mm: untag user pointers passed to memory syscalls
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
fc1d8e7c 32/**
2d15eb31 33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 35 * @npages: number of pages in the @pages array.
2d15eb31 36 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
37 *
38 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39 * variants called on that page.
40 *
41 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 42 * compound page) dirty, if @make_dirty is true, and if the page was previously
43 * listed as clean. In any case, releases all pages using put_user_page(),
44 * possibly via put_user_pages(), for the non-dirty case.
fc1d8e7c
JH
45 *
46 * Please see the put_user_page() documentation for details.
47 *
2d15eb31 48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49 * required, then the caller should a) verify that this is really correct,
50 * because _lock() is usually required, and b) hand code it:
51 * set_page_dirty_lock(), put_user_page().
fc1d8e7c
JH
52 *
53 */
2d15eb31 54void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 bool make_dirty)
fc1d8e7c 56{
2d15eb31 57 unsigned long index;
fc1d8e7c 58
2d15eb31 59 /*
60 * TODO: this can be optimized for huge pages: if a series of pages is
61 * physically contiguous and part of the same compound page, then a
62 * single operation to the head page should suffice.
63 */
64
65 if (!make_dirty) {
66 put_user_pages(pages, npages);
67 return;
68 }
69
70 for (index = 0; index < npages; index++) {
71 struct page *page = compound_head(pages[index]);
72 /*
73 * Checking PageDirty at this point may race with
74 * clear_page_dirty_for_io(), but that's OK. Two key
75 * cases:
76 *
77 * 1) This code sees the page as already dirty, so it
78 * skips the call to set_page_dirty(). That could happen
79 * because clear_page_dirty_for_io() called
80 * page_mkclean(), followed by set_page_dirty().
81 * However, now the page is going to get written back,
82 * which meets the original intention of setting it
83 * dirty, so all is well: clear_page_dirty_for_io() goes
84 * on to call TestClearPageDirty(), and write the page
85 * back.
86 *
87 * 2) This code sees the page as clean, so it calls
88 * set_page_dirty(). The page stays dirty, despite being
89 * written back, so it gets written back again in the
90 * next writeback cycle. This is harmless.
91 */
92 if (!PageDirty(page))
93 set_page_dirty_lock(page);
94 put_user_page(page);
95 }
fc1d8e7c
JH
96}
97EXPORT_SYMBOL(put_user_pages_dirty_lock);
98
99/**
100 * put_user_pages() - release an array of gup-pinned pages.
101 * @pages: array of pages to be marked dirty and released.
102 * @npages: number of pages in the @pages array.
103 *
104 * For each page in the @pages array, release the page using put_user_page().
105 *
106 * Please see the put_user_page() documentation for details.
107 */
108void put_user_pages(struct page **pages, unsigned long npages)
109{
110 unsigned long index;
111
112 /*
113 * TODO: this can be optimized for huge pages: if a series of pages is
114 * physically contiguous and part of the same compound page, then a
115 * single operation to the head page should suffice.
116 */
117 for (index = 0; index < npages; index++)
118 put_user_page(pages[index]);
119}
120EXPORT_SYMBOL(put_user_pages);
121
050a9adc 122#ifdef CONFIG_MMU
69e68b4f
KS
123static struct page *no_page_table(struct vm_area_struct *vma,
124 unsigned int flags)
4bbd4c77 125{
69e68b4f
KS
126 /*
127 * When core dumping an enormous anonymous area that nobody
128 * has touched so far, we don't want to allocate unnecessary pages or
129 * page tables. Return error instead of NULL to skip handle_mm_fault,
130 * then get_dump_page() will return NULL to leave a hole in the dump.
131 * But we can only make this optimization where a hole would surely
132 * be zero-filled if handle_mm_fault() actually did handle it.
133 */
134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 return ERR_PTR(-EFAULT);
136 return NULL;
137}
4bbd4c77 138
1027e443
KS
139static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 pte_t *pte, unsigned int flags)
141{
142 /* No page to get reference */
143 if (flags & FOLL_GET)
144 return -EFAULT;
145
146 if (flags & FOLL_TOUCH) {
147 pte_t entry = *pte;
148
149 if (flags & FOLL_WRITE)
150 entry = pte_mkdirty(entry);
151 entry = pte_mkyoung(entry);
152
153 if (!pte_same(*pte, entry)) {
154 set_pte_at(vma->vm_mm, address, pte, entry);
155 update_mmu_cache(vma, address, pte);
156 }
157 }
158
159 /* Proper page table entry exists, but no corresponding struct page */
160 return -EEXIST;
161}
162
19be0eaf
LT
163/*
164 * FOLL_FORCE can write to even unwritable pte's, but only
165 * after we've gone through a COW cycle and they are dirty.
166 */
167static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
168{
f6f37321 169 return pte_write(pte) ||
19be0eaf
LT
170 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
171}
172
69e68b4f 173static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
174 unsigned long address, pmd_t *pmd, unsigned int flags,
175 struct dev_pagemap **pgmap)
69e68b4f
KS
176{
177 struct mm_struct *mm = vma->vm_mm;
178 struct page *page;
179 spinlock_t *ptl;
180 pte_t *ptep, pte;
4bbd4c77 181
69e68b4f 182retry:
4bbd4c77 183 if (unlikely(pmd_bad(*pmd)))
69e68b4f 184 return no_page_table(vma, flags);
4bbd4c77
KS
185
186 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
187 pte = *ptep;
188 if (!pte_present(pte)) {
189 swp_entry_t entry;
190 /*
191 * KSM's break_ksm() relies upon recognizing a ksm page
192 * even while it is being migrated, so for that case we
193 * need migration_entry_wait().
194 */
195 if (likely(!(flags & FOLL_MIGRATION)))
196 goto no_page;
0661a336 197 if (pte_none(pte))
4bbd4c77
KS
198 goto no_page;
199 entry = pte_to_swp_entry(pte);
200 if (!is_migration_entry(entry))
201 goto no_page;
202 pte_unmap_unlock(ptep, ptl);
203 migration_entry_wait(mm, pmd, address);
69e68b4f 204 goto retry;
4bbd4c77 205 }
8a0516ed 206 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 207 goto no_page;
19be0eaf 208 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
209 pte_unmap_unlock(ptep, ptl);
210 return NULL;
211 }
4bbd4c77
KS
212
213 page = vm_normal_page(vma, address, pte);
3565fce3
DW
214 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
215 /*
216 * Only return device mapping pages in the FOLL_GET case since
217 * they are only valid while holding the pgmap reference.
218 */
df06b37f
KB
219 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
220 if (*pgmap)
3565fce3
DW
221 page = pte_page(pte);
222 else
223 goto no_page;
224 } else if (unlikely(!page)) {
1027e443
KS
225 if (flags & FOLL_DUMP) {
226 /* Avoid special (like zero) pages in core dumps */
227 page = ERR_PTR(-EFAULT);
228 goto out;
229 }
230
231 if (is_zero_pfn(pte_pfn(pte))) {
232 page = pte_page(pte);
233 } else {
234 int ret;
235
236 ret = follow_pfn_pte(vma, address, ptep, flags);
237 page = ERR_PTR(ret);
238 goto out;
239 }
4bbd4c77
KS
240 }
241
6742d293
KS
242 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
243 int ret;
244 get_page(page);
245 pte_unmap_unlock(ptep, ptl);
246 lock_page(page);
247 ret = split_huge_page(page);
248 unlock_page(page);
249 put_page(page);
250 if (ret)
251 return ERR_PTR(ret);
252 goto retry;
253 }
254
8fde12ca
LT
255 if (flags & FOLL_GET) {
256 if (unlikely(!try_get_page(page))) {
257 page = ERR_PTR(-ENOMEM);
258 goto out;
259 }
260 }
4bbd4c77
KS
261 if (flags & FOLL_TOUCH) {
262 if ((flags & FOLL_WRITE) &&
263 !pte_dirty(pte) && !PageDirty(page))
264 set_page_dirty(page);
265 /*
266 * pte_mkyoung() would be more correct here, but atomic care
267 * is needed to avoid losing the dirty bit: it is easier to use
268 * mark_page_accessed().
269 */
270 mark_page_accessed(page);
271 }
de60f5f1 272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
273 /* Do not mlock pte-mapped THP */
274 if (PageTransCompound(page))
275 goto out;
276
4bbd4c77
KS
277 /*
278 * The preliminary mapping check is mainly to avoid the
279 * pointless overhead of lock_page on the ZERO_PAGE
280 * which might bounce very badly if there is contention.
281 *
282 * If the page is already locked, we don't need to
283 * handle it now - vmscan will handle it later if and
284 * when it attempts to reclaim the page.
285 */
286 if (page->mapping && trylock_page(page)) {
287 lru_add_drain(); /* push cached pages to LRU */
288 /*
289 * Because we lock page here, and migration is
290 * blocked by the pte's page reference, and we
291 * know the page is still mapped, we don't even
292 * need to check for file-cache page truncation.
293 */
294 mlock_vma_page(page);
295 unlock_page(page);
296 }
297 }
1027e443 298out:
4bbd4c77 299 pte_unmap_unlock(ptep, ptl);
4bbd4c77 300 return page;
4bbd4c77
KS
301no_page:
302 pte_unmap_unlock(ptep, ptl);
303 if (!pte_none(pte))
69e68b4f
KS
304 return NULL;
305 return no_page_table(vma, flags);
306}
307
080dbb61
AK
308static struct page *follow_pmd_mask(struct vm_area_struct *vma,
309 unsigned long address, pud_t *pudp,
df06b37f
KB
310 unsigned int flags,
311 struct follow_page_context *ctx)
69e68b4f 312{
68827280 313 pmd_t *pmd, pmdval;
69e68b4f
KS
314 spinlock_t *ptl;
315 struct page *page;
316 struct mm_struct *mm = vma->vm_mm;
317
080dbb61 318 pmd = pmd_offset(pudp, address);
68827280
HY
319 /*
320 * The READ_ONCE() will stabilize the pmdval in a register or
321 * on the stack so that it will stop changing under the code.
