c7c6e34 3707 }
3e32cb2e
JW
3708
3709 switch (MEMFILE_ATTR(cft->private)) {
3710 case RES_USAGE:
3711 if (counter == &memcg->memory)
c12176d3 3712 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3713 if (counter == &memcg->memsw)
c12176d3 3714 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3715 return (u64)page_counter_read(counter) * PAGE_SIZE;
3716 case RES_LIMIT:
bbec2e15 3717 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3718 case RES_MAX_USAGE:
3719 return (u64)counter->watermark * PAGE_SIZE;
3720 case RES_FAILCNT:
3721 return counter->failcnt;
3722 case RES_SOFT_LIMIT:
3723 return (u64)memcg->soft_limit * PAGE_SIZE;
3724 default:
3725 BUG();
3726 }
8cdea7c0 3727}
510fc4e1 3728
84c07d11 3729#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3730static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3731{
bf4f0599 3732 struct obj_cgroup *objcg;
d6441637 3733
9c94bef9 3734 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3735 return 0;
3736
da0efe30
MS
3737 if (unlikely(mem_cgroup_is_root(memcg)))
3738 return 0;
d6441637 3739
bf4f0599 3740 objcg = obj_cgroup_alloc();
f9c69d63 3741 if (!objcg)
bf4f0599 3742 return -ENOMEM;
f9c69d63 3743
bf4f0599
RG
3744 objcg->memcg = memcg;
3745 rcu_assign_pointer(memcg->objcg, objcg);
3746
d648bcc7
RG
3747 static_branch_enable(&memcg_kmem_enabled_key);
3748
f9c69d63 3749 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3750
3751 return 0;
d6441637
VD
3752}
3753
8e0a8912
JW
3754static void memcg_offline_kmem(struct mem_cgroup *memcg)
3755{
64268868 3756 struct mem_cgroup *parent;
8e0a8912 3757
9c94bef9 3758 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3759 return;
3760
3761 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3762 return;
9855609b 3763
8e0a8912
JW
3764 parent = parent_mem_cgroup(memcg);
3765 if (!parent)
3766 parent = root_mem_cgroup;
3767
bf4f0599 3768 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3769
8e0a8912 3770 /*
64268868
MS
3771 * After we have finished memcg_reparent_objcgs(), all list_lrus
3772 * corresponding to this cgroup are guaranteed to remain empty.
3773 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3774 * memcg_reparent_list_lrus().
8e0a8912 3775 */
1f391eb2 3776 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3777}
d6441637 3778#else
0b8f73e1 3779static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3780{
3781 return 0;
3782}
3783static void memcg_offline_kmem(struct mem_cgroup *memcg)
3784{
3785}
84c07d11 3786#endif /* CONFIG_MEMCG_KMEM */
127424c8 3787
bbec2e15 3788static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3789{
3790 int ret;
3791
bbec2e15 3792 mutex_lock(&memcg_max_mutex);
d55f90bf 3793
bbec2e15 3794 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3795 if (ret)
3796 goto out;
3797
0db15298 3798 if (!memcg->tcpmem_active) {
d55f90bf
VD
3799 /*
3800 * The active flag needs to be written after the static_key
3801 * update. This is what guarantees that the socket activation
2d758073
JW
3802 * function is the last one to run. See mem_cgroup_sk_alloc()
3803 * for details, and note that we don't mark any socket as
3804 * belonging to this memcg until that flag is up.
d55f90bf
VD
3805 *
3806 * We need to do this, because static_keys will span multiple
3807 * sites, but we can't control their order. If we mark a socket
3808 * as accounted, but the accounting functions are not patched in
3809 * yet, we'll lose accounting.
3810 *
2d758073 3811 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3812 * because when this value change, the code to process it is not
3813 * patched in yet.
3814 */
3815 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3816 memcg->tcpmem_active = true;
d55f90bf
VD
3817 }
3818out:
bbec2e15 3819 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3820 return ret;
3821}
d55f90bf 3822
628f4235
KH
3823/*
3824 * The user of this function is...
3825 * RES_LIMIT.
3826 */
451af504
TH
3827static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3828 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3829{
451af504 3830 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3831 unsigned long nr_pages;
628f4235
KH
3832 int ret;
3833
451af504 3834 buf = strstrip(buf);
650c5e56 3835 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3836 if (ret)
3837 return ret;
af36f906 3838
3e32cb2e 3839 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3840 case RES_LIMIT:
4b3bde4c
BS
3841 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3842 ret = -EINVAL;
3843 break;
3844 }
3e32cb2e
JW
3845 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3846 case _MEM:
bbec2e15 3847 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3848 break;
3e32cb2e 3849 case _MEMSWAP:
bbec2e15 3850 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3851 break;
3e32cb2e 3852 case _KMEM:
58056f77
SB
3853 /* kmem.limit_in_bytes is deprecated. */
3854 ret = -EOPNOTSUPP;
3e32cb2e 3855 break;
d55f90bf 3856 case _TCP:
bbec2e15 3857 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3858 break;
3e32cb2e 3859 }
296c81d8 3860 break;
3e32cb2e 3861 case RES_SOFT_LIMIT:
2343e88d
SAS
3862 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3863 ret = -EOPNOTSUPP;
3864 } else {
3865 memcg->soft_limit = nr_pages;
3866 ret = 0;
3867 }
628f4235
KH
3868 break;
3869 }
451af504 3870 return ret ?: nbytes;
8cdea7c0
BS
3871}
3872
6770c64e
TH
3873static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3874 size_t nbytes, loff_t off)
c84872e1 3875{
6770c64e 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3877 struct page_counter *counter;
c84872e1 3878
3e32cb2e
JW
3879 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3880 case _MEM:
3881 counter = &memcg->memory;
3882 break;
3883 case _MEMSWAP:
3884 counter = &memcg->memsw;
3885 break;
3886 case _KMEM:
3887 counter = &memcg->kmem;
3888 break;
d55f90bf 3889 case _TCP:
0db15298 3890 counter = &memcg->tcpmem;
d55f90bf 3891 break;
3e32cb2e
JW
3892 default:
3893 BUG();
3894 }
af36f906 3895
3e32cb2e 3896 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3897 case RES_MAX_USAGE:
3e32cb2e 3898 page_counter_reset_watermark(counter);
29f2a4da
PE
3899 break;
3900 case RES_FAILCNT:
3e32cb2e 3901 counter->failcnt = 0;
29f2a4da 3902 break;
3e32cb2e
JW
3903 default:
3904 BUG();
29f2a4da 3905 }
f64c3f54 3906
6770c64e 3907 return nbytes;
c84872e1
PE
3908}
3909
182446d0 3910static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3911 struct cftype *cft)
3912{
182446d0 3913 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3914}
3915
02491447 3916#ifdef CONFIG_MMU
182446d0 3917static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3918 struct cftype *cft, u64 val)
3919{
182446d0 3920 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3921
1dfab5ab 3922 if (val & ~MOVE_MASK)
7dc74be0 3923 return -EINVAL;
ee5e8472 3924
7dc74be0 3925 /*
ee5e8472
GC
3926 * No kind of locking is needed in here, because ->can_attach() will
3927 * check this value once in the beginning of the process, and then carry
3928 * on with stale data. This means that changes to this value will only
3929 * affect task migrations starting after the change.
7dc74be0 3930 */
c0ff4b85 3931 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3932 return 0;
3933}
02491447 3934#else
182446d0 3935static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3936 struct cftype *cft, u64 val)
3937{
3938 return -ENOSYS;
3939}
3940#endif
7dc74be0 3941
406eb0c9 3942#ifdef CONFIG_NUMA
113b7dfd
JW
3943
3944#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3945#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3946#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3947
3948static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3949 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3950{
867e5e1d 3951 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3952 unsigned long nr = 0;
3953 enum lru_list lru;
3954
3955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3956
3957 for_each_lru(lru) {
3958 if (!(BIT(lru) & lru_mask))
3959 continue;
dd8657b6
SB
3960 if (tree)
3961 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3962 else
3963 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3964 }
3965 return nr;
3966}
3967
3968static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3969 unsigned int lru_mask,
3970 bool tree)
113b7dfd
JW
3971{
3972 unsigned long nr = 0;
3973 enum lru_list lru;
3974
3975 for_each_lru(lru) {
3976 if (!(BIT(lru) & lru_mask))
3977 continue;
dd8657b6
SB
3978 if (tree)
3979 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3980 else
3981 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3982 }
3983 return nr;
3984}
3985
2da8ca82 3986static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3987{
25485de6
GT
3988 struct numa_stat {
3989 const char *name;
3990 unsigned int lru_mask;
3991 };
3992
3993 static const struct numa_stat stats[] = {
3994 { "total", LRU_ALL },
3995 { "file", LRU_ALL_FILE },
3996 { "anon", LRU_ALL_ANON },
3997 { "unevictable", BIT(LRU_UNEVICTABLE) },
3998 };
3999 const struct numa_stat *stat;
406eb0c9 4000 int nid;
aa9694bb 4001 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4002
fd25a9e0 4003 mem_cgroup_flush_stats();
2d146aa3 4004
25485de6 4005 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4006 seq_printf(m, "%s=%lu", stat->name,
4007 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4008 false));
4009 for_each_node_state(nid, N_MEMORY)
4010 seq_printf(m, " N%d=%lu", nid,
4011 mem_cgroup_node_nr_lru_pages(memcg, nid,
4012 stat->lru_mask, false));
25485de6 4013 seq_putc(m, '\n');
406eb0c9 4014 }
406eb0c9 4015
071aee13 4016 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4017
4018 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4019 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4020 true));
4021 for_each_node_state(nid, N_MEMORY)
4022 seq_printf(m, " N%d=%lu", nid,
4023 mem_cgroup_node_nr_lru_pages(memcg, nid,
4024 stat->lru_mask, true));
071aee13 4025 seq_putc(m, '\n');
406eb0c9 4026 }
406eb0c9 4027
406eb0c9
YH
4028 return 0;
4029}
4030#endif /* CONFIG_NUMA */
4031
c8713d0b 4032static const unsigned int memcg1_stats[] = {
0d1c2072 4033 NR_FILE_PAGES,
be5d0a74 4034 NR_ANON_MAPPED,
468c3982
JW
4035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4036 NR_ANON_THPS,
4037#endif
c8713d0b
JW
4038 NR_SHMEM,
4039 NR_FILE_MAPPED,
4040 NR_FILE_DIRTY,
4041 NR_WRITEBACK,
e09b0b61
YS
4042 WORKINGSET_REFAULT_ANON,
4043 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4044 MEMCG_SWAP,
4045};
4046
4047static const char *const memcg1_stat_names[] = {
4048 "cache",
4049 "rss",
468c3982 4050#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4051 "rss_huge",
468c3982 4052#endif
c8713d0b
JW
4053 "shmem",
4054 "mapped_file",
4055 "dirty",
4056 "writeback",
e09b0b61
YS
4057 "workingset_refault_anon",
4058 "workingset_refault_file",
c8713d0b
JW
4059 "swap",
4060};
4061
df0e53d0 4062/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4063static const unsigned int memcg1_events[] = {
df0e53d0
JW
4064 PGPGIN,
4065 PGPGOUT,
4066 PGFAULT,
4067 PGMAJFAULT,
4068};
4069
2da8ca82 4070static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4071{
aa9694bb 4072 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4073 unsigned long memory, memsw;
af7c4b0e
JW
4074 struct mem_cgroup *mi;
4075 unsigned int i;
406eb0c9 4076
71cd3113 4077 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4078
fd25a9e0 4079 mem_cgroup_flush_stats();
2d146aa3 4080
71cd3113 4081 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4082 unsigned long nr;
4083
71cd3113 4084 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4085 continue;
468c3982 4086 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
e09b0b61
YS
4087 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4088 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4089 }
7b854121 4090
df0e53d0 4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4092 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4093 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4096 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4097 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4098 PAGE_SIZE);
af7c4b0e 4099
14067bb3 4100 /* Hierarchical information */
3e32cb2e
JW
4101 memory = memsw = PAGE_COUNTER_MAX;
4102 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4103 memory = min(memory, READ_ONCE(mi->memory.max));
4104 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4105 }
3e32cb2e
JW
4106 seq_printf(m, "hierarchical_memory_limit %llu\n",
4107 (u64)memory * PAGE_SIZE);
7941d214 4108 if (do_memsw_account())
3e32cb2e
JW
4109 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110 (u64)memsw * PAGE_SIZE);
7f016ee8 4111
8de7ecc6 4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4113 unsigned long nr;
4114
71cd3113 4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4116 continue;
7de2e9f1 4117 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4118 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4119 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4120 }
4121
8de7ecc6 4122 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4123 seq_printf(m, "total_%s %llu\n",
4124 vm_event_name(memcg1_events[i]),
dd923990 4125 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4126
8de7ecc6 4127 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4128 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4129 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4130 PAGE_SIZE);
14067bb3 4131
7f016ee8 4132#ifdef CONFIG_DEBUG_VM
7f016ee8 4133 {
ef8f2327
MG
4134 pg_data_t *pgdat;
4135 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4136 unsigned long anon_cost = 0;
4137 unsigned long file_cost = 0;
7f016ee8 4138
ef8f2327 4139 for_each_online_pgdat(pgdat) {
a3747b53 4140 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4141
1431d4d1
JW
4142 anon_cost += mz->lruvec.anon_cost;
4143 file_cost += mz->lruvec.file_cost;
ef8f2327 4144 }
1431d4d1
JW
4145 seq_printf(m, "anon_cost %lu\n", anon_cost);
4146 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4147 }
4148#endif
4149
d2ceb9b7
KH
4150 return 0;
4151}
4152
182446d0
TH
4153static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4154 struct cftype *cft)
a7885eb8 4155{
182446d0 4156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4157
1f4c025b 4158 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4159}
4160
182446d0
TH
4161static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
a7885eb8 4163{
182446d0 4164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4165
37bc3cb9 4166 if (val > 200)
a7885eb8
KM
4167 return -EINVAL;
4168
a4792030 4169 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4170 memcg->swappiness = val;
4171 else
4172 vm_swappiness = val;
068b38c1 4173
a7885eb8
KM
4174 return 0;
4175}
4176
2e72b634
KS
4177static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4178{
4179 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4180 unsigned long usage;
2e72b634
KS
4181 int i;
4182
4183 rcu_read_lock();
4184 if (!swap)
2c488db2 4185 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4186 else
2c488db2 4187 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4188
4189 if (!t)
4190 goto unlock;
4191
ce00a967 4192 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4193
4194 /*
748dad36 4195 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4196 * If it's not true, a threshold was crossed after last
4197 * call of __mem_cgroup_threshold().
4198 */
5407a562 4199 i = t->current_threshold;
2e72b634
KS
4200
4201 /*
4202 * Iterate backward over array of thresholds starting from
4203 * current_threshold and check if a threshold is crossed.
4204 * If none of thresholds below usage is crossed, we read
4205 * only one element of the array here.
4206 */
4207 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4208 eventfd_signal(t->entries[i].eventfd, 1);
4209
4210 /* i = current_threshold + 1 */
4211 i++;
4212
4213 /*
4214 * Iterate forward over array of thresholds starting from
4215 * current_threshold+1 and check if a threshold is crossed.
4216 * If none of thresholds above usage is crossed, we read
4217 * only one element of the array here.
