blk-mq: fix two misuses on RQF_USE_SCHED
[linux-block.git] / fs / dax.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
d475c634
MW
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
d475c634
MW
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
d77e92e2 12#include <linux/dax.h>
d475c634 13#include <linux/fs.h>
f7ca90b1
MW
14#include <linux/highmem.h>
15#include <linux/memcontrol.h>
16#include <linux/mm.h>
d475c634 17#include <linux/mutex.h>
9973c98e 18#include <linux/pagevec.h>
289c6aed 19#include <linux/sched.h>
f361bf4a 20#include <linux/sched/signal.h>
d475c634 21#include <linux/uio.h>
f7ca90b1 22#include <linux/vmstat.h>
34c0fd54 23#include <linux/pfn_t.h>
0e749e54 24#include <linux/sizes.h>
4b4bb46d 25#include <linux/mmu_notifier.h>
a254e568 26#include <linux/iomap.h>
06083a09 27#include <linux/rmap.h>
11cf9d86 28#include <asm/pgalloc.h>
d475c634 29
282a8e03
RZ
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
cfc93c6c
MW
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
ac401cc7
JK
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
917f3452
RZ
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 51
cfc93c6c
MW
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
ce95ab0f 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
527b19d0 67/*
3159f943
MW
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
527b19d0
RZ
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
3159f943
MW
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
527b19d0 82
a77d19f4 83static unsigned long dax_to_pfn(void *entry)
527b19d0 84{
3159f943 85 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
86}
87
9f32d221
MW
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
cfc93c6c
MW
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
a77d19f4 98static unsigned int dax_entry_order(void *entry)
527b19d0 99{
3159f943 100 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 101 return PMD_ORDER;
527b19d0
RZ
102 return 0;
103}
104
fda490d3 105static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 106{
3159f943 107 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
108}
109
fda490d3 110static bool dax_is_pte_entry(void *entry)
d475c634 111{
3159f943 112 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
113}
114
642261ac 115static int dax_is_zero_entry(void *entry)
d475c634 116{
3159f943 117 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
118}
119
642261ac 120static int dax_is_empty_entry(void *entry)
b2e0d162 121{
3159f943 122 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
123}
124
23c84eb7
MWO
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
ac401cc7 134/*
a77d19f4 135 * DAX page cache entry locking
ac401cc7
JK
136 */
137struct exceptional_entry_key {
ec4907ff 138 struct xarray *xa;
63e95b5c 139 pgoff_t entry_start;
ac401cc7
JK
140};
141
142struct wait_exceptional_entry_queue {
ac6424b9 143 wait_queue_entry_t wait;
ac401cc7
JK
144 struct exceptional_entry_key key;
145};
146
698ab77a
VG
147/**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155};
156
b15cd800
MW
157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
159{
160 unsigned long hash;
b15cd800 161 unsigned long index = xas->xa_index;
63e95b5c
RZ
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
642261ac 168 if (dax_is_pmd_entry(entry))
917f3452 169 index &= ~PG_PMD_COLOUR;
b15cd800 170 key->xa = xas->xa;
63e95b5c
RZ
171 key->entry_start = index;
172
b15cd800 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
174 return wait_table + hash;
175}
176
ec4907ff
MW
177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
179{
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
ec4907ff 184 if (key->xa != ewait->key.xa ||
63e95b5c 185 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188}
189
e30331ff 190/*
b93b0163
MW
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
e30331ff 194 */
698ab77a
VG
195static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
e30331ff
RZ
197{
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
b15cd800 201 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 205 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
698ab77a 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
e30331ff
RZ
211}
212
cfc93c6c
MW
213/*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
23c84eb7
MWO
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
cfc93c6c
MW
220 *
221 * Must be called with the i_pages lock held.
222 */
23c84eb7 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
cfc93c6c
MW
224{
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
0e40de03 233 entry = xas_find_conflict(xas);
6370740e
DW
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
23c84eb7
MWO
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
6370740e 238 if (!dax_is_locked(entry))
cfc93c6c
MW
239 return entry;
240
b15cd800 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250}
251
55e56f06
MW
252/*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258{
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
55e56f06
MW
276}
277
4c3d043d
VG
278static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
cfc93c6c 280{
61c30c98 281 if (entry && !dax_is_conflict(entry))
4c3d043d 282 dax_wake_entry(xas, entry, mode);
cfc93c6c
MW
283}
284
285/*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
290static void dax_unlock_entry(struct xa_state *xas, void *entry)
291{
292 void *old;
293
7ae2ea7d 294 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
698ab77a 300 dax_wake_entry(xas, entry, WAKE_NEXT);
cfc93c6c
MW
301}
302
303/*
304 * Return: The entry stored at this location before it was locked.
305 */
306static void *dax_lock_entry(struct xa_state *xas, void *entry)
307{
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310}
311
d2c997c0
DW
312static unsigned long dax_entry_size(void *entry)
313{
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322}
323
a77d19f4 324static unsigned long dax_end_pfn(void *entry)
d2c997c0 325{
a77d19f4 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
327}
328
329/*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 336
16900426 337static inline bool dax_page_is_shared(struct page *page)
6061b69b 338{
16900426 339 return page->mapping == PAGE_MAPPING_DAX_SHARED;
6061b69b
SR
340}
341
73449daf 342/*
16900426
SR
343 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344 * refcount.
6061b69b 345 */
16900426 346static inline void dax_page_share_get(struct page *page)
6061b69b 347{
16900426 348 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
6061b69b
SR
349 /*
350 * Reset the index if the page was already mapped
351 * regularly before.
352 */
353 if (page->mapping)
16900426
SR
354 page->share = 1;
355 page->mapping = PAGE_MAPPING_DAX_SHARED;
6061b69b 356 }
16900426
SR
357 page->share++;
358}
359
360static inline unsigned long dax_page_share_put(struct page *page)
361{
362 return --page->share;
6061b69b
SR
363}
364
365/*
16900426 366 * When it is called in dax_insert_entry(), the shared flag will indicate that
6061b69b 367 * whether this entry is shared by multiple files. If so, set the page->mapping
16900426 368 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
73449daf
DW
369 */
370static void dax_associate_entry(void *entry, struct address_space *mapping,
16900426 371 struct vm_area_struct *vma, unsigned long address, bool shared)
d2c997c0 372{
73449daf
DW
373 unsigned long size = dax_entry_size(entry), pfn, index;
374 int i = 0;
d2c997c0
DW
375
376 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377 return;
378
73449daf 379 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
380 for_each_mapped_pfn(entry, pfn) {
381 struct page *page = pfn_to_page(pfn);
382
16900426
SR
383 if (shared) {
384 dax_page_share_get(page);
6061b69b
SR
385 } else {
386 WARN_ON_ONCE(page->mapping);
387 page->mapping = mapping;
388 page->index = index + i++;
389 }
d2c997c0
DW
390 }
391}
392
393static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394 bool trunc)
395{
396 unsigned long pfn;
397
398 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399 return;
400
401 for_each_mapped_pfn(entry, pfn) {
402 struct page *page = pfn_to_page(pfn);
403
404 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
16900426
SR
405 if (dax_page_is_shared(page)) {
406 /* keep the shared flag if this page is still shared */
407 if (dax_page_share_put(page) > 0)
6061b69b
SR
408 continue;
409 } else
410 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
d2c997c0 411 page->mapping = NULL;
73449daf 412 page->index = 0;
d2c997c0
DW
413 }
414}
415
5fac7408
DW
416static struct page *dax_busy_page(void *entry)
417{
418 unsigned long pfn;
419
420 for_each_mapped_pfn(entry, pfn) {
421 struct page *page = pfn_to_page(pfn);
422
423 if (page_ref_count(page) > 1)
424 return page;
425 }
426 return NULL;
427}
428
c5bbd451 429/*
c2e8021a 430 * dax_lock_page - Lock the DAX entry corresponding to a page
c5bbd451
MW
431 * @page: The page whose entry we want to lock
432 *
433 * Context: Process context.