322 */
323 pmdval = READ_ONCE(*pmd);
324 if (pmd_none(pmdval))
69e68b4f 325 return no_page_table(vma, flags);
68827280 326 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
327 page = follow_huge_pmd(mm, address, pmd, flags);
328 if (page)
329 return page;
330 return no_page_table(vma, flags);
69e68b4f 331 }
68827280 332 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 333 page = follow_huge_pd(vma, address,
68827280 334 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
335 PMD_SHIFT);
336 if (page)
337 return page;
338 return no_page_table(vma, flags);
339 }
84c3fc4e 340retry:
68827280 341 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
342 if (likely(!(flags & FOLL_MIGRATION)))
343 return no_page_table(vma, flags);
344 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
345 !is_pmd_migration_entry(pmdval));
346 if (is_pmd_migration_entry(pmdval))
84c3fc4e 347 pmd_migration_entry_wait(mm, pmd);
68827280
HY
348 pmdval = READ_ONCE(*pmd);
349 /*
350 * MADV_DONTNEED may convert the pmd to null because
351 * mmap_sem is held in read mode
352 */
353 if (pmd_none(pmdval))
354 return no_page_table(vma, flags);
84c3fc4e
ZY
355 goto retry;
356 }
68827280 357 if (pmd_devmap(pmdval)) {
3565fce3 358 ptl = pmd_lock(mm, pmd);
df06b37f 359 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
360 spin_unlock(ptl);
361 if (page)
362 return page;
363 }
68827280 364 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 365 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 366
68827280 367 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
368 return no_page_table(vma, flags);
369
84c3fc4e 370retry_locked:
6742d293 371 ptl = pmd_lock(mm, pmd);
68827280
HY
372 if (unlikely(pmd_none(*pmd))) {
373 spin_unlock(ptl);
374 return no_page_table(vma, flags);
375 }
84c3fc4e
ZY
376 if (unlikely(!pmd_present(*pmd))) {
377 spin_unlock(ptl);
378 if (likely(!(flags & FOLL_MIGRATION)))
379 return no_page_table(vma, flags);
380 pmd_migration_entry_wait(mm, pmd);
381 goto retry_locked;
382 }
6742d293
KS
383 if (unlikely(!pmd_trans_huge(*pmd))) {
384 spin_unlock(ptl);
df06b37f 385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 386 }
bfe7b00d 387 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
388 int ret;
389 page = pmd_page(*pmd);
390 if (is_huge_zero_page(page)) {
391 spin_unlock(ptl);
392 ret = 0;
78ddc534 393 split_huge_pmd(vma, pmd, address);
337d9abf
NH
394 if (pmd_trans_unstable(pmd))
395 ret = -EBUSY;
bfe7b00d 396 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
397 if (unlikely(!try_get_page(page))) {
398 spin_unlock(ptl);
399 return ERR_PTR(-ENOMEM);
400 }
69e68b4f 401 spin_unlock(ptl);
6742d293
KS
402 lock_page(page);
403 ret = split_huge_page(page);
404 unlock_page(page);
405 put_page(page);
baa355fd
KS
406 if (pmd_none(*pmd))
407 return no_page_table(vma, flags);
bfe7b00d
SL
408 } else { /* flags & FOLL_SPLIT_PMD */
409 spin_unlock(ptl);
410 split_huge_pmd(vma, pmd, address);
411 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
412 }
413
414 return ret ? ERR_PTR(ret) :
df06b37f 415 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 416 }
6742d293
KS
417 page = follow_trans_huge_pmd(vma, address, pmd, flags);
418 spin_unlock(ptl);
df06b37f 419 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 420 return page;
4bbd4c77
KS
421}
422
080dbb61
AK
423static struct page *follow_pud_mask(struct vm_area_struct *vma,
424 unsigned long address, p4d_t *p4dp,
df06b37f
KB
425 unsigned int flags,
426 struct follow_page_context *ctx)
080dbb61
AK
427{
428 pud_t *pud;
429 spinlock_t *ptl;
430 struct page *page;
431 struct mm_struct *mm = vma->vm_mm;
432
433 pud = pud_offset(p4dp, address);
434 if (pud_none(*pud))
435 return no_page_table(vma, flags);
436 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
437 page = follow_huge_pud(mm, address, pud, flags);
438 if (page)
439 return page;
440 return no_page_table(vma, flags);
441 }
4dc71451
AK
442 if (is_hugepd(__hugepd(pud_val(*pud)))) {
443 page = follow_huge_pd(vma, address,
444 __hugepd(pud_val(*pud)), flags,
445 PUD_SHIFT);
446 if (page)
447 return page;
448 return no_page_table(vma, flags);
449 }
080dbb61
AK
450 if (pud_devmap(*pud)) {
451 ptl = pud_lock(mm, pud);
df06b37f 452 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
453 spin_unlock(ptl);
454 if (page)
455 return page;
456 }
457 if (unlikely(pud_bad(*pud)))
458 return no_page_table(vma, flags);
459
df06b37f 460 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
461}
462
080dbb61
AK
463static struct page *follow_p4d_mask(struct vm_area_struct *vma,
464 unsigned long address, pgd_t *pgdp,
df06b37f
KB
465 unsigned int flags,
466 struct follow_page_context *ctx)
080dbb61
AK
467{
468 p4d_t *p4d;
4dc71451 469 struct page *page;
080dbb61
AK
470
471 p4d = p4d_offset(pgdp, address);
472 if (p4d_none(*p4d))
473 return no_page_table(vma, flags);
474 BUILD_BUG_ON(p4d_huge(*p4d));
475 if (unlikely(p4d_bad(*p4d)))
476 return no_page_table(vma, flags);
477
4dc71451
AK
478 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
479 page = follow_huge_pd(vma, address,
480 __hugepd(p4d_val(*p4d)), flags,
481 P4D_SHIFT);
482 if (page)
483 return page;
484 return no_page_table(vma, flags);
485 }
df06b37f 486 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
487}
488
489/**
490 * follow_page_mask - look up a page descriptor from a user-virtual address
491 * @vma: vm_area_struct mapping @address
492 * @address: virtual address to look up
493 * @flags: flags modifying lookup behaviour
78179556
MR
494 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
495 * pointer to output page_mask
080dbb61
AK
496 *
497 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
498 *
78179556
MR
499 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
500 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
501 *
502 * On output, the @ctx->page_mask is set according to the size of the page.
503 *
504 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
505 * an error pointer if there is a mapping to something not represented
506 * by a page descriptor (see also vm_normal_page()).
507 */
a7030aea 508static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 509 unsigned long address, unsigned int flags,
df06b37f 510 struct follow_page_context *ctx)
080dbb61
AK
511{
512 pgd_t *pgd;
513 struct page *page;
514 struct mm_struct *mm = vma->vm_mm;
515
df06b37f 516 ctx->page_mask = 0;
080dbb61
AK
517
518 /* make this handle hugepd */
519 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
520 if (!IS_ERR(page)) {
521 BUG_ON(flags & FOLL_GET);
522 return page;
523 }
524
525 pgd = pgd_offset(mm, address);
526
527 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
528 return no_page_table(vma, flags);
529
faaa5b62
AK
530 if (pgd_huge(*pgd)) {
531 page = follow_huge_pgd(mm, address, pgd, flags);
532 if (page)
533 return page;
534 return no_page_table(vma, flags);
535 }
4dc71451
AK
536 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
537 page = follow_huge_pd(vma, address,
538 __hugepd(pgd_val(*pgd)), flags,
539 PGDIR_SHIFT);
540 if (page)
541 return page;
542 return no_page_table(vma, flags);
543 }
faaa5b62 544
df06b37f
KB
545 return follow_p4d_mask(vma, address, pgd, flags, ctx);
546}
547
548struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
549 unsigned int foll_flags)
550{
551 struct follow_page_context ctx = { NULL };
552 struct page *page;
553
554 page = follow_page_mask(vma, address, foll_flags, &ctx);
555 if (ctx.pgmap)
556 put_dev_pagemap(ctx.pgmap);
557 return page;
080dbb61
AK
558}
559
f2b495ca
KS
560static int get_gate_page(struct mm_struct *mm, unsigned long address,
561 unsigned int gup_flags, struct vm_area_struct **vma,
562 struct page **page)
563{
564 pgd_t *pgd;
c2febafc 565 p4d_t *p4d;
f2b495ca
KS
566 pud_t *pud;
567 pmd_t *pmd;
568 pte_t *pte;
569 int ret = -EFAULT;
570
571 /* user gate pages are read-only */
572 if (gup_flags & FOLL_WRITE)
573 return -EFAULT;
574 if (address > TASK_SIZE)
575 pgd = pgd_offset_k(address);
576 else
577 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
578 if (pgd_none(*pgd))
579 return -EFAULT;
c2febafc 580 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
581 if (p4d_none(*p4d))
582 return -EFAULT;
c2febafc 583 pud = pud_offset(p4d, address);
b5d1c39f
AL
584 if (pud_none(*pud))
585 return -EFAULT;
f2b495ca 586 pmd = pmd_offset(pud, address);
84c3fc4e 587 if (!pmd_present(*pmd))
f2b495ca
KS
588 return -EFAULT;
589 VM_BUG_ON(pmd_trans_huge(*pmd));
590 pte = pte_offset_map(pmd, address);
591 if (pte_none(*pte))
592 goto unmap;
593 *vma = get_gate_vma(mm);
594 if (!page)
595 goto out;
596 *page = vm_normal_page(*vma, address, *pte);
597 if (!*page) {
598 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
599 goto unmap;
600 *page = pte_page(*pte);
601 }
8fde12ca
LT
602 if (unlikely(!try_get_page(*page))) {
603 ret = -ENOMEM;
604 goto unmap;
605 }
f2b495ca
KS
606out:
607 ret = 0;
608unmap:
609 pte_unmap(pte);
610 return ret;
611}
612
9a95f3cf
PC
613/*
614 * mmap_sem must be held on entry. If @nonblocking != NULL and
615 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
616 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
617 */
16744483
KS
618static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
619 unsigned long address, unsigned int *flags, int *nonblocking)
620{
16744483 621 unsigned int fault_flags = 0;
2b740303 622 vm_fault_t ret;
16744483 623
de60f5f1
EM
624 /* mlock all present pages, but do not fault in new pages */
625 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
626 return -ENOENT;
16744483
KS
627 if (*flags & FOLL_WRITE)
628 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
629 if (*flags & FOLL_REMOTE)
630 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
631 if (nonblocking)
632 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
633 if (*flags & FOLL_NOWAIT)
634 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
635 if (*flags & FOLL_TRIED) {
636 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
637 fault_flags |= FAULT_FLAG_TRIED;
638 }
16744483 639
dcddffd4 640 ret = handle_mm_fault(vma, address, fault_flags);
16744483 641 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
642 int err = vm_fault_to_errno(ret, *flags);
643
644 if (err)
645 return err;
16744483
KS
646 BUG();
647 }
648
649 if (tsk) {
650 if (ret & VM_FAULT_MAJOR)
651 tsk->maj_flt++;
652 else
653 tsk->min_flt++;
654 }
655
656 if (ret & VM_FAULT_RETRY) {
96312e61 657 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
658 *nonblocking = 0;
659 return -EBUSY;
660 }
661
662 /*
663 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
664 * necessary, even if maybe_mkwrite decided not to set pte_write. We
665 * can thus safely do subsequent page lookups as if they were reads.