4218 */
4219 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4220 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222 /* Update current_threshold */
5407a562 4223 t->current_threshold = i - 1;
2e72b634
KS
4224unlock:
4225 rcu_read_unlock();
4226}
4227
4228static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4229{
ad4ca5f4
KS
4230 while (memcg) {
4231 __mem_cgroup_threshold(memcg, false);
7941d214 4232 if (do_memsw_account())
ad4ca5f4
KS
4233 __mem_cgroup_threshold(memcg, true);
4234
4235 memcg = parent_mem_cgroup(memcg);
4236 }
2e72b634
KS
4237}
4238
4239static int compare_thresholds(const void *a, const void *b)
4240{
4241 const struct mem_cgroup_threshold *_a = a;
4242 const struct mem_cgroup_threshold *_b = b;
4243
2bff24a3
GT
4244 if (_a->threshold > _b->threshold)
4245 return 1;
4246
4247 if (_a->threshold < _b->threshold)
4248 return -1;
4249
4250 return 0;
2e72b634
KS
4251}
4252
c0ff4b85 4253static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4254{
4255 struct mem_cgroup_eventfd_list *ev;
4256
2bcf2e92
MH
4257 spin_lock(&memcg_oom_lock);
4258
c0ff4b85 4259 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4260 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4261
4262 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4263 return 0;
4264}
4265
c0ff4b85 4266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4267{
7d74b06f
KH
4268 struct mem_cgroup *iter;
4269
c0ff4b85 4270 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4271 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4272}
4273
59b6f873 4274static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4275 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4276{
2c488db2
KS
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4279 unsigned long threshold;
4280 unsigned long usage;
2c488db2 4281 int i, size, ret;
2e72b634 4282
650c5e56 4283 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4284 if (ret)
4285 return ret;
4286
4287 mutex_lock(&memcg->thresholds_lock);
2c488db2 4288
05b84301 4289 if (type == _MEM) {
2c488db2 4290 thresholds = &memcg->thresholds;
ce00a967 4291 usage = mem_cgroup_usage(memcg, false);
05b84301 4292 } else if (type == _MEMSWAP) {
2c488db2 4293 thresholds = &memcg->memsw_thresholds;
ce00a967 4294 usage = mem_cgroup_usage(memcg, true);
05b84301 4295 } else
2e72b634
KS
4296 BUG();
4297
2e72b634 4298 /* Check if a threshold crossed before adding a new one */
2c488db2 4299 if (thresholds->primary)
2e72b634
KS
4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
2c488db2 4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4303
4304 /* Allocate memory for new array of thresholds */
67b8046f 4305 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4306 if (!new) {
2e72b634
KS
4307 ret = -ENOMEM;
4308 goto unlock;
4309 }
2c488db2 4310 new->size = size;
2e72b634
KS
4311
4312 /* Copy thresholds (if any) to new array */
e90342e6
GS
4313 if (thresholds->primary)
4314 memcpy(new->entries, thresholds->primary->entries,
4315 flex_array_size(new, entries, size - 1));
2c488db2 4316
2e72b634 4317 /* Add new threshold */
2c488db2
KS
4318 new->entries[size - 1].eventfd = eventfd;
4319 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4320
4321 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4322 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4323 compare_thresholds, NULL);
4324
4325 /* Find current threshold */
2c488db2 4326 new->current_threshold = -1;
2e72b634 4327 for (i = 0; i < size; i++) {
748dad36 4328 if (new->entries[i].threshold <= usage) {
2e72b634 4329 /*
2c488db2
KS
4330 * new->current_threshold will not be used until
4331 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4332 * it here.
4333 */
2c488db2 4334 ++new->current_threshold;
748dad36
SZ
4335 } else
4336 break;
2e72b634
KS
4337 }
4338
2c488db2
KS
4339 /* Free old spare buffer and save old primary buffer as spare */
4340 kfree(thresholds->spare);
4341 thresholds->spare = thresholds->primary;
4342
4343 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4344
907860ed 4345 /* To be sure that nobody uses thresholds */
2e72b634
KS
4346 synchronize_rcu();
4347
2e72b634
KS
4348unlock:
4349 mutex_unlock(&memcg->thresholds_lock);
4350
4351 return ret;
4352}
4353
59b6f873 4354static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4355 struct eventfd_ctx *eventfd, const char *args)
4356{
59b6f873 4357 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4358}
4359
59b6f873 4360static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4361 struct eventfd_ctx *eventfd, const char *args)
4362{
59b6f873 4363 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4364}
4365
59b6f873 4366static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4367 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4368{
2c488db2
KS
4369 struct mem_cgroup_thresholds *thresholds;
4370 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4371 unsigned long usage;
7d36665a 4372 int i, j, size, entries;
2e72b634
KS
4373
4374 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4375
4376 if (type == _MEM) {
2c488db2 4377 thresholds = &memcg->thresholds;
ce00a967 4378 usage = mem_cgroup_usage(memcg, false);
05b84301 4379 } else if (type == _MEMSWAP) {
2c488db2 4380 thresholds = &memcg->memsw_thresholds;
ce00a967 4381 usage = mem_cgroup_usage(memcg, true);
05b84301 4382 } else
2e72b634
KS
4383 BUG();
4384
371528ca
AV
4385 if (!thresholds->primary)
4386 goto unlock;
4387
2e72b634
KS
4388 /* Check if a threshold crossed before removing */
4389 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4390
4391 /* Calculate new number of threshold */
7d36665a 4392 size = entries = 0;
2c488db2
KS
4393 for (i = 0; i < thresholds->primary->size; i++) {
4394 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4395 size++;
7d36665a
CX
4396 else
4397 entries++;
2e72b634
KS
4398 }
4399
2c488db2 4400 new = thresholds->spare;
907860ed 4401
7d36665a
CX
4402 /* If no items related to eventfd have been cleared, nothing to do */
4403 if (!entries)
4404 goto unlock;
4405
2e72b634
KS
4406 /* Set thresholds array to NULL if we don't have thresholds */
4407 if (!size) {
2c488db2
KS
4408 kfree(new);
4409 new = NULL;
907860ed 4410 goto swap_buffers;
2e72b634
KS
4411 }
4412
2c488db2 4413 new->size = size;
2e72b634
KS
4414
4415 /* Copy thresholds and find current threshold */
2c488db2
KS
4416 new->current_threshold = -1;
4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4419 continue;
4420
2c488db2 4421 new->entries[j] = thresholds->primary->entries[i];
748dad36 4422 if (new->entries[j].threshold <= usage) {
2e72b634 4423 /*
2c488db2 4424 * new->current_threshold will not be used
2e72b634
KS
4425 * until rcu_assign_pointer(), so it's safe to increment
4426 * it here.
4427 */
2c488db2 4428 ++new->current_threshold;
2e72b634
KS
4429 }
4430 j++;
4431 }
4432
907860ed 4433swap_buffers:
2c488db2
KS
4434 /* Swap primary and spare array */
4435 thresholds->spare = thresholds->primary;
8c757763 4436
2c488db2 4437 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4438
907860ed 4439 /* To be sure that nobody uses thresholds */
2e72b634 4440 synchronize_rcu();
6611d8d7
MC
4441
4442 /* If all events are unregistered, free the spare array */
4443 if (!new) {
4444 kfree(thresholds->spare);
4445 thresholds->spare = NULL;
4446 }
371528ca 4447unlock:
2e72b634 4448 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4449}
c1e862c1 4450
59b6f873 4451static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4452 struct eventfd_ctx *eventfd)
4453{
59b6f873 4454 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4455}
4456
59b6f873 4457static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4458 struct eventfd_ctx *eventfd)
4459{
59b6f873 4460 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4461}
4462
59b6f873 4463static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4464 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4465{
9490ff27 4466 struct mem_cgroup_eventfd_list *event;
9490ff27 4467
9490ff27
KH
4468 event = kmalloc(sizeof(*event), GFP_KERNEL);
4469 if (!event)
4470 return -ENOMEM;
4471
1af8efe9 4472 spin_lock(&memcg_oom_lock);
9490ff27
KH
4473
4474 event->eventfd = eventfd;
4475 list_add(&event->list, &memcg->oom_notify);
4476
4477 /* already in OOM ? */
c2b42d3c 4478 if (memcg->under_oom)
9490ff27 4479 eventfd_signal(eventfd, 1);
1af8efe9 4480 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4481
4482 return 0;
4483}
4484
59b6f873 4485static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4486 struct eventfd_ctx *eventfd)
9490ff27 4487{
9490ff27 4488 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4489
1af8efe9 4490 spin_lock(&memcg_oom_lock);
9490ff27 4491
c0ff4b85 4492 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4493 if (ev->eventfd == eventfd) {
4494 list_del(&ev->list);
4495 kfree(ev);
4496 }
4497 }
4498
1af8efe9 4499 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4500}
4501
2da8ca82 4502static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4503{
aa9694bb 4504 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4505
791badbd 4506 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4507 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4508 seq_printf(sf, "oom_kill %lu\n",
4509 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4510 return 0;
4511}
4512
182446d0 4513static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4514 struct cftype *cft, u64 val)
4515{
182446d0 4516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4517
4518 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4519 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4520 return -EINVAL;
4521
c0ff4b85 4522 memcg->oom_kill_disable = val;
4d845ebf 4523 if (!val)
c0ff4b85 4524 memcg_oom_recover(memcg);
3dae7fec 4525
3c11ecf4
KH
4526 return 0;
4527}
4528
52ebea74
TH
4529#ifdef CONFIG_CGROUP_WRITEBACK
4530
3a8e9ac8
TH
4531#include <trace/events/writeback.h>
4532
841710aa
TH
4533static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4534{
4535 return wb_domain_init(&memcg->cgwb_domain, gfp);
4536}
4537
4538static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4539{
4540 wb_domain_exit(&memcg->cgwb_domain);
4541}
4542
2529bb3a
TH
4543static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4544{
4545 wb_domain_size_changed(&memcg->cgwb_domain);
4546}
4547
841710aa
TH
4548struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4549{
4550 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4551
4552 if (!memcg->css.parent)
4553 return NULL;
4554
4555 return &memcg->cgwb_domain;
4556}
4557
c2aa723a
TH
4558/**
4559 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4560 * @wb: bdi_writeback in question
c5edf9cd
TH
4561 * @pfilepages: out parameter for number of file pages
4562 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4563 * @pdirty: out parameter for number of dirty pages
4564 * @pwriteback: out parameter for number of pages under writeback
4565 *
c5edf9cd
TH
4566 * Determine the numbers of file, headroom, dirty, and writeback pages in
4567 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4568 * is a bit more involved.
c2aa723a 4569 *
c5edf9cd
TH
4570 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4571 * headroom is calculated as the lowest headroom of itself and the
4572 * ancestors. Note that this doesn't consider the actual amount of
4573 * available memory in the system. The caller should further cap
4574 * *@pheadroom accordingly.
c2aa723a 4575 */
c5edf9cd
TH
4576void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4577 unsigned long *pheadroom, unsigned long *pdirty,
4578 unsigned long *pwriteback)
c2aa723a
TH
4579{
4580 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4581 struct mem_cgroup *parent;
c2aa723a 4582
fd25a9e0 4583 mem_cgroup_flush_stats();
c2aa723a 4584
2d146aa3
JW
4585 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4586 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4587 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4588 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4589
2d146aa3 4590 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4591 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4592 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4593 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4594 unsigned long used = page_counter_read(&memcg->memory);
4595
c5edf9cd 4596 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4597 memcg = parent;
4598 }
c2aa723a
TH
4599}
4600
97b27821
TH
4601/*
4602 * Foreign dirty flushing
4603 *
4604 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4605 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4606 * deliberate design decision because honoring per-page ownership in the
4607 * writeback path is complicated, may lead to higher CPU and IO overheads
4608 * and deemed unnecessary given that write-sharing an inode across
4609 * different cgroups isn't a common use-case.
4610 *
4611 * Combined with inode majority-writer ownership switching, this works well
4612 * enough in most cases but there are some pathological cases. For
4613 * example, let's say there are two cgroups A and B which keep writing to
4614 * different but confined parts of the same inode. B owns the inode and
4615 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4616 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4617 * triggering background writeback. A will be slowed down without a way to
4618 * make writeback of the dirty pages happen.
4619 *
f0953a1b 4620 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4621 * severely throttled after making some progress after each
f0953a1b 4622 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4623 * completely idle.
4624 *
4625 * Solving this problem completely requires matching the ownership tracking
4626 * granularities between memcg and writeback in either direction. However,
4627 * the more egregious behaviors can be avoided by simply remembering the
4628 * most recent foreign dirtying events and initiating remote flushes on
4629 * them when local writeback isn't enough to keep the memory clean enough.
4630 *
4631 * The following two functions implement such mechanism. When a foreign
4632 * page - a page whose memcg and writeback ownerships don't match - is
4633 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4634 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4635 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4636 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4637 * foreign bdi_writebacks which haven't expired. Both the numbers of
4638 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4639 * limited to MEMCG_CGWB_FRN_CNT.
4640 *
4641 * The mechanism only remembers IDs and doesn't hold any object references.
4642 * As being wrong occasionally doesn't matter, updates and accesses to the
4643 * records are lockless and racy.
4644 */
9d8053fc 4645void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4646 struct bdi_writeback *wb)
4647{
9d8053fc 4648 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4649 struct memcg_cgwb_frn *frn;
4650 u64 now = get_jiffies_64();
4651 u64 oldest_at = now;
4652 int oldest = -1;
4653 int i;
4654
9d8053fc 4655 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4656
97b27821
TH
4657 /*
4658 * Pick the slot to use. If there is already a slot for @wb, keep
4659 * using it. If not replace the oldest one which isn't being
4660 * written out.
4661 */
4662 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4663 frn = &memcg->cgwb_frn[i];
4664 if (frn->bdi_id == wb->bdi->id &&
4665 frn->memcg_id == wb->memcg_css->id)
4666 break;
4667 if (time_before64(frn->at, oldest_at) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 oldest = i;
4670 oldest_at = frn->at;
4671 }
4672 }
4673
4674 if (i < MEMCG_CGWB_FRN_CNT) {
4675 /*
4676 * Re-using an existing one. Update timestamp lazily to
4677 * avoid making the cacheline hot. We want them to be
4678 * reasonably up-to-date and significantly shorter than
4679 * dirty_expire_interval as that's what expires the record.
4680 * Use the shorter of 1s and dirty_expire_interval / 8.
4681 */
4682 unsigned long update_intv =
4683 min_t(unsigned long, HZ,
4684 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4685
4686 if (time_before64(frn->at, now - update_intv))
4687 frn->at = now;
4688 } else if (oldest >= 0) {
4689 /* replace the oldest free one */
4690 frn = &memcg->cgwb_frn[oldest];
4691 frn->bdi_id = wb->bdi->id;
4692 frn->memcg_id = wb->memcg_css->id;
4693 frn->at = now;
4694 }
4695}
4696
4697/* issue foreign writeback flushes for recorded foreign dirtying events */
4698void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4699{
4700 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4701 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4702 u64 now = jiffies_64;
4703 int i;
4704
4705 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4706 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4707
4708 /*
4709 * If the record is older than dirty_expire_interval,
4710 * writeback on it has already started. No need to kick it
4711 * off again. Also, don't start a new one if there's
4712 * already one in flight.
4713 */
4714 if (time_after64(frn->at, now - intv) &&
4715 atomic_read(&frn->done.cnt) == 1) {
4716 frn->at = 0;
3a8e9ac8 4717 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4718 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4719 WB_REASON_FOREIGN_FLUSH,
4720 &frn->done);
4721 }
4722 }
4723}
4724
841710aa
TH
4725#else /* CONFIG_CGROUP_WRITEBACK */
4726
4727static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4728{
4729 return 0;
4730}
4731
4732static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4733{
4734}
4735
2529bb3a
TH
4736static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4737{
4738}
4739
52ebea74
TH
4740#endif /* CONFIG_CGROUP_WRITEBACK */
4741
3bc942f3
TH
4742/*
4743 * DO NOT USE IN NEW FILES.
4744 *
4745 * "cgroup.event_control" implementation.
4746 *
4747 * This is way over-engineered. It tries to support fully configurable
4748 * events for each user. Such level of flexibility is completely
4749 * unnecessary especially in the light of the planned unified hierarchy.
4750 *
4751 * Please deprecate this and replace with something simpler if at all
4752 * possible.
4753 */
4754
79bd9814
TH
4755/*
4756 * Unregister event and free resources.
4757 *
4758 * Gets called from workqueue.
4759 */
3bc942f3 4760static void memcg_event_remove(struct work_struct *work)
79bd9814 4761{
3bc942f3
TH
4762 struct mem_cgroup_event *event =
4763 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4764 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4765
4766 remove_wait_queue(event->wqh, &event->wait);
4767
59b6f873 4768 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4769
4770 /* Notify userspace the event is going away. */
4771 eventfd_signal(event->eventfd, 1);
4772
4773 eventfd_ctx_put(event->eventfd);
4774 kfree(event);
59b6f873 4775 css_put(&memcg->css);
79bd9814
TH
4776}
4777
4778/*
a9a08845 4779 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4780 *
4781 * Called with wqh->lock held and interrupts disabled.
