block: ublk: switch to ioctl command encoding
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
8324aa91 52
18fbda91 53struct dentry *blk_debugfs_root;
18fbda91 54
d07335e5 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 61
2bd85221 62static DEFINE_IDA(blk_queue_ida);
a73f730d 63
1da177e4
LT
64/*
65 * For queue allocation
66 */
2bd85221 67static struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
57d74df9 81 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
57d74df9 92 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
57d74df9 106 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
e47bc4ed
CK
110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 118 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
0512a75b 122 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 123 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126};
127#undef REQ_OP_NAME
128
129/**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
77e7ffd7 137inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
138{
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145}
146EXPORT_SYMBOL_GPL(blk_op_str);
147
2a842aca
CH
148static const struct {
149 int errno;
150 const char *name;
151} blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 165
4e4cbee9
CH
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
3b481d91
KB
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
2a842aca
CH
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175};
176
177blk_status_t errno_to_blk_status(int errno)
178{
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187}
188EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
190int blk_status_to_errno(blk_status_t status)
191{
192 int idx = (__force int)status;
193
34bd9c1c 194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
195 return -EIO;
196 return blk_errors[idx].errno;
197}
198EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
0d7a29a2 200const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
201{
202 int idx = (__force int)status;
203
34bd9c1c 204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
205 return "<null>";
206 return blk_errors[idx].name;
2a842aca
CH
207}
208
1da177e4
LT
209/**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
59c51591 218 * that the callbacks might use. The caller must already have made sure
c62b37d9 219 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
220 * this function.
221 *
da527770 222 * This function does not cancel any asynchronous activity arising
da3dae54 223 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 224 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 225 *
1da177e4
LT
226 */
227void blk_sync_queue(struct request_queue *q)
228{
70ed28b9 229 del_timer_sync(&q->timeout);
4e9b6f20 230 cancel_work_sync(&q->timeout_work);
1da177e4
LT
231}
232EXPORT_SYMBOL(blk_sync_queue);
233
c9254f2d 234/**
cd84a62e 235 * blk_set_pm_only - increment pm_only counter
c9254f2d 236 * @q: request queue pointer
c9254f2d 237 */
cd84a62e 238void blk_set_pm_only(struct request_queue *q)
c9254f2d 239{
cd84a62e 240 atomic_inc(&q->pm_only);
c9254f2d 241}
cd84a62e 242EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 243
cd84a62e 244void blk_clear_pm_only(struct request_queue *q)
c9254f2d 245{
cd84a62e
BVA
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
c9254f2d 252}
cd84a62e 253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 254
2bd85221
CH
255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256{
d36a9ea5
ML
257 struct request_queue *q = container_of(rcu_head,
258 struct request_queue, rcu_head);
259
260 percpu_ref_exit(&q->q_usage_counter);
261 kmem_cache_free(blk_requestq_cachep, q);
2bd85221
CH
262}
263
264static void blk_free_queue(struct request_queue *q)
265{
2bd85221 266 blk_free_queue_stats(q->stats);
2bd85221
CH
267 if (queue_is_mq(q))
268 blk_mq_release(q);
269
270 ida_free(&blk_queue_ida, q->id);
271 call_rcu(&q->rcu_head, blk_free_queue_rcu);
272}
273
b5bd357c
LC
274/**
275 * blk_put_queue - decrement the request_queue refcount
276 * @q: the request_queue structure to decrement the refcount for
277 *
2bd85221
CH
278 * Decrements the refcount of the request_queue and free it when the refcount
279 * reaches 0.
b5bd357c 280 */
165125e1 281void blk_put_queue(struct request_queue *q)
483f4afc 282{
2bd85221
CH
283 if (refcount_dec_and_test(&q->refs))
284 blk_free_queue(q);
483f4afc 285}
d86e0e83 286EXPORT_SYMBOL(blk_put_queue);
483f4afc 287
8e141f9e 288void blk_queue_start_drain(struct request_queue *q)
aed3ea94 289{
d3cfb2a0
ML
290 /*
291 * When queue DYING flag is set, we need to block new req
292 * entering queue, so we call blk_freeze_queue_start() to
293 * prevent I/O from crossing blk_queue_enter().
