blk-cgroup: fix rcu lockdep warning in blkg_lookup()
[linux-block.git] / fs / eventpoll.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
5071f97e
DL
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
1da177e4 5 *
1da177e4 6 * Davide Libenzi <davidel@xmailserver.org>
1da177e4
LT
7 */
8
1da177e4
LT
9#include <linux/init.h>
10#include <linux/kernel.h>
174cd4b1 11#include <linux/sched/signal.h>
1da177e4
LT
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
1da177e4
LT
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
144efe3e 29#include <linux/mutex.h>
da66f7cb 30#include <linux/anon_inodes.h>
4d7e30d9 31#include <linux/device.h>
7c0f6ba6 32#include <linux/uaccess.h>
1da177e4
LT
33#include <asm/io.h>
34#include <asm/mman.h>
60063497 35#include <linux/atomic.h>
138d22b5
CG
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
35280bd4 38#include <linux/compat.h>
ae10b2b4 39#include <linux/rculist.h>
bf3b9f63 40#include <net/busy_poll.h>
1da177e4 41
1da177e4
LT
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
d4cb626d 46 * 1) epnested_mutex (mutex)
c7ea7630 47 * 2) ep->mtx (mutex)
a218cc49 48 * 3) ep->lock (rwlock)
1da177e4
LT
49 *
50 * The acquire order is the one listed above, from 1 to 3.
a218cc49 51 * We need a rwlock (ep->lock) because we manipulate objects
1da177e4
LT
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
d47de16c
DL
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
d4cb626d
DB
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
22bacca4
DL
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
d8805e63
NE
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
d47de16c 76 * It is possible to drop the "ep->mtx" and to use the global
d4cb626d 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
d47de16c 78 * but having "ep->mtx" will make the interface more scalable.
d4cb626d 79 * Events that require holding "epnested_mutex" are very rare, while for
d47de16c
DL
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
1da177e4
LT
82 */
83
1da177e4 84/* Epoll private bits inside the event mask */
df0108c5 85#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
1da177e4 86
a9a08845 87#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
b6a515c8 88
a9a08845 89#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
b6a515c8
JB
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
5071f97e
DL
92/* Maximum number of nesting allowed inside epoll sets */
93#define EP_MAX_NESTS 4
1da177e4 94
b611967d
DL
95#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
d47de16c
DL
97#define EP_UNACTIVE_PTR ((void *) -1L)
98
7ef9964e
DL
99#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
1da177e4
LT
101struct epoll_filefd {
102 struct file *file;
103 int fd;
39732ca5 104} __packed;
1da177e4 105
80285b75
AV
106/* Wait structure used by the poll hooks */
107struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
1da177e4 110
80285b75
AV
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
1da177e4
LT
122};
123
d47de16c
DL
124/*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
39732ca5
EW
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
d47de16c
DL
129 */
130struct epitem {
ae10b2b4
JB
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
d47de16c
DL
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
c7ea7630
DL
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
d47de16c
DL
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
58c9b016
PA
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
d47de16c 157 /* List containing poll wait queues */
80285b75 158 struct eppoll_entry *pwqlist;
d47de16c
DL
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
d47de16c 163 /* List header used to link this item to the "struct file" items list */
44cdc1d9 164 struct hlist_node fllink;
d47de16c 165
4d7e30d9 166 /* wakeup_source used when EPOLLWAKEUP is set */
eea1d585 167 struct wakeup_source __rcu *ws;
4d7e30d9 168
c7ea7630
DL
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
d47de16c
DL
171};
172
1da177e4
LT
173/*
174 * This structure is stored inside the "private_data" member of the file
bf6a41db 175 * structure and represents the main data structure for the eventpoll
1da177e4
LT
176 * interface.
177 */
178struct eventpoll {
1da177e4 179 /*
d47de16c
DL
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
1da177e4 184 */
d47de16c 185 struct mutex mtx;
1da177e4
LT
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
a218cc49
RP
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
67647d0f 199 /* RB tree root used to store monitored fd structs */
b2ac2ea6 200 struct rb_root_cached rbr;
d47de16c
DL
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
25985edc 204 * happened while transferring ready events to userspace w/out
a218cc49 205 * holding ->lock.
d47de16c
DL
206 */
207 struct epitem *ovflist;
7ef9964e 208
4d7e30d9
AH
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
7ef9964e
DL
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
28d82dc1
JB
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
18306c40 218 u64 gen;
319c1517 219 struct hlist_head refs;
bf3b9f63 220
58c9b016
PA
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
bf3b9f63
SS
227#ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230#endif
efcdd350
JB
231
232#ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235#endif
1da177e4
LT
236};
237
1da177e4
LT
238/* Wrapper struct used by poll queueing */
239struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242};
243
7ef9964e
DL
244/*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
7ef9964e 247/* Maximum number of epoll watched descriptors, per user */
52bd19f7 248static long max_user_watches __read_mostly;
7ef9964e 249
58c9b016 250/* Used for cycles detection */
d4cb626d 251static DEFINE_MUTEX(epnested_mutex);
1da177e4 252
18306c40
AV
253static u64 loop_check_gen = 0;
254
22bacca4 255/* Used to check for epoll file descriptor inclusion loops */
6a3890c4 256static struct eventpoll *inserting_into;
22bacca4 257
1da177e4 258/* Slab cache used to allocate "struct epitem" */
68279f9c 259static struct kmem_cache *epi_cache __ro_after_init;
1da177e4
LT
260
261/* Slab cache used to allocate "struct eppoll_entry" */
68279f9c 262static struct kmem_cache *pwq_cache __ro_after_init;
1da177e4 263
28d82dc1
JB
264/*
265 * List of files with newly added links, where we may need to limit the number
d4cb626d 266 * of emanating paths. Protected by the epnested_mutex.
28d82dc1 267 */
319c1517
AV
268struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271};
272static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
68279f9c 274static struct kmem_cache *ephead_cache __ro_after_init;
319c1517
AV
275
276static inline void free_ephead(struct epitems_head *head)
277{
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280}
281
282static void list_file(struct file *file)
283{
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291}
292
293static void unlist_file(struct epitems_head *head)
294{
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306}
28d82dc1 307
7ef9964e
DL
308#ifdef CONFIG_SYSCTL
309
310#include <linux/sysctl.h>
311
eec4844f 312static long long_zero;
52bd19f7 313static long long_max = LONG_MAX;
7ef9964e 314
a8f5de89 315static struct ctl_table epoll_table[] = {
7ef9964e
DL
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
52bd19f7 319 .maxlen = sizeof(max_user_watches),
7ef9964e 320 .mode = 0644,
52bd19f7 321 .proc_handler = proc_doulongvec_minmax,
eec4844f 322 .extra1 = &long_zero,
52bd19f7 323 .extra2 = &long_max,
7ef9964e 324 },
ab09203e 325 { }
7ef9964e 326};
a8f5de89
XN
327
328static void __init epoll_sysctls_init(void)
329{
330 register_sysctl("fs/epoll", epoll_table);
331}
332#else
333#define epoll_sysctls_init() do { } while (0)
7ef9964e
DL
334#endif /* CONFIG_SYSCTL */
335
28d82dc1
JB
336static const struct file_operations eventpoll_fops;
337
338static inline int is_file_epoll(struct file *f)
339{
340 return f->f_op == &eventpoll_fops;
341}
b030a4dd 342
67647d0f 343/* Setup the structure that is used as key for the RB tree */
b030a4dd
PE
344static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 struct file *file, int fd)
346{
347 ffd->file = file;
348 ffd->fd = fd;
349}
350
67647d0f 351/* Compare RB tree keys */
b030a4dd
PE
352static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 struct epoll_filefd *p2)
354{
355 return (p1->file > p2->file ? +1:
356 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357}
358
b030a4dd 359/* Tells us if the item is currently linked */
992991c0 360static inline int ep_is_linked(struct epitem *epi)
b030a4dd 361{
992991c0 362 return !list_empty(&epi->rdllink);
b030a4dd
PE
363}
364
ac6424b9 365static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
971316f0
ON
366{
367 return container_of(p, struct eppoll_entry, wait);
368}
369
b030a4dd 370/* Get the "struct epitem" from a wait queue pointer */
ac6424b9 371static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
b030a4dd
PE
372{
373 return container_of(p, struct eppoll_entry, wait)->base;
374}
375
3fb0e584
DL
376/**
377 * ep_events_available - Checks if ready events might be available.
378 *
379 * @ep: Pointer to the eventpoll context.
380 *
a6c67fee
RD
381 * Return: a value different than %zero if ready events are available,
382 * or %zero otherwise.
3fb0e584
DL
383 */
384static inline int ep_events_available(struct eventpoll *ep)
385{
c5a282e9
DB
386 return !list_empty_careful(&ep->rdllist) ||
387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
3fb0e584
DL
388}
389
bf3b9f63
SS
390#ifdef CONFIG_NET_RX_BUSY_POLL
391static bool ep_busy_loop_end(void *p, unsigned long start_time)
392{
393 struct eventpoll *ep = p;
394
395 return ep_events_available(ep) || busy_loop_timeout(start_time);
396}
bf3b9f63
SS
397
398/*
399 * Busy poll if globally on and supporting sockets found && no events,
400 * busy loop will return if need_resched or ep_events_available.
401 *
402 * we must do our busy polling with irqs enabled
403 */
1493c47f 404static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
bf3b9f63 405{
bf3b9f63
SS
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
1493c47f 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
7c951caf
BT
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 BUSY_POLL_BUDGET);
1493c47f
SHY
411 if (ep_events_available(ep))
412 return true;
413 /*
414 * Busy poll timed out. Drop NAPI ID for now, we can add
415 * it back in when we have moved a socket with a valid NAPI
416 * ID onto the ready list.
417 */
bf3b9f63 418 ep->napi_id = 0;
1493c47f
SHY
419 return false;
420 }
421 return false;
bf3b9f63
SS
422}
423
424/*
425 * Set epoll busy poll NAPI ID from sk.
426 */
427static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428{
bf3b9f63
SS
429 struct eventpoll *ep;
430 unsigned int napi_id;
431 struct socket *sock;
432 struct sock *sk;
bf3b9f63
SS
433
434 if (!net_busy_loop_on())
435 return;
436
dba4a925 437 sock = sock_from_file(epi->ffd.file);
bf3b9f63
SS
438 if (!sock)
439 return;
440
441 sk = sock->sk;
442 if (!sk)
443 return;
444
445 napi_id = READ_ONCE(sk->sk_napi_id);
446 ep = epi->ep;
447
448 /* Non-NAPI IDs can be rejected
449 * or
450 * Nothing to do if we already have this ID
451 */
452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 return;
454
455 /* record NAPI ID for use in next busy poll */
456 ep->napi_id = napi_id;
bf3b9f63
SS
457}
458
514056d5
DB
459#else
460
1493c47f 461static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
514056d5 462{
1493c47f 463 return false;
514056d5
DB
464}
465
466static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467{
468}
469
470#endif /* CONFIG_NET_RX_BUSY_POLL */
471
02edc6fc
SR
472/*
473 * As described in commit 0ccf831cb lockdep: annotate epoll
474 * the use of wait queues used by epoll is done in a very controlled
475 * manner. Wake ups can nest inside each other, but are never done
476 * with the same locking. For example:
477 *
478 * dfd = socket(...);
479 * efd1 = epoll_create();
480 * efd2 = epoll_create();
481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 *
484 * When a packet arrives to the device underneath "dfd", the net code will
485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 * callback wakeup entry on that queue, and the wake_up() performed by the
487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 * (efd1) notices that it may have some event ready, so it needs to wake up
489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 * that ends up in another wake_up(), after having checked about the
7059a9aa
CL
491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 * stack blasting.