4782 */
ac6424b9 4783static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4784 int sync, void *key)
79bd9814 4785{
3bc942f3
TH
4786 struct mem_cgroup_event *event =
4787 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4788 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4789 __poll_t flags = key_to_poll(key);
79bd9814 4790
a9a08845 4791 if (flags & EPOLLHUP) {
79bd9814
TH
4792 /*
4793 * If the event has been detached at cgroup removal, we
4794 * can simply return knowing the other side will cleanup
4795 * for us.
4796 *
4797 * We can't race against event freeing since the other
4798 * side will require wqh->lock via remove_wait_queue(),
4799 * which we hold.
4800 */
fba94807 4801 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4802 if (!list_empty(&event->list)) {
4803 list_del_init(&event->list);
4804 /*
4805 * We are in atomic context, but cgroup_event_remove()
4806 * may sleep, so we have to call it in workqueue.
4807 */
4808 schedule_work(&event->remove);
4809 }
fba94807 4810 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4811 }
4812
4813 return 0;
4814}
4815
3bc942f3 4816static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4817 wait_queue_head_t *wqh, poll_table *pt)
4818{
3bc942f3
TH
4819 struct mem_cgroup_event *event =
4820 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4821
4822 event->wqh = wqh;
4823 add_wait_queue(wqh, &event->wait);
4824}
4825
4826/*
3bc942f3
TH
4827 * DO NOT USE IN NEW FILES.
4828 *
79bd9814
TH
4829 * Parse input and register new cgroup event handler.
4830 *
4831 * Input must be in format '<event_fd> <control_fd> <args>'.
4832 * Interpretation of args is defined by control file implementation.
4833 */
451af504
TH
4834static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4835 char *buf, size_t nbytes, loff_t off)
79bd9814 4836{
451af504 4837 struct cgroup_subsys_state *css = of_css(of);
fba94807 4838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4839 struct mem_cgroup_event *event;
79bd9814
TH
4840 struct cgroup_subsys_state *cfile_css;
4841 unsigned int efd, cfd;
4842 struct fd efile;
4843 struct fd cfile;
4a7ba45b 4844 struct dentry *cdentry;
fba94807 4845 const char *name;
79bd9814
TH
4846 char *endp;
4847 int ret;
4848
2343e88d
SAS
4849 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4850 return -EOPNOTSUPP;
4851
451af504
TH
4852 buf = strstrip(buf);
4853
4854 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4855 if (*endp != ' ')
4856 return -EINVAL;
451af504 4857 buf = endp + 1;
79bd9814 4858
451af504 4859 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4860 if ((*endp != ' ') && (*endp != '\0'))
4861 return -EINVAL;
451af504 4862 buf = endp + 1;
79bd9814
TH
4863
4864 event = kzalloc(sizeof(*event), GFP_KERNEL);
4865 if (!event)
4866 return -ENOMEM;
4867
59b6f873 4868 event->memcg = memcg;
79bd9814 4869 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4870 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4871 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4872 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4873
4874 efile = fdget(efd);
4875 if (!efile.file) {
4876 ret = -EBADF;
4877 goto out_kfree;
4878 }
4879
4880 event->eventfd = eventfd_ctx_fileget(efile.file);
4881 if (IS_ERR(event->eventfd)) {
4882 ret = PTR_ERR(event->eventfd);
4883 goto out_put_efile;
4884 }
4885
4886 cfile = fdget(cfd);
4887 if (!cfile.file) {
4888 ret = -EBADF;
4889 goto out_put_eventfd;
4890 }
4891
4892 /* the process need read permission on control file */
4893 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4894 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4895 if (ret < 0)
4896 goto out_put_cfile;
4897
4a7ba45b
TH
4898 /*
4899 * The control file must be a regular cgroup1 file. As a regular cgroup
4900 * file can't be renamed, it's safe to access its name afterwards.
4901 */
4902 cdentry = cfile.file->f_path.dentry;
4903 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4904 ret = -EINVAL;
4905 goto out_put_cfile;
4906 }
4907
fba94807
TH
4908 /*
4909 * Determine the event callbacks and set them in @event. This used
4910 * to be done via struct cftype but cgroup core no longer knows
4911 * about these events. The following is crude but the whole thing
4912 * is for compatibility anyway.
3bc942f3
TH
4913 *
4914 * DO NOT ADD NEW FILES.
fba94807 4915 */
4a7ba45b 4916 name = cdentry->d_name.name;
fba94807
TH
4917
4918 if (!strcmp(name, "memory.usage_in_bytes")) {
4919 event->register_event = mem_cgroup_usage_register_event;
4920 event->unregister_event = mem_cgroup_usage_unregister_event;
4921 } else if (!strcmp(name, "memory.oom_control")) {
4922 event->register_event = mem_cgroup_oom_register_event;
4923 event->unregister_event = mem_cgroup_oom_unregister_event;
4924 } else if (!strcmp(name, "memory.pressure_level")) {
4925 event->register_event = vmpressure_register_event;
4926 event->unregister_event = vmpressure_unregister_event;
4927 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4928 event->register_event = memsw_cgroup_usage_register_event;
4929 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4930 } else {
4931 ret = -EINVAL;
4932 goto out_put_cfile;
4933 }
4934
79bd9814 4935 /*
b5557c4c
TH
4936 * Verify @cfile should belong to @css. Also, remaining events are
4937 * automatically removed on cgroup destruction but the removal is
4938 * asynchronous, so take an extra ref on @css.
79bd9814 4939 */
4a7ba45b 4940 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4941 &memory_cgrp_subsys);
79bd9814 4942 ret = -EINVAL;
5a17f543 4943 if (IS_ERR(cfile_css))
79bd9814 4944 goto out_put_cfile;
5a17f543
TH
4945 if (cfile_css != css) {
4946 css_put(cfile_css);
79bd9814 4947 goto out_put_cfile;
5a17f543 4948 }
79bd9814 4949
451af504 4950 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4951 if (ret)
4952 goto out_put_css;
4953
9965ed17 4954 vfs_poll(efile.file, &event->pt);
79bd9814 4955
4ba9515d 4956 spin_lock_irq(&memcg->event_list_lock);
fba94807 4957 list_add(&event->list, &memcg->event_list);
4ba9515d 4958 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4959
4960 fdput(cfile);
4961 fdput(efile);
4962
451af504 4963 return nbytes;
79bd9814
TH
4964
4965out_put_css:
b5557c4c 4966 css_put(css);
79bd9814
TH
4967out_put_cfile:
4968 fdput(cfile);
4969out_put_eventfd:
4970 eventfd_ctx_put(event->eventfd);
4971out_put_efile:
4972 fdput(efile);
4973out_kfree:
4974 kfree(event);
4975
4976 return ret;
4977}
4978
c29b5b3d
MS
4979#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4980static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4981{
4982 /*
4983 * Deprecated.
df4ae285 4984 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
4985 */
4986 return 0;
4987}
4988#endif
4989
241994ed 4990static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4991 {
0eea1030 4992 .name = "usage_in_bytes",
8c7c6e34 4993 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4994 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4995 },
c84872e1
PE
4996 {
4997 .name = "max_usage_in_bytes",
8c7c6e34 4998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4999 .write = mem_cgroup_reset,
791badbd 5000 .read_u64 = mem_cgroup_read_u64,
c84872e1 5001 },
8cdea7c0 5002 {
0eea1030 5003 .name = "limit_in_bytes",
8c7c6e34 5004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5005 .write = mem_cgroup_write,
791badbd 5006 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5007 },
296c81d8
BS
5008 {
5009 .name = "soft_limit_in_bytes",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5011 .write = mem_cgroup_write,
791badbd 5012 .read_u64 = mem_cgroup_read_u64,
296c81d8 5013 },
8cdea7c0
BS
5014 {
5015 .name = "failcnt",
8c7c6e34 5016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5017 .write = mem_cgroup_reset,
791badbd 5018 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5019 },
d2ceb9b7
KH
5020 {
5021 .name = "stat",
2da8ca82 5022 .seq_show = memcg_stat_show,
d2ceb9b7 5023 },
c1e862c1
KH
5024 {
5025 .name = "force_empty",
6770c64e 5026 .write = mem_cgroup_force_empty_write,
c1e862c1 5027 },
18f59ea7
BS
5028 {
5029 .name = "use_hierarchy",
5030 .write_u64 = mem_cgroup_hierarchy_write,
5031 .read_u64 = mem_cgroup_hierarchy_read,
5032 },
79bd9814 5033 {
3bc942f3 5034 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5035 .write = memcg_write_event_control,
7dbdb199 5036 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5037 },
a7885eb8
KM
5038 {
5039 .name = "swappiness",
5040 .read_u64 = mem_cgroup_swappiness_read,
5041 .write_u64 = mem_cgroup_swappiness_write,
5042 },
7dc74be0
DN
5043 {
5044 .name = "move_charge_at_immigrate",
5045 .read_u64 = mem_cgroup_move_charge_read,
5046 .write_u64 = mem_cgroup_move_charge_write,
5047 },
9490ff27
KH
5048 {
5049 .name = "oom_control",
2da8ca82 5050 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5051 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5052 },
70ddf637
AV
5053 {
5054 .name = "pressure_level",
70ddf637 5055 },
406eb0c9
YH
5056#ifdef CONFIG_NUMA
5057 {
5058 .name = "numa_stat",
2da8ca82 5059 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5060 },
5061#endif
510fc4e1
GC
5062 {
5063 .name = "kmem.limit_in_bytes",
5064 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5065 .write = mem_cgroup_write,
791badbd 5066 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5067 },
5068 {
5069 .name = "kmem.usage_in_bytes",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5071 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5072 },
5073 {
5074 .name = "kmem.failcnt",
5075 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5076 .write = mem_cgroup_reset,
791badbd 5077 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5078 },
5079 {
5080 .name = "kmem.max_usage_in_bytes",
5081 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5082 .write = mem_cgroup_reset,
791badbd 5083 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5084 },
a87425a3
YS
5085#if defined(CONFIG_MEMCG_KMEM) && \
5086 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5087 {
5088 .name = "kmem.slabinfo",
c29b5b3d 5089 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5090 },
5091#endif
d55f90bf
VD
5092 {
5093 .name = "kmem.tcp.limit_in_bytes",
5094 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5095 .write = mem_cgroup_write,
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.usage_in_bytes",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5101 .read_u64 = mem_cgroup_read_u64,
5102 },
5103 {
5104 .name = "kmem.tcp.failcnt",
5105 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5106 .write = mem_cgroup_reset,
5107 .read_u64 = mem_cgroup_read_u64,
5108 },
5109 {
5110 .name = "kmem.tcp.max_usage_in_bytes",
5111 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5112 .write = mem_cgroup_reset,
5113 .read_u64 = mem_cgroup_read_u64,
5114 },
6bc10349 5115 { }, /* terminate */
af36f906 5116};
8c7c6e34 5117
73f576c0
JW
5118/*
5119 * Private memory cgroup IDR
5120 *
5121 * Swap-out records and page cache shadow entries need to store memcg
5122 * references in constrained space, so we maintain an ID space that is
5123 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5124 * memory-controlled cgroups to 64k.
5125 *
b8f2935f 5126 * However, there usually are many references to the offline CSS after
73f576c0
JW
5127 * the cgroup has been destroyed, such as page cache or reclaimable
5128 * slab objects, that don't need to hang on to the ID. We want to keep
5129 * those dead CSS from occupying IDs, or we might quickly exhaust the
5130 * relatively small ID space and prevent the creation of new cgroups
5131 * even when there are much fewer than 64k cgroups - possibly none.
5132 *
5133 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5134 * be freed and recycled when it's no longer needed, which is usually
5135 * when the CSS is offlined.
5136 *
5137 * The only exception to that are records of swapped out tmpfs/shmem
5138 * pages that need to be attributed to live ancestors on swapin. But
5139 * those references are manageable from userspace.
5140 */
5141
5142static DEFINE_IDR(mem_cgroup_idr);
5143
7e97de0b
KT
5144static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5145{
5146 if (memcg->id.id > 0) {
5147 idr_remove(&mem_cgroup_idr, memcg->id.id);
5148 memcg->id.id = 0;
5149 }
5150}
5151
c1514c0a
VF
5152static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5153 unsigned int n)
73f576c0 5154{
1c2d479a 5155 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5156}
5157
615d66c3 5158static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5159{
1c2d479a 5160 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5161 mem_cgroup_id_remove(memcg);
73f576c0
JW
5162
5163 /* Memcg ID pins CSS */
5164 css_put(&memcg->css);
5165 }
5166}
5167
615d66c3
VD
5168static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5169{
5170 mem_cgroup_id_put_many(memcg, 1);
5171}
5172
73f576c0
JW
5173/**
5174 * mem_cgroup_from_id - look up a memcg from a memcg id
5175 * @id: the memcg id to look up
5176 *
5177 * Caller must hold rcu_read_lock().
5178 */
5179struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5180{
5181 WARN_ON_ONCE(!rcu_read_lock_held());
5182 return idr_find(&mem_cgroup_idr, id);
5183}
5184
c15187a4
RG
5185#ifdef CONFIG_SHRINKER_DEBUG
5186struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5187{
5188 struct cgroup *cgrp;
5189 struct cgroup_subsys_state *css;
5190 struct mem_cgroup *memcg;
5191
5192 cgrp = cgroup_get_from_id(ino);
fa7e439c 5193 if (IS_ERR(cgrp))
c0f2df49 5194 return ERR_CAST(cgrp);
c15187a4
RG
5195
5196 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5197 if (css)
5198 memcg = container_of(css, struct mem_cgroup, css);
5199 else
5200 memcg = ERR_PTR(-ENOENT);
5201
5202 cgroup_put(cgrp);
5203
5204 return memcg;
5205}
5206#endif
5207
ef8f2327 5208static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5209{
5210 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5211
5212 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5213 if (!pn)
5214 return 1;
1ecaab2b 5215
7e1c0d6f
SB
5216 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5217 GFP_KERNEL_ACCOUNT);
5218 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5219 kfree(pn);
5220 return 1;
5221 }
5222
ef8f2327 5223 lruvec_init(&pn->lruvec);
ef8f2327
MG
5224 pn->memcg = memcg;
5225
54f72fe0 5226 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5227 return 0;
5228}
5229
ef8f2327 5230static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5231{
00f3ca2c
JW
5232 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5233
4eaf431f
MH
5234 if (!pn)
5235 return;
5236
7e1c0d6f 5237 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5238 kfree(pn);
1ecaab2b
KH
5239}
5240
40e952f9 5241static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5242{
c8b2a36f 5243 int node;
59927fb9 5244
c8b2a36f 5245 for_each_node(node)
ef8f2327 5246 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5247 kfree(memcg->vmstats);
871789d4 5248 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5249 kfree(memcg);
59927fb9 5250}
3afe36b1 5251
40e952f9
TE
5252static void mem_cgroup_free(struct mem_cgroup *memcg)
5253{
ec1c86b2 5254 lru_gen_exit_memcg(memcg);
40e952f9
TE
5255 memcg_wb_domain_exit(memcg);
5256 __mem_cgroup_free(memcg);
5257}
5258
0b8f73e1 5259static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5260{
d142e3e6 5261 struct mem_cgroup *memcg;
6d12e2d8 5262 int node;
97b27821 5263 int __maybe_unused i;
11d67612 5264 long error = -ENOMEM;
8cdea7c0 5265
06b2c3b0 5266 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5267 if (!memcg)
11d67612 5268 return ERR_PTR(error);
0b8f73e1 5269
73f576c0 5270 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5271 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5272 if (memcg->id.id < 0) {
5273 error = memcg->id.id;
73f576c0 5274 goto fail;
11d67612 5275 }
73f576c0 5276
410f8e82
SB
5277 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5278 if (!memcg->vmstats)
5279 goto fail;
5280
3e38e0aa
RG
5281 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5282 GFP_KERNEL_ACCOUNT);
871789d4 5283 if (!memcg->vmstats_percpu)
0b8f73e1 5284 goto fail;
78fb7466 5285
3ed28fa1 5286 for_each_node(node)
ef8f2327 5287 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5288 goto fail;
f64c3f54 5289
0b8f73e1
JW
5290 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5291 goto fail;
28dbc4b6 5292
f7e1cb6e 5293 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5294 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5295 mutex_init(&memcg->thresholds_lock);
5296 spin_lock_init(&memcg->move_lock);
70ddf637 5297 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5298 INIT_LIST_HEAD(&memcg->event_list);
5299 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5300 memcg->socket_pressure = jiffies;
84c07d11 5301#ifdef CONFIG_MEMCG_KMEM
900a38f0 5302 memcg->kmemcg_id = -1;
bf4f0599 5303 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5304#endif
52ebea74
TH
5305#ifdef CONFIG_CGROUP_WRITEBACK
5306 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5307 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5308 memcg->cgwb_frn[i].done =
5309 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5310#endif
5311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5312 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5313 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5314 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5315#endif
73f576c0 5316 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5317 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5318 return memcg;
5319fail:
7e97de0b 5320 mem_cgroup_id_remove(memcg);
40e952f9 5321 __mem_cgroup_free(memcg);
11d67612 5322 return ERR_PTR(error);
d142e3e6
GC
5323}
5324
0b8f73e1
JW
5325static struct cgroup_subsys_state * __ref
5326mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5327{
0b8f73e1 5328 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5329 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5330
b87d8cef 5331 old_memcg = set_active_memcg(parent);
0b8f73e1 5332 memcg = mem_cgroup_alloc();
b87d8cef 5333 set_active_memcg(old_memcg);
11d67612
YS
5334 if (IS_ERR(memcg))
5335 return ERR_CAST(memcg);
d142e3e6 5336
d1663a90 5337 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5338 memcg->soft_limit = PAGE_COUNTER_MAX;
f4840ccf
JW
5339#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5340 memcg->zswap_max = PAGE_COUNTER_MAX;
5341#endif
4b82ab4f 5342 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5343 if (parent) {
5344 memcg->swappiness = mem_cgroup_swappiness(parent);
5345 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5346
3e32cb2e 5347 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5348 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5349 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5350 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5351 } else {
8278f1c7 5352 init_memcg_events();
bef8620c
RG
5353 page_counter_init(&memcg->memory, NULL);
5354 page_counter_init(&memcg->swap, NULL);
5355 page_counter_init(&memcg->kmem, NULL);
5356 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5357
0b8f73e1
JW
5358 root_mem_cgroup = memcg;
5359 return &memcg->css;
5360 }
5361
f7e1cb6e 5362 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5363 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5364
0b8f73e1 5365 return &memcg->css;
0b8f73e1
JW
5366}
5367
73f576c0 5368static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5369{
58fa2a55
VD
5370 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5371
da0efe30
MS
5372 if (memcg_online_kmem(memcg))
5373 goto remove_id;
5374
0a4465d3 5375 /*
e4262c4f 5376 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5377 * by the time the maps are allocated. So, we allocate maps
5378 * here, when for_each_mem_cgroup() can't skip it.