27359fd6
MW
434 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435 * not be locked.
c5bbd451 436 */
27359fd6 437dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 438{
9f32d221
MW
439 XA_STATE(xas, NULL, 0);
440 void *entry;
c2a7d2a1 441
c5bbd451
MW
442 /* Ensure page->mapping isn't freed while we look at it */
443 rcu_read_lock();
c2a7d2a1 444 for (;;) {
9f32d221 445 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 446
27359fd6 447 entry = NULL;
c93db7bb 448 if (!mapping || !dax_mapping(mapping))
c5bbd451 449 break;
c2a7d2a1
DW
450
451 /*
452 * In the device-dax case there's no need to lock, a
453 * struct dev_pagemap pin is sufficient to keep the
454 * inode alive, and we assume we have dev_pagemap pin
455 * otherwise we would not have a valid pfn_to_page()
456 * translation.
457 */
27359fd6 458 entry = (void *)~0UL;
9f32d221 459 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 460 break;
c2a7d2a1 461
9f32d221
MW
462 xas.xa = &mapping->i_pages;
463 xas_lock_irq(&xas);
c2a7d2a1 464 if (mapping != page->mapping) {
9f32d221 465 xas_unlock_irq(&xas);
c2a7d2a1
DW
466 continue;
467 }
9f32d221
MW
468 xas_set(&xas, page->index);
469 entry = xas_load(&xas);
470 if (dax_is_locked(entry)) {
c5bbd451 471 rcu_read_unlock();
55e56f06 472 wait_entry_unlocked(&xas, entry);
c5bbd451 473 rcu_read_lock();
6d7cd8c1 474 continue;
c2a7d2a1 475 }
9f32d221
MW
476 dax_lock_entry(&xas, entry);
477 xas_unlock_irq(&xas);
c5bbd451 478 break;
c2a7d2a1 479 }
c5bbd451 480 rcu_read_unlock();
27359fd6 481 return (dax_entry_t)entry;
c2a7d2a1
DW
482}
483
27359fd6 484void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
485{
486 struct address_space *mapping = page->mapping;
9f32d221 487 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 488
9f32d221 489 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
490 return;
491
27359fd6 492 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
493}
494
2f437eff
SR
495/*
496 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497 * @mapping: the file's mapping whose entry we want to lock
498 * @index: the offset within this file
499 * @page: output the dax page corresponding to this dax entry
500 *
501 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502 * could not be locked.
503 */
504dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505 struct page **page)
506{
507 XA_STATE(xas, NULL, 0);
508 void *entry;
509
510 rcu_read_lock();
511 for (;;) {
512 entry = NULL;
513 if (!dax_mapping(mapping))
514 break;
515
516 xas.xa = &mapping->i_pages;
517 xas_lock_irq(&xas);
518 xas_set(&xas, index);
519 entry = xas_load(&xas);
520 if (dax_is_locked(entry)) {
521 rcu_read_unlock();
522 wait_entry_unlocked(&xas, entry);
523 rcu_read_lock();
524 continue;
525 }
526 if (!entry ||
527 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528 /*
529 * Because we are looking for entry from file's mapping
530 * and index, so the entry may not be inserted for now,
531 * or even a zero/empty entry. We don't think this is
532 * an error case. So, return a special value and do
533 * not output @page.
534 */
535 entry = (void *)~0UL;
536 } else {
537 *page = pfn_to_page(dax_to_pfn(entry));
538 dax_lock_entry(&xas, entry);
539 }
540 xas_unlock_irq(&xas);
541 break;
542 }
543 rcu_read_unlock();
544 return (dax_entry_t)entry;
545}
546
547void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548 dax_entry_t cookie)
549{
550 XA_STATE(xas, &mapping->i_pages, index);
551
552 if (cookie == ~0UL)
553 return;
554
555 dax_unlock_entry(&xas, (void *)cookie);
556}
557
ac401cc7 558/*
a77d19f4
MW
559 * Find page cache entry at given index. If it is a DAX entry, return it
560 * with the entry locked. If the page cache doesn't contain an entry at
561 * that index, add a locked empty entry.
ac401cc7 562 *
3159f943 563 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
564 * either return that locked entry or will return VM_FAULT_FALLBACK.
565 * This will happen if there are any PTE entries within the PMD range
566 * that we are requesting.
642261ac 567 *
b15cd800
MW
568 * We always favor PTE entries over PMD entries. There isn't a flow where we
569 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
570 * insertion will fail if it finds any PTE entries already in the tree, and a
571 * PTE insertion will cause an existing PMD entry to be unmapped and
572 * downgraded to PTE entries. This happens for both PMD zero pages as
573 * well as PMD empty entries.
642261ac 574 *
b15cd800
MW
575 * The exception to this downgrade path is for PMD entries that have
576 * real storage backing them. We will leave these real PMD entries in
577 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 578 *
ac401cc7
JK
579 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580 * persistent memory the benefit is doubtful. We can add that later if we can
581 * show it helps.
b15cd800
MW
582 *
583 * On error, this function does not return an ERR_PTR. Instead it returns
584 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
585 * overlap with xarray value entries.
ac401cc7 586 */
b15cd800 587static void *grab_mapping_entry(struct xa_state *xas,
23c84eb7 588 struct address_space *mapping, unsigned int order)
ac401cc7 589{
b15cd800 590 unsigned long index = xas->xa_index;
1a14e377 591 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
b15cd800 592 void *entry;
642261ac 593
b15cd800 594retry:
1a14e377 595 pmd_downgrade = false;
b15cd800 596 xas_lock_irq(xas);
23c84eb7 597 entry = get_unlocked_entry(xas, order);
91d25ba8 598
642261ac 599 if (entry) {
23c84eb7
MWO
600 if (dax_is_conflict(entry))
601 goto fallback;
0e40de03 602 if (!xa_is_value(entry)) {
49688e65 603 xas_set_err(xas, -EIO);
b15cd800
MW
604 goto out_unlock;
605 }
606
23c84eb7 607 if (order == 0) {
91d25ba8 608 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
609 (dax_is_zero_entry(entry) ||
610 dax_is_empty_entry(entry))) {
611 pmd_downgrade = true;
612 }
613 }
614 }
615
b15cd800
MW
616 if (pmd_downgrade) {
617 /*
618 * Make sure 'entry' remains valid while we drop
619 * the i_pages lock.
620 */
621 dax_lock_entry(xas, entry);
642261ac 622
642261ac
RZ
623 /*
624 * Besides huge zero pages the only other thing that gets
625 * downgraded are empty entries which don't need to be
626 * unmapped.
627 */
b15cd800
MW
628 if (dax_is_zero_entry(entry)) {
629 xas_unlock_irq(xas);
630 unmap_mapping_pages(mapping,
631 xas->xa_index & ~PG_PMD_COLOUR,
632 PG_PMD_NR, false);
633 xas_reset(xas);
634 xas_lock_irq(xas);
e11f8b7b
RZ
635 }
636
b15cd800
MW
637 dax_disassociate_entry(entry, mapping, false);
638 xas_store(xas, NULL); /* undo the PMD join */
698ab77a 639 dax_wake_entry(xas, entry, WAKE_ALL);
7f0e07fb 640 mapping->nrpages -= PG_PMD_NR;
b15cd800
MW
641 entry = NULL;
642 xas_set(xas, index);
643 }
642261ac 644
b15cd800
MW
645 if (entry) {
646 dax_lock_entry(xas, entry);
647 } else {
23c84eb7
MWO
648 unsigned long flags = DAX_EMPTY;
649
650 if (order > 0)
651 flags |= DAX_PMD;
652 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
b15cd800
MW
653 dax_lock_entry(xas, entry);
654 if (xas_error(xas))
655 goto out_unlock;
7f0e07fb 656 mapping->nrpages += 1UL << order;
ac401cc7 657 }
b15cd800
MW
658
659out_unlock:
660 xas_unlock_irq(xas);
661 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662 goto retry;
663 if (xas->xa_node == XA_ERROR(-ENOMEM))
664 return xa_mk_internal(VM_FAULT_OOM);
665 if (xas_error(xas))
666 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 667 return entry;
b15cd800
MW
668fallback:
669 xas_unlock_irq(xas);
670 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
671}
672
5fac7408 673/**
6bbdd563 674 * dax_layout_busy_page_range - find first pinned page in @mapping
5fac7408 675 * @mapping: address space to scan for a page with ref count > 1
6bbdd563
VG
676 * @start: Starting offset. Page containing 'start' is included.