666 * But only do so when looping for pte_write is futile: in some cases
667 * userspace may also be wanting to write to the gotten user page,
668 * which a read fault here might prevent (a readonly page might get
669 * reCOWed by userspace write).
670 */
671 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 672 *flags |= FOLL_COW;
16744483
KS
673 return 0;
674}
675
fa5bb209
KS
676static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
677{
678 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
679 int write = (gup_flags & FOLL_WRITE);
680 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
681
682 if (vm_flags & (VM_IO | VM_PFNMAP))
683 return -EFAULT;
684
7f7ccc2c
WT
685 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
686 return -EFAULT;
687
1b2ee126 688 if (write) {
fa5bb209
KS
689 if (!(vm_flags & VM_WRITE)) {
690 if (!(gup_flags & FOLL_FORCE))
691 return -EFAULT;
692 /*
693 * We used to let the write,force case do COW in a
694 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
695 * set a breakpoint in a read-only mapping of an
696 * executable, without corrupting the file (yet only
697 * when that file had been opened for writing!).
698 * Anon pages in shared mappings are surprising: now
699 * just reject it.
700 */
46435364 701 if (!is_cow_mapping(vm_flags))
fa5bb209 702 return -EFAULT;
fa5bb209
KS
703 }
704 } else if (!(vm_flags & VM_READ)) {
705 if (!(gup_flags & FOLL_FORCE))
706 return -EFAULT;
707 /*
708 * Is there actually any vma we can reach here which does not
709 * have VM_MAYREAD set?
710 */
711 if (!(vm_flags & VM_MAYREAD))
712 return -EFAULT;
713 }
d61172b4
DH
714 /*
715 * gups are always data accesses, not instruction
716 * fetches, so execute=false here
717 */
718 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 719 return -EFAULT;
fa5bb209
KS
720 return 0;
721}
722
4bbd4c77
KS
723/**
724 * __get_user_pages() - pin user pages in memory
725 * @tsk: task_struct of target task
726 * @mm: mm_struct of target mm
727 * @start: starting user address
728 * @nr_pages: number of pages from start to pin
729 * @gup_flags: flags modifying pin behaviour
730 * @pages: array that receives pointers to the pages pinned.
731 * Should be at least nr_pages long. Or NULL, if caller
732 * only intends to ensure the pages are faulted in.
733 * @vmas: array of pointers to vmas corresponding to each page.
734 * Or NULL if the caller does not require them.
735 * @nonblocking: whether waiting for disk IO or mmap_sem contention
736 *
737 * Returns number of pages pinned. This may be fewer than the number
738 * requested. If nr_pages is 0 or negative, returns 0. If no pages
739 * were pinned, returns -errno. Each page returned must be released
740 * with a put_page() call when it is finished with. vmas will only
741 * remain valid while mmap_sem is held.
742 *
9a95f3cf 743 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
744 *
745 * __get_user_pages walks a process's page tables and takes a reference to
746 * each struct page that each user address corresponds to at a given
747 * instant. That is, it takes the page that would be accessed if a user
748 * thread accesses the given user virtual address at that instant.
749 *
750 * This does not guarantee that the page exists in the user mappings when
751 * __get_user_pages returns, and there may even be a completely different
752 * page there in some cases (eg. if mmapped pagecache has been invalidated
753 * and subsequently re faulted). However it does guarantee that the page
754 * won't be freed completely. And mostly callers simply care that the page
755 * contains data that was valid *at some point in time*. Typically, an IO
756 * or similar operation cannot guarantee anything stronger anyway because
757 * locks can't be held over the syscall boundary.
758 *
759 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
760 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
761 * appropriate) must be called after the page is finished with, and
762 * before put_page is called.
763 *
764 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
765 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
766 * *@nonblocking will be set to 0. Further, if @gup_flags does not
767 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
768 * this case.
769 *
770 * A caller using such a combination of @nonblocking and @gup_flags
771 * must therefore hold the mmap_sem for reading only, and recognize
772 * when it's been released. Otherwise, it must be held for either
773 * reading or writing and will not be released.
4bbd4c77
KS
774 *
775 * In most cases, get_user_pages or get_user_pages_fast should be used
776 * instead of __get_user_pages. __get_user_pages should be used only if
777 * you need some special @gup_flags.
778 */
0d731759 779static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
780 unsigned long start, unsigned long nr_pages,
781 unsigned int gup_flags, struct page **pages,
782 struct vm_area_struct **vmas, int *nonblocking)
783{
df06b37f 784 long ret = 0, i = 0;
fa5bb209 785 struct vm_area_struct *vma = NULL;
df06b37f 786 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
787
788 if (!nr_pages)
789 return 0;
790
791 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
792
793 /*
794 * If FOLL_FORCE is set then do not force a full fault as the hinting
795 * fault information is unrelated to the reference behaviour of a task
796 * using the address space
797 */
798 if (!(gup_flags & FOLL_FORCE))
799 gup_flags |= FOLL_NUMA;
800
4bbd4c77 801 do {
fa5bb209
KS
802 struct page *page;
803 unsigned int foll_flags = gup_flags;
804 unsigned int page_increm;
805
806 /* first iteration or cross vma bound */
807 if (!vma || start >= vma->vm_end) {
808 vma = find_extend_vma(mm, start);
809 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
810 ret = get_gate_page(mm, start & PAGE_MASK,
811 gup_flags, &vma,
812 pages ? &pages[i] : NULL);
813 if (ret)
08be37b7 814 goto out;
df06b37f 815 ctx.page_mask = 0;
fa5bb209
KS
816 goto next_page;
817 }
4bbd4c77 818
df06b37f
KB
819 if (!vma || check_vma_flags(vma, gup_flags)) {
820 ret = -EFAULT;
821 goto out;
822 }
fa5bb209
KS
823 if (is_vm_hugetlb_page(vma)) {
824 i = follow_hugetlb_page(mm, vma, pages, vmas,
825 &start, &nr_pages, i,
87ffc118 826 gup_flags, nonblocking);
fa5bb209 827 continue;
4bbd4c77 828 }
fa5bb209
KS
829 }
830retry:
831 /*
832 * If we have a pending SIGKILL, don't keep faulting pages and
833 * potentially allocating memory.
834 */
fa45f116 835 if (fatal_signal_pending(current)) {
df06b37f
KB
836 ret = -ERESTARTSYS;
837 goto out;
838 }
fa5bb209 839 cond_resched();
df06b37f
KB
840
841 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 842 if (!page) {
fa5bb209
KS
843 ret = faultin_page(tsk, vma, start, &foll_flags,
844 nonblocking);
845 switch (ret) {
846 case 0:
847 goto retry;
df06b37f
KB
848 case -EBUSY:
849 ret = 0;
850 /* FALLTHRU */
fa5bb209
KS
851 case -EFAULT:
852 case -ENOMEM:
853 case -EHWPOISON:
df06b37f 854 goto out;
fa5bb209
KS
855 case -ENOENT:
856 goto next_page;
4bbd4c77 857 }
fa5bb209 858 BUG();
1027e443
KS
859 } else if (PTR_ERR(page) == -EEXIST) {
860 /*
861 * Proper page table entry exists, but no corresponding
862 * struct page.