5379 */
da0efe30
MS
5380 if (alloc_shrinker_info(memcg))
5381 goto offline_kmem;
0a4465d3 5382
73f576c0 5383 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5384 refcount_set(&memcg->id.ref, 1);
73f576c0 5385 css_get(css);
aa48e47e
SB
5386
5387 if (unlikely(mem_cgroup_is_root(memcg)))
5388 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5389 2UL*HZ);
2f7dd7a4 5390 return 0;
da0efe30
MS
5391offline_kmem:
5392 memcg_offline_kmem(memcg);
5393remove_id:
5394 mem_cgroup_id_remove(memcg);
5395 return -ENOMEM;
8cdea7c0
BS
5396}
5397
eb95419b 5398static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5399{
eb95419b 5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5401 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5402
5403 /*
5404 * Unregister events and notify userspace.
5405 * Notify userspace about cgroup removing only after rmdir of cgroup
5406 * directory to avoid race between userspace and kernelspace.
5407 */
4ba9515d 5408 spin_lock_irq(&memcg->event_list_lock);
fba94807 5409 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5410 list_del_init(&event->list);
5411 schedule_work(&event->remove);
5412 }
4ba9515d 5413 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5414
bf8d5d52 5415 page_counter_set_min(&memcg->memory, 0);
23067153 5416 page_counter_set_low(&memcg->memory, 0);
63677c74 5417
567e9ab2 5418 memcg_offline_kmem(memcg);
a178015c 5419 reparent_shrinker_deferred(memcg);
52ebea74 5420 wb_memcg_offline(memcg);
73f576c0 5421
591edfb1
RG
5422 drain_all_stock(memcg);
5423
73f576c0 5424 mem_cgroup_id_put(memcg);
df878fb0
KH
5425}
5426
6df38689
VD
5427static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5428{
5429 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5430
5431 invalidate_reclaim_iterators(memcg);
5432}
5433
eb95419b 5434static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5435{
eb95419b 5436 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5437 int __maybe_unused i;
c268e994 5438
97b27821
TH
5439#ifdef CONFIG_CGROUP_WRITEBACK
5440 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5441 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5442#endif
f7e1cb6e 5443 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5444 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5445
0db15298 5446 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5447 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5448
0b8f73e1
JW
5449 vmpressure_cleanup(&memcg->vmpressure);
5450 cancel_work_sync(&memcg->high_work);
5451 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5452 free_shrinker_info(memcg);
0b8f73e1 5453 mem_cgroup_free(memcg);
8cdea7c0
BS
5454}
5455
1ced953b
TH
5456/**
5457 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5458 * @css: the target css
5459 *
5460 * Reset the states of the mem_cgroup associated with @css. This is
5461 * invoked when the userland requests disabling on the default hierarchy
5462 * but the memcg is pinned through dependency. The memcg should stop
5463 * applying policies and should revert to the vanilla state as it may be
5464 * made visible again.
5465 *
5466 * The current implementation only resets the essential configurations.
5467 * This needs to be expanded to cover all the visible parts.
5468 */
5469static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5470{
5471 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5472
bbec2e15
RG
5473 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5474 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5475 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5476 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5477 page_counter_set_min(&memcg->memory, 0);
23067153 5478 page_counter_set_low(&memcg->memory, 0);
d1663a90 5479 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5480 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5481 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5482 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5483}
5484
2d146aa3
JW
5485static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5486{
5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5488 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5489 struct memcg_vmstats_percpu *statc;
5490 long delta, v;
7e1c0d6f 5491 int i, nid;
2d146aa3
JW
5492
5493 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5494
5495 for (i = 0; i < MEMCG_NR_STAT; i++) {
5496 /*
5497 * Collect the aggregated propagation counts of groups
5498 * below us. We're in a per-cpu loop here and this is
5499 * a global counter, so the first cycle will get them.
5500 */
410f8e82 5501 delta = memcg->vmstats->state_pending[i];
2d146aa3 5502 if (delta)
410f8e82 5503 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5504
5505 /* Add CPU changes on this level since the last flush */
5506 v = READ_ONCE(statc->state[i]);
5507 if (v != statc->state_prev[i]) {
5508 delta += v - statc->state_prev[i];
5509 statc->state_prev[i] = v;
5510 }
5511
5512 if (!delta)
5513 continue;
5514
5515 /* Aggregate counts on this level and propagate upwards */
410f8e82 5516 memcg->vmstats->state[i] += delta;
2d146aa3 5517 if (parent)
410f8e82 5518 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5519 }
5520
8278f1c7 5521 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5522 delta = memcg->vmstats->events_pending[i];
2d146aa3 5523 if (delta)
410f8e82 5524 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5525
5526 v = READ_ONCE(statc->events[i]);
5527 if (v != statc->events_prev[i]) {
5528 delta += v - statc->events_prev[i];
5529 statc->events_prev[i] = v;
5530 }
5531
5532 if (!delta)
5533 continue;
5534
410f8e82 5535 memcg->vmstats->events[i] += delta;
2d146aa3 5536 if (parent)
410f8e82 5537 parent->vmstats->events_pending[i] += delta;
2d146aa3 5538 }
7e1c0d6f
SB
5539
5540 for_each_node_state(nid, N_MEMORY) {
5541 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5542 struct mem_cgroup_per_node *ppn = NULL;
5543 struct lruvec_stats_percpu *lstatc;
5544
5545 if (parent)
5546 ppn = parent->nodeinfo[nid];
5547
5548 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5549
5550 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5551 delta = pn->lruvec_stats.state_pending[i];
5552 if (delta)
5553 pn->lruvec_stats.state_pending[i] = 0;
5554
5555 v = READ_ONCE(lstatc->state[i]);
5556 if (v != lstatc->state_prev[i]) {
5557 delta += v - lstatc->state_prev[i];
5558 lstatc->state_prev[i] = v;
5559 }
5560
5561 if (!delta)
5562 continue;
5563
5564 pn->lruvec_stats.state[i] += delta;
5565 if (ppn)
5566 ppn->lruvec_stats.state_pending[i] += delta;
5567 }
5568 }
2d146aa3
JW
5569}
5570
02491447 5571#ifdef CONFIG_MMU
7dc74be0 5572/* Handlers for move charge at task migration. */
854ffa8d 5573static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5574{
05b84301 5575 int ret;
9476db97 5576
d0164adc
MG
5577 /* Try a single bulk charge without reclaim first, kswapd may wake */
5578 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5579 if (!ret) {
854ffa8d 5580 mc.precharge += count;
854ffa8d
DN
5581 return ret;
5582 }
9476db97 5583
3674534b 5584 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5585 while (count--) {
3674534b 5586 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5587 if (ret)
38c5d72f 5588 return ret;
854ffa8d 5589 mc.precharge++;
9476db97 5590 cond_resched();
854ffa8d 5591 }
9476db97 5592 return 0;
4ffef5fe
DN
5593}
5594
4ffef5fe
DN
5595union mc_target {
5596 struct page *page;
02491447 5597 swp_entry_t ent;
4ffef5fe
DN
5598};
5599
4ffef5fe 5600enum mc_target_type {
8d32ff84 5601 MC_TARGET_NONE = 0,
4ffef5fe 5602 MC_TARGET_PAGE,
02491447 5603 MC_TARGET_SWAP,
c733a828 5604 MC_TARGET_DEVICE,
4ffef5fe
DN
5605};
5606
90254a65
DN
5607static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5608 unsigned long addr, pte_t ptent)
4ffef5fe 5609{
25b2995a 5610 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5611
90254a65
DN
5612 if (!page || !page_mapped(page))
5613 return NULL;
5614 if (PageAnon(page)) {
1dfab5ab 5615 if (!(mc.flags & MOVE_ANON))
90254a65 5616 return NULL;
1dfab5ab
JW
5617 } else {
5618 if (!(mc.flags & MOVE_FILE))
5619 return NULL;
5620 }
90254a65
DN
5621 if (!get_page_unless_zero(page))
5622 return NULL;
5623
5624 return page;
5625}
5626
c733a828 5627#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5628static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5629 pte_t ptent, swp_entry_t *entry)
90254a65 5630{
90254a65
DN
5631 struct page *page = NULL;
5632 swp_entry_t ent = pte_to_swp_entry(ptent);
5633
9a137153 5634 if (!(mc.flags & MOVE_ANON))
90254a65 5635 return NULL;
c733a828
JG
5636
5637 /*
27674ef6
CH
5638 * Handle device private pages that are not accessible by the CPU, but
5639 * stored as special swap entries in the page table.
c733a828
JG
5640 */
5641 if (is_device_private_entry(ent)) {
af5cdaf8 5642 page = pfn_swap_entry_to_page(ent);
27674ef6 5643 if (!get_page_unless_zero(page))
c733a828
JG
5644 return NULL;
5645 return page;
5646 }
5647
9a137153
RC
5648 if (non_swap_entry(ent))
5649 return NULL;
5650
4b91355e 5651 /*
cb691e2f 5652 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5653 * we call find_get_page() with swapper_space directly.
5654 */
f6ab1f7f 5655 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5656 entry->val = ent.val;
90254a65
DN
5657
5658 return page;
5659}
4b91355e
KH
5660#else
5661static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5662 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5663{
5664 return NULL;
5665}
5666#endif
90254a65 5667
87946a72 5668static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5669 unsigned long addr, pte_t ptent)
87946a72 5670{
524984ff
MWO
5671 unsigned long index;
5672 struct folio *folio;
5673
87946a72
DN
5674 if (!vma->vm_file) /* anonymous vma */
5675 return NULL;
1dfab5ab 5676 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5677 return NULL;
5678
524984ff 5679 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5680 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5681 index = linear_page_index(vma, addr);
5682 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5683 if (!folio)
5684 return NULL;
5685 return folio_file_page(folio, index);
87946a72
DN
5686}
5687
b1b0deab
CG
5688/**
5689 * mem_cgroup_move_account - move account of the page
5690 * @page: the page
25843c2b 5691 * @compound: charge the page as compound or small page
b1b0deab
CG
5692 * @from: mem_cgroup which the page is moved from.
5693 * @to: mem_cgroup which the page is moved to. @from != @to.
5694 *
3ac808fd 5695 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5696 *
5697 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5698 * from old cgroup.
5699 */
5700static int mem_cgroup_move_account(struct page *page,
f627c2f5 5701 bool compound,
b1b0deab
CG
5702 struct mem_cgroup *from,
5703 struct mem_cgroup *to)
5704{
fcce4672 5705 struct folio *folio = page_folio(page);
ae8af438
KK
5706 struct lruvec *from_vec, *to_vec;
5707 struct pglist_data *pgdat;
fcce4672 5708 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5709 int nid, ret;
b1b0deab
CG
5710
5711 VM_BUG_ON(from == to);
fcce4672 5712 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5713 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5714
5715 /*
6a93ca8f 5716 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5717 * page's memory cgroup of its source page while we change it.
b1b0deab 5718 */
f627c2f5 5719 ret = -EBUSY;
fcce4672 5720 if (!folio_trylock(folio))
b1b0deab
CG
5721 goto out;
5722
5723 ret = -EINVAL;
fcce4672 5724 if (folio_memcg(folio) != from)
b1b0deab
CG
5725 goto out_unlock;
5726
fcce4672 5727 pgdat = folio_pgdat(folio);
867e5e1d
JW
5728 from_vec = mem_cgroup_lruvec(from, pgdat);
5729 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5730
fcce4672 5731 folio_memcg_lock(folio);
b1b0deab 5732
fcce4672
MWO
5733 if (folio_test_anon(folio)) {
5734 if (folio_mapped(folio)) {
be5d0a74
JW
5735 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5736 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5737 if (folio_test_transhuge(folio)) {
69473e5d
MS
5738 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5739 -nr_pages);
5740 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5741 nr_pages);
468c3982 5742 }
be5d0a74
JW
5743 }
5744 } else {
0d1c2072
JW
5745 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5746 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5747
fcce4672 5748 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5749 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5750 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5751 }
5752
fcce4672 5753 if (folio_mapped(folio)) {
49e50d27
JW
5754 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5755 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5756 }
b1b0deab 5757
fcce4672
MWO
5758 if (folio_test_dirty(folio)) {
5759 struct address_space *mapping = folio_mapping(folio);
c4843a75 5760
f56753ac 5761 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5762 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5763 -nr_pages);
5764 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5765 nr_pages);
5766 }
c4843a75
GT
5767 }
5768 }
5769
c449deb2
HD
5770#ifdef CONFIG_SWAP
5771 if (folio_test_swapcache(folio)) {
5772 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5774 }
5775#endif
fcce4672 5776 if (folio_test_writeback(folio)) {
ae8af438
KK
5777 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5778 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5779 }
5780
5781 /*
abb242f5
JW
5782 * All state has been migrated, let's switch to the new memcg.