677 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678 * pages from 'start' till the end of file are included.
5fac7408
DW
679 *
680 * DAX requires ZONE_DEVICE mapped pages. These pages are never
681 * 'onlined' to the page allocator so they are considered idle when
682 * page->count == 1. A filesystem uses this interface to determine if
683 * any page in the mapping is busy, i.e. for DMA, or other
684 * get_user_pages() usages.
685 *
686 * It is expected that the filesystem is holding locks to block the
687 * establishment of new mappings in this address_space. I.e. it expects
688 * to be able to run unmap_mapping_range() and subsequently not race
689 * mapping_mapped() becoming true.
690 */
6bbdd563
VG
691struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 loff_t start, loff_t end)
5fac7408 693{
084a8990
MW
694 void *entry;
695 unsigned int scanned = 0;
5fac7408 696 struct page *page = NULL;
6bbdd563
VG
697 pgoff_t start_idx = start >> PAGE_SHIFT;
698 pgoff_t end_idx;
699 XA_STATE(xas, &mapping->i_pages, start_idx);
5fac7408
DW
700
701 /*
702 * In the 'limited' case get_user_pages() for dax is disabled.
703 */
704 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705 return NULL;
706
707 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708 return NULL;
709
6bbdd563
VG
710 /* If end == LLONG_MAX, all pages from start to till end of file */
711 if (end == LLONG_MAX)
712 end_idx = ULONG_MAX;
713 else
714 end_idx = end >> PAGE_SHIFT;
5fac7408
DW
715 /*
716 * If we race get_user_pages_fast() here either we'll see the
084a8990 717 * elevated page count in the iteration and wait, or
5fac7408
DW
718 * get_user_pages_fast() will see that the page it took a reference
719 * against is no longer mapped in the page tables and bail to the
720 * get_user_pages() slow path. The slow path is protected by
721 * pte_lock() and pmd_lock(). New references are not taken without
6bbdd563 722 * holding those locks, and unmap_mapping_pages() will not zero the
5fac7408
DW
723 * pte or pmd without holding the respective lock, so we are
724 * guaranteed to either see new references or prevent new
725 * references from being established.
726 */
6bbdd563 727 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
5fac7408 728
084a8990 729 xas_lock_irq(&xas);
6bbdd563 730 xas_for_each(&xas, entry, end_idx) {
084a8990
MW
731 if (WARN_ON_ONCE(!xa_is_value(entry)))
732 continue;
733 if (unlikely(dax_is_locked(entry)))
23c84eb7 734 entry = get_unlocked_entry(&xas, 0);
084a8990
MW
735 if (entry)
736 page = dax_busy_page(entry);
4c3d043d 737 put_unlocked_entry(&xas, entry, WAKE_NEXT);
5fac7408
DW
738 if (page)
739 break;
084a8990
MW
740 if (++scanned % XA_CHECK_SCHED)
741 continue;
742
743 xas_pause(&xas);
744 xas_unlock_irq(&xas);
745 cond_resched();
746 xas_lock_irq(&xas);
5fac7408 747 }
084a8990 748 xas_unlock_irq(&xas);
5fac7408
DW
749 return page;
750}
6bbdd563
VG
751EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752
753struct page *dax_layout_busy_page(struct address_space *mapping)
754{
755 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756}
5fac7408
DW
757EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758
a77d19f4 759static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
760 pgoff_t index, bool trunc)
761{
07f2d89c 762 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
763 int ret = 0;
764 void *entry;
c6dcf52c 765
07f2d89c 766 xas_lock_irq(&xas);
23c84eb7 767 entry = get_unlocked_entry(&xas, 0);
3159f943 768 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
769 goto out;
770 if (!trunc &&
07f2d89c
MW
771 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 773 goto out;
d2c997c0 774 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 775 xas_store(&xas, NULL);
7f0e07fb 776 mapping->nrpages -= 1UL << dax_entry_order(entry);
c6dcf52c
JK
777 ret = 1;
778out:
23738832 779 put_unlocked_entry(&xas, entry, WAKE_ALL);
07f2d89c 780 xas_unlock_irq(&xas);
c6dcf52c
JK
781 return ret;
782}
07f2d89c 783
f76b3a32
SR
784static int __dax_clear_dirty_range(struct address_space *mapping,
785 pgoff_t start, pgoff_t end)
786{
787 XA_STATE(xas, &mapping->i_pages, start);
788 unsigned int scanned = 0;
789 void *entry;
790
791 xas_lock_irq(&xas);
792 xas_for_each(&xas, entry, end) {
793 entry = get_unlocked_entry(&xas, 0);
794 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796 put_unlocked_entry(&xas, entry, WAKE_NEXT);
797
798 if (++scanned % XA_CHECK_SCHED)
799 continue;
800
801 xas_pause(&xas);
802 xas_unlock_irq(&xas);
803 cond_resched();
804 xas_lock_irq(&xas);
805 }
806 xas_unlock_irq(&xas);
807
808 return 0;
809}
810
ac401cc7 811/*
3159f943
MW
812 * Delete DAX entry at @index from @mapping. Wait for it
813 * to be unlocked before deleting it.
ac401cc7
JK
814 */
815int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
816{
a77d19f4 817 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 818
ac401cc7
JK
819 /*
820 * This gets called from truncate / punch_hole path. As such, the caller
821 * must hold locks protecting against concurrent modifications of the
a77d19f4 822 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 823 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
824 * at that index as well...
825 */
c6dcf52c
JK
826 WARN_ON_ONCE(!ret);
827 return ret;
828}
829
c6dcf52c 830/*
3159f943 831 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
832 */
833int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
834 pgoff_t index)
835{
a77d19f4 836 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
837}
838
60696eb2 839static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
f7ca90b1 840{
de205114 841 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
429f8de7
CH
842}
843
844static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
845{
60696eb2 846 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
cccbce67 847 void *vto, *kaddr;
cccbce67
DW
848 long rc;
849 int id;
850
cccbce67 851 id = dax_read_lock();
e511c4a3
JC
852 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
853 &kaddr, NULL);
cccbce67
DW
854 if (rc < 0) {
855 dax_read_unlock(id);
856 return rc;
857 }
429f8de7
CH
858 vto = kmap_atomic(vmf->cow_page);
859 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
f7ca90b1 860 kunmap_atomic(vto);
cccbce67 861 dax_read_unlock(id);
f7ca90b1
MW
862 return 0;
863}
864
e5d6df73
SR
865/*
866 * MAP_SYNC on a dax mapping guarantees dirty metadata is
867 * flushed on write-faults (non-cow), but not read-faults.
868 */
869static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870 struct vm_area_struct *vma)
871{
872 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873 (iter->iomap.flags & IOMAP_F_DIRTY);
874}
875
642261ac
RZ
876/*
877 * By this point grab_mapping_entry() has ensured that we have a locked entry
878 * of the appropriate size so we don't have to worry about downgrading PMDs to
879 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
880 * already in the tree, we will skip the insertion and just dirty the PMD as
881 * appropriate.
882 */
e5d6df73
SR
883static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884 const struct iomap_iter *iter, void *entry, pfn_t pfn,
885 unsigned long flags)
9973c98e 886{
e5d6df73 887 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 888 void *new_entry = dax_make_entry(pfn, flags);
c6f0b395
SR
889 bool write = iter->flags & IOMAP_WRITE;
890 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
9973c98e 892
f5b7b748 893 if (dirty)
d2b2a28e 894 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 895
c6f0b395 896 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
b15cd800 897 unsigned long index = xas->xa_index;
91d25ba8
RZ
898 /* we are replacing a zero page with block mapping */
899 if (dax_is_pmd_entry(entry))
977fbdcd 900 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 901 PG_PMD_NR, false);
91d25ba8 902 else /* pte entry */
b15cd800 903 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
904 }
905
b15cd800
MW
906 xas_reset(xas);
907 xas_lock_irq(xas);
c6f0b395 908 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
1571c029
JK
909 void *old;
910
d2c997c0 911 dax_disassociate_entry(entry, mapping, false);
6061b69b 912 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
c6f0b395 913 shared);
642261ac 914 /*
a77d19f4 915 * Only swap our new entry into the page cache if the current
642261ac 916 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 917 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
918 * means that if we are trying to insert a PTE and the
919 * existing entry is a PMD, we will just leave the PMD in the
920 * tree and dirty it if necessary.