863 */
864 goto next_page;
865 } else if (IS_ERR(page)) {
df06b37f
KB
866 ret = PTR_ERR(page);
867 goto out;
1027e443 868 }
fa5bb209
KS
869 if (pages) {
870 pages[i] = page;
871 flush_anon_page(vma, page, start);
872 flush_dcache_page(page);
df06b37f 873 ctx.page_mask = 0;
4bbd4c77 874 }
4bbd4c77 875next_page:
fa5bb209
KS
876 if (vmas) {
877 vmas[i] = vma;
df06b37f 878 ctx.page_mask = 0;
fa5bb209 879 }
df06b37f 880 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
881 if (page_increm > nr_pages)
882 page_increm = nr_pages;
883 i += page_increm;
884 start += page_increm * PAGE_SIZE;
885 nr_pages -= page_increm;
4bbd4c77 886 } while (nr_pages);
df06b37f
KB
887out:
888 if (ctx.pgmap)
889 put_dev_pagemap(ctx.pgmap);
890 return i ? i : ret;
4bbd4c77 891}
4bbd4c77 892
771ab430
TK
893static bool vma_permits_fault(struct vm_area_struct *vma,
894 unsigned int fault_flags)
d4925e00 895{
1b2ee126
DH
896 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
897 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 898 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
899
900 if (!(vm_flags & vma->vm_flags))
901 return false;
902
33a709b2
DH
903 /*
904 * The architecture might have a hardware protection
1b2ee126 905 * mechanism other than read/write that can deny access.
d61172b4
DH
906 *
907 * gup always represents data access, not instruction
908 * fetches, so execute=false here:
33a709b2 909 */
d61172b4 910 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
911 return false;
912
d4925e00
DH
913 return true;
914}
915
4bbd4c77
KS
916/*
917 * fixup_user_fault() - manually resolve a user page fault
918 * @tsk: the task_struct to use for page fault accounting, or
919 * NULL if faults are not to be recorded.
920 * @mm: mm_struct of target mm
921 * @address: user address
922 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
923 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
924 * does not allow retry
4bbd4c77
KS
925 *
926 * This is meant to be called in the specific scenario where for locking reasons
927 * we try to access user memory in atomic context (within a pagefault_disable()
928 * section), this returns -EFAULT, and we want to resolve the user fault before
929 * trying again.
930 *
931 * Typically this is meant to be used by the futex code.
932 *
933 * The main difference with get_user_pages() is that this function will
934 * unconditionally call handle_mm_fault() which will in turn perform all the
935 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 936 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
937 *
938 * This is important for some architectures where those bits also gate the
939 * access permission to the page because they are maintained in software. On
940 * such architectures, gup() will not be enough to make a subsequent access
941 * succeed.
942 *
4a9e1cda
DD
943 * This function will not return with an unlocked mmap_sem. So it has not the
944 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
945 */
946int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
947 unsigned long address, unsigned int fault_flags,
948 bool *unlocked)
4bbd4c77
KS
949{
950 struct vm_area_struct *vma;
2b740303 951 vm_fault_t ret, major = 0;
4a9e1cda
DD
952
953 if (unlocked)
954 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 955
4a9e1cda 956retry:
4bbd4c77
KS
957 vma = find_extend_vma(mm, address);
958 if (!vma || address < vma->vm_start)
959 return -EFAULT;
960
d4925e00 961 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
962 return -EFAULT;
963
dcddffd4 964 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 965 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 966 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
967 int err = vm_fault_to_errno(ret, 0);
968
969 if (err)
970 return err;
4bbd4c77
KS
971 BUG();
972 }
4a9e1cda
DD
973
974 if (ret & VM_FAULT_RETRY) {
975 down_read(&mm->mmap_sem);
976 if (!(fault_flags & FAULT_FLAG_TRIED)) {
977 *unlocked = true;
978 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
979 fault_flags |= FAULT_FLAG_TRIED;
980 goto retry;
981 }
982 }
983
4bbd4c77 984 if (tsk) {
4a9e1cda 985 if (major)
4bbd4c77
KS
986 tsk->maj_flt++;
987 else
988 tsk->min_flt++;
989 }
990 return 0;
991}
add6a0cd 992EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 993
f0818f47
AA
994static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
995 struct mm_struct *mm,
996 unsigned long start,
997 unsigned long nr_pages,
f0818f47
AA
998 struct page **pages,
999 struct vm_area_struct **vmas,
e716712f 1000 int *locked,
0fd71a56 1001 unsigned int flags)
f0818f47 1002{
f0818f47
AA
1003 long ret, pages_done;
1004 bool lock_dropped;
1005
1006 if (locked) {
1007 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1008 BUG_ON(vmas);
1009 /* check caller initialized locked */
1010 BUG_ON(*locked != 1);
1011 }
1012
1013 if (pages)
1014 flags |= FOLL_GET;
f0818f47
AA
1015
1016 pages_done = 0;
1017 lock_dropped = false;
1018 for (;;) {
1019 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1020 vmas, locked);
1021 if (!locked)
1022 /* VM_FAULT_RETRY couldn't trigger, bypass */
1023 return ret;
1024
1025 /* VM_FAULT_RETRY cannot return errors */
1026 if (!*locked) {
1027 BUG_ON(ret < 0);
1028 BUG_ON(ret >= nr_pages);
1029 }
1030
f0818f47
AA
1031 if (ret > 0) {
1032 nr_pages -= ret;
1033 pages_done += ret;
1034 if (!nr_pages)
1035 break;
1036 }
1037 if (*locked) {
96312e61
AA
1038 /*
1039 * VM_FAULT_RETRY didn't trigger or it was a
1040 * FOLL_NOWAIT.
1041 */
f0818f47
AA
1042 if (!pages_done)
1043 pages_done = ret;
1044 break;
1045 }
df17277b
MR
1046 /*
1047 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1048 * For the prefault case (!pages) we only update counts.
1049 */
1050 if (likely(pages))
1051 pages += ret;
f0818f47
AA
1052 start += ret << PAGE_SHIFT;
1053
1054 /*
1055 * Repeat on the address that fired VM_FAULT_RETRY
1056 * without FAULT_FLAG_ALLOW_RETRY but with
1057 * FAULT_FLAG_TRIED.
1058 */
1059 *locked = 1;
1060 lock_dropped = true;
1061 down_read(&mm->mmap_sem);
1062 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1063 pages, NULL, NULL);
1064 if (ret != 1) {
1065 BUG_ON(ret > 1);
1066 if (!pages_done)
1067 pages_done = ret;
1068 break;
1069 }
1070 nr_pages--;
1071 pages_done++;
1072 if (!nr_pages)
1073 break;
df17277b
MR
1074 if (likely(pages))
1075 pages++;
f0818f47
AA
1076 start += PAGE_SIZE;
1077 }
e716712f 1078 if (lock_dropped && *locked) {
f0818f47
AA
1079 /*
1080 * We must let the caller know we temporarily dropped the lock
1081 * and so the critical section protected by it was lost.
1082 */
1083 up_read(&mm->mmap_sem);
1084 *locked = 0;
1085 }
1086 return pages_done;
1087}
1088
4bbd4c77 1089/*
1e987790 1090 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1091 * @tsk: the task_struct to use for page fault accounting, or
1092 * NULL if faults are not to be recorded.
1093 * @mm: mm_struct of target mm
1094 * @start: starting user address
1095 * @nr_pages: number of pages from start to pin
9beae1ea 1096 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1097 * @pages: array that receives pointers to the pages pinned.
1098 * Should be at least nr_pages long. Or NULL, if caller
1099 * only intends to ensure the pages are faulted in.
1100 * @vmas: array of pointers to vmas corresponding to each page.
1101 * Or NULL if the caller does not require them.
5b56d49f
LS
1102 * @locked: pointer to lock flag indicating whether lock is held and
1103 * subsequently whether VM_FAULT_RETRY functionality can be
1104 * utilised. Lock must initially be held.
4bbd4c77
KS
1105 *
1106 * Returns number of pages pinned. This may be fewer than the number
1107 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1108 * were pinned, returns -errno. Each page returned must be released
1109 * with a put_page() call when it is finished with. vmas will only
1110 * remain valid while mmap_sem is held.
1111 *
1112 * Must be called with mmap_sem held for read or write.
1113 *
1114 * get_user_pages walks a process's page tables and takes a reference to
1115 * each struct page that each user address corresponds to at a given
1116 * instant. That is, it takes the page that would be accessed if a user
1117 * thread accesses the given user virtual address at that instant.
1118 *
1119 * This does not guarantee that the page exists in the user mappings when
1120 * get_user_pages returns, and there may even be a completely different
1121 * page there in some cases (eg. if mmapped pagecache has been invalidated
1122 * and subsequently re faulted). However it does guarantee that the page
1123 * won't be freed completely. And mostly callers simply care that the page
1124 * contains data that was valid *at some point in time*. Typically, an IO
1125 * or similar operation cannot guarantee anything stronger anyway because
1126 * locks can't be held over the syscall boundary.
1127 *
9beae1ea
LS
1128 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1129 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1130 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1131 *
1132 * get_user_pages is typically used for fewer-copy IO operations, to get a
1133 * handle on the memory by some means other than accesses via the user virtual
1134 * addresses. The pages may be submitted for DMA to devices or accessed via
1135 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1136 * use the correct cache flushing APIs.
1137 *
1138 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1139 *
1140 * get_user_pages should be phased out in favor of
1141 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1142 * should use get_user_pages because it cannot pass
1143 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1144 */
1e987790
DH
1145long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1146 unsigned long start, unsigned long nr_pages,
9beae1ea 1147 unsigned int gup_flags, struct page **pages,
5b56d49f 1148 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1149{
932f4a63
IW
1150 /*
1151 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1152 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1153 * vmas. As there are no users of this flag in this call we simply
1154 * disallow this option for now.
1155 */
1156 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1157 return -EINVAL;
1158
859110d7 1159 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1160 locked,
9beae1ea 1161 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1162}
1163EXPORT_SYMBOL(get_user_pages_remote);
1164
d3649f68
CH
1165/**
1166 * populate_vma_page_range() - populate a range of pages in the vma.
1167 * @vma: target vma
1168 * @start: start address
1169 * @end: end address
1170 * @nonblocking:
1171 *
1172 * This takes care of mlocking the pages too if VM_LOCKED is set.