02edc6fc
SR
493 *
494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 * this special case of epoll.
496 */
2dfa4eea 497#ifdef CONFIG_DEBUG_LOCK_ALLOC
57a173bd 498
caf1aeaf
JA
499static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 unsigned pollflags)
5071f97e 501{
efcdd350 502 struct eventpoll *ep_src;
f6520c52 503 unsigned long flags;
efcdd350
JB
504 u8 nests = 0;
505
506 /*
507 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 * it might be natural to create a per-cpu nest count. However, since
509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 * protected. Thus, we are introducing a per eventpoll nest field.
512 * If we are not being call from ep_poll_callback(), epi is NULL and
513 * we are at the first level of nesting, 0. Otherwise, we are being
514 * called from ep_poll_callback() and if a previous wakeup source is
515 * not an epoll file itself, we are at depth 1 since the wakeup source
516 * is depth 0. If the wakeup source is a previous epoll file in the
517 * wakeup chain then we use its nests value and record ours as
518 * nests + 1. The previous epoll file nests value is stable since its
519 * already holding its own poll_wait.lock.
520 */
521 if (epi) {
522 if ((is_file_epoll(epi->ffd.file))) {
523 ep_src = epi->ffd.file->private_data;
524 nests = ep_src->nests;
525 } else {
526 nests = 1;
527 }
528 }
529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 ep->nests = nests + 1;
caf1aeaf 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
efcdd350
JB
532 ep->nests = 0;
533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
1da177e4
LT
534}
535
57a173bd
JB
536#else
537
caf1aeaf 538static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
38f1755a 539 __poll_t pollflags)
57a173bd 540{
caf1aeaf 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
57a173bd
JB
542}
543
544#endif
545
971316f0
ON
546static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547{
548 wait_queue_head_t *whead;
549
550 rcu_read_lock();
138e4ad6
ON
551 /*
552 * If it is cleared by POLLFREE, it should be rcu-safe.
553 * If we read NULL we need a barrier paired with
554 * smp_store_release() in ep_poll_callback(), otherwise
555 * we rely on whead->lock.
556 */
557 whead = smp_load_acquire(&pwq->whead);
971316f0
ON
558 if (whead)
559 remove_wait_queue(whead, &pwq->wait);
560 rcu_read_unlock();
561}
562
1da177e4 563/*
d1bc90dd 564 * This function unregisters poll callbacks from the associated file
58c9b016 565 * descriptor. Must be called with "mtx" held.
1da177e4 566 */
7699acd1 567static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1da177e4 568{
80285b75 569 struct eppoll_entry **p = &epi->pwqlist;
7699acd1 570 struct eppoll_entry *pwq;
1da177e4 571
80285b75
AV
572 while ((pwq = *p) != NULL) {
573 *p = pwq->next;
971316f0 574 ep_remove_wait_queue(pwq);
d1bc90dd 575 kmem_cache_free(pwq_cache, pwq);
1da177e4 576 }
1da177e4
LT
577}
578
eea1d585
EW
579/* call only when ep->mtx is held */
580static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581{
582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583}
584
585/* call only when ep->mtx is held */
586static inline void ep_pm_stay_awake(struct epitem *epi)
587{
588 struct wakeup_source *ws = ep_wakeup_source(epi);
589
590 if (ws)
591 __pm_stay_awake(ws);
592}
593
594static inline bool ep_has_wakeup_source(struct epitem *epi)
595{
596 return rcu_access_pointer(epi->ws) ? true : false;
597}
598
599/* call when ep->mtx cannot be held (ep_poll_callback) */
600static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601{
602 struct wakeup_source *ws;
603
604 rcu_read_lock();
605 ws = rcu_dereference(epi->ws);
606 if (ws)
607 __pm_stay_awake(ws);
608 rcu_read_unlock();
609}
610
5071f97e 611
57804b1c
AV
612/*
613 * ep->mutex needs to be held because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
5071f97e 615 */
57804b1c 616static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
5071f97e 617{
5071f97e
DL
618 /*
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
625 */
57804b1c 626 lockdep_assert_irqs_enabled();
a218cc49 627 write_lock_irq(&ep->lock);
db502f8a 628 list_splice_init(&ep->rdllist, txlist);
c5a282e9 629 WRITE_ONCE(ep->ovflist, NULL);
a218cc49 630 write_unlock_irq(&ep->lock);
db502f8a 631}
5071f97e 632
db502f8a 633static void ep_done_scan(struct eventpoll *ep,
db502f8a
AV
634 struct list_head *txlist)
635{
636 struct epitem *epi, *nepi;
5071f97e 637
a218cc49 638 write_lock_irq(&ep->lock);
5071f97e
DL
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
c5a282e9 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
5071f97e
DL
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
992991c0 652 if (!ep_is_linked(epi)) {
c141175d
RP
653 /*
654 * ->ovflist is LIFO, so we have to reverse it in order
655 * to keep in FIFO.
656 */
657 list_add(&epi->rdllink, &ep->rdllist);
eea1d585 658 ep_pm_stay_awake(epi);
4d7e30d9 659 }
5071f97e
DL
660 }
661 /*
662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 * releasing the lock, events will be queued in the normal way inside
664 * ep->rdllist.
665 */
c5a282e9 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
5071f97e
DL
667
668 /*
669 * Quickly re-inject items left on "txlist".
670 */
db502f8a 671 list_splice(txlist, &ep->rdllist);
4d7e30d9 672 __pm_relax(ep->ws);
7fab29e3
DB
673
674 if (!list_empty(&ep->rdllist)) {
675 if (waitqueue_active(&ep->wq))
676 wake_up(&ep->wq);
677 }
678
a218cc49 679 write_unlock_irq(&ep->lock);
5071f97e
DL
680}
681
ae10b2b4
JB
682static void epi_rcu_free(struct rcu_head *head)
683{
684 struct epitem *epi = container_of(head, struct epitem, rcu);
685 kmem_cache_free(epi_cache, epi);
686}
687
58c9b016
PA
688static void ep_get(struct eventpoll *ep)
689{
690 refcount_inc(&ep->refcount);
691}
692
693/*
694 * Returns true if the event poll can be disposed
695 */
696static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697{
698 if (!refcount_dec_and_test(&ep->refcount))
699 return false;
700
701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 return true;
703}
704
705static void ep_free(struct eventpoll *ep)
706{
707 mutex_destroy(&ep->mtx);
708 free_uid(ep->user);
709 wakeup_source_unregister(ep->ws);
710 kfree(ep);
711}
712
7699acd1
DL
713/*
714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
c7ea7630 715 * all the associated resources. Must be called with "mtx" held.
58c9b016
PA
716 * If the dying flag is set, do the removal only if force is true.
717 * This prevents ep_clear_and_put() from dropping all the ep references
718 * while running concurrently with eventpoll_release_file().
719 * Returns true if the eventpoll can be disposed.
7699acd1 720 */
58c9b016 721static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
7699acd1 722{
7699acd1 723 struct file *file = epi->ffd.file;
319c1517
AV
724 struct epitems_head *to_free;
725 struct hlist_head *head;
1da177e4 726
92e64178
DB
727 lockdep_assert_irqs_enabled();
728
1da177e4 729 /*
ee8ef0a4 730 * Removes poll wait queue hooks.
1da177e4 731 */
7699acd1 732 ep_unregister_pollwait(ep, epi);
1da177e4 733
7699acd1 734 /* Remove the current item from the list of epoll hooks */
68499914 735 spin_lock(&file->f_lock);
58c9b016
PA
736 if (epi->dying && !force) {
737 spin_unlock(&file->f_lock);
738 return false;
739 }
740
319c1517
AV
741 to_free = NULL;
742 head = file->f_ep;
743 if (head->first == &epi->fllink && !epi->fllink.next) {
744 file->f_ep = NULL;
745 if (!is_file_epoll(file)) {
746 struct epitems_head *v;
747 v = container_of(head, struct epitems_head, epitems);
748 if (!smp_load_acquire(&v->next))
749 to_free = v;
750 }
751 }
44cdc1d9 752 hlist_del_rcu(&epi->fllink);
68499914 753 spin_unlock(&file->f_lock);
319c1517 754 free_ephead(to_free);
1da177e4 755
b2ac2ea6 756 rb_erase_cached(&epi->rbn, &ep->rbr);
1da177e4 757
a218cc49 758 write_lock_irq(&ep->lock);
992991c0 759 if (ep_is_linked(epi))
c7ea7630 760 list_del_init(&epi->rdllink);
a218cc49 761 write_unlock_irq(&ep->lock);
1da177e4 762
eea1d585 763 wakeup_source_unregister(ep_wakeup_source(epi));
ae10b2b4
JB
764 /*
765 * At this point it is safe to free the eventpoll item. Use the union
766 * field epi->rcu, since we are trying to minimize the size of
767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 * use of the rbn field.
770 */
771 call_rcu(&epi->rcu, epi_rcu_free);
1da177e4 772
1e1c1583 773 percpu_counter_dec(&ep->user->epoll_watches);
58c9b016
PA
774 return ep_refcount_dec_and_test(ep);
775}
7ef9964e 776
58c9b016
PA
777/*
778 * ep_remove variant for callers owing an additional reference to the ep
779 */
780static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781{
782 WARN_ON_ONCE(__ep_remove(ep, epi, false));
1da177e4
LT
783}
784
58c9b016 785static void ep_clear_and_put(struct eventpoll *ep)
1da177e4 786{
58c9b016 787 struct rb_node *rbp, *next;
7699acd1 788 struct epitem *epi;
58c9b016 789 bool dispose;
1da177e4 790
7699acd1
DL
791 /* We need to release all tasks waiting for these file */
792 if (waitqueue_active(&ep->poll_wait))
caf1aeaf 793 ep_poll_safewake(ep, NULL, 0);
1da177e4 794
58c9b016 795 mutex_lock(&ep->mtx);
1da177e4
LT
796
797 /*
7699acd1 798 * Walks through the whole tree by unregistering poll callbacks.