294 */
295 blk_freeze_queue_start(q);
344e9ffc 296 if (queue_is_mq(q))
aed3ea94 297 blk_mq_wake_waiters(q);
055f6e18
ML
298 /* Make blk_queue_enter() reexamine the DYING flag. */
299 wake_up_all(&q->mq_freeze_wq);
aed3ea94 300}
8e141f9e 301
3a0a5299
BVA
302/**
303 * blk_queue_enter() - try to increase q->q_usage_counter
304 * @q: request queue pointer
a4d34da7 305 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 306 */
9a95e4ef 307int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 308{
a4d34da7 309 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 310
1f14a098 311 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 312 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 313 return -EAGAIN;
3ef28e83 314
5ed61d3f 315 /*
1f14a098
CH
316 * read pair of barrier in blk_freeze_queue_start(), we need to
317 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
318 * reading .mq_freeze_depth or queue dying flag, otherwise the
319 * following wait may never return if the two reads are
320 * reordered.
5ed61d3f
ML
321 */
322 smp_rmb();
1dc3039b 323 wait_event(q->mq_freeze_wq,
7996a8b5 324 (!q->mq_freeze_depth &&
52abca64 325 blk_pm_resume_queue(pm, q)) ||
1dc3039b 326 blk_queue_dying(q));
3ef28e83
DW
327 if (blk_queue_dying(q))
328 return -ENODEV;
3ef28e83 329 }
1f14a098
CH
330
331 return 0;
3ef28e83
DW
332}
333
c98cb5bb 334int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 335{
a6741536 336 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
337 struct gendisk *disk = bio->bi_bdev->bd_disk;
338
a6741536 339 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 340 if (test_bit(GD_DEAD, &disk->state))
a6741536 341 goto dead;
accea322 342 bio_wouldblock_error(bio);
56f99b8d 343 return -EAGAIN;
a6741536
CH
344 }
345
346 /*
347 * read pair of barrier in blk_freeze_queue_start(), we need to
348 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
349 * reading .mq_freeze_depth or queue dying flag, otherwise the
350 * following wait may never return if the two reads are
351 * reordered.
352 */
353 smp_rmb();
354 wait_event(q->mq_freeze_wq,
355 (!q->mq_freeze_depth &&
356 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
357 test_bit(GD_DEAD, &disk->state));
358 if (test_bit(GD_DEAD, &disk->state))
a6741536 359 goto dead;
accea322
CH
360 }
361
a6741536
CH
362 return 0;
363dead:
364 bio_io_error(bio);
365 return -ENODEV;
accea322
CH
366}
367
3ef28e83
DW
368void blk_queue_exit(struct request_queue *q)
369{
370 percpu_ref_put(&q->q_usage_counter);
371}
372
373static void blk_queue_usage_counter_release(struct percpu_ref *ref)
374{
375 struct request_queue *q =
376 container_of(ref, struct request_queue, q_usage_counter);
377
378 wake_up_all(&q->mq_freeze_wq);
379}
380
bca237a5 381static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 382{
bca237a5 383 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
384
385 kblockd_schedule_work(&q->timeout_work);
386}
387
2e3c18d0
TH
388static void blk_timeout_work(struct work_struct *work)
389{
390}
391
80bd4a7a 392struct request_queue *blk_alloc_queue(int node_id)
1946089a 393{
165125e1 394 struct request_queue *q;
1946089a 395
80bd4a7a
CH
396 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
397 node_id);
1da177e4
LT
398 if (!q)
399 return NULL;
400
cbf62af3 401 q->last_merge = NULL;
cbf62af3 402
798f2a6f 403 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
a73f730d 404 if (q->id < 0)
80bd4a7a 405 goto fail_q;
a73f730d 406
a83b576c
JA
407 q->stats = blk_alloc_queue_stats();
408 if (!q->stats)
46754bd0 409 goto fail_id;
a83b576c 410
5151412d 411 q->node = node_id;
0989a025 412
079a2e3e 413 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 414
bca237a5 415 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 416 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 417 INIT_LIST_HEAD(&q->icq_list);
483f4afc 418
2bd85221 419 refcount_set(&q->refs, 1);
85e0cbbb 420 mutex_init(&q->debugfs_mutex);
483f4afc 421 mutex_init(&q->sysfs_lock);
cecf5d87 422 mutex_init(&q->sysfs_dir_lock);
0d945c1f 423 spin_lock_init(&q->queue_lock);
c94a96ac 424
320ae51f 425 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 426 mutex_init(&q->mq_freeze_lock);
320ae51f 427
3ef28e83
DW
428 /*
429 * Init percpu_ref in atomic mode so that it's faster to shutdown.
430 * See blk_register_queue() for details.