1173 *
1174 * return 0 on success, negative error code on error.
1175 *
1176 * vma->vm_mm->mmap_sem must be held.
1177 *
1178 * If @nonblocking is NULL, it may be held for read or write and will
1179 * be unperturbed.
1180 *
1181 * If @nonblocking is non-NULL, it must held for read only and may be
1182 * released. If it's released, *@nonblocking will be set to 0.
1183 */
1184long populate_vma_page_range(struct vm_area_struct *vma,
1185 unsigned long start, unsigned long end, int *nonblocking)
1186{
1187 struct mm_struct *mm = vma->vm_mm;
1188 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1189 int gup_flags;
1190
1191 VM_BUG_ON(start & ~PAGE_MASK);
1192 VM_BUG_ON(end & ~PAGE_MASK);
1193 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1194 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1195 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1196
1197 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1198 if (vma->vm_flags & VM_LOCKONFAULT)
1199 gup_flags &= ~FOLL_POPULATE;
1200 /*
1201 * We want to touch writable mappings with a write fault in order
1202 * to break COW, except for shared mappings because these don't COW
1203 * and we would not want to dirty them for nothing.
1204 */
1205 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1206 gup_flags |= FOLL_WRITE;
1207
1208 /*
1209 * We want mlock to succeed for regions that have any permissions
1210 * other than PROT_NONE.
1211 */
1212 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1213 gup_flags |= FOLL_FORCE;
1214
1215 /*
1216 * We made sure addr is within a VMA, so the following will
1217 * not result in a stack expansion that recurses back here.
1218 */
1219 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1220 NULL, NULL, nonblocking);
1221}
1222
1223/*
1224 * __mm_populate - populate and/or mlock pages within a range of address space.
1225 *
1226 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1227 * flags. VMAs must be already marked with the desired vm_flags, and
1228 * mmap_sem must not be held.
1229 */
1230int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1231{
1232 struct mm_struct *mm = current->mm;
1233 unsigned long end, nstart, nend;
1234 struct vm_area_struct *vma = NULL;
1235 int locked = 0;
1236 long ret = 0;
1237
1238 end = start + len;
1239
1240 for (nstart = start; nstart < end; nstart = nend) {
1241 /*
1242 * We want to fault in pages for [nstart; end) address range.
1243 * Find first corresponding VMA.
1244 */
1245 if (!locked) {
1246 locked = 1;
1247 down_read(&mm->mmap_sem);
1248 vma = find_vma(mm, nstart);
1249 } else if (nstart >= vma->vm_end)
1250 vma = vma->vm_next;
1251 if (!vma || vma->vm_start >= end)
1252 break;
1253 /*
1254 * Set [nstart; nend) to intersection of desired address
1255 * range with the first VMA. Also, skip undesirable VMA types.
1256 */
1257 nend = min(end, vma->vm_end);
1258 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1259 continue;
1260 if (nstart < vma->vm_start)
1261 nstart = vma->vm_start;
1262 /*
1263 * Now fault in a range of pages. populate_vma_page_range()
1264 * double checks the vma flags, so that it won't mlock pages
1265 * if the vma was already munlocked.
1266 */
1267 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1268 if (ret < 0) {
1269 if (ignore_errors) {
1270 ret = 0;
1271 continue; /* continue at next VMA */
1272 }
1273 break;
1274 }
1275 nend = nstart + ret * PAGE_SIZE;
1276 ret = 0;
1277 }
1278 if (locked)
1279 up_read(&mm->mmap_sem);
1280 return ret; /* 0 or negative error code */
1281}
1282
1283/**
1284 * get_dump_page() - pin user page in memory while writing it to core dump
1285 * @addr: user address
1286 *
1287 * Returns struct page pointer of user page pinned for dump,
1288 * to be freed afterwards by put_page().
1289 *
1290 * Returns NULL on any kind of failure - a hole must then be inserted into
1291 * the corefile, to preserve alignment with its headers; and also returns
1292 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1293 * allowing a hole to be left in the corefile to save diskspace.
1294 *
1295 * Called without mmap_sem, but after all other threads have been killed.
1296 */
1297#ifdef CONFIG_ELF_CORE
1298struct page *get_dump_page(unsigned long addr)
1299{
1300 struct vm_area_struct *vma;
1301 struct page *page;
1302
1303 if (__get_user_pages(current, current->mm, addr, 1,
1304 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1305 NULL) < 1)
1306 return NULL;
1307 flush_cache_page(vma, addr, page_to_pfn(page));
1308 return page;
1309}
1310#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1311#else /* CONFIG_MMU */
1312static long __get_user_pages_locked(struct task_struct *tsk,
1313 struct mm_struct *mm, unsigned long start,
1314 unsigned long nr_pages, struct page **pages,
1315 struct vm_area_struct **vmas, int *locked,
1316 unsigned int foll_flags)
1317{
1318 struct vm_area_struct *vma;
1319 unsigned long vm_flags;
1320 int i;
1321
1322 /* calculate required read or write permissions.
1323 * If FOLL_FORCE is set, we only require the "MAY" flags.
1324 */
1325 vm_flags = (foll_flags & FOLL_WRITE) ?
1326 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1327 vm_flags &= (foll_flags & FOLL_FORCE) ?
1328 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1329
1330 for (i = 0; i < nr_pages; i++) {
1331 vma = find_vma(mm, start);
1332 if (!vma)
1333 goto finish_or_fault;
1334
1335 /* protect what we can, including chardevs */
1336 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1337 !(vm_flags & vma->vm_flags))
1338 goto finish_or_fault;
1339
1340 if (pages) {
1341 pages[i] = virt_to_page(start);
1342 if (pages[i])
1343 get_page(pages[i]);
1344 }
1345 if (vmas)
1346 vmas[i] = vma;
1347 start = (start + PAGE_SIZE) & PAGE_MASK;
1348 }
1349
1350 return i;
1351
1352finish_or_fault:
1353 return i ? : -EFAULT;
1354}
1355#endif /* !CONFIG_MMU */
d3649f68 1356
9a4e9f3b 1357#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1358static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1359{
1360 long i;
1361 struct vm_area_struct *vma_prev = NULL;
1362
1363 for (i = 0; i < nr_pages; i++) {
1364 struct vm_area_struct *vma = vmas[i];
1365
1366 if (vma == vma_prev)
1367 continue;
1368
1369 vma_prev = vma;
1370
1371 if (vma_is_fsdax(vma))
1372 return true;
1373 }
1374 return false;
1375}
9a4e9f3b
AK
1376
1377#ifdef CONFIG_CMA
1378static struct page *new_non_cma_page(struct page *page, unsigned long private)
1379{
1380 /*
1381 * We want to make sure we allocate the new page from the same node
1382 * as the source page.
1383 */
1384 int nid = page_to_nid(page);
1385 /*
1386 * Trying to allocate a page for migration. Ignore allocation
1387 * failure warnings. We don't force __GFP_THISNODE here because
1388 * this node here is the node where we have CMA reservation and
1389 * in some case these nodes will have really less non movable
1390 * allocation memory.
1391 */
1392 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1393
1394 if (PageHighMem(page))
1395 gfp_mask |= __GFP_HIGHMEM;
1396
1397#ifdef CONFIG_HUGETLB_PAGE
1398 if (PageHuge(page)) {
1399 struct hstate *h = page_hstate(page);
1400 /*
1401 * We don't want to dequeue from the pool because pool pages will
1402 * mostly be from the CMA region.
1403 */
1404 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1405 }
1406#endif
1407 if (PageTransHuge(page)) {
1408 struct page *thp;
1409 /*
1410 * ignore allocation failure warnings
1411 */
1412 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1413
1414 /*
1415 * Remove the movable mask so that we don't allocate from
1416 * CMA area again.
1417 */
1418 thp_gfpmask &= ~__GFP_MOVABLE;
1419 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1420 if (!thp)
1421 return NULL;
1422 prep_transhuge_page(thp);
1423 return thp;
1424 }
1425
1426 return __alloc_pages_node(nid, gfp_mask, 0);
1427}
1428
932f4a63
IW
1429static long check_and_migrate_cma_pages(struct task_struct *tsk,
1430 struct mm_struct *mm,
1431 unsigned long start,
1432 unsigned long nr_pages,
9a4e9f3b 1433 struct page **pages,
932f4a63
IW
1434 struct vm_area_struct **vmas,
1435 unsigned int gup_flags)
9a4e9f3b 1436{
aa712399
PL
1437 unsigned long i;
1438 unsigned long step;
9a4e9f3b
AK
1439 bool drain_allow = true;
1440 bool migrate_allow = true;
1441 LIST_HEAD(cma_page_list);
1442
1443check_again:
aa712399
PL
1444 for (i = 0; i < nr_pages;) {
1445
1446 struct page *head = compound_head(pages[i]);
1447
1448 /*
1449 * gup may start from a tail page. Advance step by the left
1450 * part.
1451 */
d8c6546b 1452 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1453 /*
1454 * If we get a page from the CMA zone, since we are going to
1455 * be pinning these entries, we might as well move them out
1456 * of the CMA zone if possible.
1457 */
aa712399
PL
1458 if (is_migrate_cma_page(head)) {
1459 if (PageHuge(head))
9a4e9f3b 1460 isolate_huge_page(head, &cma_page_list);
aa712399 1461 else {
9a4e9f3b
AK
1462 if (!PageLRU(head) && drain_allow) {
1463 lru_add_drain_all();
1464 drain_allow = false;
1465 }
1466
1467 if (!isolate_lru_page(head)) {
1468 list_add_tail(&head->lru, &cma_page_list);
1469 mod_node_page_state(page_pgdat(head),
1470 NR_ISOLATED_ANON +
1471 page_is_file_cache(head),
1472 hpage_nr_pages(head));
1473 }
1474 }
1475 }
aa712399
PL
1476
1477 i += step;
9a4e9f3b
AK
1478 }
1479
1480 if (!list_empty(&cma_page_list)) {
1481 /*
1482 * drop the above get_user_pages reference.