1da177e4 799 */
b2ac2ea6 800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
7699acd1
DL
801 epi = rb_entry(rbp, struct epitem, rbn);
802
803 ep_unregister_pollwait(ep, epi);
91cf5ab6 804 cond_resched();
7699acd1 805 }
1da177e4
LT
806
807 /*
58c9b016
PA
808 * Walks through the whole tree and try to free each "struct epitem".
809 * Note that ep_remove_safe() will not remove the epitem in case of a
810 * racing eventpoll_release_file(); the latter will do the removal.
811 * At this point we are sure no poll callbacks will be lingering around.
812 * Since we still own a reference to the eventpoll struct, the loop can't
813 * dispose it.
1da177e4 814 */
58c9b016
PA
815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 next = rb_next(rbp);
7699acd1 817 epi = rb_entry(rbp, struct epitem, rbn);
58c9b016 818 ep_remove_safe(ep, epi);
91cf5ab6 819 cond_resched();
7699acd1 820 }
58c9b016
PA
821
822 dispose = ep_refcount_dec_and_test(ep);
ddf676c3 823 mutex_unlock(&ep->mtx);
1da177e4 824
58c9b016
PA
825 if (dispose)
826 ep_free(ep);
7699acd1 827}
1da177e4 828
7699acd1
DL
829static int ep_eventpoll_release(struct inode *inode, struct file *file)
830{
831 struct eventpoll *ep = file->private_data;
1da177e4 832
f0ee9aab 833 if (ep)
58c9b016 834 ep_clear_and_put(ep);
7699acd1 835
7699acd1 836 return 0;
1da177e4
LT
837}
838
2c0b71c1 839static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
37b5e521 840
ad9366b1 841static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
5071f97e 842{
ad9366b1
AV
843 struct eventpoll *ep = file->private_data;
844 LIST_HEAD(txlist);
5071f97e 845 struct epitem *epi, *tmp;
626cf236 846 poll_table pt;
2c0b71c1 847 __poll_t res = 0;
5071f97e 848
626cf236 849 init_poll_funcptr(&pt, NULL);
450d89ec 850
ad9366b1
AV
851 /* Insert inside our poll wait queue */
852 poll_wait(file, &ep->poll_wait, wait);
853
854 /*
855 * Proceed to find out if wanted events are really available inside
856 * the ready list.
857 */
858 mutex_lock_nested(&ep->mtx, depth);
859 ep_start_scan(ep, &txlist);
2c0b71c1
AV
860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 if (ep_item_poll(epi, &pt, depth + 1)) {
862 res = EPOLLIN | EPOLLRDNORM;
863 break;
37b5e521 864 } else {
5071f97e
DL
865 /*
866 * Item has been dropped into the ready list by the poll
867 * callback, but it's not actually ready, as far as
868 * caller requested events goes. We can remove it here.
869 */
eea1d585 870 __pm_relax(ep_wakeup_source(epi));
5071f97e 871 list_del_init(&epi->rdllink);
296e236e 872 }
5071f97e 873 }
ad9366b1
AV
874 ep_done_scan(ep, &txlist);
875 mutex_unlock(&ep->mtx);
876 return res;
5071f97e
DL
877}
878
37b5e521
JB
879/*
880 * Differs from ep_eventpoll_poll() in that internal callers already have
881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882 * is correctly annotated.
883 */
d85e2aa2 884static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
bec1a502 885 int depth)
11c5ad0e 886{
ad9366b1 887 struct file *file = epi->ffd.file;
1ec09974 888 __poll_t res;
7699acd1 889
450d89ec 890 pt->_key = epi->event.events;
ad9366b1
AV
891 if (!is_file_epoll(file))
892 res = vfs_poll(file, pt);
893 else
894 res = __ep_eventpoll_poll(file, pt, depth);
1ec09974 895 return res & epi->event.events;
450d89ec 896}
a11e1d43 897
a11e1d43 898static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
11c5ad0e 899{
ad9366b1 900 return __ep_eventpoll_poll(file, wait, 0);
7699acd1
DL
901}
902
138d22b5 903#ifdef CONFIG_PROC_FS
a3816ab0 904static void ep_show_fdinfo(struct seq_file *m, struct file *f)
138d22b5
CG
905{
906 struct eventpoll *ep = f->private_data;
907 struct rb_node *rbp;
138d22b5
CG
908
909 mutex_lock(&ep->mtx);
b2ac2ea6 910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
138d22b5 911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
77493f04 912 struct inode *inode = file_inode(epi->ffd.file);
138d22b5 913
77493f04
CG
914 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 " pos:%lli ino:%lx sdev:%x\n",
a3816ab0 916 epi->ffd.fd, epi->event.events,
77493f04
CG
917 (long long)epi->event.data,
918 (long long)epi->ffd.file->f_pos,
919 inode->i_ino, inode->i_sb->s_dev);
a3816ab0 920 if (seq_has_overflowed(m))
138d22b5
CG
921 break;
922 }
923 mutex_unlock(&ep->mtx);
138d22b5
CG
924}
925#endif
926
7699acd1
DL
927/* File callbacks that implement the eventpoll file behaviour */
928static const struct file_operations eventpoll_fops = {
138d22b5
CG
929#ifdef CONFIG_PROC_FS
930 .show_fdinfo = ep_show_fdinfo,
931#endif
7699acd1 932 .release = ep_eventpoll_release,
a11e1d43 933 .poll = ep_eventpoll_poll,
6038f373 934 .llseek = noop_llseek,
7699acd1
DL
935};
936
b611967d 937/*
7699acd1
DL
938 * This is called from eventpoll_release() to unlink files from the eventpoll
939 * interface. We need to have this facility to cleanup correctly files that are
940 * closed without being removed from the eventpoll interface.
b611967d 941 */
7699acd1 942void eventpoll_release_file(struct file *file)
b611967d 943{
7699acd1 944 struct eventpoll *ep;
44cdc1d9 945 struct epitem *epi;
58c9b016 946 bool dispose;
b611967d
DL
947
948 /*
58c9b016
PA
949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 * touching the epitems list before eventpoll_release_file() can access
951 * the ep->mtx.
b611967d 952 */
58c9b016
PA
953again:
954 spin_lock(&file->f_lock);
955 if (file->f_ep && file->f_ep->first) {
956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 epi->dying = true;
958 spin_unlock(&file->f_lock);
959
960 /*
961 * ep access is safe as we still own a reference to the ep
962 * struct
963 */
7699acd1 964 ep = epi->ep;
58c9b016
PA
965 mutex_lock(&ep->mtx);
966 dispose = __ep_remove(ep, epi, true);
d47de16c 967 mutex_unlock(&ep->mtx);
58c9b016
PA
968
969 if (dispose)
970 ep_free(ep);
971 goto again;
b611967d 972 }
58c9b016 973 spin_unlock(&file->f_lock);
b611967d
DL
974}
975
53d2be79 976static int ep_alloc(struct eventpoll **pep)
1da177e4 977{
7ef9964e 978 struct eventpoll *ep;
1da177e4 979
7ef9964e
DL
980 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
981 if (unlikely(!ep))
05f26f86 982 return -ENOMEM;
1da177e4 983
d47de16c 984 mutex_init(&ep->mtx);
a218cc49 985 rwlock_init(&ep->lock);
1da177e4
LT
986 init_waitqueue_head(&ep->wq);
987 init_waitqueue_head(&ep->poll_wait);
988 INIT_LIST_HEAD(&ep->rdllist);
b2ac2ea6 989 ep->rbr = RB_ROOT_CACHED;
d47de16c 990 ep->ovflist = EP_UNACTIVE_PTR;
05f26f86 991 ep->user = get_current_user();
58c9b016 992 refcount_set(&ep->refcount, 1);
1da177e4 993
53d2be79 994 *pep = ep;
1da177e4 995
1da177e4
LT
996 return 0;
997}
998
1da177e4 999/*
c7ea7630
DL
1000 * Search the file inside the eventpoll tree. The RB tree operations
1001 * are protected by the "mtx" mutex, and ep_find() must be called with
1002 * "mtx" held.
1da177e4
LT
1003 */
1004static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1005{
1006 int kcmp;
1da177e4
LT
1007 struct rb_node *rbp;
1008 struct epitem *epi, *epir = NULL;
1009 struct epoll_filefd ffd;
1010
b030a4dd 1011 ep_set_ffd(&ffd, file, fd);
b2ac2ea6 1012 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1da177e4 1013 epi = rb_entry(rbp, struct epitem, rbn);
b030a4dd 1014 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1da177e4
LT
1015 if (kcmp > 0)
1016 rbp = rbp->rb_right;
1017 else if (kcmp < 0)
1018 rbp = rbp->rb_left;
1019 else {
1da177e4
LT
1020 epir = epi;
1021 break;
1022 }
1023 }
1da177e4 1024
1da177e4
LT
1025 return epir;
1026}
1027
bfe3911a 1028#ifdef CONFIG_KCMP
0791e364
CG
1029static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1030{
1031 struct rb_node *rbp;
1032 struct epitem *epi;
1033
b2ac2ea6 1034 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0791e364
CG
1035 epi = rb_entry(rbp, struct epitem, rbn);
1036 if (epi->ffd.fd == tfd) {
1037 if (toff == 0)
1038 return epi;
1039 else
1040 toff--;
1041 }
1042 cond_resched();
1043 }
1044
1045 return NULL;
1046}
1047
1048struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1049 unsigned long toff)
1050{
1051 struct file *file_raw;
1052 struct eventpoll *ep;
1053 struct epitem *epi;
1054
1055 if (!is_file_epoll(file))
1056 return ERR_PTR(-EINVAL);
1057
1058 ep = file->private_data;
1059
1060 mutex_lock(&ep->mtx);
1061 epi = ep_find_tfd(ep, tfd, toff);
1062 if (epi)
1063 file_raw = epi->ffd.file;
1064 else
1065 file_raw = ERR_PTR(-ENOENT);
1066 mutex_unlock(&ep->mtx);
1067
1068 return file_raw;
1069}
bfe3911a 1070#endif /* CONFIG_KCMP */
0791e364 1071
a6c67fee 1072/*
a218cc49
RP
1073 * Adds a new entry to the tail of the list in a lockless way, i.e.
1074 * multiple CPUs are allowed to call this function concurrently.
1075 *
1076 * Beware: it is necessary to prevent any other modifications of the
1077 * existing list until all changes are completed, in other words
1078 * concurrent list_add_tail_lockless() calls should be protected
1079 * with a read lock, where write lock acts as a barrier which
1080 * makes sure all list_add_tail_lockless() calls are fully
1081 * completed.
1082 *
1083 * Also an element can be locklessly added to the list only in one
a6c67fee 1084 * direction i.e. either to the tail or to the head, otherwise
a218cc49
RP
1085 * concurrent access will corrupt the list.
1086 *
a6c67fee 1087 * Return: %false if element has been already added to the list, %true
a218cc49
RP
1088 * otherwise.