5783 *
bcfe06bf 5784 * It is safe to change page's memcg here because the page
abb242f5
JW
5785 * is referenced, charged, isolated, and locked: we can't race
5786 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5787 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5788 *
5789 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5790 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5791 * new memcg that isn't locked, the above state can change
5792 * concurrently again. Make sure we're truly done with it.
b1b0deab 5793 */
abb242f5 5794 smp_mb();
b1b0deab 5795
1a3e1f40
JW
5796 css_get(&to->css);
5797 css_put(&from->css);
5798
fcce4672 5799 folio->memcg_data = (unsigned long)to;
87eaceb3 5800
f70ad448 5801 __folio_memcg_unlock(from);
b1b0deab
CG
5802
5803 ret = 0;
fcce4672 5804 nid = folio_nid(folio);
b1b0deab
CG
5805
5806 local_irq_disable();
6e0110c2 5807 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5808 memcg_check_events(to, nid);
6e0110c2 5809 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5810 memcg_check_events(from, nid);
b1b0deab
CG
5811 local_irq_enable();
5812out_unlock:
fcce4672 5813 folio_unlock(folio);
b1b0deab
CG
5814out:
5815 return ret;
5816}
5817
7cf7806c
LR
5818/**
5819 * get_mctgt_type - get target type of moving charge
5820 * @vma: the vma the pte to be checked belongs
5821 * @addr: the address corresponding to the pte to be checked
5822 * @ptent: the pte to be checked
5823 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5824 *
5825 * Returns
5826 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5827 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5828 * move charge. if @target is not NULL, the page is stored in target->page
5829 * with extra refcnt got(Callers should handle it).
5830 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5831 * target for charge migration. if @target is not NULL, the entry is stored
5832 * in target->ent.
f25cbb7a
AS
5833 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5834 * thus not on the lru.
df6ad698
JG
5835 * For now we such page is charge like a regular page would be as for all
5836 * intent and purposes it is just special memory taking the place of a
5837 * regular page.
c733a828
JG
5838 *
5839 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5840 *
5841 * Called with pte lock held.
5842 */
5843
8d32ff84 5844static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5845 unsigned long addr, pte_t ptent, union mc_target *target)
5846{
5847 struct page *page = NULL;
8d32ff84 5848 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5849 swp_entry_t ent = { .val = 0 };
5850
5851 if (pte_present(ptent))
5852 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5853 else if (pte_none_mostly(ptent))
5854 /*
5855 * PTE markers should be treated as a none pte here, separated
5856 * from other swap handling below.
5857 */
5858 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5859 else if (is_swap_pte(ptent))
48406ef8 5860 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65
DN
5861
5862 if (!page && !ent.val)
8d32ff84 5863 return ret;
02491447 5864 if (page) {
02491447 5865 /*
0a31bc97 5866 * Do only loose check w/o serialization.
1306a85a 5867 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5868 * not under LRU exclusion.
02491447 5869 */
bcfe06bf 5870 if (page_memcg(page) == mc.from) {
02491447 5871 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5872 if (is_device_private_page(page) ||
5873 is_device_coherent_page(page))
c733a828 5874 ret = MC_TARGET_DEVICE;
02491447
DN
5875 if (target)
5876 target->page = page;
5877 }
5878 if (!ret || !target)
5879 put_page(page);
5880 }
3e14a57b
HY
5881 /*
5882 * There is a swap entry and a page doesn't exist or isn't charged.
5883 * But we cannot move a tail-page in a THP.
5884 */
5885 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5886 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5887 ret = MC_TARGET_SWAP;
5888 if (target)
5889 target->ent = ent;
4ffef5fe 5890 }
4ffef5fe
DN
5891 return ret;
5892}
5893
12724850
NH
5894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5895/*
d6810d73
HY
5896 * We don't consider PMD mapped swapping or file mapped pages because THP does
5897 * not support them for now.
12724850
NH
5898 * Caller should make sure that pmd_trans_huge(pmd) is true.
5899 */
5900static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5901 unsigned long addr, pmd_t pmd, union mc_target *target)
5902{
5903 struct page *page = NULL;
12724850
NH
5904 enum mc_target_type ret = MC_TARGET_NONE;
5905
84c3fc4e
ZY
5906 if (unlikely(is_swap_pmd(pmd))) {
5907 VM_BUG_ON(thp_migration_supported() &&
5908 !is_pmd_migration_entry(pmd));
5909 return ret;
5910 }
12724850 5911 page = pmd_page(pmd);
309381fe 5912 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5913 if (!(mc.flags & MOVE_ANON))
12724850 5914 return ret;
bcfe06bf 5915 if (page_memcg(page) == mc.from) {
12724850
NH
5916 ret = MC_TARGET_PAGE;
5917 if (target) {
5918 get_page(page);
5919 target->page = page;
5920 }
5921 }
5922 return ret;
5923}
5924#else
5925static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5926 unsigned long addr, pmd_t pmd, union mc_target *target)
5927{
5928 return MC_TARGET_NONE;
5929}
5930#endif
5931
4ffef5fe
DN
5932static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5933 unsigned long addr, unsigned long end,
5934 struct mm_walk *walk)
5935{
26bcd64a 5936 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5937 pte_t *pte;
5938 spinlock_t *ptl;
5939
b6ec57f4
KS
5940 ptl = pmd_trans_huge_lock(pmd, vma);
5941 if (ptl) {
c733a828
JG
5942 /*
5943 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5944 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5945 * this might change.
c733a828 5946 */
12724850
NH
5947 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5948 mc.precharge += HPAGE_PMD_NR;
bf929152 5949 spin_unlock(ptl);
1a5a9906 5950 return 0;
12724850 5951 }
03319327 5952
45f83cef
AA
5953 if (pmd_trans_unstable(pmd))
5954 return 0;
4ffef5fe
DN
5955 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5956 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5957 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5958 mc.precharge++; /* increment precharge temporarily */
5959 pte_unmap_unlock(pte - 1, ptl);
5960 cond_resched();
5961
7dc74be0
DN
5962 return 0;
5963}
5964
7b86ac33
CH
5965static const struct mm_walk_ops precharge_walk_ops = {
5966 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5967};
5968
4ffef5fe
DN
5969static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5970{
5971 unsigned long precharge;
4ffef5fe 5972
d8ed45c5 5973 mmap_read_lock(mm);
ba0aff8e 5974 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 5975 mmap_read_unlock(mm);
4ffef5fe
DN
5976
5977 precharge = mc.precharge;
5978 mc.precharge = 0;
5979
5980 return precharge;
5981}
5982
4ffef5fe
DN
5983static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5984{
dfe076b0
DN
5985 unsigned long precharge = mem_cgroup_count_precharge(mm);
5986
5987 VM_BUG_ON(mc.moving_task);
5988 mc.moving_task = current;
5989 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5990}
5991
dfe076b0
DN
5992/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5993static void __mem_cgroup_clear_mc(void)
4ffef5fe 5994{
2bd9bb20
KH
5995 struct mem_cgroup *from = mc.from;
5996 struct mem_cgroup *to = mc.to;
5997
4ffef5fe 5998 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5999 if (mc.precharge) {
00501b53 6000 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6001 mc.precharge = 0;
6002 }
6003 /*
6004 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6005 * we must uncharge here.
6006 */
6007 if (mc.moved_charge) {
00501b53 6008 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6009 mc.moved_charge = 0;
4ffef5fe 6010 }
483c30b5
DN
6011 /* we must fixup refcnts and charges */
6012 if (mc.moved_swap) {
483c30b5 6013 /* uncharge swap account from the old cgroup */
ce00a967 6014 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6015 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6016
615d66c3
VD
6017 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6018
05b84301 6019 /*
3e32cb2e
JW
6020 * we charged both to->memory and to->memsw, so we
6021 * should uncharge to->memory.
05b84301 6022 */
ce00a967 6023 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6024 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6025
483c30b5
DN
6026 mc.moved_swap = 0;
6027 }
dfe076b0
DN
6028 memcg_oom_recover(from);
6029 memcg_oom_recover(to);
6030 wake_up_all(&mc.waitq);
6031}
6032
6033static void mem_cgroup_clear_mc(void)
6034{
264a0ae1
TH
6035 struct mm_struct *mm = mc.mm;
6036
dfe076b0
DN
6037 /*
6038 * we must clear moving_task before waking up waiters at the end of
6039 * task migration.
6040 */
6041 mc.moving_task = NULL;
6042 __mem_cgroup_clear_mc();
2bd9bb20 6043 spin_lock(&mc.lock);
4ffef5fe
DN
6044 mc.from = NULL;
6045 mc.to = NULL;
264a0ae1 6046 mc.mm = NULL;
2bd9bb20 6047 spin_unlock(&mc.lock);
264a0ae1
TH
6048
6049 mmput(mm);
4ffef5fe
DN
6050}
6051
1f7dd3e5 6052static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6053{
1f7dd3e5 6054 struct cgroup_subsys_state *css;
eed67d75 6055 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6056 struct mem_cgroup *from;
4530eddb 6057 struct task_struct *leader, *p;
9f2115f9 6058 struct mm_struct *mm;
1dfab5ab 6059 unsigned long move_flags;
9f2115f9 6060 int ret = 0;
7dc74be0 6061
1f7dd3e5
TH
6062 /* charge immigration isn't supported on the default hierarchy */
6063 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6064 return 0;
6065
4530eddb
TH
6066 /*
6067 * Multi-process migrations only happen on the default hierarchy
6068 * where charge immigration is not used. Perform charge
6069 * immigration if @tset contains a leader and whine if there are
6070 * multiple.
6071 */
6072 p = NULL;
1f7dd3e5 6073 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6074 WARN_ON_ONCE(p);
6075 p = leader;
1f7dd3e5 6076 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6077 }
6078 if (!p)
6079 return 0;
6080
1f7dd3e5 6081 /*
f0953a1b 6082 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6083 * tunable will only affect upcoming migrations, not the current one.
6084 * So we need to save it, and keep it going.
6085 */
6086 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6087 if (!move_flags)
6088 return 0;
6089
9f2115f9
TH
6090 from = mem_cgroup_from_task(p);
6091
6092 VM_BUG_ON(from == memcg);
6093
6094 mm = get_task_mm(p);
6095 if (!mm)
6096 return 0;
6097 /* We move charges only when we move a owner of the mm */
6098 if (mm->owner == p) {
6099 VM_BUG_ON(mc.from);
6100 VM_BUG_ON(mc.to);
6101 VM_BUG_ON(mc.precharge);
6102 VM_BUG_ON(mc.moved_charge);
6103 VM_BUG_ON(mc.moved_swap);
6104
6105 spin_lock(&mc.lock);
264a0ae1 6106 mc.mm = mm;
9f2115f9
TH
6107 mc.from = from;
6108 mc.to = memcg;
6109 mc.flags = move_flags;
6110 spin_unlock(&mc.lock);
6111 /* We set mc.moving_task later */
6112
6113 ret = mem_cgroup_precharge_mc(mm);
6114 if (ret)
6115 mem_cgroup_clear_mc();
264a0ae1
TH
6116 } else {
6117 mmput(mm);
7dc74be0
DN
6118 }
6119 return ret;
6120}
6121
1f7dd3e5 6122static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6123{
4e2f245d
JW
6124 if (mc.to)
6125 mem_cgroup_clear_mc();
7dc74be0
DN
6126}
6127
4ffef5fe
DN
6128static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6129 unsigned long addr, unsigned long end,
6130 struct mm_walk *walk)
7dc74be0 6131{
4ffef5fe 6132 int ret = 0;
26bcd64a 6133 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6134 pte_t *pte;
6135 spinlock_t *ptl;
12724850
NH
6136 enum mc_target_type target_type;
6137 union mc_target target;
6138 struct page *page;
4ffef5fe 6139
b6ec57f4
KS
6140 ptl = pmd_trans_huge_lock(pmd, vma);
6141 if (ptl) {
62ade86a 6142 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6143 spin_unlock(ptl);
12724850
NH
6144 return 0;
6145 }
6146 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6147 if (target_type == MC_TARGET_PAGE) {
6148 page = target.page;
6149 if (!isolate_lru_page(page)) {
f627c2f5 6150 if (!mem_cgroup_move_account(page, true,
1306a85a 6151 mc.from, mc.to)) {
12724850
NH
6152 mc.precharge -= HPAGE_PMD_NR;
6153 mc.moved_charge += HPAGE_PMD_NR;
6154 }
6155 putback_lru_page(page);
6156 }
6157 put_page(page);
c733a828
JG
6158 } else if (target_type == MC_TARGET_DEVICE) {
6159 page = target.page;
6160 if (!mem_cgroup_move_account(page, true,
6161 mc.from, mc.to)) {
6162 mc.precharge -= HPAGE_PMD_NR;
6163 mc.moved_charge += HPAGE_PMD_NR;
6164 }
6165 put_page(page);
12724850 6166 }
bf929152 6167 spin_unlock(ptl);
1a5a9906 6168 return 0;
12724850
NH
6169 }
6170
45f83cef
AA
6171 if (pmd_trans_unstable(pmd))
6172 return 0;
4ffef5fe
DN
6173retry:
6174 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6175 for (; addr != end; addr += PAGE_SIZE) {
6176 pte_t ptent = *(pte++);
c733a828 6177 bool device = false;
02491447 6178 swp_entry_t ent;
4ffef5fe
DN
6179
6180 if (!mc.precharge)
6181 break;
6182
8d32ff84 6183 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6184 case MC_TARGET_DEVICE:
6185 device = true;
e4a9bc58 6186 fallthrough;
4ffef5fe
DN
6187 case MC_TARGET_PAGE:
6188 page = target.page;
53f9263b
KS
6189 /*
6190 * We can have a part of the split pmd here. Moving it
6191 * can be done but it would be too convoluted so simply
6192 * ignore such a partial THP and keep it in original
6193 * memcg. There should be somebody mapping the head.
6194 */
6195 if (PageTransCompound(page))
6196 goto put;
c733a828 6197 if (!device && isolate_lru_page(page))
4ffef5fe 6198 goto put;
f627c2f5
KS
6199 if (!mem_cgroup_move_account(page, false,
6200 mc.from, mc.to)) {
4ffef5fe 6201 mc.precharge--;
854ffa8d
DN
6202 /* we uncharge from mc.from later. */
6203 mc.moved_charge++;
4ffef5fe 6204 }
c733a828
JG
6205 if (!device)
6206 putback_lru_page(page);
8d32ff84 6207put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6208 put_page(page);
6209 break;
02491447
DN
6210 case MC_TARGET_SWAP:
6211 ent = target.ent;
e91cbb42 6212 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6213 mc.precharge--;
8d22a935
HD
6214 mem_cgroup_id_get_many(mc.to, 1);
6215 /* we fixup other refcnts and charges later. */
483c30b5
DN
6216 mc.moved_swap++;
6217 }
02491447 6218 break;
4ffef5fe
DN
6219 default:
6220 break;
6221 }
6222 }
6223 pte_unmap_unlock(pte - 1, ptl);
6224 cond_resched();
6225
6226 if (addr != end) {
6227 /*
6228 * We have consumed all precharges we got in can_attach().
6229 * We try charge one by one, but don't do any additional
6230 * charges to mc.to if we have failed in charge once in attach()
6231 * phase.
6232 */
854ffa8d 6233 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6234 if (!ret)
6235 goto retry;
6236 }
6237
6238 return ret;
6239}
6240
7b86ac33
CH
6241static const struct mm_walk_ops charge_walk_ops = {
6242 .pmd_entry = mem_cgroup_move_charge_pte_range,
6243};
6244
264a0ae1 6245static void mem_cgroup_move_charge(void)
4ffef5fe 6246{
4ffef5fe 6247 lru_add_drain_all();
312722cb 6248 /*
81f8c3a4
JW
6249 * Signal lock_page_memcg() to take the memcg's move_lock
6250 * while we're moving its pages to another memcg. Then wait
6251 * for already started RCU-only updates to finish.
312722cb
JW
6252 */
6253 atomic_inc(&mc.from->moving_account);
6254 synchronize_rcu();
dfe076b0 6255retry:
d8ed45c5 6256 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6257 /*
c1e8d7c6 6258 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6259 * waitq. So we cancel all extra charges, wake up all waiters,
6260 * and retry. Because we cancel precharges, we might not be able
6261 * to move enough charges, but moving charge is a best-effort
6262 * feature anyway, so it wouldn't be a big problem.
6263 */
6264 __mem_cgroup_clear_mc();
6265 cond_resched();
6266 goto retry;
6267 }
26bcd64a
NH
6268 /*
6269 * When we have consumed all precharges and failed in doing
6270 * additional charge, the page walk just aborts.