1483 */
1484 for (i = 0; i < nr_pages; i++)
1485 put_page(pages[i]);
1486
1487 if (migrate_pages(&cma_page_list, new_non_cma_page,
1488 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1489 /*
1490 * some of the pages failed migration. Do get_user_pages
1491 * without migration.
1492 */
1493 migrate_allow = false;
1494
1495 if (!list_empty(&cma_page_list))
1496 putback_movable_pages(&cma_page_list);
1497 }
1498 /*
932f4a63
IW
1499 * We did migrate all the pages, Try to get the page references
1500 * again migrating any new CMA pages which we failed to isolate
1501 * earlier.
9a4e9f3b 1502 */
932f4a63
IW
1503 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1504 pages, vmas, NULL,
1505 gup_flags);
1506
9a4e9f3b
AK
1507 if ((nr_pages > 0) && migrate_allow) {
1508 drain_allow = true;
1509 goto check_again;
1510 }
1511 }
1512
1513 return nr_pages;
1514}
1515#else
932f4a63
IW
1516static long check_and_migrate_cma_pages(struct task_struct *tsk,
1517 struct mm_struct *mm,
1518 unsigned long start,
1519 unsigned long nr_pages,
1520 struct page **pages,
1521 struct vm_area_struct **vmas,
1522 unsigned int gup_flags)
9a4e9f3b
AK
1523{
1524 return nr_pages;
1525}
050a9adc 1526#endif /* CONFIG_CMA */
9a4e9f3b 1527
2bb6d283 1528/*
932f4a63
IW
1529 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1530 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1531 */
932f4a63
IW
1532static long __gup_longterm_locked(struct task_struct *tsk,
1533 struct mm_struct *mm,
1534 unsigned long start,
1535 unsigned long nr_pages,
1536 struct page **pages,
1537 struct vm_area_struct **vmas,
1538 unsigned int gup_flags)
2bb6d283 1539{
932f4a63
IW
1540 struct vm_area_struct **vmas_tmp = vmas;
1541 unsigned long flags = 0;
2bb6d283
DW
1542 long rc, i;
1543
932f4a63
IW
1544 if (gup_flags & FOLL_LONGTERM) {
1545 if (!pages)
1546 return -EINVAL;
1547
1548 if (!vmas_tmp) {
1549 vmas_tmp = kcalloc(nr_pages,
1550 sizeof(struct vm_area_struct *),
1551 GFP_KERNEL);
1552 if (!vmas_tmp)
1553 return -ENOMEM;
1554 }
1555 flags = memalloc_nocma_save();
2bb6d283
DW
1556 }
1557
932f4a63
IW
1558 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1559 vmas_tmp, NULL, gup_flags);
2bb6d283 1560
932f4a63
IW
1561 if (gup_flags & FOLL_LONGTERM) {
1562 memalloc_nocma_restore(flags);
1563 if (rc < 0)
1564 goto out;
1565
1566 if (check_dax_vmas(vmas_tmp, rc)) {
1567 for (i = 0; i < rc; i++)
1568 put_page(pages[i]);
1569 rc = -EOPNOTSUPP;
1570 goto out;
1571 }
1572
1573 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1574 vmas_tmp, gup_flags);
9a4e9f3b 1575 }
2bb6d283 1576
2bb6d283 1577out:
932f4a63
IW
1578 if (vmas_tmp != vmas)
1579 kfree(vmas_tmp);
2bb6d283
DW
1580 return rc;
1581}
932f4a63
IW
1582#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1583static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1584 struct mm_struct *mm,
1585 unsigned long start,
1586 unsigned long nr_pages,
1587 struct page **pages,
1588 struct vm_area_struct **vmas,
1589 unsigned int flags)
1590{
1591 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1592 NULL, flags);
1593}
1594#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1595
1596/*
1597 * This is the same as get_user_pages_remote(), just with a
1598 * less-flexible calling convention where we assume that the task
1599 * and mm being operated on are the current task's and don't allow
1600 * passing of a locked parameter. We also obviously don't pass
1601 * FOLL_REMOTE in here.
1602 */
1603long get_user_pages(unsigned long start, unsigned long nr_pages,
1604 unsigned int gup_flags, struct page **pages,
1605 struct vm_area_struct **vmas)
1606{
1607 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1608 pages, vmas, gup_flags | FOLL_TOUCH);
1609}
1610EXPORT_SYMBOL(get_user_pages);
2bb6d283 1611
d3649f68
CH
1612/*
1613 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1614 * paths better by using either get_user_pages_locked() or
1615 * get_user_pages_unlocked().
acc3c8d1 1616 *
d3649f68 1617 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1618 *
d3649f68
CH
1619 * down_read(&mm->mmap_sem);
1620 * do_something()
1621 * get_user_pages(tsk, mm, ..., pages, NULL);
1622 * up_read(&mm->mmap_sem);
acc3c8d1 1623 *
d3649f68 1624 * to:
acc3c8d1 1625 *
d3649f68
CH
1626 * int locked = 1;
1627 * down_read(&mm->mmap_sem);
1628 * do_something()
1629 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1630 * if (locked)
1631 * up_read(&mm->mmap_sem);
acc3c8d1 1632 */
d3649f68
CH
1633long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1634 unsigned int gup_flags, struct page **pages,
1635 int *locked)
acc3c8d1 1636{
acc3c8d1 1637 /*
d3649f68
CH
1638 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1639 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1640 * vmas. As there are no users of this flag in this call we simply
1641 * disallow this option for now.
acc3c8d1 1642 */
d3649f68
CH
1643 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1644 return -EINVAL;
acc3c8d1 1645
d3649f68
CH
1646 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1647 pages, NULL, locked,
1648 gup_flags | FOLL_TOUCH);
acc3c8d1 1649}
d3649f68 1650EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1651
1652/*
d3649f68 1653 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1654 *
d3649f68
CH
1655 * down_read(&mm->mmap_sem);
1656 * get_user_pages(tsk, mm, ..., pages, NULL);
1657 * up_read(&mm->mmap_sem);
1658 *
1659 * with:
1660 *
1661 * get_user_pages_unlocked(tsk, mm, ..., pages);
1662 *
1663 * It is functionally equivalent to get_user_pages_fast so
1664 * get_user_pages_fast should be used instead if specific gup_flags
1665 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1666 */
d3649f68
CH
1667long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1668 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1669{
1670 struct mm_struct *mm = current->mm;
d3649f68
CH
1671 int locked = 1;
1672 long ret;
acc3c8d1 1673
d3649f68
CH
1674 /*
1675 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1676 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1677 * vmas. As there are no users of this flag in this call we simply
1678 * disallow this option for now.
1679 */
1680 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1681 return -EINVAL;
acc3c8d1 1682
d3649f68
CH
1683 down_read(&mm->mmap_sem);
1684 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1685 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
1686 if (locked)
1687 up_read(&mm->mmap_sem);
d3649f68 1688 return ret;
4bbd4c77 1689}
d3649f68 1690EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1691
1692/*
67a929e0 1693 * Fast GUP
2667f50e
SC
1694 *
1695 * get_user_pages_fast attempts to pin user pages by walking the page
1696 * tables directly and avoids taking locks. Thus the walker needs to be
1697 * protected from page table pages being freed from under it, and should
1698 * block any THP splits.
1699 *
1700 * One way to achieve this is to have the walker disable interrupts, and
1701 * rely on IPIs from the TLB flushing code blocking before the page table
1702 * pages are freed. This is unsuitable for architectures that do not need
1703 * to broadcast an IPI when invalidating TLBs.
1704 *
1705 * Another way to achieve this is to batch up page table containing pages
1706 * belonging to more than one mm_user, then rcu_sched a callback to free those
1707 * pages. Disabling interrupts will allow the fast_gup walker to both block
1708 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1709 * (which is a relatively rare event). The code below adopts this strategy.
1710 *
1711 * Before activating this code, please be aware that the following assumptions
1712 * are currently made:
1713 *
e585513b
KS
1714 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1715 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1716 *
2667f50e
SC
1717 * *) ptes can be read atomically by the architecture.
1718 *
1719 * *) access_ok is sufficient to validate userspace address ranges.
1720 *
1721 * The last two assumptions can be relaxed by the addition of helper functions.
1722 *
1723 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1724 */
67a929e0 1725#ifdef CONFIG_HAVE_FAST_GUP
39656e83
CH
1726#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1727/*
1728 * WARNING: only to be used in the get_user_pages_fast() implementation.
1729 *
1730 * With get_user_pages_fast(), we walk down the pagetables without taking any
1731 * locks. For this we would like to load the pointers atomically, but sometimes
1732 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1733 * we do have is the guarantee that a PTE will only either go from not present
1734 * to present, or present to not present or both -- it will not switch to a
1735 * completely different present page without a TLB flush in between; something
1736 * that we are blocking by holding interrupts off.
1737 *
1738 * Setting ptes from not present to present goes:
1739 *
1740 * ptep->pte_high = h;
1741 * smp_wmb();
1742 * ptep->pte_low = l;
1743 *
1744 * And present to not present goes:
1745 *
1746 * ptep->pte_low = 0;
1747 * smp_wmb();
1748 * ptep->pte_high = 0;
1749 *
1750 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1751 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1752 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1753 * picked up a changed pte high. We might have gotten rubbish values from
1754 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1755 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1756 * operates on present ptes we're safe.