1089 */
1090static inline bool list_add_tail_lockless(struct list_head *new,
1091 struct list_head *head)
1092{
1093 struct list_head *prev;
1094
1095 /*
1096 * This is simple 'new->next = head' operation, but cmpxchg()
1097 * is used in order to detect that same element has been just
1098 * added to the list from another CPU: the winner observes
1099 * new->next == new.
1100 */
693fc06e 1101 if (!try_cmpxchg(&new->next, &new, head))
a218cc49
RP
1102 return false;
1103
1104 /*
1105 * Initially ->next of a new element must be updated with the head
1106 * (we are inserting to the tail) and only then pointers are atomically
1107 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1108 * updated before pointers are actually swapped and pointers are
1109 * swapped before prev->next is updated.
1110 */
1111
1112 prev = xchg(&head->prev, new);
1113
1114 /*
1115 * It is safe to modify prev->next and new->prev, because a new element
1116 * is added only to the tail and new->next is updated before XCHG.
1117 */
1118
1119 prev->next = new;
1120 new->prev = prev;
1121
1122 return true;
1123}
1124
a6c67fee 1125/*
a218cc49
RP
1126 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1127 * i.e. multiple CPUs are allowed to call this function concurrently.
1128 *
a6c67fee 1129 * Return: %false if epi element has been already chained, %true otherwise.
a218cc49
RP
1130 */
1131static inline bool chain_epi_lockless(struct epitem *epi)
1132{
1133 struct eventpoll *ep = epi->ep;
1134
0c54a6a4
KK
1135 /* Fast preliminary check */
1136 if (epi->next != EP_UNACTIVE_PTR)
1137 return false;
1138
a218cc49
RP
1139 /* Check that the same epi has not been just chained from another CPU */
1140 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1141 return false;
1142
1143 /* Atomically exchange tail */
1144 epi->next = xchg(&ep->ovflist, epi);
1145
1146 return true;
1147}
1148
1da177e4 1149/*
7699acd1 1150 * This is the callback that is passed to the wait queue wakeup
bf6a41db 1151 * mechanism. It is called by the stored file descriptors when they
7699acd1 1152 * have events to report.
a218cc49 1153 *
a6c67fee
RD
1154 * This callback takes a read lock in order not to contend with concurrent
1155 * events from another file descriptor, thus all modifications to ->rdllist
a218cc49
RP
1156 * or ->ovflist are lockless. Read lock is paired with the write lock from
1157 * ep_scan_ready_list(), which stops all list modifications and guarantees
1158 * that lists state is seen correctly.
1159 *
1160 * Another thing worth to mention is that ep_poll_callback() can be called
1161 * concurrently for the same @epi from different CPUs if poll table was inited
1162 * with several wait queues entries. Plural wakeup from different CPUs of a
1163 * single wait queue is serialized by wq.lock, but the case when multiple wait
1164 * queues are used should be detected accordingly. This is detected using
1165 * cmpxchg() operation.
1da177e4 1166 */
ac6424b9 1167static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1da177e4 1168{
7699acd1 1169 int pwake = 0;
7699acd1
DL
1170 struct epitem *epi = ep_item_from_wait(wait);
1171 struct eventpoll *ep = epi->ep;
3ad6f93e 1172 __poll_t pollflags = key_to_poll(key);
a218cc49 1173 unsigned long flags;
df0108c5 1174 int ewake = 0;
1da177e4 1175
a218cc49 1176 read_lock_irqsave(&ep->lock, flags);
1da177e4 1177
bf3b9f63
SS
1178 ep_set_busy_poll_napi_id(epi);
1179
7699acd1
DL
1180 /*
1181 * If the event mask does not contain any poll(2) event, we consider the
1182 * descriptor to be disabled. This condition is likely the effect of the
1183 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1184 * until the next EPOLL_CTL_MOD will be issued.
1185 */
1186 if (!(epi->event.events & ~EP_PRIVATE_BITS))
d47de16c
DL
1187 goto out_unlock;
1188
2dfa4eea
DL
1189 /*
1190 * Check the events coming with the callback. At this stage, not
1191 * every device reports the events in the "key" parameter of the
1192 * callback. We need to be able to handle both cases here, hence the
1193 * test for "key" != NULL before the event match test.
1194 */
3ad6f93e 1195 if (pollflags && !(pollflags & epi->event.events))
2dfa4eea
DL
1196 goto out_unlock;
1197
d47de16c 1198 /*
bf6a41db 1199 * If we are transferring events to userspace, we can hold no locks
d47de16c 1200 * (because we're accessing user memory, and because of linux f_op->poll()
bf6a41db 1201 * semantics). All the events that happen during that period of time are
d47de16c
DL
1202 * chained in ep->ovflist and requeued later on.
1203 */
c5a282e9 1204 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
0c54a6a4
KK
1205 if (chain_epi_lockless(epi))
1206 ep_pm_stay_awake_rcu(epi);
1207 } else if (!ep_is_linked(epi)) {
1208 /* In the usual case, add event to ready list. */
1209 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
c3e320b6 1210 ep_pm_stay_awake_rcu(epi);
4d7e30d9 1211 }
7699acd1 1212
7699acd1
DL
1213 /*
1214 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1215 * wait list.
1216 */
df0108c5 1217 if (waitqueue_active(&ep->wq)) {
b6a515c8 1218 if ((epi->event.events & EPOLLEXCLUSIVE) &&
3ad6f93e
AV
1219 !(pollflags & POLLFREE)) {
1220 switch (pollflags & EPOLLINOUT_BITS) {
a9a08845
LT
1221 case EPOLLIN:
1222 if (epi->event.events & EPOLLIN)
b6a515c8
JB
1223 ewake = 1;
1224 break;
a9a08845
LT
1225 case EPOLLOUT:
1226 if (epi->event.events & EPOLLOUT)
b6a515c8
JB
1227 ewake = 1;
1228 break;
1229 case 0:
1230 ewake = 1;
1231 break;
1232 }
1233 }
a218cc49 1234 wake_up(&ep->wq);
df0108c5 1235 }
7699acd1
DL
1236 if (waitqueue_active(&ep->poll_wait))
1237 pwake++;
1238
d47de16c 1239out_unlock:
a218cc49 1240 read_unlock_irqrestore(&ep->lock, flags);
1da177e4 1241
7699acd1
DL
1242 /* We have to call this outside the lock */
1243 if (pwake)
caf1aeaf 1244 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
7699acd1 1245
138e4ad6
ON
1246 if (!(epi->event.events & EPOLLEXCLUSIVE))
1247 ewake = 1;
1248
3ad6f93e 1249 if (pollflags & POLLFREE) {
138e4ad6
ON
1250 /*
1251 * If we race with ep_remove_wait_queue() it can miss
1252 * ->whead = NULL and do another remove_wait_queue() after
1253 * us, so we can't use __remove_wait_queue().
1254 */
1255 list_del_init(&wait->entry);
1256 /*
58c9b016
PA
1257 * ->whead != NULL protects us from the race with
1258 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1259 * takes whead->lock held by the caller. Once we nullify it,
1260 * nothing protects ep/epi or even wait.
138e4ad6
ON
1261 */
1262 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1263 }
df0108c5 1264
138e4ad6 1265 return ewake;
7699acd1 1266}
1da177e4
LT
1267
1268/*
1269 * This is the callback that is used to add our wait queue to the
1270 * target file wakeup lists.
1271 */
1272static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1273 poll_table *pt)
1274{
364f374f
AV
1275 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1276 struct epitem *epi = epq->epi;
1da177e4
LT
1277 struct eppoll_entry *pwq;
1278
364f374f
AV
1279 if (unlikely(!epi)) // an earlier allocation has failed
1280 return;
1281
1282 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1283 if (unlikely(!pwq)) {
1284 epq->epi = NULL;
1285 return;
296e236e 1286 }
364f374f
AV
1287
1288 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1289 pwq->whead = whead;
1290 pwq->base = epi;
1291 if (epi->event.events & EPOLLEXCLUSIVE)
1292 add_wait_queue_exclusive(whead, &pwq->wait);
1293 else
1294 add_wait_queue(whead, &pwq->wait);
1295 pwq->next = epi->pwqlist;
1296 epi->pwqlist = pwq;
1da177e4
LT
1297}
1298
1da177e4
LT
1299static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1300{
1301 int kcmp;
b2ac2ea6 1302 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1da177e4 1303 struct epitem *epic;
b2ac2ea6 1304 bool leftmost = true;
1da177e4
LT
1305
1306 while (*p) {
1307 parent = *p;
1308 epic = rb_entry(parent, struct epitem, rbn);
b030a4dd 1309 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
b2ac2ea6 1310 if (kcmp > 0) {
1da177e4 1311 p = &parent->rb_right;
b2ac2ea6
DB
1312 leftmost = false;
1313 } else
1da177e4
LT
1314 p = &parent->rb_left;
1315 }
1316 rb_link_node(&epi->rbn, parent, p);
b2ac2ea6 1317 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1da177e4
LT
1318}
1319
a80a6b85
AM
1320
1321
28d82dc1
JB
1322#define PATH_ARR_SIZE 5
1323/*
1324 * These are the number paths of length 1 to 5, that we are allowing to emanate
1325 * from a single file of interest. For example, we allow 1000 paths of length
1326 * 1, to emanate from each file of interest. This essentially represents the
1327 * potential wakeup paths, which need to be limited in order to avoid massive
1328 * uncontrolled wakeup storms. The common use case should be a single ep which
1329 * is connected to n file sources. In this case each file source has 1 path
1330 * of length 1. Thus, the numbers below should be more than sufficient. These
1331 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
d4cb626d 1332 * and delete can't add additional paths. Protected by the epnested_mutex.
28d82dc1
JB
1333 */
1334static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1335static int path_count[PATH_ARR_SIZE];
1336
1337static int path_count_inc(int nests)
1338{
93dc6107
JB
1339 /* Allow an arbitrary number of depth 1 paths */
1340 if (nests == 0)
1341 return 0;
1342
28d82dc1
JB
1343 if (++path_count[nests] > path_limits[nests])
1344 return -1;
1345 return 0;
1346}
1347
1348static void path_count_init(void)
1349{
1350 int i;
1351
1352 for (i = 0; i < PATH_ARR_SIZE; i++)
1353 path_count[i] = 0;
1354}
1355
319c1517 1356static int reverse_path_check_proc(struct hlist_head *refs, int depth)
28d82dc1
JB
1357{
1358 int error = 0;
28d82dc1
JB
1359 struct epitem *epi;
1360
0c320f77 1361 if (depth > EP_MAX_NESTS) /* too deep nesting */
99d84d43
AV
1362 return -1;
1363
ae10b2b4 1364 /* CTL_DEL can remove links here, but that can't increase our count */
319c1517
AV
1365 hlist_for_each_entry_rcu(epi, refs, fllink) {
1366 struct hlist_head *refs = &epi->ep->refs;
1367 if (hlist_empty(refs))
d16312a4
AV
1368 error = path_count_inc(depth);
1369 else
319c1517 1370 error = reverse_path_check_proc(refs, depth + 1);
d16312a4
AV
1371 if (error != 0)
1372 break;
28d82dc1
JB
1373 }
1374 return error;
1375}
1376
1377/**
319c1517 1378 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
28d82dc1
JB
1379 * links that are proposed to be newly added. We need to
1380 * make sure that those added links don't add too many
1381 * paths such that we will spend all our time waking up
1382 * eventpoll objects.