921 */
1571c029 922 old = dax_lock_entry(xas, new_entry);
b15cd800
MW
923 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
924 DAX_LOCKED));
91d25ba8 925 entry = new_entry;
b15cd800
MW
926 } else {
927 xas_load(xas); /* Walk the xa_state */
9973c98e 928 }
91d25ba8 929
f5b7b748 930 if (dirty)
b15cd800 931 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 932
c6f0b395 933 if (write && shared)
e5d6df73
SR
934 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
935
b15cd800 936 xas_unlock_irq(xas);
91d25ba8 937 return entry;
9973c98e
RZ
938}
939
9fc747f6
MW
940static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941 struct address_space *mapping, void *entry)
9973c98e 942{
06083a09 943 unsigned long pfn, index, count, end;
3fe0791c 944 long ret = 0;
06083a09 945 struct vm_area_struct *vma;
9973c98e 946
9973c98e 947 /*
a6abc2c0
JK
948 * A page got tagged dirty in DAX mapping? Something is seriously
949 * wrong.
9973c98e 950 */
3159f943 951 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 952 return -EIO;
9973c98e 953
9fc747f6
MW
954 if (unlikely(dax_is_locked(entry))) {
955 void *old_entry = entry;
956
23c84eb7 957 entry = get_unlocked_entry(xas, 0);
9fc747f6
MW
958
959 /* Entry got punched out / reallocated? */
960 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
961 goto put_unlocked;
962 /*
963 * Entry got reallocated elsewhere? No need to writeback.
964 * We have to compare pfns as we must not bail out due to
965 * difference in lockbit or entry type.
966 */
967 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
968 goto put_unlocked;
969 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970 dax_is_zero_entry(entry))) {
971 ret = -EIO;
972 goto put_unlocked;
973 }
974
975 /* Another fsync thread may have already done this entry */
976 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
977 goto put_unlocked;
9973c98e
RZ
978 }
979
a6abc2c0 980 /* Lock the entry to serialize with page faults */
9fc747f6
MW
981 dax_lock_entry(xas, entry);
982
a6abc2c0
JK
983 /*
984 * We can clear the tag now but we have to be careful so that concurrent
985 * dax_writeback_one() calls for the same index cannot finish before we
986 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
987 * at the entry only under the i_pages lock and once they do that
988 * they will see the entry locked and wait for it to unlock.
a6abc2c0 989 */
9fc747f6
MW
990 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
991 xas_unlock_irq(xas);
a6abc2c0 992
642261ac 993 /*
e4b3448b
MW
994 * If dax_writeback_mapping_range() was given a wbc->range_start
995 * in the middle of a PMD, the 'index' we use needs to be
996 * aligned to the start of the PMD.
3fe0791c
DW
997 * This allows us to flush for PMD_SIZE and not have to worry about
998 * partial PMD writebacks.
642261ac 999 */
a77d19f4 1000 pfn = dax_to_pfn(entry);
e4b3448b
MW
1001 count = 1UL << dax_entry_order(entry);
1002 index = xas->xa_index & ~(count - 1);
06083a09
MS
1003 end = index + count - 1;
1004
1005 /* Walk all mappings of a given index of a file and writeprotect them */
1006 i_mmap_lock_read(mapping);
1007 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008 pfn_mkclean_range(pfn, count, index, vma);
1009 cond_resched();
1010 }
1011 i_mmap_unlock_read(mapping);
cccbce67 1012
e4b3448b 1013 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
1014 /*
1015 * After we have flushed the cache, we can clear the dirty tag. There
1016 * cannot be new dirty data in the pfn after the flush has completed as
1017 * the pfn mappings are writeprotected and fault waits for mapping
1018 * entry lock.
1019 */
9fc747f6
MW
1020 xas_reset(xas);
1021 xas_lock_irq(xas);
1022 xas_store(xas, entry);
1023 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
698ab77a 1024 dax_wake_entry(xas, entry, WAKE_NEXT);
9fc747f6 1025
e4b3448b 1026 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
1027 return ret;
1028
a6abc2c0 1029 put_unlocked:
4c3d043d 1030 put_unlocked_entry(xas, entry, WAKE_NEXT);
9973c98e
RZ
1031 return ret;
1032}
1033
1034/*
1035 * Flush the mapping to the persistent domain within the byte range of [start,
1036 * end]. This is required by data integrity operations to ensure file data is
1037 * on persistent storage prior to completion of the operation.
1038 */
7f6d5b52 1039int dax_writeback_mapping_range(struct address_space *mapping,
3f666c56 1040 struct dax_device *dax_dev, struct writeback_control *wbc)
9973c98e 1041{
9fc747f6 1042 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 1043 struct inode *inode = mapping->host;
9fc747f6 1044 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
9fc747f6
MW
1045 void *entry;
1046 int ret = 0;
1047 unsigned int scanned = 0;
9973c98e
RZ
1048
1049 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1050 return -EIO;
1051
7716506a 1052 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
7f6d5b52
RZ
1053 return 0;
1054
9fc747f6 1055 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 1056
9fc747f6 1057 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 1058
9fc747f6
MW
1059 xas_lock_irq(&xas);
1060 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1062 if (ret < 0) {
1063 mapping_set_error(mapping, ret);
9973c98e 1064 break;
9973c98e 1065 }
9fc747f6
MW
1066 if (++scanned % XA_CHECK_SCHED)
1067 continue;
1068
1069 xas_pause(&xas);
1070 xas_unlock_irq(&xas);
1071 cond_resched();
1072 xas_lock_irq(&xas);
9973c98e 1073 }
9fc747f6 1074 xas_unlock_irq(&xas);
9fc747f6
MW
1075 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1076 return ret;
9973c98e
RZ
1077}
1078EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1079
e28cd3e5
SR
1080static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081 size_t size, void **kaddr, pfn_t *pfnp)
f7ca90b1 1082{
60696eb2 1083 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e28cd3e5 1084 int id, rc = 0;
5e161e40 1085 long length;
f7ca90b1 1086
cccbce67 1087 id = dax_read_lock();
5e161e40 1088 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
e28cd3e5 1089 DAX_ACCESS, kaddr, pfnp);
5e161e40
JK
1090 if (length < 0) {
1091 rc = length;
1092 goto out;
cccbce67 1093 }
e28cd3e5
SR
1094 if (!pfnp)
1095 goto out_check_addr;
5e161e40
JK
1096 rc = -EINVAL;
1097 if (PFN_PHYS(length) < size)
1098 goto out;
1099 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1100 goto out;
1101 /* For larger pages we need devmap */
1102 if (length > 1 && !pfn_t_devmap(*pfnp))
1103 goto out;
1104 rc = 0;
e28cd3e5
SR
1105
1106out_check_addr:
1107 if (!kaddr)
1108 goto out;
1109 if (!*kaddr)
1110 rc = -EFAULT;
5e161e40 1111out:
cccbce67 1112 dax_read_unlock(id);
5e161e40 1113 return rc;
0e3b210c 1114}
0e3b210c 1115
ff17b8df 1116/**
708dfad2
SR
1117 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118 * by copying the data before and after the range to be written.
ff17b8df
SR
1119 * @pos: address to do copy from.
1120 * @length: size of copy operation.
1121 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122 * @srcmap: iomap srcmap
1123 * @daddr: destination address to copy to.
1124 *
1125 * This can be called from two places. Either during DAX write fault (page
1126 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
708dfad2 1127 * write operation, dax_iomap_iter() might call this to do the copy of either
ff17b8df 1128 * start or end unaligned address. In the latter case the rest of the copy of
708dfad2
SR
1129 * aligned ranges is taken care by dax_iomap_iter() itself.