1757 */
1758static inline pte_t gup_get_pte(pte_t *ptep)
1759{
1760 pte_t pte;
2667f50e 1761
39656e83
CH
1762 do {
1763 pte.pte_low = ptep->pte_low;
1764 smp_rmb();
1765 pte.pte_high = ptep->pte_high;
1766 smp_rmb();
1767 } while (unlikely(pte.pte_low != ptep->pte_low));
1768
1769 return pte;
1770}
1771#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1772/*
39656e83 1773 * We require that the PTE can be read atomically.
0005d20b
KS
1774 */
1775static inline pte_t gup_get_pte(pte_t *ptep)
1776{
1777 return READ_ONCE(*ptep);
1778}
39656e83 1779#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1780
790c7369
GR
1781static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1782 struct page **pages)
b59f65fa
KS
1783{
1784 while ((*nr) - nr_start) {
1785 struct page *page = pages[--(*nr)];
1786
1787 ClearPageReferenced(page);
1788 put_page(page);
1789 }
1790}
1791
8fde12ca
LT
1792/*
1793 * Return the compund head page with ref appropriately incremented,
1794 * or NULL if that failed.
1795 */
1796static inline struct page *try_get_compound_head(struct page *page, int refs)
1797{
1798 struct page *head = compound_head(page);
1799 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1800 return NULL;
1801 if (unlikely(!page_cache_add_speculative(head, refs)))
1802 return NULL;
1803 return head;
1804}
1805
3010a5ea 1806#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1807static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1808 unsigned int flags, struct page **pages, int *nr)
2667f50e 1809{
b59f65fa
KS
1810 struct dev_pagemap *pgmap = NULL;
1811 int nr_start = *nr, ret = 0;
2667f50e 1812 pte_t *ptep, *ptem;
2667f50e
SC
1813
1814 ptem = ptep = pte_offset_map(&pmd, addr);
1815 do {
0005d20b 1816 pte_t pte = gup_get_pte(ptep);
7aef4172 1817 struct page *head, *page;
2667f50e
SC
1818
1819 /*
1820 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1821 * path using the pte_protnone check.
2667f50e 1822 */
e7884f8e
KS
1823 if (pte_protnone(pte))
1824 goto pte_unmap;
1825
b798bec4 1826 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
1827 goto pte_unmap;
1828
b59f65fa 1829 if (pte_devmap(pte)) {
7af75561
IW
1830 if (unlikely(flags & FOLL_LONGTERM))
1831 goto pte_unmap;
1832
b59f65fa
KS
1833 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1834 if (unlikely(!pgmap)) {
1835 undo_dev_pagemap(nr, nr_start, pages);
1836 goto pte_unmap;
1837 }
1838 } else if (pte_special(pte))
2667f50e
SC
1839 goto pte_unmap;
1840
1841 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1842 page = pte_page(pte);
1843
8fde12ca
LT
1844 head = try_get_compound_head(page, 1);
1845 if (!head)
2667f50e
SC
1846 goto pte_unmap;
1847
1848 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1849 put_page(head);
2667f50e
SC
1850 goto pte_unmap;
1851 }
1852
7aef4172 1853 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1854
1855 SetPageReferenced(page);
2667f50e
SC
1856 pages[*nr] = page;
1857 (*nr)++;
1858
1859 } while (ptep++, addr += PAGE_SIZE, addr != end);
1860
1861 ret = 1;
1862
1863pte_unmap:
832d7aa0
CH
1864 if (pgmap)
1865 put_dev_pagemap(pgmap);
2667f50e
SC
1866 pte_unmap(ptem);
1867 return ret;
1868}
1869#else
1870
1871/*
1872 * If we can't determine whether or not a pte is special, then fail immediately
1873 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1874 * to be special.
1875 *
1876 * For a futex to be placed on a THP tail page, get_futex_key requires a
1877 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1878 * useful to have gup_huge_pmd even if we can't operate on ptes.
1879 */
1880static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1881 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1882{
1883 return 0;
1884}
3010a5ea 1885#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1886
17596731 1887#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1888static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1889 unsigned long end, struct page **pages, int *nr)
1890{
1891 int nr_start = *nr;
1892 struct dev_pagemap *pgmap = NULL;
1893
1894 do {
1895 struct page *page = pfn_to_page(pfn);
1896
1897 pgmap = get_dev_pagemap(pfn, pgmap);
1898 if (unlikely(!pgmap)) {
1899 undo_dev_pagemap(nr, nr_start, pages);
1900 return 0;
1901 }
1902 SetPageReferenced(page);
1903 pages[*nr] = page;
1904 get_page(page);
b59f65fa
KS
1905 (*nr)++;
1906 pfn++;
1907 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1908
1909 if (pgmap)
1910 put_dev_pagemap(pgmap);
b59f65fa
KS
1911 return 1;
1912}
1913
a9b6de77 1914static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1915 unsigned long end, struct page **pages, int *nr)
1916{
1917 unsigned long fault_pfn;
a9b6de77
DW
1918 int nr_start = *nr;
1919
1920 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1921 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1922 return 0;
b59f65fa 1923
a9b6de77
DW
1924 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1925 undo_dev_pagemap(nr, nr_start, pages);
1926 return 0;
1927 }
1928 return 1;
b59f65fa
KS
1929}
1930
a9b6de77 1931static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1932 unsigned long end, struct page **pages, int *nr)
1933{
1934 unsigned long fault_pfn;
a9b6de77
DW
1935 int nr_start = *nr;
1936
1937 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1938 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1939 return 0;
b59f65fa 1940
a9b6de77
DW
1941 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1942 undo_dev_pagemap(nr, nr_start, pages);
1943 return 0;
1944 }
1945 return 1;
b59f65fa
KS
1946}
1947#else
a9b6de77 1948static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1949 unsigned long end, struct page **pages, int *nr)
1950{
1951 BUILD_BUG();
1952 return 0;
1953}
1954
a9b6de77 1955static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1956 unsigned long end, struct page **pages, int *nr)
1957{
1958 BUILD_BUG();
1959 return 0;
1960}
1961#endif
1962
cbd34da7
CH
1963#ifdef CONFIG_ARCH_HAS_HUGEPD
1964static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1965 unsigned long sz)
1966{
1967 unsigned long __boundary = (addr + sz) & ~(sz-1);
1968 return (__boundary - 1 < end - 1) ? __boundary : end;
1969}
1970
1971static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1972 unsigned long end, int write, struct page **pages, int *nr)
1973{
1974 unsigned long pte_end;
1975 struct page *head, *page;
1976 pte_t pte;
1977 int refs;
1978
1979 pte_end = (addr + sz) & ~(sz-1);
1980 if (pte_end < end)
1981 end = pte_end;
1982
1983 pte = READ_ONCE(*ptep);
1984
1985 if (!pte_access_permitted(pte, write))
1986 return 0;
1987
1988 /* hugepages are never "special" */
1989 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1990
1991 refs = 0;
1992 head = pte_page(pte);
1993
1994 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1995 do {
1996 VM_BUG_ON(compound_head(page) != head);
1997 pages[*nr] = page;
1998 (*nr)++;
1999 page++;
2000 refs++;
2001 } while (addr += PAGE_SIZE, addr != end);
2002
01a36916
CH
2003 head = try_get_compound_head(head, refs);
2004 if (!head) {
cbd34da7
CH
2005 *nr -= refs;
2006 return 0;
2007 }
2008
2009 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2010 /* Could be optimized better */
2011 *nr -= refs;
2012 while (refs--)
2013 put_page(head);
2014 return 0;
2015 }
2016
520b4a44 2017 SetPageReferenced(head);
cbd34da7
CH
2018 return 1;
2019}
2020
2021static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2022 unsigned int pdshift, unsigned long end, int write,
2023 struct page **pages, int *nr)
2024{
2025 pte_t *ptep;
2026 unsigned long sz = 1UL << hugepd_shift(hugepd);
2027 unsigned long next;
2028
2029 ptep = hugepte_offset(hugepd, addr, pdshift);
2030 do {
2031 next = hugepte_addr_end(addr, end, sz);
2032 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2033 return 0;
2034 } while (ptep++, addr = next, addr != end);
2035
2036 return 1;
2037}
2038#else
2039static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2040 unsigned pdshift, unsigned long end, int write,
2041 struct page **pages, int *nr)
2042{
2043 return 0;
2044}
2045#endif /* CONFIG_ARCH_HAS_HUGEPD */
2046
2667f50e 2047static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b798bec4 2048 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2049{
ddc58f27 2050 struct page *head, *page;
2667f50e
SC
2051 int refs;
2052
b798bec4 2053 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2054 return 0;
2055
7af75561
IW
2056 if (pmd_devmap(orig)) {
2057 if (unlikely(flags & FOLL_LONGTERM))
2058 return 0;
a9b6de77 2059 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
7af75561 2060 }
b59f65fa 2061
2667f50e 2062 refs = 0;
d63206ee 2063 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 2064 do {
2667f50e
SC
2065 pages[*nr] = page;
2066 (*nr)++;
2067 page++;
2068 refs++;
2069 } while (addr += PAGE_SIZE, addr != end);
2070
8fde12ca
LT
2071 head = try_get_compound_head(pmd_page(orig), refs);
2072 if (!head) {
2667f50e
SC
2073 *nr -= refs;
2074 return 0;
2075 }
2076
2077 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2078 *nr -= refs;
2079 while (refs--)
2080 put_page(head);
2081 return 0;
2082 }
2083
e9348053 2084 SetPageReferenced(head);
2667f50e
SC
2085 return 1;
2086}
2087
2088static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b798bec4 2089 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2090{
ddc58f27 2091 struct page *head, *page;
2667f50e
SC
2092 int refs;
2093
b798bec4 2094 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2095 return 0;
2096
7af75561
IW
2097 if (pud_devmap(orig)) {
2098 if (unlikely(flags & FOLL_LONGTERM))
2099 return 0;
a9b6de77 2100 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
7af75561 2101 }
b59f65fa 2102
2667f50e 2103 refs = 0;
d63206ee 2104 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 2105 do {
2667f50e
SC
2106 pages[*nr] = page;
2107 (*nr)++;
2108 page++;
2109 refs++;
2110 } while (addr += PAGE_SIZE, addr != end);
2111
8fde12ca
LT
2112 head = try_get_compound_head(pud_page(orig), refs);
2113 if (!head) {
2667f50e
SC
2114 *nr -= refs;
2115 return 0;
2116 }
2117
2118 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2119 *nr -= refs;
2120 while (refs--)
2121 put_page(head);
2122 return 0;
2123 }
2124
e9348053 2125 SetPageReferenced(head);
2667f50e
SC
2126 return 1;
2127}
2128
f30c59e9 2129static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2130 unsigned long end, unsigned int flags,
f30c59e9
AK
2131 struct page **pages, int *nr)
2132{
2133 int refs;
ddc58f27 2134 struct page *head, *page;
f30c59e9 2135
b798bec4 2136 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2137 return 0;
2138
b59f65fa 2139 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 2140 refs = 0;
d63206ee 2141 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 2142 do {
f30c59e9
AK
2143 pages[*nr] = page;
2144 (*nr)++;
2145 page++;
2146 refs++;
2147 } while (addr += PAGE_SIZE, addr != end);
2148
8fde12ca
LT
2149 head = try_get_compound_head(pgd_page(orig), refs);
2150 if (!head) {
f30c59e9
AK
2151 *nr -= refs;
2152 return 0;
2153 }
2154
2155 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2156 *nr -= refs;
2157 while (refs--)
2158 put_page(head);
2159 return 0;
2160 }
2161
e9348053 2162 SetPageReferenced(head);
f30c59e9
AK
2163 return 1;
2164}
2165
2667f50e 2166static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2167 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2168{
2169 unsigned long next;
2170 pmd_t *pmdp;
2171
2172 pmdp = pmd_offset(&pud, addr);
2173 do {
38c5ce93 2174 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2175
2176 next = pmd_addr_end(addr, end);
84c3fc4e 2177 if (!pmd_present(pmd))
2667f50e
SC
2178 return 0;
2179
414fd080
YZ
2180 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2181 pmd_devmap(pmd))) {
2667f50e
SC
2182 /*
2183 * NUMA hinting faults need to be handled in the GUP
2184 * slowpath for accounting purposes and so that they
2185 * can be serialised against THP migration.