1383 *
a6c67fee
RD
1384 * Return: %zero if the proposed links don't create too many paths,
1385 * %-1 otherwise.
28d82dc1
JB
1386 */
1387static int reverse_path_check(void)
1388{
319c1517 1389 struct epitems_head *p;
28d82dc1 1390
319c1517
AV
1391 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1392 int error;
28d82dc1 1393 path_count_init();
b62d2706 1394 rcu_read_lock();
319c1517 1395 error = reverse_path_check_proc(&p->epitems, 0);
b62d2706 1396 rcu_read_unlock();
28d82dc1 1397 if (error)
319c1517 1398 return error;
28d82dc1 1399 }
319c1517 1400 return 0;
28d82dc1
JB
1401}
1402
4d7e30d9
AH
1403static int ep_create_wakeup_source(struct epitem *epi)
1404{
3701cb59 1405 struct name_snapshot n;
eea1d585 1406 struct wakeup_source *ws;
4d7e30d9
AH
1407
1408 if (!epi->ep->ws) {
c8377adf 1409 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
4d7e30d9
AH
1410 if (!epi->ep->ws)
1411 return -ENOMEM;
1412 }
1413
3701cb59
AV
1414 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1415 ws = wakeup_source_register(NULL, n.name.name);
1416 release_dentry_name_snapshot(&n);
eea1d585
EW
1417
1418 if (!ws)
4d7e30d9 1419 return -ENOMEM;
eea1d585 1420 rcu_assign_pointer(epi->ws, ws);
4d7e30d9
AH
1421
1422 return 0;
1423}
1424
eea1d585
EW
1425/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1426static noinline void ep_destroy_wakeup_source(struct epitem *epi)
4d7e30d9 1427{
eea1d585
EW
1428 struct wakeup_source *ws = ep_wakeup_source(epi);
1429
d6d67e72 1430 RCU_INIT_POINTER(epi->ws, NULL);
eea1d585
EW
1431
1432 /*
1433 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1434 * used internally by wakeup_source_remove, too (called by
1435 * wakeup_source_unregister), so we cannot use call_rcu
1436 */
1437 synchronize_rcu();
1438 wakeup_source_unregister(ws);
4d7e30d9
AH
1439}
1440
319c1517
AV
1441static int attach_epitem(struct file *file, struct epitem *epi)
1442{
1443 struct epitems_head *to_free = NULL;
1444 struct hlist_head *head = NULL;
1445 struct eventpoll *ep = NULL;
1446
1447 if (is_file_epoll(file))
1448 ep = file->private_data;
1449
1450 if (ep) {
1451 head = &ep->refs;
1452 } else if (!READ_ONCE(file->f_ep)) {
1453allocate:
1454 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1455 if (!to_free)
1456 return -ENOMEM;
1457 head = &to_free->epitems;
1458 }
1459 spin_lock(&file->f_lock);
1460 if (!file->f_ep) {
1461 if (unlikely(!head)) {
1462 spin_unlock(&file->f_lock);
1463 goto allocate;
1464 }
1465 file->f_ep = head;
1466 to_free = NULL;
1467 }
1468 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1469 spin_unlock(&file->f_lock);
1470 free_ephead(to_free);
1471 return 0;
1472}
1473
c7ea7630
DL
1474/*
1475 * Must be called with "mtx" held.
1476 */
bec1a502 1477static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
67347fe4 1478 struct file *tfile, int fd, int full_check)
1da177e4 1479{
d85e2aa2
AV
1480 int error, pwake = 0;
1481 __poll_t revents;
1da177e4
LT
1482 struct epitem *epi;
1483 struct ep_pqueue epq;
85353e91
AV
1484 struct eventpoll *tep = NULL;
1485
1486 if (is_file_epoll(tfile))
1487 tep = tfile->private_data;
1da177e4 1488
92e64178
DB
1489 lockdep_assert_irqs_enabled();
1490
1e1c1583
NP
1491 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1492 max_user_watches) >= 0))
7ef9964e 1493 return -ENOSPC;
1e1c1583
NP
1494 percpu_counter_inc(&ep->user->epoll_watches);
1495
1496 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1497 percpu_counter_dec(&ep->user->epoll_watches);
7ef9964e 1498 return -ENOMEM;
1e1c1583 1499 }
1da177e4
LT
1500
1501 /* Item initialization follow here ... */
1da177e4 1502 INIT_LIST_HEAD(&epi->rdllink);
1da177e4 1503 epi->ep = ep;
b030a4dd 1504 ep_set_ffd(&epi->ffd, tfile, fd);
1da177e4 1505 epi->event = *event;
d47de16c 1506 epi->next = EP_UNACTIVE_PTR;
1da177e4 1507
85353e91
AV
1508 if (tep)
1509 mutex_lock_nested(&tep->mtx, 1);
f8d4f44d 1510 /* Add the current item to the list of active epoll hook for this file */
319c1517 1511 if (unlikely(attach_epitem(tfile, epi) < 0)) {
319c1517
AV
1512 if (tep)
1513 mutex_unlock(&tep->mtx);
1e1c1583
NP
1514 kmem_cache_free(epi_cache, epi);
1515 percpu_counter_dec(&ep->user->epoll_watches);
319c1517 1516 return -ENOMEM;
d9f41e3c 1517 }
f8d4f44d 1518
319c1517
AV
1519 if (full_check && !tep)
1520 list_file(tfile);
1521
f8d4f44d
AV
1522 /*
1523 * Add the current item to the RB tree. All RB tree operations are
1524 * protected by "mtx", and ep_insert() is called with "mtx" held.
1525 */
1526 ep_rbtree_insert(ep, epi);
85353e91
AV
1527 if (tep)
1528 mutex_unlock(&tep->mtx);
f8d4f44d 1529
58c9b016
PA
1530 /*
1531 * ep_remove_safe() calls in the later error paths can't lead to
1532 * ep_free() as the ep file itself still holds an ep reference.
1533 */
1534 ep_get(ep);
1535
f8d4f44d 1536 /* now check if we've created too many backpaths */
e3e096e7 1537 if (unlikely(full_check && reverse_path_check())) {
58c9b016 1538 ep_remove_safe(ep, epi);
e3e096e7
AV
1539 return -EINVAL;
1540 }
f8d4f44d 1541
d1ec50ad
AV
1542 if (epi->event.events & EPOLLWAKEUP) {
1543 error = ep_create_wakeup_source(epi);
1544 if (error) {
58c9b016 1545 ep_remove_safe(ep, epi);
d1ec50ad
AV
1546 return error;
1547 }
1548 }
f8d4f44d 1549
1da177e4
LT
1550 /* Initialize the poll table using the queue callback */
1551 epq.epi = epi;
1552 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1553
1554 /*
1555 * Attach the item to the poll hooks and get current event bits.
1556 * We can safely use the file* here because its usage count has
c7ea7630
DL
1557 * been increased by the caller of this function. Note that after
1558 * this operation completes, the poll callback can start hitting
1559 * the new item.
1da177e4 1560 */
37b5e521 1561 revents = ep_item_poll(epi, &epq.pt, 1);
1da177e4
LT
1562
1563 /*
1564 * We have to check if something went wrong during the poll wait queue
1565 * install process. Namely an allocation for a wait queue failed due
1566 * high memory pressure.
1567 */
e3e096e7 1568 if (unlikely(!epq.epi)) {
58c9b016 1569 ep_remove_safe(ep, epi);
e3e096e7
AV
1570 return -ENOMEM;
1571 }
1da177e4 1572
c7ea7630 1573 /* We have to drop the new item inside our item list to keep track of it */
a218cc49 1574 write_lock_irq(&ep->lock);
c7ea7630 1575
bf3b9f63
SS
1576 /* record NAPI ID of new item if present */
1577 ep_set_busy_poll_napi_id(epi);
1578
1da177e4 1579 /* If the file is already "ready" we drop it inside the ready list */
992991c0 1580 if (revents && !ep_is_linked(epi)) {
1da177e4 1581 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1582 ep_pm_stay_awake(epi);
1da177e4
LT
1583
1584 /* Notify waiting tasks that events are available */
1585 if (waitqueue_active(&ep->wq))
a218cc49 1586 wake_up(&ep->wq);
1da177e4
LT
1587 if (waitqueue_active(&ep->poll_wait))
1588 pwake++;
1589 }
1590
a218cc49 1591 write_unlock_irq(&ep->lock);
1da177e4
LT
1592
1593 /* We have to call this outside the lock */
1594 if (pwake)
caf1aeaf 1595 ep_poll_safewake(ep, NULL, 0);
1da177e4 1596
1da177e4 1597 return 0;
1da177e4
LT
1598}
1599
1da177e4
LT
1600/*
1601 * Modify the interest event mask by dropping an event if the new mask
c7ea7630 1602 * has a match in the current file status. Must be called with "mtx" held.
1da177e4 1603 */
bec1a502
AV
1604static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1605 const struct epoll_event *event)
1da177e4
LT
1606{
1607 int pwake = 0;
626cf236
HV
1608 poll_table pt;
1609
92e64178
DB
1610 lockdep_assert_irqs_enabled();
1611
626cf236 1612 init_poll_funcptr(&pt, NULL);
1da177e4
LT
1613
1614 /*
e057e15f
TB
1615 * Set the new event interest mask before calling f_op->poll();
1616 * otherwise we might miss an event that happens between the
1617 * f_op->poll() call and the new event set registering.
1da177e4 1618 */
128dd175 1619 epi->event.events = event->events; /* need barrier below */
e057e15f 1620 epi->event.data = event->data; /* protected by mtx */
4d7e30d9 1621 if (epi->event.events & EPOLLWAKEUP) {
eea1d585 1622 if (!ep_has_wakeup_source(epi))
4d7e30d9 1623 ep_create_wakeup_source(epi);
eea1d585 1624 } else if (ep_has_wakeup_source(epi)) {
4d7e30d9
AH
1625 ep_destroy_wakeup_source(epi);
1626 }
1da177e4 1627
128dd175
EW
1628 /*
1629 * The following barrier has two effects:
1630 *
1631 * 1) Flush epi changes above to other CPUs. This ensures
1632 * we do not miss events from ep_poll_callback if an
1633 * event occurs immediately after we call f_op->poll().
a218cc49 1634 * We need this because we did not take ep->lock while
128dd175 1635 * changing epi above (but ep_poll_callback does take
a218cc49 1636 * ep->lock).