1130 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131 * area to make sure no old data remains.
ff17b8df 1132 */
708dfad2 1133static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
ff17b8df
SR
1134 const struct iomap *srcmap, void *daddr)
1135{
1136 loff_t head_off = pos & (align_size - 1);
1137 size_t size = ALIGN(head_off + length, align_size);
1138 loff_t end = pos + length;
1139 loff_t pg_end = round_up(end, align_size);
708dfad2 1140 /* copy_all is usually in page fault case */
ff17b8df 1141 bool copy_all = head_off == 0 && end == pg_end;
708dfad2
SR
1142 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144 srcmap->type == IOMAP_UNWRITTEN;
ff17b8df
SR
1145 void *saddr = 0;
1146 int ret = 0;
1147
708dfad2
SR
1148 if (!zero_edge) {
1149 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1150 if (ret)
1151 return ret;
1152 }
ff17b8df
SR
1153
1154 if (copy_all) {
708dfad2
SR
1155 if (zero_edge)
1156 memset(daddr, 0, size);
1157 else
1158 ret = copy_mc_to_kernel(daddr, saddr, length);
1159 goto out;
ff17b8df
SR
1160 }
1161
1162 /* Copy the head part of the range */
1163 if (head_off) {
708dfad2
SR
1164 if (zero_edge)
1165 memset(daddr, 0, head_off);
1166 else {
1167 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1168 if (ret)
1169 return -EIO;
1170 }
ff17b8df
SR
1171 }
1172
1173 /* Copy the tail part of the range */
1174 if (end < pg_end) {
1175 loff_t tail_off = head_off + length;
1176 loff_t tail_len = pg_end - end;
1177
708dfad2
SR
1178 if (zero_edge)
1179 memset(daddr + tail_off, 0, tail_len);
1180 else {
1181 ret = copy_mc_to_kernel(daddr + tail_off,
1182 saddr + tail_off, tail_len);
1183 if (ret)
1184 return -EIO;
1185 }
ff17b8df 1186 }
708dfad2
SR
1187out:
1188 if (zero_edge)
1189 dax_flush(srcmap->dax_dev, daddr, size);
1190 return ret ? -EIO : 0;
ff17b8df
SR
1191}
1192
e30331ff 1193/*
91d25ba8
RZ
1194 * The user has performed a load from a hole in the file. Allocating a new
1195 * page in the file would cause excessive storage usage for workloads with
1196 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1197 * If this page is ever written to we will re-fault and change the mapping to
1198 * point to real DAX storage instead.
e30331ff 1199 */
e5d6df73
SR
1200static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201 const struct iomap_iter *iter, void **entry)
e30331ff 1202{
e5d6df73 1203 struct inode *inode = iter->inode;
91d25ba8 1204 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1205 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1206 vm_fault_t ret;
e30331ff 1207
e5d6df73 1208 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
3159f943 1209
ab77dab4 1210 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1211 trace_dax_load_hole(inode, vmf, ret);
1212 return ret;
1213}
1214
c2436190
SR
1215#ifdef CONFIG_FS_DAX_PMD
1216static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1217 const struct iomap_iter *iter, void **entry)
c2436190
SR
1218{
1219 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220 unsigned long pmd_addr = vmf->address & PMD_MASK;
1221 struct vm_area_struct *vma = vmf->vma;
1222 struct inode *inode = mapping->host;
1223 pgtable_t pgtable = NULL;
1224 struct page *zero_page;
1225 spinlock_t *ptl;
1226 pmd_t pmd_entry;
1227 pfn_t pfn;
1228
1229 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1230
1231 if (unlikely(!zero_page))
1232 goto fallback;
1233
1234 pfn = page_to_pfn_t(zero_page);
e5d6df73
SR
1235 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236 DAX_PMD | DAX_ZERO_PAGE);
c2436190
SR
1237
1238 if (arch_needs_pgtable_deposit()) {
1239 pgtable = pte_alloc_one(vma->vm_mm);
1240 if (!pgtable)
1241 return VM_FAULT_OOM;
1242 }
1243
1244 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245 if (!pmd_none(*(vmf->pmd))) {
1246 spin_unlock(ptl);
1247 goto fallback;
1248 }
1249
1250 if (pgtable) {
1251 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252 mm_inc_nr_ptes(vma->vm_mm);
1253 }
1254 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255 pmd_entry = pmd_mkhuge(pmd_entry);
1256 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1257 spin_unlock(ptl);
1258 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259 return VM_FAULT_NOPAGE;
1260
1261fallback:
1262 if (pgtable)
1263 pte_free(vma->vm_mm, pgtable);
1264 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265 return VM_FAULT_FALLBACK;
1266}
1267#else
1268static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
e5d6df73 1269 const struct iomap_iter *iter, void **entry)
c2436190
SR
1270{
1271 return VM_FAULT_FALLBACK;
1272}
1273#endif /* CONFIG_FS_DAX_PMD */
1274
d984648e
SR
1275static s64 dax_unshare_iter(struct iomap_iter *iter)
1276{
1277 struct iomap *iomap = &iter->iomap;
1278 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279 loff_t pos = iter->pos;
1280 loff_t length = iomap_length(iter);
1281 int id = 0;
1282 s64 ret = 0;
1283 void *daddr = NULL, *saddr = NULL;
1284
1285 /* don't bother with blocks that are not shared to start with */
1286 if (!(iomap->flags & IOMAP_F_SHARED))
1287 return length;
d984648e
SR
1288
1289 id = dax_read_lock();
1290 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1291 if (ret < 0)
1292 goto out_unlock;
1293
13dd4e04
SR
1294 /* zero the distance if srcmap is HOLE or UNWRITTEN */
1295 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296 memset(daddr, 0, length);
1297 dax_flush(iomap->dax_dev, daddr, length);
1298 ret = length;
1299 goto out_unlock;
1300 }
1301
d984648e
SR
1302 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1303 if (ret < 0)
1304 goto out_unlock;
1305
388bc034
SR
1306 if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1307 ret = length;
1308 else
d984648e
SR
1309 ret = -EIO;
1310
1311out_unlock:
1312 dax_read_unlock(id);
1313 return ret;
1314}
1315
1316int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 const struct iomap_ops *ops)
1318{
1319 struct iomap_iter iter = {
1320 .inode = inode,
1321 .pos = pos,
1322 .len = len,
1323 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1324 };
1325 int ret;
1326
1327 while ((ret = iomap_iter(&iter, ops)) > 0)
1328 iter.processed = dax_unshare_iter(&iter);
1329 return ret;
1330}
1331EXPORT_SYMBOL_GPL(dax_file_unshare);
1332
8dbfc76d 1333static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
e5c71954 1334{
8dbfc76d
SR
1335 const struct iomap *iomap = &iter->iomap;
1336 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337 unsigned offset = offset_in_page(pos);
1338 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
e5c71954
CH
1339 void *kaddr;
1340 long ret;
1341
8dbfc76d
SR
1342 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1343 NULL);
1344 if (ret < 0)
1345 return ret;
1346 memset(kaddr + offset, 0, size);
708dfad2
SR
1347 if (iomap->flags & IOMAP_F_SHARED)
1348 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1349 kaddr);
1350 else
8dbfc76d 1351 dax_flush(iomap->dax_dev, kaddr + offset, size);
e5c71954
CH
1352 return ret;
1353}
1354
c6f40468 1355static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
679c8bd3 1356{
c6f40468
CH
1357 const struct iomap *iomap = &iter->iomap;
1358 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1359 loff_t pos = iter->pos;
1360 u64 length = iomap_length(iter);
1361 s64 written = 0;
1362
1363 /* already zeroed? we're done. */
1364 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1365 return length;
1366
f80e1668
SR
1367 /*
1368 * invalidate the pages whose sharing state is to be changed
1369 * because of CoW.