6271 */
ba0aff8e 6272 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6273 mmap_read_unlock(mc.mm);
312722cb 6274 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6275}
6276
264a0ae1 6277static void mem_cgroup_move_task(void)
67e465a7 6278{
264a0ae1
TH
6279 if (mc.to) {
6280 mem_cgroup_move_charge();
a433658c 6281 mem_cgroup_clear_mc();
264a0ae1 6282 }
67e465a7 6283}
5cfb80a7 6284#else /* !CONFIG_MMU */
1f7dd3e5 6285static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6286{
6287 return 0;
6288}
1f7dd3e5 6289static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6290{
6291}
264a0ae1 6292static void mem_cgroup_move_task(void)
5cfb80a7
DN
6293{
6294}
6295#endif
67e465a7 6296
bd74fdae
YZ
6297#ifdef CONFIG_LRU_GEN
6298static void mem_cgroup_attach(struct cgroup_taskset *tset)
6299{
6300 struct task_struct *task;
6301 struct cgroup_subsys_state *css;
6302
6303 /* find the first leader if there is any */
6304 cgroup_taskset_for_each_leader(task, css, tset)
6305 break;
6306
6307 if (!task)
6308 return;
6309
6310 task_lock(task);
6311 if (task->mm && READ_ONCE(task->mm->owner) == task)
6312 lru_gen_migrate_mm(task->mm);
6313 task_unlock(task);
6314}
6315#else
6316static void mem_cgroup_attach(struct cgroup_taskset *tset)
6317{
6318}
6319#endif /* CONFIG_LRU_GEN */
6320
677dc973
CD
6321static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6322{
6323 if (value == PAGE_COUNTER_MAX)
6324 seq_puts(m, "max\n");
6325 else
6326 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6327
6328 return 0;
6329}
6330
241994ed
JW
6331static u64 memory_current_read(struct cgroup_subsys_state *css,
6332 struct cftype *cft)
6333{
f5fc3c5d
JW
6334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6335
6336 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6337}
6338
8e20d4b3
GR
6339static u64 memory_peak_read(struct cgroup_subsys_state *css,
6340 struct cftype *cft)
6341{
6342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6343
6344 return (u64)memcg->memory.watermark * PAGE_SIZE;
6345}
6346
bf8d5d52
RG
6347static int memory_min_show(struct seq_file *m, void *v)
6348{
677dc973
CD
6349 return seq_puts_memcg_tunable(m,
6350 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6351}
6352
6353static ssize_t memory_min_write(struct kernfs_open_file *of,
6354 char *buf, size_t nbytes, loff_t off)
6355{
6356 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6357 unsigned long min;
6358 int err;
6359
6360 buf = strstrip(buf);
6361 err = page_counter_memparse(buf, "max", &min);
6362 if (err)
6363 return err;
6364
6365 page_counter_set_min(&memcg->memory, min);
6366
6367 return nbytes;
6368}
6369
241994ed
JW
6370static int memory_low_show(struct seq_file *m, void *v)
6371{
677dc973
CD
6372 return seq_puts_memcg_tunable(m,
6373 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6374}
6375
6376static ssize_t memory_low_write(struct kernfs_open_file *of,
6377 char *buf, size_t nbytes, loff_t off)
6378{
6379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6380 unsigned long low;
6381 int err;
6382
6383 buf = strstrip(buf);
d2973697 6384 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6385 if (err)
6386 return err;
6387
23067153 6388 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6389
6390 return nbytes;
6391}
6392
6393static int memory_high_show(struct seq_file *m, void *v)
6394{
d1663a90
JK
6395 return seq_puts_memcg_tunable(m,
6396 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6397}
6398
6399static ssize_t memory_high_write(struct kernfs_open_file *of,
6400 char *buf, size_t nbytes, loff_t off)
6401{
6402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6403 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6404 bool drained = false;
241994ed
JW
6405 unsigned long high;
6406 int err;
6407
6408 buf = strstrip(buf);
d2973697 6409 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6410 if (err)
6411 return err;
6412
e82553c1
JW
6413 page_counter_set_high(&memcg->memory, high);
6414
8c8c383c
JW
6415 for (;;) {
6416 unsigned long nr_pages = page_counter_read(&memcg->memory);
6417 unsigned long reclaimed;
6418
6419 if (nr_pages <= high)
6420 break;
6421
6422 if (signal_pending(current))
6423 break;
6424
6425 if (!drained) {
6426 drain_all_stock(memcg);
6427 drained = true;
6428 continue;
6429 }
6430
6431 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
12a5d395
MA
6432 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP,
6433 NULL);
8c8c383c
JW
6434
6435 if (!reclaimed && !nr_retries--)
6436 break;
6437 }
588083bb 6438
19ce33ac 6439 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6440 return nbytes;
6441}
6442
6443static int memory_max_show(struct seq_file *m, void *v)
6444{
677dc973
CD
6445 return seq_puts_memcg_tunable(m,
6446 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6447}
6448
6449static ssize_t memory_max_write(struct kernfs_open_file *of,
6450 char *buf, size_t nbytes, loff_t off)
6451{
6452 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6453 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6454 bool drained = false;
241994ed
JW
6455 unsigned long max;
6456 int err;
6457
6458 buf = strstrip(buf);
d2973697 6459 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6460 if (err)
6461 return err;
6462
bbec2e15 6463 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6464
6465 for (;;) {
6466 unsigned long nr_pages = page_counter_read(&memcg->memory);
6467
6468 if (nr_pages <= max)
6469 break;
6470
7249c9f0 6471 if (signal_pending(current))
b6e6edcf 6472 break;
b6e6edcf
JW
6473
6474 if (!drained) {
6475 drain_all_stock(memcg);
6476 drained = true;
6477 continue;
6478 }
6479
6480 if (nr_reclaims) {
6481 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
12a5d395
MA
6482 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP,
6483 NULL))
b6e6edcf
JW
6484 nr_reclaims--;
6485 continue;
6486 }
6487
e27be240 6488 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6489 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6490 break;
6491 }
241994ed 6492
2529bb3a 6493 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6494 return nbytes;
6495}
6496
1e577f97
SB
6497static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6498{
6499 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6500 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6501 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6502 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6503 seq_printf(m, "oom_kill %lu\n",
6504 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6505 seq_printf(m, "oom_group_kill %lu\n",
6506 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6507}
6508
241994ed
JW
6509static int memory_events_show(struct seq_file *m, void *v)
6510{
aa9694bb 6511 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6512
1e577f97
SB
6513 __memory_events_show(m, memcg->memory_events);
6514 return 0;
6515}
6516
6517static int memory_events_local_show(struct seq_file *m, void *v)
6518{
6519 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6520
1e577f97 6521 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6522 return 0;
6523}
6524
587d9f72
JW
6525static int memory_stat_show(struct seq_file *m, void *v)
6526{
aa9694bb 6527 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6528 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6529
c8713d0b
JW
6530 if (!buf)
6531 return -ENOMEM;
68aaee14 6532 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6533 seq_puts(m, buf);
6534 kfree(buf);
587d9f72
JW
6535 return 0;
6536}
6537
5f9a4f4a 6538#ifdef CONFIG_NUMA
fff66b79
MS
6539static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6540 int item)
6541{
6542 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6543}
6544
5f9a4f4a
MS
6545static int memory_numa_stat_show(struct seq_file *m, void *v)
6546{
6547 int i;
6548 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6549
fd25a9e0 6550 mem_cgroup_flush_stats();
7e1c0d6f 6551
5f9a4f4a
MS
6552 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6553 int nid;
6554
6555 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6556 continue;
6557
6558 seq_printf(m, "%s", memory_stats[i].name);
6559 for_each_node_state(nid, N_MEMORY) {
6560 u64 size;
6561 struct lruvec *lruvec;
6562
6563 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6564 size = lruvec_page_state_output(lruvec,
6565 memory_stats[i].idx);
5f9a4f4a
MS
6566 seq_printf(m, " N%d=%llu", nid, size);
6567 }
6568 seq_putc(m, '\n');
6569 }
6570
6571 return 0;
6572}
6573#endif
6574
3d8b38eb
RG
6575static int memory_oom_group_show(struct seq_file *m, void *v)
6576{
aa9694bb 6577 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6578
6579 seq_printf(m, "%d\n", memcg->oom_group);
6580
6581 return 0;
6582}
6583
6584static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6585 char *buf, size_t nbytes, loff_t off)
6586{
6587 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6588 int ret, oom_group;
6589
6590 buf = strstrip(buf);
6591 if (!buf)
6592 return -EINVAL;
6593
6594 ret = kstrtoint(buf, 0, &oom_group);
6595 if (ret)
6596 return ret;
6597
6598 if (oom_group != 0 && oom_group != 1)
6599 return -EINVAL;
6600
6601 memcg->oom_group = oom_group;
6602
6603 return nbytes;
6604}
6605
12a5d395
MA
6606enum {
6607 MEMORY_RECLAIM_NODES = 0,
6608 MEMORY_RECLAIM_NULL,
6609};
6610
6611static const match_table_t if_tokens = {
6612 { MEMORY_RECLAIM_NODES, "nodes=%s" },
6613 { MEMORY_RECLAIM_NULL, NULL },
6614};
6615
94968384
SB
6616static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6617 size_t nbytes, loff_t off)
6618{
6619 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6620 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6621 unsigned long nr_to_reclaim, nr_reclaimed = 0;
12a5d395
MA
6622 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
6623 MEMCG_RECLAIM_PROACTIVE;
6624 char *old_buf, *start;
6625 substring_t args[MAX_OPT_ARGS];
6626 int token;
6627 char value[256];
6628 nodemask_t nodemask = NODE_MASK_ALL;
94968384
SB
6629
6630 buf = strstrip(buf);
94968384 6631
12a5d395
MA
6632 old_buf = buf;
6633 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
6634 if (buf == old_buf)
6635 return -EINVAL;
6636
6637 buf = strstrip(buf);
6638
6639 while ((start = strsep(&buf, " ")) != NULL) {
6640 if (!strlen(start))
6641 continue;
6642 token = match_token(start, if_tokens, args);
6643 match_strlcpy(value, args, sizeof(value));
6644 switch (token) {
6645 case MEMORY_RECLAIM_NODES:
6646 if (nodelist_parse(value, nodemask) < 0)
6647 return -EINVAL;
6648 break;
6649 default:
6650 return -EINVAL;
6651 }
6652 }
6653
94968384
SB
6654 while (nr_reclaimed < nr_to_reclaim) {
6655 unsigned long reclaimed;
6656
6657 if (signal_pending(current))
6658 return -EINTR;
6659
6660 /*
6661 * This is the final attempt, drain percpu lru caches in the
6662 * hope of introducing more evictable pages for
6663 * try_to_free_mem_cgroup_pages().
6664 */
6665 if (!nr_retries)
6666 lru_add_drain_all();
6667
6668 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6669 nr_to_reclaim - nr_reclaimed,
12a5d395
MA
6670 GFP_KERNEL, reclaim_options,
6671 &nodemask);
94968384
SB
6672
6673 if (!reclaimed && !nr_retries--)
6674 return -EAGAIN;
6675
6676 nr_reclaimed += reclaimed;
6677 }
6678
6679 return nbytes;
6680}
6681
241994ed
JW
6682static struct cftype memory_files[] = {
6683 {
6684 .name = "current",
f5fc3c5d 6685 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6686 .read_u64 = memory_current_read,
6687 },
8e20d4b3
GR
6688 {
6689 .name = "peak",
6690 .flags = CFTYPE_NOT_ON_ROOT,
6691 .read_u64 = memory_peak_read,
6692 },
bf8d5d52
RG
6693 {
6694 .name = "min",
6695 .flags = CFTYPE_NOT_ON_ROOT,
6696 .seq_show = memory_min_show,
6697 .write = memory_min_write,
6698 },
241994ed
JW
6699 {
6700 .name = "low",
6701 .flags = CFTYPE_NOT_ON_ROOT,
6702 .seq_show = memory_low_show,
6703 .write = memory_low_write,
6704 },
6705 {
6706 .name = "high",
6707 .flags = CFTYPE_NOT_ON_ROOT,
6708 .seq_show = memory_high_show,
6709 .write = memory_high_write,
6710 },
6711 {
6712 .name = "max",
6713 .flags = CFTYPE_NOT_ON_ROOT,
6714 .seq_show = memory_max_show,
6715 .write = memory_max_write,
6716 },
6717 {
6718 .name = "events",
6719 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6720 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6721 .seq_show = memory_events_show,
6722 },
1e577f97
SB
6723 {
6724 .name = "events.local",
6725 .flags = CFTYPE_NOT_ON_ROOT,
6726 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6727 .seq_show = memory_events_local_show,
6728 },
587d9f72
JW
6729 {
6730 .name = "stat",
587d9f72
JW
6731 .seq_show = memory_stat_show,
6732 },
5f9a4f4a
MS
6733#ifdef CONFIG_NUMA
6734 {
6735 .name = "numa_stat",
6736 .seq_show = memory_numa_stat_show,
6737 },
6738#endif
3d8b38eb
RG
6739 {
6740 .name = "oom.group",
6741 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6742 .seq_show = memory_oom_group_show,
6743 .write = memory_oom_group_write,
6744 },
94968384
SB
6745 {
6746 .name = "reclaim",
6747 .flags = CFTYPE_NS_DELEGATABLE,
6748 .write = memory_reclaim,
6749 },
241994ed
JW
6750 { } /* terminate */
6751};
6752
073219e9 6753struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6754 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6755 .css_online = mem_cgroup_css_online,
92fb9748 6756 .css_offline = mem_cgroup_css_offline,
6df38689 6757 .css_released = mem_cgroup_css_released,
92fb9748 6758 .css_free = mem_cgroup_css_free,
1ced953b 6759 .css_reset = mem_cgroup_css_reset,
2d146aa3 6760 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6761 .can_attach = mem_cgroup_can_attach,
bd74fdae 6762 .attach = mem_cgroup_attach,
7dc74be0 6763 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6764 .post_attach = mem_cgroup_move_task,
241994ed
JW
6765 .dfl_cftypes = memory_files,
6766 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6767 .early_init = 0,
8cdea7c0 6768};
c077719b 6769
bc50bcc6
JW
6770/*
6771 * This function calculates an individual cgroup's effective
6772 * protection which is derived from its own memory.min/low, its
6773 * parent's and siblings' settings, as well as the actual memory
6774 * distribution in the tree.
6775 *
6776 * The following rules apply to the effective protection values:
6777 *
6778 * 1. At the first level of reclaim, effective protection is equal to
6779 * the declared protection in memory.min and memory.low.
6780 *
6781 * 2. To enable safe delegation of the protection configuration, at
6782 * subsequent levels the effective protection is capped to the
6783 * parent's effective protection.
6784 *
6785 * 3. To make complex and dynamic subtrees easier to configure, the
6786 * user is allowed to overcommit the declared protection at a given
6787 * level. If that is the case, the parent's effective protection is
6788 * distributed to the children in proportion to how much protection
6789 * they have declared and how much of it they are utilizing.
6790 *
6791 * This makes distribution proportional, but also work-conserving:
6792 * if one cgroup claims much more protection than it uses memory,
6793 * the unused remainder is available to its siblings.
6794 *
6795 * 4. Conversely, when the declared protection is undercommitted at a
6796 * given level, the distribution of the larger parental protection
6797 * budget is NOT proportional. A cgroup's protection from a sibling
6798 * is capped to its own memory.min/low setting.
6799 *
8a931f80
JW
6800 * 5. However, to allow protecting recursive subtrees from each other
6801 * without having to declare each individual cgroup's fixed share
6802 * of the ancestor's claim to protection, any unutilized -
6803 * "floating" - protection from up the tree is distributed in
6804 * proportion to each cgroup's *usage*. This makes the protection
6805 * neutral wrt sibling cgroups and lets them compete freely over
6806 * the shared parental protection budget, but it protects the
6807 * subtree as a whole from neighboring subtrees.
6808 *
6809 * Note that 4. and 5. are not in conflict: 4. is about protecting
6810 * against immediate siblings whereas 5. is about protecting against
6811 * neighboring subtrees.
bc50bcc6
JW
6812 */
6813static unsigned long effective_protection(unsigned long usage,
8a931f80 6814 unsigned long parent_usage,
bc50bcc6
JW
6815 unsigned long setting,
6816 unsigned long parent_effective,
6817 unsigned long siblings_protected)
6818{
6819 unsigned long protected;
8a931f80 6820 unsigned long ep;
bc50bcc6
JW
6821
6822 protected = min(usage, setting);
6823 /*
6824 * If all cgroups at this level combined claim and use more
6825 * protection then what the parent affords them, distribute
6826 * shares in proportion to utilization.