128dd175
EW
1637 *
1638 * 2) We also need to ensure we do not miss _past_ events
1639 * when calling f_op->poll(). This barrier also
1640 * pairs with the barrier in wq_has_sleeper (see
1641 * comments for wq_has_sleeper).
1642 *
1643 * This barrier will now guarantee ep_poll_callback or f_op->poll
1644 * (or both) will notice the readiness of an item.
1645 */
1646 smp_mb();
1647
1da177e4
LT
1648 /*
1649 * Get current event bits. We can safely use the file* here because
1650 * its usage count has been increased by the caller of this function.
c7ea7630 1651 * If the item is "hot" and it is not registered inside the ready
67647d0f 1652 * list, push it inside.
1da177e4 1653 */
69112736 1654 if (ep_item_poll(epi, &pt, 1)) {
a218cc49 1655 write_lock_irq(&ep->lock);
992991c0 1656 if (!ep_is_linked(epi)) {
c7ea7630 1657 list_add_tail(&epi->rdllink, &ep->rdllist);
eea1d585 1658 ep_pm_stay_awake(epi);
c7ea7630
DL
1659
1660 /* Notify waiting tasks that events are available */
1661 if (waitqueue_active(&ep->wq))
a218cc49 1662 wake_up(&ep->wq);
c7ea7630
DL
1663 if (waitqueue_active(&ep->poll_wait))
1664 pwake++;
7699acd1 1665 }
a218cc49 1666 write_unlock_irq(&ep->lock);
7699acd1 1667 }
1da177e4 1668
7699acd1
DL
1669 /* We have to call this outside the lock */
1670 if (pwake)
caf1aeaf 1671 ep_poll_safewake(ep, NULL, 0);
1da177e4 1672
7699acd1 1673 return 0;
1da177e4
LT
1674}
1675
ff07952a
AV
1676static int ep_send_events(struct eventpoll *ep,
1677 struct epoll_event __user *events, int maxevents)
1da177e4 1678{
4e0982a0 1679 struct epitem *epi, *tmp;
ff07952a 1680 LIST_HEAD(txlist);
626cf236 1681 poll_table pt;
ff07952a 1682 int res = 0;
626cf236 1683
cccd29bf
SHY
1684 /*
1685 * Always short-circuit for fatal signals to allow threads to make a
1686 * timely exit without the chance of finding more events available and
1687 * fetching repeatedly.
1688 */
1689 if (fatal_signal_pending(current))
1690 return -EINTR;
1691
626cf236 1692 init_poll_funcptr(&pt, NULL);
ff07952a 1693
57804b1c
AV
1694 mutex_lock(&ep->mtx);
1695 ep_start_scan(ep, &txlist);
1da177e4 1696
296e236e 1697 /*
5071f97e 1698 * We can loop without lock because we are passed a task private list.
57804b1c 1699 * Items cannot vanish during the loop we are holding ep->mtx.
296e236e 1700 */
ff07952a
AV
1701 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1702 struct wakeup_source *ws;
1703 __poll_t revents;
21877e1a 1704
ff07952a 1705 if (res >= maxevents)
4e0982a0 1706 break;
d47de16c 1707
4d7e30d9
AH
1708 /*
1709 * Activate ep->ws before deactivating epi->ws to prevent
1710 * triggering auto-suspend here (in case we reactive epi->ws
1711 * below).
1712 *
1713 * This could be rearranged to delay the deactivation of epi->ws
1714 * instead, but then epi->ws would temporarily be out of sync
1715 * with ep_is_linked().
1716 */
eea1d585
EW
1717 ws = ep_wakeup_source(epi);
1718 if (ws) {
1719 if (ws->active)
1720 __pm_stay_awake(ep->ws);
1721 __pm_relax(ws);
1722 }
1723
d47de16c 1724 list_del_init(&epi->rdllink);
1da177e4 1725
296e236e 1726 /*
5071f97e 1727 * If the event mask intersect the caller-requested one,
57804b1c
AV
1728 * deliver the event to userspace. Again, we are holding ep->mtx,
1729 * so no operations coming from userspace can change the item.
296e236e 1730 */
4e0982a0
DB
1731 revents = ep_item_poll(epi, &pt, 1);
1732 if (!revents)
1733 continue;
1734
249dbe74
AB
1735 events = epoll_put_uevent(revents, epi->event.data, events);
1736 if (!events) {
ff07952a 1737 list_add(&epi->rdllink, &txlist);
4e0982a0 1738 ep_pm_stay_awake(epi);
ff07952a
AV
1739 if (!res)
1740 res = -EFAULT;
1741 break;
4e0982a0 1742 }
ff07952a 1743 res++;
4e0982a0
DB
1744 if (epi->event.events & EPOLLONESHOT)
1745 epi->event.events &= EP_PRIVATE_BITS;
1746 else if (!(epi->event.events & EPOLLET)) {
1747 /*
1748 * If this file has been added with Level
1749 * Trigger mode, we need to insert back inside
1750 * the ready list, so that the next call to
1751 * epoll_wait() will check again the events
1752 * availability. At this point, no one can insert
1753 * into ep->rdllist besides us. The epoll_ctl()
1754 * callers are locked out by
1755 * ep_scan_ready_list() holding "mtx" and the
1756 * poll callback will queue them in ep->ovflist.
1757 */
1758 list_add_tail(&epi->rdllink, &ep->rdllist);
1759 ep_pm_stay_awake(epi);
296e236e
DL
1760 }
1761 }
57804b1c
AV
1762 ep_done_scan(ep, &txlist);
1763 mutex_unlock(&ep->mtx);
5071f97e 1764
ff07952a 1765 return res;
1da177e4
LT
1766}
1767
7cdf7c20 1768static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
0781b909 1769{
7cdf7c20
WB
1770 struct timespec64 now;
1771
1772 if (ms < 0)
1773 return NULL;
1774
1775 if (!ms) {
1776 to->tv_sec = 0;
1777 to->tv_nsec = 0;
1778 return to;
1779 }
1780
1781 to->tv_sec = ms / MSEC_PER_SEC;
1782 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
0781b909 1783
766b9f92 1784 ktime_get_ts64(&now);
7cdf7c20
WB
1785 *to = timespec64_add_safe(now, *to);
1786 return to;
0781b909
ED
1787}
1788
a16ceb13
BS
1789/*
1790 * autoremove_wake_function, but remove even on failure to wake up, because we
1791 * know that default_wake_function/ttwu will only fail if the thread is already
1792 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1793 * try to reuse it.
1794 */
1795static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1796 unsigned int mode, int sync, void *key)
1797{
1798 int ret = default_wake_function(wq_entry, mode, sync, key);
1799
2192bba0
BS
1800 /*
1801 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1802 * iterations see the cause of this wakeup.
1803 */
1804 list_del_init_careful(&wq_entry->entry);
a16ceb13
BS
1805 return ret;
1806}
1807
f4d93ad7 1808/**
a6c67fee 1809 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
f4d93ad7
SB
1810 * event buffer.
1811 *
1812 * @ep: Pointer to the eventpoll context.
1813 * @events: Pointer to the userspace buffer where the ready events should be
1814 * stored.
1815 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816 * @timeout: Maximum timeout for the ready events fetch operation, in
7cdf7c20
WB
1817 * timespec. If the timeout is zero, the function will not block,
1818 * while if the @timeout ptr is NULL, the function will block
f4d93ad7
SB
1819 * until at least one event has been retrieved (or an error
1820 * occurred).
1821 *
a6c67fee 1822 * Return: the number of ready events which have been fetched, or an
f4d93ad7
SB
1823 * error code, in case of error.
1824 */
1da177e4 1825static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
7cdf7c20 1826 int maxevents, struct timespec64 *timeout)
1da177e4 1827{
e59d3c64 1828 int res, eavail, timed_out = 0;
da8b44d5 1829 u64 slack = 0;
ac6424b9 1830 wait_queue_entry_t wait;
95aac7b1
SB
1831 ktime_t expires, *to = NULL;
1832
679abf38
DB
1833 lockdep_assert_irqs_enabled();
1834
7cdf7c20
WB
1835 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1836 slack = select_estimate_accuracy(timeout);
95aac7b1 1837 to = &expires;
7cdf7c20
WB
1838 *to = timespec64_to_ktime(*timeout);
1839 } else if (timeout) {
f4d93ad7
SB
1840 /*
1841 * Avoid the unnecessary trip to the wait queue loop, if the
e59d3c64 1842 * caller specified a non blocking operation.
f4d93ad7 1843 */
95aac7b1
SB
1844 timed_out = 1;
1845 }
1da177e4 1846
e59d3c64
SHY
1847 /*
1848 * This call is racy: We may or may not see events that are being added
a6c67fee 1849 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
e59d3c64 1850 * with a non-zero timeout, this thread will check the ready list under
a6c67fee 1851 * lock and will add to the wait queue. For cases with a zero
e59d3c64
SHY
1852 * timeout, the user by definition should not care and will have to
1853 * recheck again.
1854 */
1855 eavail = ep_events_available(ep);
1856
00b27634
SHY
1857 while (1) {
1858 if (eavail) {
1859 /*
1860 * Try to transfer events to user space. In case we get
1861 * 0 events and there's still timeout left over, we go
1862 * trying again in search of more luck.
1863 */
1864 res = ep_send_events(ep, events, maxevents);
1865 if (res)
1866 return res;
1867 }
1868
1869 if (timed_out)
1870 return 0;
1871
00b27634 1872 eavail = ep_busy_loop(ep, timed_out);
e8c85328 1873 if (eavail)
00b27634 1874 continue;
1da177e4 1875
2efdaf76
SHY
1876 if (signal_pending(current))
1877 return -EINTR;
1878
412895f0
RP
1879 /*
1880 * Internally init_wait() uses autoremove_wake_function(),
1881 * thus wait entry is removed from the wait queue on each
1882 * wakeup. Why it is important? In case of several waiters
1883 * each new wakeup will hit the next waiter, giving it the
1884 * chance to harvest new event. Otherwise wakeup can be
1885 * lost. This is also good performance-wise, because on
1886 * normal wakeup path no need to call __remove_wait_queue()
1887 * explicitly, thus ep->lock is not taken, which halts the
1888 * event delivery.
a16ceb13
BS
1889 *
1890 * In fact, we now use an even more aggressive function that
1891 * unconditionally removes, because we don't reuse the wait
1892 * entry between loop iterations. This lets us also avoid the
1893 * performance issue if a process is killed, causing all of its
1894 * threads to wake up without being removed normally.