1370 */
1371 if (iomap->flags & IOMAP_F_SHARED)
1372 invalidate_inode_pages2_range(iter->inode->i_mapping,
1373 pos >> PAGE_SHIFT,
1374 (pos + length - 1) >> PAGE_SHIFT);
1375
c6f40468
CH
1376 do {
1377 unsigned offset = offset_in_page(pos);
1378 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1379 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1380 long rc;
1381 int id;
1382
1383 id = dax_read_lock();
1384 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1385 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1386 else
8dbfc76d 1387 rc = dax_memzero(iter, pos, size);
c6f40468 1388 dax_read_unlock(id);
cccbce67 1389
c6f40468
CH
1390 if (rc < 0)
1391 return rc;
1392 pos += size;
1393 length -= size;
1394 written += size;
c6f40468 1395 } while (length > 0);
e5c71954 1396
f8189d5d
KX
1397 if (did_zero)
1398 *did_zero = true;
c6f40468
CH
1399 return written;
1400}
1401
1402int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1403 const struct iomap_ops *ops)
1404{
1405 struct iomap_iter iter = {
1406 .inode = inode,
1407 .pos = pos,
1408 .len = len,
952da063 1409 .flags = IOMAP_DAX | IOMAP_ZERO,
c6f40468
CH
1410 };
1411 int ret;
1412
1413 while ((ret = iomap_iter(&iter, ops)) > 0)
1414 iter.processed = dax_zero_iter(&iter, did_zero);
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dax_zero_range);
1418
1419int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1420 const struct iomap_ops *ops)
1421{
1422 unsigned int blocksize = i_blocksize(inode);
1423 unsigned int off = pos & (blocksize - 1);
1424
1425 /* Block boundary? Nothing to do */
1426 if (!off)
1427 return 0;
1428 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
679c8bd3 1429}
c6f40468 1430EXPORT_SYMBOL_GPL(dax_truncate_page);
679c8bd3 1431
ca289e0b
CH
1432static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1433 struct iov_iter *iter)
a254e568 1434{
ca289e0b 1435 const struct iomap *iomap = &iomi->iomap;
f80e1668 1436 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
ca289e0b
CH
1437 loff_t length = iomap_length(iomi);
1438 loff_t pos = iomi->pos;
cccbce67 1439 struct dax_device *dax_dev = iomap->dax_dev;
a254e568 1440 loff_t end = pos + length, done = 0;
ff17b8df 1441 bool write = iov_iter_rw(iter) == WRITE;
f80e1668 1442 bool cow = write && iomap->flags & IOMAP_F_SHARED;
a254e568 1443 ssize_t ret = 0;
a77d4786 1444 size_t xfer;
cccbce67 1445 int id;
a254e568 1446
ff17b8df 1447 if (!write) {
ca289e0b 1448 end = min(end, i_size_read(iomi->inode));
a254e568
CH
1449 if (pos >= end)
1450 return 0;
1451
1452 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1453 return iov_iter_zero(min(length, end - pos), iter);
1454 }
1455
ff17b8df
SR
1456 /*
1457 * In DAX mode, enforce either pure overwrites of written extents, or
1458 * writes to unwritten extents as part of a copy-on-write operation.
1459 */
1460 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1461 !(iomap->flags & IOMAP_F_SHARED)))
a254e568
CH
1462 return -EIO;
1463
e3fce68c
JK
1464 /*
1465 * Write can allocate block for an area which has a hole page mapped
1466 * into page tables. We have to tear down these mappings so that data
1467 * written by write(2) is visible in mmap.
1468 */
f80e1668 1469 if (iomap->flags & IOMAP_F_NEW || cow) {
f76b3a32
SR
1470 /*
1471 * Filesystem allows CoW on non-shared extents. The src extents
1472 * may have been mmapped with dirty mark before. To be able to
1473 * invalidate its dax entries, we need to clear the dirty mark
1474 * in advance.
1475 */
1476 if (cow)
1477 __dax_clear_dirty_range(iomi->inode->i_mapping,
1478 pos >> PAGE_SHIFT,
1479 (end - 1) >> PAGE_SHIFT);
ca289e0b 1480 invalidate_inode_pages2_range(iomi->inode->i_mapping,
e3fce68c
JK
1481 pos >> PAGE_SHIFT,
1482 (end - 1) >> PAGE_SHIFT);
1483 }
1484
cccbce67 1485 id = dax_read_lock();
a254e568
CH
1486 while (pos < end) {
1487 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67 1488 const size_t size = ALIGN(length + offset, PAGE_SIZE);
60696eb2 1489 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
a254e568 1490 ssize_t map_len;
047218ec 1491 bool recovery = false;
cccbce67 1492 void *kaddr;
a254e568 1493
d1908f52
MH
1494 if (fatal_signal_pending(current)) {
1495 ret = -EINTR;
1496 break;
1497 }
1498
cccbce67 1499 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
e511c4a3 1500 DAX_ACCESS, &kaddr, NULL);
047218ec
JC
1501 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1502 map_len = dax_direct_access(dax_dev, pgoff,
1503 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1504 &kaddr, NULL);
1505 if (map_len > 0)
1506 recovery = true;
1507 }
a254e568
CH
1508 if (map_len < 0) {
1509 ret = map_len;
1510 break;
1511 }
1512
f80e1668 1513 if (cow) {
708dfad2
SR
1514 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1515 srcmap, kaddr);
ff17b8df
SR
1516 if (ret)
1517 break;
1518 }
1519
cccbce67
DW
1520 map_len = PFN_PHYS(map_len);
1521 kaddr += offset;
a254e568
CH
1522 map_len -= offset;
1523 if (map_len > end - pos)
1524 map_len = end - pos;
1525
047218ec
JC
1526 if (recovery)
1527 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1528 map_len, iter);
ff17b8df 1529 else if (write)
a77d4786 1530 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1531 map_len, iter);
a254e568 1532 else
a77d4786 1533 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1534 map_len, iter);
a254e568 1535
a77d4786
DW
1536 pos += xfer;
1537 length -= xfer;
1538 done += xfer;
1539
1540 if (xfer == 0)
1541 ret = -EFAULT;
1542 if (xfer < map_len)
1543 break;
a254e568 1544 }
cccbce67 1545 dax_read_unlock(id);
a254e568
CH
1546
1547 return done ? done : ret;
1548}
1549
1550/**
11c59c92 1551 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1552 * @iocb: The control block for this I/O
1553 * @iter: The addresses to do I/O from or to
1554 * @ops: iomap ops passed from the file system
1555 *
1556 * This function performs read and write operations to directly mapped
1557 * persistent memory. The callers needs to take care of read/write exclusion
1558 * and evicting any page cache pages in the region under I/O.
1559 */
1560ssize_t
11c59c92 1561dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1562 const struct iomap_ops *ops)
a254e568 1563{
ca289e0b
CH
1564 struct iomap_iter iomi = {
1565 .inode = iocb->ki_filp->f_mapping->host,
1566 .pos = iocb->ki_pos,
1567 .len = iov_iter_count(iter),
952da063 1568 .flags = IOMAP_DAX,
ca289e0b
CH
1569 };
1570 loff_t done = 0;
1571 int ret;
a254e568 1572
17d9c15c
LJ
1573 if (!iomi.len)
1574 return 0;
1575
168316db 1576 if (iov_iter_rw(iter) == WRITE) {
ca289e0b
CH
1577 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1578 iomi.flags |= IOMAP_WRITE;
168316db 1579 } else {
ca289e0b 1580 lockdep_assert_held(&iomi.inode->i_rwsem);
168316db 1581 }
a254e568 1582
96222d53 1583 if (iocb->ki_flags & IOCB_NOWAIT)
ca289e0b 1584 iomi.flags |= IOMAP_NOWAIT;
96222d53 1585
ca289e0b
CH
1586 while ((ret = iomap_iter(&iomi, ops)) > 0)
1587 iomi.processed = dax_iomap_iter(&iomi, iter);
a254e568 1588
ca289e0b
CH
1589 done = iomi.pos - iocb->ki_pos;
1590 iocb->ki_pos = iomi.pos;
a254e568
CH
1591 return done ? done : ret;
1592}
11c59c92 1593EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1594
ab77dab4 1595static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1596{
1597 if (error == 0)
1598 return VM_FAULT_NOPAGE;
c9aed74e 1599 return vmf_error(error);
9f141d6e
JK
1600}
1601
55f81639
SR
1602/*
1603 * When handling a synchronous page fault and the inode need a fsync, we can
1604 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1605 * insertion for now and return the pfn so that caller can insert it after the
1606 * fsync is done.