2186 */
8a0516ed 2187 if (pmd_protnone(pmd))
2667f50e
SC
2188 return 0;
2189
b798bec4 2190 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2191 pages, nr))
2192 return 0;
2193
f30c59e9
AK
2194 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2195 /*
2196 * architecture have different format for hugetlbfs
2197 * pmd format and THP pmd format
2198 */
2199 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2200 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2201 return 0;
b798bec4 2202 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2203 return 0;
2667f50e
SC
2204 } while (pmdp++, addr = next, addr != end);
2205
2206 return 1;
2207}
2208
c2febafc 2209static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2210 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2211{
2212 unsigned long next;
2213 pud_t *pudp;
2214
c2febafc 2215 pudp = pud_offset(&p4d, addr);
2667f50e 2216 do {
e37c6982 2217 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2218
2219 next = pud_addr_end(addr, end);
2220 if (pud_none(pud))
2221 return 0;
f30c59e9 2222 if (unlikely(pud_huge(pud))) {
b798bec4 2223 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2224 pages, nr))
2225 return 0;
2226 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2227 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2228 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2229 return 0;
b798bec4 2230 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2231 return 0;
2232 } while (pudp++, addr = next, addr != end);
2233
2234 return 1;
2235}
2236
c2febafc 2237static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2238 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2239{
2240 unsigned long next;
2241 p4d_t *p4dp;
2242
2243 p4dp = p4d_offset(&pgd, addr);
2244 do {
2245 p4d_t p4d = READ_ONCE(*p4dp);
2246
2247 next = p4d_addr_end(addr, end);
2248 if (p4d_none(p4d))
2249 return 0;
2250 BUILD_BUG_ON(p4d_huge(p4d));
2251 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2252 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2253 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2254 return 0;
b798bec4 2255 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2256 return 0;
2257 } while (p4dp++, addr = next, addr != end);
2258
2259 return 1;
2260}
2261
5b65c467 2262static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2263 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2264{
2265 unsigned long next;
2266 pgd_t *pgdp;
2267
2268 pgdp = pgd_offset(current->mm, addr);
2269 do {
2270 pgd_t pgd = READ_ONCE(*pgdp);
2271
2272 next = pgd_addr_end(addr, end);
2273 if (pgd_none(pgd))
2274 return;
2275 if (unlikely(pgd_huge(pgd))) {
b798bec4 2276 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2277 pages, nr))
2278 return;
2279 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2280 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2281 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2282 return;
b798bec4 2283 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2284 return;
2285 } while (pgdp++, addr = next, addr != end);
2286}
050a9adc
CH
2287#else
2288static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2289 unsigned int flags, struct page **pages, int *nr)
2290{
2291}
2292#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2293
2294#ifndef gup_fast_permitted
2295/*
2296 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2297 * we need to fall back to the slow version:
2298 */
26f4c328 2299static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2300{
26f4c328 2301 return true;
5b65c467
KS
2302}
2303#endif
2304
2667f50e
SC
2305/*
2306 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2307 * the regular GUP.
2308 * Note a difference with get_user_pages_fast: this always returns the
2309 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2310 *
2311 * If the architecture does not support this function, simply return with no
2312 * pages pinned.
2667f50e
SC
2313 */
2314int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2315 struct page **pages)
2316{
d4faa402 2317 unsigned long len, end;
5b65c467 2318 unsigned long flags;
2667f50e
SC
2319 int nr = 0;
2320
f455c854 2321 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2322 len = (unsigned long) nr_pages << PAGE_SHIFT;
2323 end = start + len;
2324
26f4c328
CH
2325 if (end <= start)
2326 return 0;
96d4f267 2327 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2328 return 0;
2329
2330 /*
2331 * Disable interrupts. We use the nested form as we can already have
2332 * interrupts disabled by get_futex_key.
2333 *
2334 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2335 * freed from under us. See struct mmu_table_batch comments in
2336 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2337 *
2338 * We do not adopt an rcu_read_lock(.) here as we also want to
2339 * block IPIs that come from THPs splitting.
2340 */
2341
050a9adc
CH
2342 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2343 gup_fast_permitted(start, end)) {
5b65c467 2344 local_irq_save(flags);
b798bec4 2345 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
5b65c467
KS
2346 local_irq_restore(flags);
2347 }
2667f50e
SC
2348
2349 return nr;
2350}
050a9adc 2351EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2352
7af75561
IW
2353static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2354 unsigned int gup_flags, struct page **pages)
2355{
2356 int ret;
2357
2358 /*
2359 * FIXME: FOLL_LONGTERM does not work with
2360 * get_user_pages_unlocked() (see comments in that function)
2361 */
2362 if (gup_flags & FOLL_LONGTERM) {
2363 down_read(&current->mm->mmap_sem);
2364 ret = __gup_longterm_locked(current, current->mm,
2365 start, nr_pages,
2366 pages, NULL, gup_flags);
2367 up_read(&current->mm->mmap_sem);
2368 } else {
2369 ret = get_user_pages_unlocked(start, nr_pages,
2370 pages, gup_flags);
2371 }
2372
2373 return ret;
2374}
2375
2667f50e
SC
2376/**
2377 * get_user_pages_fast() - pin user pages in memory
2378 * @start: starting user address
2379 * @nr_pages: number of pages from start to pin
73b0140b 2380 * @gup_flags: flags modifying pin behaviour
2667f50e
SC
2381 * @pages: array that receives pointers to the pages pinned.
2382 * Should be at least nr_pages long.
2383 *
2384 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2385 * If not successful, it will fall back to taking the lock and
2386 * calling get_user_pages().
2387 *
2388 * Returns number of pages pinned. This may be fewer than the number
2389 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2390 * were pinned, returns -errno.
2391 */
73b0140b
IW
2392int get_user_pages_fast(unsigned long start, int nr_pages,
2393 unsigned int gup_flags, struct page **pages)
2667f50e 2394{
5b65c467 2395 unsigned long addr, len, end;
73e10a61 2396 int nr = 0, ret = 0;
2667f50e 2397
817be129
CH
2398 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2399 return -EINVAL;
2400
f455c854 2401 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2402 addr = start;
2403 len = (unsigned long) nr_pages << PAGE_SHIFT;
2404 end = start + len;
2405
26f4c328 2406 if (end <= start)
c61611f7 2407 return 0;
96d4f267 2408 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2409 return -EFAULT;
73e10a61 2410
050a9adc
CH
2411 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2412 gup_fast_permitted(start, end)) {
5b65c467 2413 local_irq_disable();
73b0140b 2414 gup_pgd_range(addr, end, gup_flags, pages, &nr);
5b65c467 2415 local_irq_enable();
73e10a61
KS
2416 ret = nr;
2417 }
2667f50e
SC
2418
2419 if (nr < nr_pages) {
2420 /* Try to get the remaining pages with get_user_pages */
2421 start += nr << PAGE_SHIFT;
2422 pages += nr;
2423
7af75561
IW
2424 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2425 gup_flags, pages);
2667f50e
SC
2426
2427 /* Have to be a bit careful with return values */
2428 if (nr > 0) {
2429 if (ret < 0)
2430 ret = nr;
2431 else
2432 ret += nr;
2433 }
2434 }
2435
2436 return ret;
2437}
050a9adc 2438EXPORT_SYMBOL_GPL(get_user_pages_fast);