6827 *
6828 * We are using actual utilization rather than the statically
6829 * claimed protection in order to be work-conserving: claimed
6830 * but unused protection is available to siblings that would
6831 * otherwise get a smaller chunk than what they claimed.
6832 */
6833 if (siblings_protected > parent_effective)
6834 return protected * parent_effective / siblings_protected;
6835
6836 /*
6837 * Ok, utilized protection of all children is within what the
6838 * parent affords them, so we know whatever this child claims
6839 * and utilizes is effectively protected.
6840 *
6841 * If there is unprotected usage beyond this value, reclaim
6842 * will apply pressure in proportion to that amount.
6843 *
6844 * If there is unutilized protection, the cgroup will be fully
6845 * shielded from reclaim, but we do return a smaller value for
6846 * protection than what the group could enjoy in theory. This
6847 * is okay. With the overcommit distribution above, effective
6848 * protection is always dependent on how memory is actually
6849 * consumed among the siblings anyway.
6850 */
8a931f80
JW
6851 ep = protected;
6852
6853 /*
6854 * If the children aren't claiming (all of) the protection
6855 * afforded to them by the parent, distribute the remainder in
6856 * proportion to the (unprotected) memory of each cgroup. That
6857 * way, cgroups that aren't explicitly prioritized wrt each
6858 * other compete freely over the allowance, but they are
6859 * collectively protected from neighboring trees.
6860 *
6861 * We're using unprotected memory for the weight so that if
6862 * some cgroups DO claim explicit protection, we don't protect
6863 * the same bytes twice.
cd324edc
JW
6864 *
6865 * Check both usage and parent_usage against the respective
6866 * protected values. One should imply the other, but they
6867 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6868 */
6869 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6870 return ep;
cd324edc
JW
6871 if (parent_effective > siblings_protected &&
6872 parent_usage > siblings_protected &&
6873 usage > protected) {
8a931f80
JW
6874 unsigned long unclaimed;
6875
6876 unclaimed = parent_effective - siblings_protected;
6877 unclaimed *= usage - protected;
6878 unclaimed /= parent_usage - siblings_protected;
6879
6880 ep += unclaimed;
6881 }
6882
6883 return ep;
bc50bcc6
JW
6884}
6885
241994ed 6886/**
05395718 6887 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6888 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6889 * @memcg: the memory cgroup to check
6890 *
23067153
RG
6891 * WARNING: This function is not stateless! It can only be used as part
6892 * of a top-down tree iteration, not for isolated queries.
241994ed 6893 */
45c7f7e1
CD
6894void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6895 struct mem_cgroup *memcg)
241994ed 6896{
8a931f80 6897 unsigned long usage, parent_usage;
23067153
RG
6898 struct mem_cgroup *parent;
6899
241994ed 6900 if (mem_cgroup_disabled())
45c7f7e1 6901 return;
241994ed 6902
34c81057
SC
6903 if (!root)
6904 root = root_mem_cgroup;
22f7496f
YS
6905
6906 /*
6907 * Effective values of the reclaim targets are ignored so they
6908 * can be stale. Have a look at mem_cgroup_protection for more
6909 * details.
6910 * TODO: calculation should be more robust so that we do not need
6911 * that special casing.
6912 */
34c81057 6913 if (memcg == root)
45c7f7e1 6914 return;
241994ed 6915
23067153 6916 usage = page_counter_read(&memcg->memory);
bf8d5d52 6917 if (!usage)
45c7f7e1 6918 return;
bf8d5d52 6919
bf8d5d52 6920 parent = parent_mem_cgroup(memcg);
df2a4196 6921
bc50bcc6 6922 if (parent == root) {
c3d53200 6923 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6924 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6925 return;
bf8d5d52
RG
6926 }
6927
8a931f80
JW
6928 parent_usage = page_counter_read(&parent->memory);
6929
b3a7822e 6930 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6931 READ_ONCE(memcg->memory.min),
6932 READ_ONCE(parent->memory.emin),
b3a7822e 6933 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6934
b3a7822e 6935 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6936 READ_ONCE(memcg->memory.low),
6937 READ_ONCE(parent->memory.elow),
b3a7822e 6938 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6939}
6940
8f425e4e
MWO
6941static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6942 gfp_t gfp)
0add0c77 6943{
118f2875 6944 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6945 int ret;
6946
6947 ret = try_charge(memcg, gfp, nr_pages);
6948 if (ret)
6949 goto out;
6950
6951 css_get(&memcg->css);
118f2875 6952 commit_charge(folio, memcg);
0add0c77
SB
6953
6954 local_irq_disable();
6e0110c2 6955 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6956 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6957 local_irq_enable();
6958out:
6959 return ret;
6960}
6961
8f425e4e 6962int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6963{
0add0c77
SB
6964 struct mem_cgroup *memcg;
6965 int ret;
00501b53 6966
0add0c77 6967 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6968 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6969 css_put(&memcg->css);
2d1c4980 6970
0add0c77
SB
6971 return ret;
6972}
e993d905 6973
0add0c77 6974/**
65995918
MWO
6975 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6976 * @folio: folio to charge.
0add0c77
SB
6977 * @mm: mm context of the victim
6978 * @gfp: reclaim mode
65995918 6979 * @entry: swap entry for which the folio is allocated
0add0c77 6980 *
65995918
MWO
6981 * This function charges a folio allocated for swapin. Please call this before
6982 * adding the folio to the swapcache.
0add0c77
SB
6983 *
6984 * Returns 0 on success. Otherwise, an error code is returned.
6985 */
65995918 6986int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
6987 gfp_t gfp, swp_entry_t entry)
6988{
6989 struct mem_cgroup *memcg;
6990 unsigned short id;
6991 int ret;
00501b53 6992
0add0c77
SB
6993 if (mem_cgroup_disabled())
6994 return 0;
00501b53 6995
0add0c77
SB
6996 id = lookup_swap_cgroup_id(entry);
6997 rcu_read_lock();
6998 memcg = mem_cgroup_from_id(id);
6999 if (!memcg || !css_tryget_online(&memcg->css))
7000 memcg = get_mem_cgroup_from_mm(mm);
7001 rcu_read_unlock();
00501b53 7002
8f425e4e 7003 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7004
0add0c77
SB
7005 css_put(&memcg->css);
7006 return ret;
7007}
00501b53 7008
0add0c77
SB
7009/*
7010 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7011 * @entry: swap entry for which the page is charged
7012 *
7013 * Call this function after successfully adding the charged page to swapcache.
7014 *
7015 * Note: This function assumes the page for which swap slot is being uncharged
7016 * is order 0 page.
7017 */
7018void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7019{
cae3af62
MS
7020 /*
7021 * Cgroup1's unified memory+swap counter has been charged with the
7022 * new swapcache page, finish the transfer by uncharging the swap
7023 * slot. The swap slot would also get uncharged when it dies, but
7024 * it can stick around indefinitely and we'd count the page twice
7025 * the entire time.
7026 *
7027 * Cgroup2 has separate resource counters for memory and swap,
7028 * so this is a non-issue here. Memory and swap charge lifetimes
7029 * correspond 1:1 to page and swap slot lifetimes: we charge the
7030 * page to memory here, and uncharge swap when the slot is freed.
7031 */
0add0c77 7032 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7033 /*
7034 * The swap entry might not get freed for a long time,
7035 * let's not wait for it. The page already received a
7036 * memory+swap charge, drop the swap entry duplicate.
7037 */
0add0c77 7038 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7039 }
3fea5a49
JW
7040}
7041
a9d5adee
JG
7042struct uncharge_gather {
7043 struct mem_cgroup *memcg;
b4e0b68f 7044 unsigned long nr_memory;
a9d5adee 7045 unsigned long pgpgout;
a9d5adee 7046 unsigned long nr_kmem;
8e88bd2d 7047 int nid;
a9d5adee
JG
7048};
7049
7050static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7051{
a9d5adee
JG
7052 memset(ug, 0, sizeof(*ug));
7053}
7054
7055static void uncharge_batch(const struct uncharge_gather *ug)
7056{
747db954
JW
7057 unsigned long flags;
7058
b4e0b68f
MS
7059 if (ug->nr_memory) {
7060 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7061 if (do_memsw_account())
b4e0b68f 7062 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7063 if (ug->nr_kmem)
7064 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7065 memcg_oom_recover(ug->memcg);
ce00a967 7066 }
747db954
JW
7067
7068 local_irq_save(flags);
c9019e9b 7069 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7070 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7071 memcg_check_events(ug->memcg, ug->nid);
747db954 7072 local_irq_restore(flags);
f1796544 7073
c4ed6ebf 7074 /* drop reference from uncharge_folio */
f1796544 7075 css_put(&ug->memcg->css);
a9d5adee
JG
7076}
7077
c4ed6ebf 7078static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7079{
c4ed6ebf 7080 long nr_pages;
b4e0b68f
MS
7081 struct mem_cgroup *memcg;
7082 struct obj_cgroup *objcg;
9f762dbe 7083
c4ed6ebf 7084 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7085
a9d5adee
JG
7086 /*
7087 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7088 * folio memcg or objcg at this point, we have fully
7089 * exclusive access to the folio.
a9d5adee 7090 */
fead2b86 7091 if (folio_memcg_kmem(folio)) {
1b7e4464 7092 objcg = __folio_objcg(folio);
b4e0b68f
MS
7093 /*
7094 * This get matches the put at the end of the function and
7095 * kmem pages do not hold memcg references anymore.
7096 */
7097 memcg = get_mem_cgroup_from_objcg(objcg);
7098 } else {
1b7e4464 7099 memcg = __folio_memcg(folio);
b4e0b68f 7100 }
a9d5adee 7101
b4e0b68f
MS
7102 if (!memcg)
7103 return;
7104
7105 if (ug->memcg != memcg) {
a9d5adee
JG
7106 if (ug->memcg) {
7107 uncharge_batch(ug);
7108 uncharge_gather_clear(ug);
7109 }
b4e0b68f 7110 ug->memcg = memcg;
c4ed6ebf 7111 ug->nid = folio_nid(folio);
f1796544
MH
7112
7113 /* pairs with css_put in uncharge_batch */
b4e0b68f 7114 css_get(&memcg->css);
a9d5adee
JG
7115 }
7116
c4ed6ebf 7117 nr_pages = folio_nr_pages(folio);
a9d5adee 7118
fead2b86 7119 if (folio_memcg_kmem(folio)) {
b4e0b68f 7120 ug->nr_memory += nr_pages;
9f762dbe 7121 ug->nr_kmem += nr_pages;
b4e0b68f 7122
c4ed6ebf 7123 folio->memcg_data = 0;
b4e0b68f
MS
7124 obj_cgroup_put(objcg);
7125 } else {
7126 /* LRU pages aren't accounted at the root level */
7127 if (!mem_cgroup_is_root(memcg))
7128 ug->nr_memory += nr_pages;
18b2db3b 7129 ug->pgpgout++;
a9d5adee 7130
c4ed6ebf 7131 folio->memcg_data = 0;
b4e0b68f
MS
7132 }
7133
7134 css_put(&memcg->css);
747db954
JW
7135}
7136
bbc6b703 7137void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7138{
a9d5adee
JG
7139 struct uncharge_gather ug;
7140
bbc6b703
MWO
7141 /* Don't touch folio->lru of any random page, pre-check: */
7142 if (!folio_memcg(folio))
0a31bc97
JW
7143 return;
7144
a9d5adee 7145 uncharge_gather_clear(&ug);
bbc6b703 7146 uncharge_folio(folio, &ug);
a9d5adee 7147 uncharge_batch(&ug);
747db954 7148}
0a31bc97 7149
747db954 7150/**
2c8d8f97 7151 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7152 * @page_list: list of pages to uncharge
7153 *
7154 * Uncharge a list of pages previously charged with
2c8d8f97 7155 * __mem_cgroup_charge().
747db954 7156 */
2c8d8f97 7157void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7158{
c41a40b6 7159 struct uncharge_gather ug;
c4ed6ebf 7160 struct folio *folio;
c41a40b6 7161
c41a40b6 7162 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7163 list_for_each_entry(folio, page_list, lru)
7164 uncharge_folio(folio, &ug);
c41a40b6
MS
7165 if (ug.memcg)
7166 uncharge_batch(&ug);
0a31bc97
JW
7167}
7168
7169/**
d21bba2b
MWO
7170 * mem_cgroup_migrate - Charge a folio's replacement.
7171 * @old: Currently circulating folio.
7172 * @new: Replacement folio.
0a31bc97 7173 *
d21bba2b 7174 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7175 * be uncharged upon free.
0a31bc97 7176 *
d21bba2b 7177 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7178 */
d21bba2b 7179void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7180{
29833315 7181 struct mem_cgroup *memcg;
d21bba2b 7182 long nr_pages = folio_nr_pages(new);
d93c4130 7183 unsigned long flags;
0a31bc97 7184
d21bba2b
MWO
7185 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7186 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7187 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7188 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7189
7190 if (mem_cgroup_disabled())
7191 return;
7192
d21bba2b
MWO
7193 /* Page cache replacement: new folio already charged? */
7194 if (folio_memcg(new))
0a31bc97
JW
7195 return;
7196
d21bba2b
MWO
7197 memcg = folio_memcg(old);
7198 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7199 if (!memcg)
0a31bc97
JW
7200 return;
7201
44b7a8d3 7202 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7203 if (!mem_cgroup_is_root(memcg)) {
7204 page_counter_charge(&memcg->memory, nr_pages);
7205 if (do_memsw_account())
7206 page_counter_charge(&memcg->memsw, nr_pages);
7207 }
0a31bc97 7208
1a3e1f40 7209 css_get(&memcg->css);
d21bba2b 7210 commit_charge(new, memcg);
44b7a8d3 7211
d93c4130 7212 local_irq_save(flags);
6e0110c2 7213 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7214 memcg_check_events(memcg, folio_nid(new));
d93c4130 7215 local_irq_restore(flags);
0a31bc97
JW
7216}
7217
ef12947c 7218DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7219EXPORT_SYMBOL(memcg_sockets_enabled_key);
7220
2d758073 7221void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7222{
7223 struct mem_cgroup *memcg;
7224
2d758073
JW
7225 if (!mem_cgroup_sockets_enabled)
7226 return;
7227
e876ecc6 7228 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7229 if (!in_task())
e876ecc6
SB
7230 return;
7231
11092087
JW
7232 rcu_read_lock();
7233 memcg = mem_cgroup_from_task(current);
7848ed62 7234 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7235 goto out;
0db15298 7236 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7237 goto out;
8965aa28 7238 if (css_tryget(&memcg->css))
11092087 7239 sk->sk_memcg = memcg;
f7e1cb6e 7240out:
11092087
JW
7241 rcu_read_unlock();
7242}
11092087 7243
2d758073 7244void mem_cgroup_sk_free(struct sock *sk)
11092087 7245{
2d758073
JW
7246 if (sk->sk_memcg)
7247 css_put(&sk->sk_memcg->css);
11092087
JW
7248}
7249
7250/**
7251 * mem_cgroup_charge_skmem - charge socket memory
7252 * @memcg: memcg to charge
7253 * @nr_pages: number of pages to charge
4b1327be 7254 * @gfp_mask: reclaim mode
11092087
JW
7255 *
7256 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7257 * @memcg's configured limit, %false if it doesn't.