1607 */
1608static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1609{
1610 if (WARN_ON_ONCE(!pfnp))
1611 return VM_FAULT_SIGBUS;
1612 *pfnp = pfn;
1613 return VM_FAULT_NEEDDSYNC;
1614}
1615
65dd814a
CH
1616static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1617 const struct iomap_iter *iter)
55f81639 1618{
55f81639
SR
1619 vm_fault_t ret;
1620 int error = 0;
1621
65dd814a 1622 switch (iter->iomap.type) {
55f81639
SR
1623 case IOMAP_HOLE:
1624 case IOMAP_UNWRITTEN:
429f8de7 1625 clear_user_highpage(vmf->cow_page, vmf->address);
55f81639
SR
1626 break;
1627 case IOMAP_MAPPED:
429f8de7 1628 error = copy_cow_page_dax(vmf, iter);
55f81639
SR
1629 break;
1630 default:
1631 WARN_ON_ONCE(1);
1632 error = -EIO;
1633 break;
1634 }
1635
1636 if (error)
1637 return dax_fault_return(error);
1638
1639 __SetPageUptodate(vmf->cow_page);
1640 ret = finish_fault(vmf);
1641 if (!ret)
1642 return VM_FAULT_DONE_COW;
1643 return ret;
1644}
1645
c2436190 1646/**
65dd814a 1647 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
c2436190 1648 * @vmf: vm fault instance
65dd814a 1649 * @iter: iomap iter
c2436190
SR
1650 * @pfnp: pfn to be returned
1651 * @xas: the dax mapping tree of a file
1652 * @entry: an unlocked dax entry to be inserted
1653 * @pmd: distinguish whether it is a pmd fault
c2436190 1654 */
65dd814a
CH
1655static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1656 const struct iomap_iter *iter, pfn_t *pfnp,
1657 struct xa_state *xas, void **entry, bool pmd)
c2436190 1658{
65dd814a 1659 const struct iomap *iomap = &iter->iomap;
708dfad2 1660 const struct iomap *srcmap = iomap_iter_srcmap(iter);
c2436190
SR
1661 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1662 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
e5d6df73 1663 bool write = iter->flags & IOMAP_WRITE;
c2436190
SR
1664 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1665 int err = 0;
1666 pfn_t pfn;
ff17b8df 1667 void *kaddr;
c2436190 1668
65dd814a
CH
1669 if (!pmd && vmf->cow_page)
1670 return dax_fault_cow_page(vmf, iter);
1671
c2436190
SR
1672 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1673 if (!write &&
1674 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1675 if (!pmd)
e5d6df73
SR
1676 return dax_load_hole(xas, vmf, iter, entry);
1677 return dax_pmd_load_hole(xas, vmf, iter, entry);
c2436190
SR
1678 }
1679
ff17b8df 1680 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
c2436190
SR
1681 WARN_ON_ONCE(1);
1682 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1683 }
1684
ff17b8df 1685 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
c2436190
SR
1686 if (err)
1687 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1688
e5d6df73 1689 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
c2436190 1690
708dfad2
SR
1691 if (write && iomap->flags & IOMAP_F_SHARED) {
1692 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
ff17b8df
SR
1693 if (err)
1694 return dax_fault_return(err);
1695 }
c2436190 1696
e5d6df73 1697 if (dax_fault_is_synchronous(iter, vmf->vma))
c2436190
SR
1698 return dax_fault_synchronous_pfnp(pfnp, pfn);
1699
1700 /* insert PMD pfn */
1701 if (pmd)
1702 return vmf_insert_pfn_pmd(vmf, pfn, write);
1703
1704 /* insert PTE pfn */
1705 if (write)
1706 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1707 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1708}
1709
ab77dab4 1710static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1711 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1712{
65dd814a 1713 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1714 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
65dd814a
CH
1715 struct iomap_iter iter = {
1716 .inode = mapping->host,
1717 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1718 .len = PAGE_SIZE,
952da063 1719 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1720 };
ab77dab4 1721 vm_fault_t ret = 0;
a7d73fe6 1722 void *entry;
65dd814a 1723 int error;
a7d73fe6 1724
65dd814a 1725 trace_dax_pte_fault(iter.inode, vmf, ret);
a7d73fe6
CH
1726 /*
1727 * Check whether offset isn't beyond end of file now. Caller is supposed
1728 * to hold locks serializing us with truncate / punch hole so this is
1729 * a reliable test.
1730 */
65dd814a 1731 if (iter.pos >= i_size_read(iter.inode)) {
ab77dab4 1732 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1733 goto out;
1734 }
a7d73fe6 1735
65dd814a
CH
1736 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1737 iter.flags |= IOMAP_WRITE;
a7d73fe6 1738
b15cd800
MW
1739 entry = grab_mapping_entry(&xas, mapping, 0);
1740 if (xa_is_internal(entry)) {
1741 ret = xa_to_internal(entry);
13e451fd
JK
1742 goto out;
1743 }
1744
e2093926
RZ
1745 /*
1746 * It is possible, particularly with mixed reads & writes to private
1747 * mappings, that we have raced with a PMD fault that overlaps with
1748 * the PTE we need to set up. If so just return and the fault will be
1749 * retried.
1750 */
1751 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1752 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1753 goto unlock_entry;
1754 }
1755
65dd814a
CH
1756 while ((error = iomap_iter(&iter, ops)) > 0) {
1757 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1758 iter.processed = -EIO; /* fs corruption? */
1759 continue;
a7d73fe6
CH
1760 }
1761
65dd814a
CH
1762 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1763 if (ret != VM_FAULT_SIGBUS &&
1764 (iter.iomap.flags & IOMAP_F_NEW)) {
a7d73fe6 1765 count_vm_event(PGMAJFAULT);
65dd814a
CH
1766 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1767 ret |= VM_FAULT_MAJOR;
a7d73fe6 1768 }
1b5a1cb2 1769
65dd814a
CH
1770 if (!(ret & VM_FAULT_ERROR))
1771 iter.processed = PAGE_SIZE;
a7d73fe6
CH
1772 }
1773
65dd814a
CH
1774 if (iomap_errp)
1775 *iomap_errp = error;
1776 if (!ret && error)
1777 ret = dax_fault_return(error);
9f141d6e 1778
c2436190 1779unlock_entry:
b15cd800 1780 dax_unlock_entry(&xas, entry);
c2436190 1781out:
65dd814a
CH
1782 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1783 return ret;
a7d73fe6 1784}
642261ac
RZ
1785
1786#ifdef CONFIG_FS_DAX_PMD
55f81639
SR
1787static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1788 pgoff_t max_pgoff)
642261ac 1789{
f4200391 1790 unsigned long pmd_addr = vmf->address & PMD_MASK;
55f81639 1791 bool write = vmf->flags & FAULT_FLAG_WRITE;
642261ac 1792
55f81639
SR
1793 /*
1794 * Make sure that the faulting address's PMD offset (color) matches
1795 * the PMD offset from the start of the file. This is necessary so
1796 * that a PMD range in the page table overlaps exactly with a PMD
1797 * range in the page cache.
1798 */
1799 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1800 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1801 return true;
642261ac 1802
55f81639
SR
1803 /* Fall back to PTEs if we're going to COW */
1804 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1805 return true;
11cf9d86 1806
55f81639
SR
1807 /* If the PMD would extend outside the VMA */
1808 if (pmd_addr < vmf->vma->vm_start)
1809 return true;
1810 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1811 return true;
642261ac 1812
55f81639
SR
1813 /* If the PMD would extend beyond the file size */
1814 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1815 return true;
653b2ea3 1816
55f81639 1817 return false;
642261ac
RZ
1818}
1819
ab77dab4 1820static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1821 const struct iomap_ops *ops)
642261ac 1822{
65dd814a 1823 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
b15cd800 1824 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
65dd814a
CH
1825 struct iomap_iter iter = {
1826 .inode = mapping->host,
1827 .len = PMD_SIZE,
952da063 1828 .flags = IOMAP_DAX | IOMAP_FAULT,
65dd814a 1829 };
c2436190 1830 vm_fault_t ret = VM_FAULT_FALLBACK;
b15cd800 1831 pgoff_t max_pgoff;
642261ac 1832 void *entry;
642261ac
RZ
1833 int error;
1834
65dd814a
CH
1835 if (vmf->flags & FAULT_FLAG_WRITE)
1836 iter.flags |= IOMAP_WRITE;
642261ac 1837
282a8e03
RZ
1838 /*
1839 * Check whether offset isn't beyond end of file now. Caller is
1840 * supposed to hold locks serializing us with truncate / punch hole so
1841 * this is a reliable test.