412895f0
RP
1895 */
1896 init_wait(&wait);
a16ceb13 1897 wait.func = ep_autoremove_wake_function;
1da177e4 1898
65759097 1899 write_lock_irq(&ep->lock);
bf3b9f63 1900 /*
65759097
RP
1901 * Barrierless variant, waitqueue_active() is called under
1902 * the same lock on wakeup ep_poll_callback() side, so it
1903 * is safe to avoid an explicit barrier.
bf3b9f63 1904 */
65759097
RP
1905 __set_current_state(TASK_INTERRUPTIBLE);
1906
1da177e4 1907 /*
65759097
RP
1908 * Do the final check under the lock. ep_scan_ready_list()
1909 * plays with two lists (->rdllist and ->ovflist) and there
1910 * is always a race when both lists are empty for short
1911 * period of time although events are pending, so lock is
1912 * important.
1da177e4 1913 */
65759097 1914 eavail = ep_events_available(ep);
2efdaf76
SHY
1915 if (!eavail)
1916 __add_wait_queue_exclusive(&ep->wq, &wait);
1917
65759097 1918 write_unlock_irq(&ep->lock);
95aac7b1 1919
2efdaf76 1920 if (!eavail)
289caf5d
SHY
1921 timed_out = !schedule_hrtimeout_range(to, slack,
1922 HRTIMER_MODE_ABS);
e411596d 1923 __set_current_state(TASK_RUNNING);
1da177e4 1924
289caf5d
SHY
1925 /*
1926 * We were woken up, thus go and try to harvest some events.
1927 * If timed out and still on the wait queue, recheck eavail
1928 * carefully under lock, below.
1929 */
412895f0 1930 eavail = 1;
1da177e4 1931
e8c85328
SHY
1932 if (!list_empty_careful(&wait.entry)) {
1933 write_lock_irq(&ep->lock);
1934 /*
1935 * If the thread timed out and is not on the wait queue,
1936 * it means that the thread was woken up after its
1937 * timeout expired before it could reacquire the lock.
1938 * Thus, when wait.entry is empty, it needs to harvest
1939 * events.
1940 */
1941 if (timed_out)
1942 eavail = list_empty(&wait.entry);
1943 __remove_wait_queue(&ep->wq, &wait);
1944 write_unlock_irq(&ep->lock);
1945 }
00b27634 1946 }
1da177e4
LT
1947}
1948
22bacca4 1949/**
773318ed 1950 * ep_loop_check_proc - verify that adding an epoll file inside another
a6c67fee 1951 * epoll structure does not violate the constraints, in
22bacca4
DL
1952 * terms of closed loops, or too deep chains (which can
1953 * result in excessive stack usage).
1954 *
a6c67fee 1955 * @ep: the &struct eventpoll to be currently checked.
bde03c4c 1956 * @depth: Current depth of the path being checked.
22bacca4 1957 *
a6c67fee
RD
1958 * Return: %zero if adding the epoll @file inside current epoll
1959 * structure @ep does not violate the constraints, or %-1 otherwise.
22bacca4 1960 */
bde03c4c 1961static int ep_loop_check_proc(struct eventpoll *ep, int depth)
22bacca4
DL
1962{
1963 int error = 0;
22bacca4
DL
1964 struct rb_node *rbp;
1965 struct epitem *epi;
1966
773318ed 1967 mutex_lock_nested(&ep->mtx, depth + 1);
18306c40 1968 ep->gen = loop_check_gen;
b2ac2ea6 1969 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
22bacca4
DL
1970 epi = rb_entry(rbp, struct epitem, rbn);
1971 if (unlikely(is_file_epoll(epi->ffd.file))) {
bde03c4c 1972 struct eventpoll *ep_tovisit;
28d82dc1 1973 ep_tovisit = epi->ffd.file->private_data;
18306c40 1974 if (ep_tovisit->gen == loop_check_gen)
28d82dc1 1975 continue;
bde03c4c 1976 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
56c428ca 1977 error = -1;
bde03c4c
AV
1978 else
1979 error = ep_loop_check_proc(ep_tovisit, depth + 1);
22bacca4
DL
1980 if (error != 0)
1981 break;
28d82dc1
JB
1982 } else {
1983 /*
1984 * If we've reached a file that is not associated with
1985 * an ep, then we need to check if the newly added
1986 * links are going to add too many wakeup paths. We do
1987 * this by adding it to the tfile_check_list, if it's
1988 * not already there, and calling reverse_path_check()
1989 * during ep_insert().
1990 */
319c1517 1991 list_file(epi->ffd.file);
22bacca4
DL
1992 }
1993 }
1994 mutex_unlock(&ep->mtx);
1995
1996 return error;
1997}
1998
1999/**
bde03c4c 2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
a6c67fee 2001 * into another epoll file (represented by @ep) does not create
22bacca4
DL
2002 * closed loops or too deep chains.
2003 *
a6c67fee 2004 * @ep: Pointer to the epoll we are inserting into.
bde03c4c 2005 * @to: Pointer to the epoll to be inserted.
22bacca4 2006 *
a6c67fee
RD
2007 * Return: %zero if adding the epoll @to inside the epoll @from
2008 * does not violate the constraints, or %-1 otherwise.
22bacca4 2009 */
bde03c4c 2010static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
22bacca4 2011{
6a3890c4 2012 inserting_into = ep;
bde03c4c 2013 return ep_loop_check_proc(to, 0);
28d82dc1
JB
2014}
2015
2016static void clear_tfile_check_list(void)
2017{
319c1517
AV
2018 rcu_read_lock();
2019 while (tfile_check_list != EP_UNACTIVE_PTR) {
2020 struct epitems_head *head = tfile_check_list;
2021 tfile_check_list = head->next;
2022 unlist_file(head);
28d82dc1 2023 }
319c1517 2024 rcu_read_unlock();
22bacca4
DL
2025}
2026
7699acd1 2027/*
523723bb 2028 * Open an eventpoll file descriptor.
7699acd1 2029 */
791eb22e 2030static int do_epoll_create(int flags)
7699acd1 2031{
28d82dc1 2032 int error, fd;
bb57c3ed 2033 struct eventpoll *ep = NULL;
28d82dc1 2034 struct file *file;
7699acd1 2035
e38b36f3
UD
2036 /* Check the EPOLL_* constant for consistency. */
2037 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2038
296e236e
DL
2039 if (flags & ~EPOLL_CLOEXEC)
2040 return -EINVAL;
7699acd1 2041 /*
bb57c3ed 2042 * Create the internal data structure ("struct eventpoll").
7699acd1 2043 */
9fe5ad9c 2044 error = ep_alloc(&ep);
bb57c3ed
DL
2045 if (error < 0)
2046 return error;
7699acd1
DL
2047 /*
2048 * Creates all the items needed to setup an eventpoll file. That is,
2030a42c 2049 * a file structure and a free file descriptor.
7699acd1 2050 */
28d82dc1
JB
2051 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2052 if (fd < 0) {
2053 error = fd;
2054 goto out_free_ep;
2055 }
2056 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
628ff7c1 2057 O_RDWR | (flags & O_CLOEXEC));
28d82dc1
JB
2058 if (IS_ERR(file)) {
2059 error = PTR_ERR(file);
2060 goto out_free_fd;
2061 }
28d82dc1 2062 ep->file = file;
98022748 2063 fd_install(fd, file);
28d82dc1
JB
2064 return fd;
2065
2066out_free_fd:
2067 put_unused_fd(fd);
2068out_free_ep:
58c9b016 2069 ep_clear_and_put(ep);
bb57c3ed 2070 return error;
7699acd1
DL
2071}
2072
791eb22e
DB
2073SYSCALL_DEFINE1(epoll_create1, int, flags)
2074{
2075 return do_epoll_create(flags);
2076}
2077
5a8a82b1 2078SYSCALL_DEFINE1(epoll_create, int, size)
a0998b50 2079{
bfe3891a 2080 if (size <= 0)
9fe5ad9c
UD
2081 return -EINVAL;
2082
791eb22e 2083 return do_epoll_create(0);
a0998b50
UD
2084}
2085
063f3ed9
PD
2086#ifdef CONFIG_PM_SLEEP
2087static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2088{
2089 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2090 epev->events &= ~EPOLLWAKEUP;
2091}
2092#else
2093static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2094{
2095 epev->events &= ~EPOLLWAKEUP;
2096}
2097#endif
2098
39220e8d
JA
2099static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2100 bool nonblock)
2101{
2102 if (!nonblock) {
2103 mutex_lock_nested(mutex, depth);
2104 return 0;
2105 }
2106 if (mutex_trylock(mutex))
2107 return 0;
2108 return -EAGAIN;
2109}
2110
2111int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2112 bool nonblock)
7699acd1
DL
2113{
2114 int error;
67347fe4 2115 int full_check = 0;
7e3fb584 2116 struct fd f, tf;
7699acd1
DL
2117 struct eventpoll *ep;
2118 struct epitem *epi;
67347fe4 2119 struct eventpoll *tep = NULL;
7699acd1 2120
7699acd1 2121 error = -EBADF;
7e3fb584
AV
2122 f = fdget(epfd);
2123 if (!f.file)
7699acd1
DL
2124 goto error_return;
2125
2126 /* Get the "struct file *" for the target file */
7e3fb584
AV
2127 tf = fdget(fd);
2128 if (!tf.file)
7699acd1
DL
2129 goto error_fput;
2130
2131 /* The target file descriptor must support poll */
2132 error = -EPERM;
9965ed17 2133 if (!file_can_poll(tf.file))
7699acd1
DL
2134 goto error_tgt_fput;
2135
4d7e30d9 2136 /* Check if EPOLLWAKEUP is allowed */
c680e41b 2137 if (ep_op_has_event(op))
58e41a44 2138 ep_take_care_of_epollwakeup(epds);
4d7e30d9 2139
7699acd1
DL
2140 /*
2141 * We have to check that the file structure underneath the file descriptor
2142 * the user passed to us _is_ an eventpoll file. And also we do not permit
2143 * adding an epoll file descriptor inside itself.
2144 */
2145 error = -EINVAL;
7e3fb584 2146 if (f.file == tf.file || !is_file_epoll(f.file))
7699acd1
DL
2147 goto error_tgt_fput;
2148
df0108c5
JB
2149 /*
2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2152 * Also, we do not currently supported nested exclusive wakeups.
2153 */
58e41a44 2154 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
b6a515c8
JB
2155 if (op == EPOLL_CTL_MOD)
2156 goto error_tgt_fput;
2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
58e41a44 2158 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
b6a515c8
JB
2159 goto error_tgt_fput;
2160 }
df0108c5 2161
7699acd1
DL
2162 /*
2163 * At this point it is safe to assume that the "private_data" contains
2164 * our own data structure.
2165 */
7e3fb584 2166 ep = f.file->private_data;
7699acd1 2167
22bacca4 2168 /*
a6c67fee
RD
2169 * When we insert an epoll file descriptor inside another epoll file
2170 * descriptor, there is the chance of creating closed loops, which are
28d82dc1
JB
2171 * better be handled here, than in more critical paths. While we are
2172 * checking for loops we also determine the list of files reachable
2173 * and hang them on the tfile_check_list, so we can check that we
2174 * haven't created too many possible wakeup paths.