11092087 7258 */
4b1327be
WW
7259bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7260 gfp_t gfp_mask)
11092087 7261{
f7e1cb6e 7262 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7263 struct page_counter *fail;
f7e1cb6e 7264
0db15298
JW
7265 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7266 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7267 return true;
7268 }
0db15298 7269 memcg->tcpmem_pressure = 1;
4b1327be
WW
7270 if (gfp_mask & __GFP_NOFAIL) {
7271 page_counter_charge(&memcg->tcpmem, nr_pages);
7272 return true;
7273 }
f7e1cb6e 7274 return false;
11092087 7275 }
d886f4e4 7276
4b1327be
WW
7277 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7278 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7279 return true;
4b1327be 7280 }
f7e1cb6e 7281
11092087
JW
7282 return false;
7283}
7284
7285/**
7286 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7287 * @memcg: memcg to uncharge
7288 * @nr_pages: number of pages to uncharge
11092087
JW
7289 */
7290void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7291{
f7e1cb6e 7292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7293 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7294 return;
7295 }
d886f4e4 7296
c9019e9b 7297 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7298
475d0487 7299 refill_stock(memcg, nr_pages);
11092087
JW
7300}
7301
f7e1cb6e
JW
7302static int __init cgroup_memory(char *s)
7303{
7304 char *token;
7305
7306 while ((token = strsep(&s, ",")) != NULL) {
7307 if (!*token)
7308 continue;
7309 if (!strcmp(token, "nosocket"))
7310 cgroup_memory_nosocket = true;
04823c83
VD
7311 if (!strcmp(token, "nokmem"))
7312 cgroup_memory_nokmem = true;
f7e1cb6e 7313 }
460a79e1 7314 return 1;
f7e1cb6e
JW
7315}
7316__setup("cgroup.memory=", cgroup_memory);
11092087 7317
2d11085e 7318/*
1081312f
MH
7319 * subsys_initcall() for memory controller.
7320 *
308167fc
SAS
7321 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7322 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7323 * basically everything that doesn't depend on a specific mem_cgroup structure
7324 * should be initialized from here.
2d11085e
MH
7325 */
7326static int __init mem_cgroup_init(void)
7327{
95a045f6
JW
7328 int cpu, node;
7329
f3344adf
MS
7330 /*
7331 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7332 * used for per-memcg-per-cpu caching of per-node statistics. In order
7333 * to work fine, we should make sure that the overfill threshold can't
7334 * exceed S32_MAX / PAGE_SIZE.
7335 */
7336 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7337
308167fc
SAS
7338 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7339 memcg_hotplug_cpu_dead);
95a045f6
JW
7340
7341 for_each_possible_cpu(cpu)
7342 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7343 drain_local_stock);
7344
7345 for_each_node(node) {
7346 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7347
7348 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7349 node_online(node) ? node : NUMA_NO_NODE);
7350
ef8f2327 7351 rtpn->rb_root = RB_ROOT;
fa90b2fd 7352 rtpn->rb_rightmost = NULL;
ef8f2327 7353 spin_lock_init(&rtpn->lock);
95a045f6
JW
7354 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7355 }
7356
2d11085e
MH
7357 return 0;
7358}
7359subsys_initcall(mem_cgroup_init);
21afa38e 7360
e55b9f96 7361#ifdef CONFIG_SWAP
358c07fc
AB
7362static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7363{
1c2d479a 7364 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7365 /*
7366 * The root cgroup cannot be destroyed, so it's refcount must
7367 * always be >= 1.
7368 */
7848ed62 7369 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7370 VM_BUG_ON(1);
7371 break;
7372 }
7373 memcg = parent_mem_cgroup(memcg);
7374 if (!memcg)
7375 memcg = root_mem_cgroup;
7376 }
7377 return memcg;
7378}
7379
21afa38e
JW
7380/**
7381 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7382 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7383 * @entry: swap entry to move the charge to
7384 *
3ecb0087 7385 * Transfer the memsw charge of @folio to @entry.
21afa38e 7386 */
3ecb0087 7387void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7388{
1f47b61f 7389 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7390 unsigned int nr_entries;
21afa38e
JW
7391 unsigned short oldid;
7392
3ecb0087
MWO
7393 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7394 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7395
76358ab5
AS
7396 if (mem_cgroup_disabled())
7397 return;
7398
b94c4e94 7399 if (!do_memsw_account())
21afa38e
JW
7400 return;
7401
3ecb0087 7402 memcg = folio_memcg(folio);
21afa38e 7403
3ecb0087 7404 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7405 if (!memcg)
7406 return;
7407
1f47b61f
VD
7408 /*
7409 * In case the memcg owning these pages has been offlined and doesn't
7410 * have an ID allocated to it anymore, charge the closest online
7411 * ancestor for the swap instead and transfer the memory+swap charge.
7412 */
7413 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7414 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7415 /* Get references for the tail pages, too */
7416 if (nr_entries > 1)
7417 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7418 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7419 nr_entries);
3ecb0087 7420 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7421 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7422
3ecb0087 7423 folio->memcg_data = 0;
21afa38e
JW
7424
7425 if (!mem_cgroup_is_root(memcg))
d6810d73 7426 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7427
b25806dc 7428 if (memcg != swap_memcg) {
1f47b61f 7429 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7430 page_counter_charge(&swap_memcg->memsw, nr_entries);
7431 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7432 }
7433
ce9ce665
SAS
7434 /*
7435 * Interrupts should be disabled here because the caller holds the
b93b0163 7436 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7437 * important here to have the interrupts disabled because it is the
b93b0163 7438 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7439 */
be3e67b5 7440 memcg_stats_lock();
6e0110c2 7441 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7442 memcg_stats_unlock();
3ecb0087 7443 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7444
1a3e1f40 7445 css_put(&memcg->css);
21afa38e
JW
7446}
7447
38d8b4e6 7448/**
e2e3fdc7
MWO
7449 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7450 * @folio: folio being added to swap
37e84351
VD
7451 * @entry: swap entry to charge
7452 *
e2e3fdc7 7453 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7454 *
7455 * Returns 0 on success, -ENOMEM on failure.
7456 */
e2e3fdc7 7457int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7458{
e2e3fdc7 7459 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7460 struct page_counter *counter;
38d8b4e6 7461 struct mem_cgroup *memcg;
37e84351
VD
7462 unsigned short oldid;
7463
b94c4e94 7464 if (do_memsw_account())
37e84351
VD
7465 return 0;
7466
e2e3fdc7 7467 memcg = folio_memcg(folio);
37e84351 7468
e2e3fdc7 7469 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7470 if (!memcg)
7471 return 0;
7472
f3a53a3a
TH
7473 if (!entry.val) {
7474 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7475 return 0;
f3a53a3a 7476 }
bb98f2c5 7477
1f47b61f
VD
7478 memcg = mem_cgroup_id_get_online(memcg);
7479
b25806dc 7480 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7481 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7482 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7483 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7484 mem_cgroup_id_put(memcg);
37e84351 7485 return -ENOMEM;
1f47b61f 7486 }
37e84351 7487
38d8b4e6
HY
7488 /* Get references for the tail pages, too */
7489 if (nr_pages > 1)
7490 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7491 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7492 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7493 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7494
37e84351
VD
7495 return 0;
7496}
7497
21afa38e 7498/**
01c4b28c 7499 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7500 * @entry: swap entry to uncharge
38d8b4e6 7501 * @nr_pages: the amount of swap space to uncharge
21afa38e 7502 */
01c4b28c 7503void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7504{
7505 struct mem_cgroup *memcg;
7506 unsigned short id;
7507
c91bdc93
JW
7508 if (mem_cgroup_disabled())
7509 return;
7510
38d8b4e6 7511 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7512 rcu_read_lock();
adbe427b 7513 memcg = mem_cgroup_from_id(id);
21afa38e 7514 if (memcg) {
b25806dc 7515 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7516 if (do_memsw_account())
38d8b4e6 7517 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7518 else
7519 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7520 }
c9019e9b 7521 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7522 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7523 }
7524 rcu_read_unlock();
7525}
7526
d8b38438
VD
7527long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7528{
7529 long nr_swap_pages = get_nr_swap_pages();
7530
b25806dc 7531 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7532 return nr_swap_pages;
7848ed62 7533 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7534 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7535 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7536 page_counter_read(&memcg->swap));
7537 return nr_swap_pages;
7538}
7539
9202d527 7540bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7541{
7542 struct mem_cgroup *memcg;
7543
9202d527 7544 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7545
7546 if (vm_swap_full())
7547 return true;
b25806dc 7548 if (do_memsw_account())
5ccc5aba
VD
7549 return false;
7550
9202d527 7551 memcg = folio_memcg(folio);
5ccc5aba
VD
7552 if (!memcg)
7553 return false;
7554
7848ed62 7555 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7556 unsigned long usage = page_counter_read(&memcg->swap);
7557
7558 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7559 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7560 return true;
4b82ab4f 7561 }
5ccc5aba
VD
7562
7563 return false;
7564}
7565
eccb52e7 7566static int __init setup_swap_account(char *s)
21afa38e 7567{
b25806dc
JW
7568 pr_warn_once("The swapaccount= commandline option is deprecated. "
7569 "Please report your usecase to linux-mm@kvack.org if you "
7570 "depend on this functionality.\n");
21afa38e
JW
7571 return 1;
7572}
eccb52e7 7573__setup("swapaccount=", setup_swap_account);
21afa38e 7574
37e84351
VD
7575static u64 swap_current_read(struct cgroup_subsys_state *css,
7576 struct cftype *cft)
7577{
7578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7579
7580 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7581}
7582
4b82ab4f
JK
7583static int swap_high_show(struct seq_file *m, void *v)
7584{
7585 return seq_puts_memcg_tunable(m,
7586 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7587}
7588
7589static ssize_t swap_high_write(struct kernfs_open_file *of,
7590 char *buf, size_t nbytes, loff_t off)
7591{
7592 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7593 unsigned long high;
7594 int err;
7595
7596 buf = strstrip(buf);
7597 err = page_counter_memparse(buf, "max", &high);
7598 if (err)
7599 return err;
7600
7601 page_counter_set_high(&memcg->swap, high);
7602
7603 return nbytes;
7604}
7605
37e84351
VD
7606static int swap_max_show(struct seq_file *m, void *v)
7607{
677dc973
CD
7608 return seq_puts_memcg_tunable(m,
7609 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7610}
7611
7612static ssize_t swap_max_write(struct kernfs_open_file *of,
7613 char *buf, size_t nbytes, loff_t off)
7614{
7615 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7616 unsigned long max;
7617 int err;
7618
7619 buf = strstrip(buf);
7620 err = page_counter_memparse(buf, "max", &max);
7621 if (err)
7622 return err;
7623
be09102b 7624 xchg(&memcg->swap.max, max);
37e84351
VD
7625
7626 return nbytes;
7627}
7628
f3a53a3a
TH
7629static int swap_events_show(struct seq_file *m, void *v)
7630{
aa9694bb 7631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7632
4b82ab4f
JK
7633 seq_printf(m, "high %lu\n",
7634 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7635 seq_printf(m, "max %lu\n",
7636 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7637 seq_printf(m, "fail %lu\n",
7638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7639
7640 return 0;
7641}
7642
37e84351
VD
7643static struct cftype swap_files[] = {
7644 {
7645 .name = "swap.current",
7646 .flags = CFTYPE_NOT_ON_ROOT,
7647 .read_u64 = swap_current_read,
7648 },
4b82ab4f
JK
7649 {
7650 .name = "swap.high",
7651 .flags = CFTYPE_NOT_ON_ROOT,
7652 .seq_show = swap_high_show,
7653 .write = swap_high_write,
7654 },
37e84351
VD
7655 {
7656 .name = "swap.max",
7657 .flags = CFTYPE_NOT_ON_ROOT,
7658 .seq_show = swap_max_show,
7659 .write = swap_max_write,
7660 },
f3a53a3a
TH
7661 {
7662 .name = "swap.events",
7663 .flags = CFTYPE_NOT_ON_ROOT,
7664 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7665 .seq_show = swap_events_show,
7666 },
37e84351
VD
7667 { } /* terminate */
7668};
7669
eccb52e7 7670static struct cftype memsw_files[] = {
21afa38e
JW
7671 {
7672 .name = "memsw.usage_in_bytes",
7673 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7674 .read_u64 = mem_cgroup_read_u64,
7675 },
7676 {
7677 .name = "memsw.max_usage_in_bytes",
7678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7679 .write = mem_cgroup_reset,
7680 .read_u64 = mem_cgroup_read_u64,
7681 },
7682 {
7683 .name = "memsw.limit_in_bytes",
7684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7685 .write = mem_cgroup_write,
7686 .read_u64 = mem_cgroup_read_u64,
7687 },
7688 {
7689 .name = "memsw.failcnt",
7690 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7691 .write = mem_cgroup_reset,
7692 .read_u64 = mem_cgroup_read_u64,
7693 },
7694 { }, /* terminate */
7695};
7696
f4840ccf
JW
7697#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7698/**
7699 * obj_cgroup_may_zswap - check if this cgroup can zswap
7700 * @objcg: the object cgroup
7701 *
7702 * Check if the hierarchical zswap limit has been reached.
7703 *
7704 * This doesn't check for specific headroom, and it is not atomic
7705 * either. But with zswap, the size of the allocation is only known
7706 * once compression has occured, and this optimistic pre-check avoids
7707 * spending cycles on compression when there is already no room left
7708 * or zswap is disabled altogether somewhere in the hierarchy.
7709 */
7710bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7711{
7712 struct mem_cgroup *memcg, *original_memcg;
7713 bool ret = true;
7714
7715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7716 return true;
7717
7718 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7719 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7720 memcg = parent_mem_cgroup(memcg)) {
7721 unsigned long max = READ_ONCE(memcg->zswap_max);
7722 unsigned long pages;
7723
7724 if (max == PAGE_COUNTER_MAX)
7725 continue;
7726 if (max == 0) {
7727 ret = false;
7728 break;
7729 }
7730
7731 cgroup_rstat_flush(memcg->css.cgroup);
7732 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7733 if (pages < max)
7734 continue;
7735 ret = false;
7736 break;
7737 }
7738 mem_cgroup_put(original_memcg);
7739 return ret;
7740}
7741
7742/**
7743 * obj_cgroup_charge_zswap - charge compression backend memory
7744 * @objcg: the object cgroup
7745 * @size: size of compressed object
7746 *
7747 * This forces the charge after obj_cgroup_may_swap() allowed
7748 * compression and storage in zwap for this cgroup to go ahead.
7749 */
7750void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7751{
7752 struct mem_cgroup *memcg;
7753
7754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7755 return;
7756
7757 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7758
7759 /* PF_MEMALLOC context, charging must succeed */
7760 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7761 VM_WARN_ON_ONCE(1);
7762
7763 rcu_read_lock();
7764 memcg = obj_cgroup_memcg(objcg);
7765 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7766 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7767 rcu_read_unlock();
7768}
7769
7770/**
7771 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7772 * @objcg: the object cgroup
7773 * @size: size of compressed object
7774 *
7775 * Uncharges zswap memory on page in.
7776 */
7777void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7778{
7779 struct mem_cgroup *memcg;
7780
7781 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7782 return;
7783
7784 obj_cgroup_uncharge(objcg, size);
7785
7786 rcu_read_lock();
7787 memcg = obj_cgroup_memcg(objcg);
7788 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7789 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7790 rcu_read_unlock();
7791}
7792
7793static u64 zswap_current_read(struct cgroup_subsys_state *css,
7794 struct cftype *cft)
7795{
7796 cgroup_rstat_flush(css->cgroup);
7797 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7798}
7799
7800static int zswap_max_show(struct seq_file *m, void *v)
7801{
7802 return seq_puts_memcg_tunable(m,
7803 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7804}
7805
7806static ssize_t zswap_max_write(struct kernfs_open_file *of,
7807 char *buf, size_t nbytes, loff_t off)
7808{
7809 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7810 unsigned long max;
7811 int err;
7812
7813 buf = strstrip(buf);
7814 err = page_counter_memparse(buf, "max", &max);
7815 if (err)
7816 return err;
7817
7818 xchg(&memcg->zswap_max, max);
7819
7820 return nbytes;
7821}
7822
7823static struct cftype zswap_files[] = {
7824 {
7825 .name = "zswap.current",
7826 .flags = CFTYPE_NOT_ON_ROOT,
7827 .read_u64 = zswap_current_read,
7828 },
7829 {
7830 .name = "zswap.max",
7831 .flags = CFTYPE_NOT_ON_ROOT,
7832 .seq_show = zswap_max_show,
7833 .write = zswap_max_write,
7834 },
7835 { } /* terminate */
7836};
7837#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7838
21afa38e
JW
7839static int __init mem_cgroup_swap_init(void)
7840{
2d1c4980 7841 if (mem_cgroup_disabled())
eccb52e7
JW
7842 return 0;
7843
7844 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7845 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7846#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7847 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7848#endif
21afa38e
JW
7849 return 0;
7850}
b25806dc 7851subsys_initcall(mem_cgroup_swap_init);
21afa38e 7852
e55b9f96 7853#endif /* CONFIG_SWAP */