1842 */
65dd814a 1843 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
fffa281b 1844
65dd814a 1845 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
642261ac 1846
b15cd800 1847 if (xas.xa_index >= max_pgoff) {
c2436190 1848 ret = VM_FAULT_SIGBUS;
282a8e03
RZ
1849 goto out;
1850 }
642261ac 1851
55f81639 1852 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
642261ac
RZ
1853 goto fallback;
1854
876f2946 1855 /*
b15cd800
MW
1856 * grab_mapping_entry() will make sure we get an empty PMD entry,
1857 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1858 * entry is already in the array, for instance), it will return
1859 * VM_FAULT_FALLBACK.
876f2946 1860 */
23c84eb7 1861 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
b15cd800 1862 if (xa_is_internal(entry)) {
c2436190 1863 ret = xa_to_internal(entry);
876f2946 1864 goto fallback;
b15cd800 1865 }
876f2946 1866
e2093926
RZ
1867 /*
1868 * It is possible, particularly with mixed reads & writes to private
1869 * mappings, that we have raced with a PTE fault that overlaps with
1870 * the PMD we need to set up. If so just return and the fault will be
1871 * retried.
1872 */
1873 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874 !pmd_devmap(*vmf->pmd)) {
c2436190 1875 ret = 0;
e2093926
RZ
1876 goto unlock_entry;
1877 }
1878
65dd814a
CH
1879 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880 while ((error = iomap_iter(&iter, ops)) > 0) {
1881 if (iomap_length(&iter) < PMD_SIZE)
1882 continue; /* actually breaks out of the loop */
caa51d26 1883
65dd814a
CH
1884 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885 if (ret != VM_FAULT_FALLBACK)
1886 iter.processed = PMD_SIZE;
642261ac
RZ
1887 }
1888
c2436190 1889unlock_entry:
b15cd800 1890 dax_unlock_entry(&xas, entry);
c2436190
SR
1891fallback:
1892 if (ret == VM_FAULT_FALLBACK) {
65dd814a 1893 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
642261ac
RZ
1894 count_vm_event(THP_FAULT_FALLBACK);
1895 }
282a8e03 1896out:
65dd814a 1897 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
c2436190 1898 return ret;
642261ac 1899}
a2d58167 1900#else
ab77dab4 1901static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1902 const struct iomap_ops *ops)
a2d58167
DJ
1903{
1904 return VM_FAULT_FALLBACK;
1905}
642261ac 1906#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1907
1908/**
1909 * dax_iomap_fault - handle a page fault on a DAX file
1910 * @vmf: The description of the fault
cec04e8c 1911 * @pe_size: Size of the page to fault in
9a0dd422 1912 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1913 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1914 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1915 *
1916 * When a page fault occurs, filesystems may call this helper in
1917 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918 * has done all the necessary locking for page fault to proceed
1919 * successfully.
1920 */
ab77dab4 1921vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1922 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1923{
c791ace1
DJ
1924 switch (pe_size) {
1925 case PE_SIZE_PTE:
c0b24625 1926 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1927 case PE_SIZE_PMD:
9a0dd422 1928 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1929 default:
1930 return VM_FAULT_FALLBACK;
1931 }
1932}
1933EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1934
a77d19f4 1935/*
71eab6df
JK
1936 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937 * @vmf: The description of the fault
71eab6df 1938 * @pfn: PFN to insert
cfc93c6c 1939 * @order: Order of entry to insert.
71eab6df 1940 *
a77d19f4
MW
1941 * This function inserts a writeable PTE or PMD entry into the page tables
1942 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1943 */
cfc93c6c
MW
1944static vm_fault_t
1945dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1946{
1947 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1948 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1949 void *entry;
ab77dab4 1950 vm_fault_t ret;
71eab6df 1951
cfc93c6c 1952 xas_lock_irq(&xas);
23c84eb7 1953 entry = get_unlocked_entry(&xas, order);
71eab6df 1954 /* Did we race with someone splitting entry or so? */
23c84eb7
MWO
1955 if (!entry || dax_is_conflict(entry) ||
1956 (order == 0 && !dax_is_pte_entry(entry))) {
4c3d043d 1957 put_unlocked_entry(&xas, entry, WAKE_NEXT);
cfc93c6c 1958 xas_unlock_irq(&xas);
71eab6df
JK
1959 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1960 VM_FAULT_NOPAGE);
1961 return VM_FAULT_NOPAGE;
1962 }
cfc93c6c
MW
1963 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964 dax_lock_entry(&xas, entry);
1965 xas_unlock_irq(&xas);
1966 if (order == 0)
ab77dab4 1967 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1968#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1969 else if (order == PMD_ORDER)
fce86ff5 1970 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
71eab6df 1971#endif
cfc93c6c 1972 else
ab77dab4 1973 ret = VM_FAULT_FALLBACK;
cfc93c6c 1974 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1975 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1976 return ret;
71eab6df
JK
1977}
1978
1979/**
1980 * dax_finish_sync_fault - finish synchronous page fault
1981 * @vmf: The description of the fault
1982 * @pe_size: Size of entry to be inserted
1983 * @pfn: PFN to insert
1984 *
1985 * This function ensures that the file range touched by the page fault is
1986 * stored persistently on the media and handles inserting of appropriate page
1987 * table entry.
1988 */
ab77dab4
SJ
1989vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1991{
1992 int err;
1993 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1994 unsigned int order = pe_order(pe_size);
1995 size_t len = PAGE_SIZE << order;
71eab6df 1996
71eab6df
JK
1997 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1998 if (err)
1999 return VM_FAULT_SIGBUS;
cfc93c6c 2000 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
2001}
2002EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
6f7db389
SR
2003
2004static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005 struct iomap_iter *it_dest, u64 len, bool *same)
2006{
2007 const struct iomap *smap = &it_src->iomap;
2008 const struct iomap *dmap = &it_dest->iomap;
2009 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010 void *saddr, *daddr;
2011 int id, ret;
2012
2013 len = min(len, min(smap->length, dmap->length));
2014
2015 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2016 *same = true;
2017 return len;
2018 }
2019
2020 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2021 *same = false;
2022 return 0;
2023 }
2024
2025 id = dax_read_lock();
2026 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2027 &saddr, NULL);
2028 if (ret < 0)
2029 goto out_unlock;
2030
2031 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2032 &daddr, NULL);
2033 if (ret < 0)
2034 goto out_unlock;
2035
2036 *same = !memcmp(saddr, daddr, len);
2037 if (!*same)
2038 len = 0;
2039 dax_read_unlock(id);
2040 return len;
2041
2042out_unlock:
2043 dax_read_unlock(id);
2044 return -EIO;
2045}
2046
2047int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049 const struct iomap_ops *ops)
2050{
2051 struct iomap_iter src_iter = {
2052 .inode = src,
2053 .pos = srcoff,
2054 .len = len,
2055 .flags = IOMAP_DAX,
2056 };
2057 struct iomap_iter dst_iter = {
2058 .inode = dst,
2059 .pos = dstoff,
2060 .len = len,
2061 .flags = IOMAP_DAX,
2062 };
0e79e373 2063 int ret, compared = 0;
6f7db389 2064
0e79e373
SR
2065 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066 (ret = iomap_iter(&dst_iter, ops)) > 0) {
e900ba10
SR
2067 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068 min(src_iter.len, dst_iter.len), same);
0e79e373
SR
2069 if (compared < 0)
2070 return ret;
2071 src_iter.processed = dst_iter.processed = compared;
6f7db389
SR
2072 }
2073 return ret;
2074}
2075
2076int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077 struct file *file_out, loff_t pos_out,
2078 loff_t *len, unsigned int remap_flags,
2079 const struct iomap_ops *ops)
2080{
2081 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082 pos_out, len, remap_flags, ops);
2083}
2084EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);