22bacca4 2175 *
67347fe4
JB
2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2177 * the epoll file descriptor is attaching directly to a wakeup source,
2178 * unless the epoll file descriptor is nested. The purpose of taking the
d4cb626d 2179 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
67347fe4
JB
2180 * deep wakeup paths from forming in parallel through multiple
2181 * EPOLL_CTL_ADD operations.
22bacca4 2182 */
39220e8d
JA
2183 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2184 if (error)
2185 goto error_tgt_fput;
28d82dc1 2186 if (op == EPOLL_CTL_ADD) {
319c1517
AV
2187 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2188 is_file_epoll(tf.file)) {
67347fe4 2189 mutex_unlock(&ep->mtx);
d4cb626d 2190 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
39220e8d
JA
2191 if (error)
2192 goto error_tgt_fput;
18306c40 2193 loop_check_gen++;
39220e8d 2194 full_check = 1;
67347fe4 2195 if (is_file_epoll(tf.file)) {
bde03c4c 2196 tep = tf.file->private_data;
67347fe4 2197 error = -ELOOP;
bde03c4c 2198 if (ep_loop_check(ep, tep) != 0)
67347fe4 2199 goto error_tgt_fput;
a9ed4a65 2200 }
39220e8d 2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
52c47969 2202 if (error)
39220e8d 2203 goto error_tgt_fput;
67347fe4
JB
2204 }
2205 }
7699acd1 2206
67647d0f 2207 /*
a6c67fee 2208 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
67647d0f
DL
2209 * above, we can be sure to be able to use the item looked up by
2210 * ep_find() till we release the mutex.
2211 */
7e3fb584 2212 epi = ep_find(ep, tf.file, fd);
7699acd1
DL
2213
2214 error = -EINVAL;
2215 switch (op) {
2216 case EPOLL_CTL_ADD:
2217 if (!epi) {
58e41a44
JA
2218 epds->events |= EPOLLERR | EPOLLHUP;
2219 error = ep_insert(ep, epds, tf.file, fd, full_check);
7699acd1
DL
2220 } else
2221 error = -EEXIST;
2222 break;
2223 case EPOLL_CTL_DEL:
58c9b016
PA
2224 if (epi) {
2225 /*
2226 * The eventpoll itself is still alive: the refcount
2227 * can't go to zero here.
2228 */
2229 ep_remove_safe(ep, epi);
2230 error = 0;
2231 } else {
7699acd1 2232 error = -ENOENT;
58c9b016 2233 }
7699acd1
DL
2234 break;
2235 case EPOLL_CTL_MOD:
2236 if (epi) {
b6a515c8 2237 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
58e41a44
JA
2238 epds->events |= EPOLLERR | EPOLLHUP;
2239 error = ep_modify(ep, epi, epds);
b6a515c8 2240 }
7699acd1
DL
2241 } else
2242 error = -ENOENT;
2243 break;
2244 }
d47de16c 2245 mutex_unlock(&ep->mtx);
7699acd1
DL
2246
2247error_tgt_fput:
52c47969
AV
2248 if (full_check) {
2249 clear_tfile_check_list();
18306c40 2250 loop_check_gen++;
d4cb626d 2251 mutex_unlock(&epnested_mutex);
52c47969 2252 }
22bacca4 2253
7e3fb584 2254 fdput(tf);
7699acd1 2255error_fput:
7e3fb584 2256 fdput(f);
7699acd1 2257error_return:
7699acd1
DL
2258
2259 return error;
2260}
2261
58e41a44
JA
2262/*
2263 * The following function implements the controller interface for
2264 * the eventpoll file that enables the insertion/removal/change of
2265 * file descriptors inside the interest set.
2266 */
2267SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2268 struct epoll_event __user *, event)
2269{
2270 struct epoll_event epds;
2271
2272 if (ep_op_has_event(op) &&
2273 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2274 return -EFAULT;
2275
39220e8d 2276 return do_epoll_ctl(epfd, op, fd, &epds, false);
58e41a44
JA
2277}
2278
7699acd1
DL
2279/*
2280 * Implement the event wait interface for the eventpoll file. It is the kernel
2281 * part of the user space epoll_wait(2).
2282 */
791eb22e 2283static int do_epoll_wait(int epfd, struct epoll_event __user *events,
7cdf7c20 2284 int maxevents, struct timespec64 *to)
7699acd1 2285{
2903ff01
AV
2286 int error;
2287 struct fd f;
7699acd1
DL
2288 struct eventpoll *ep;
2289
7699acd1
DL
2290 /* The maximum number of event must be greater than zero */
2291 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2292 return -EINVAL;
2293
2294 /* Verify that the area passed by the user is writeable */
96d4f267 2295 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2903ff01 2296 return -EFAULT;
7699acd1
DL
2297
2298 /* Get the "struct file *" for the eventpoll file */
2903ff01
AV
2299 f = fdget(epfd);
2300 if (!f.file)
2301 return -EBADF;
7699acd1
DL
2302
2303 /*
2304 * We have to check that the file structure underneath the fd
2305 * the user passed to us _is_ an eventpoll file.
2306 */
2307 error = -EINVAL;
2903ff01 2308 if (!is_file_epoll(f.file))
7699acd1
DL
2309 goto error_fput;
2310
2311 /*
2312 * At this point it is safe to assume that the "private_data" contains
2313 * our own data structure.
2314 */
2903ff01 2315 ep = f.file->private_data;
7699acd1
DL
2316
2317 /* Time to fish for events ... */
7cdf7c20 2318 error = ep_poll(ep, events, maxevents, to);
7699acd1
DL
2319
2320error_fput:
2903ff01 2321 fdput(f);
7699acd1
DL
2322 return error;
2323}
2324
791eb22e
DB
2325SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2326 int, maxevents, int, timeout)
2327{
7cdf7c20
WB
2328 struct timespec64 to;
2329
2330 return do_epoll_wait(epfd, events, maxevents,
2331 ep_timeout_to_timespec(&to, timeout));
791eb22e
DB
2332}
2333
7699acd1
DL
2334/*
2335 * Implement the event wait interface for the eventpoll file. It is the kernel
2336 * part of the user space epoll_pwait(2).
2337 */
58169a52
WB
2338static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2339 int maxevents, struct timespec64 *to,
2340 const sigset_t __user *sigmask, size_t sigsetsize)
7699acd1
DL
2341{
2342 int error;
7699acd1
DL
2343
2344 /*
2345 * If the caller wants a certain signal mask to be set during the wait,
2346 * we apply it here.
2347 */
b772434b 2348 error = set_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2349 if (error)
2350 return error;
7699acd1 2351
58169a52 2352 error = do_epoll_wait(epfd, events, maxevents, to);
7cdf7c20 2353
b772434b 2354 restore_saved_sigmask_unless(error == -EINTR);
7699acd1
DL
2355
2356 return error;
2357}
2358
58169a52
WB
2359SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2360 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2361 size_t, sigsetsize)
35280bd4 2362{
7cdf7c20 2363 struct timespec64 to;
58169a52
WB
2364
2365 return do_epoll_pwait(epfd, events, maxevents,
2366 ep_timeout_to_timespec(&to, timeout),
2367 sigmask, sigsetsize);
2368}
2369
2370SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2371 int, maxevents, const struct __kernel_timespec __user *, timeout,
2372 const sigset_t __user *, sigmask, size_t, sigsetsize)
2373{
2374 struct timespec64 ts, *to = NULL;
2375
2376 if (timeout) {
2377 if (get_timespec64(&ts, timeout))
2378 return -EFAULT;
2379 to = &ts;
2380 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2381 return -EINVAL;
2382 }
2383
2384 return do_epoll_pwait(epfd, events, maxevents, to,
2385 sigmask, sigsetsize);
2386}
2387
2388#ifdef CONFIG_COMPAT
2389static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2390 int maxevents, struct timespec64 *timeout,
2391 const compat_sigset_t __user *sigmask,
2392 compat_size_t sigsetsize)
2393{
35280bd4 2394 long err;
35280bd4
AV
2395
2396 /*
2397 * If the caller wants a certain signal mask to be set during the wait,
2398 * we apply it here.
2399 */
b772434b 2400 err = set_compat_user_sigmask(sigmask, sigsetsize);
ded653cc
DD
2401 if (err)
2402 return err;
35280bd4 2403
58169a52 2404 err = do_epoll_wait(epfd, events, maxevents, timeout);
7cdf7c20 2405
b772434b 2406 restore_saved_sigmask_unless(err == -EINTR);
35280bd4
AV
2407
2408 return err;
2409}
58169a52
WB
2410
2411COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2412 struct epoll_event __user *, events,
2413 int, maxevents, int, timeout,
2414 const compat_sigset_t __user *, sigmask,
2415 compat_size_t, sigsetsize)
2416{
2417 struct timespec64 to;
2418
2419 return do_compat_epoll_pwait(epfd, events, maxevents,
2420 ep_timeout_to_timespec(&to, timeout),
2421 sigmask, sigsetsize);
2422}
2423
2424COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2425 struct epoll_event __user *, events,
2426 int, maxevents,
2427 const struct __kernel_timespec __user *, timeout,
2428 const compat_sigset_t __user *, sigmask,
2429 compat_size_t, sigsetsize)
2430{
2431 struct timespec64 ts, *to = NULL;
2432
2433 if (timeout) {
2434 if (get_timespec64(&ts, timeout))
2435 return -EFAULT;
2436 to = &ts;
2437 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2438 return -EINVAL;
2439 }
2440
2441 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2442 sigmask, sigsetsize);
2443}
2444
35280bd4
AV
2445#endif
2446
1da177e4
LT
2447static int __init eventpoll_init(void)
2448{
7ef9964e
DL
2449 struct sysinfo si;
2450
2451 si_meminfo(&si);
9df04e1f
DL
2452 /*
2453 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2454 */
2455 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
7ef9964e 2456 EP_ITEM_COST;
52bd19f7 2457 BUG_ON(max_user_watches < 0);
1da177e4 2458
39732ca5
EW
2459 /*
2460 * We can have many thousands of epitems, so prevent this from
2461 * using an extra cache line on 64-bit (and smaller) CPUs
2462 */
2463 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2464
1da177e4
LT
2465 /* Allocates slab cache used to allocate "struct epitem" items */
2466 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2ae928a9 2467 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
2468
2469 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2470 pwq_cache = kmem_cache_create("eventpoll_pwq",
2ae928a9 2471 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
a8f5de89 2472 epoll_sysctls_init();
1da177e4 2473
319c1517
AV
2474 ephead_cache = kmem_cache_create("ep_head",
2475 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476
1da177e4 2477 return 0;
1da177e4 2478}
cea69241 2479fs_initcall(eventpoll_init);