431 */
432 if (percpu_ref_init(&q->q_usage_counter,
433 blk_queue_usage_counter_release,
434 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 435 goto fail_stats;
f51b802c 436
3d745ea5 437 blk_set_default_limits(&q->limits);
d2a27964 438 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 439
1da177e4 440 return q;
a73f730d 441
a83b576c 442fail_stats:
edb0872f 443 blk_free_queue_stats(q->stats);
a73f730d 444fail_id:
798f2a6f 445 ida_free(&blk_queue_ida, q->id);
a73f730d 446fail_q:
80bd4a7a 447 kmem_cache_free(blk_requestq_cachep, q);
a73f730d 448 return NULL;
1da177e4 449}
1da177e4 450
b5bd357c
LC
451/**
452 * blk_get_queue - increment the request_queue refcount
453 * @q: the request_queue structure to increment the refcount for
454 *
455 * Increment the refcount of the request_queue kobject.
763b5892
LC
456 *
457 * Context: Any context.
b5bd357c 458 */
09ac46c4 459bool blk_get_queue(struct request_queue *q)
1da177e4 460{
828b5f01
CH
461 if (unlikely(blk_queue_dying(q)))
462 return false;
2bd85221 463 refcount_inc(&q->refs);
828b5f01 464 return true;
1da177e4 465}
d86e0e83 466EXPORT_SYMBOL(blk_get_queue);
1da177e4 467
c17bb495
AM
468#ifdef CONFIG_FAIL_MAKE_REQUEST
469
470static DECLARE_FAULT_ATTR(fail_make_request);
471
472static int __init setup_fail_make_request(char *str)
473{
474 return setup_fault_attr(&fail_make_request, str);
475}
476__setup("fail_make_request=", setup_fail_make_request);
477
06c8c691 478bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 479{
8446fe92 480 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
481}
482
483static int __init fail_make_request_debugfs(void)
484{
dd48c085
AM
485 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
486 NULL, &fail_make_request);
487
21f9fcd8 488 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
489}
490
491late_initcall(fail_make_request_debugfs);
c17bb495
AM
492#endif /* CONFIG_FAIL_MAKE_REQUEST */
493
bdb7d420 494static inline void bio_check_ro(struct bio *bio)
721c7fc7 495{
2f9f6221 496 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 497 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 498 return;
57e95e46
CH
499 pr_warn("Trying to write to read-only block-device %pg\n",
500 bio->bi_bdev);
a32e236e 501 /* Older lvm-tools actually trigger this */
721c7fc7 502 }
721c7fc7
ID
503}
504
30abb3a6
HM
505static noinline int should_fail_bio(struct bio *bio)
506{
309dca30 507 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
508 return -EIO;
509 return 0;
510}
511ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
512
52c5e62d
CH
513/*
514 * Check whether this bio extends beyond the end of the device or partition.
515 * This may well happen - the kernel calls bread() without checking the size of
516 * the device, e.g., when mounting a file system.
517 */
2f9f6221 518static inline int bio_check_eod(struct bio *bio)
52c5e62d 519{
2f9f6221 520 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
521 unsigned int nr_sectors = bio_sectors(bio);
522
523 if (nr_sectors && maxsector &&
524 (nr_sectors > maxsector ||
525 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 526 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
527 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
528 current->comm, bio->bi_bdev, bio->bi_opf,
529 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
530 return -EIO;
531 }
532 return 0;
533}
534
74d46992
CH
535/*
536 * Remap block n of partition p to block n+start(p) of the disk.
537 */
2f9f6221 538static int blk_partition_remap(struct bio *bio)
74d46992 539{
309dca30 540 struct block_device *p = bio->bi_bdev;
74d46992 541
52c5e62d 542 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 543 return -EIO;
5eac3eb3 544 if (bio_sectors(bio)) {
8446fe92 545 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 546 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 547 bio->bi_iter.bi_sector -
8446fe92 548 p->bd_start_sect);
52c5e62d 549 }
30c5d345 550 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 551 return 0;
74d46992
CH
552}
553
0512a75b
KB
554/*
555 * Check write append to a zoned block device.
556 */
557static inline blk_status_t blk_check_zone_append(struct request_queue *q,
558 struct bio *bio)
559{
0512a75b
KB
560 int nr_sectors = bio_sectors(bio);
561
562 /* Only applicable to zoned block devices */
edd1dbc8 563 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
564 return BLK_STS_NOTSUPP;
565
566 /* The bio sector must point to the start of a sequential zone */
e29b2100 567 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
052e545c 568 !bio_zone_is_seq(bio))
0512a75b
KB
569 return BLK_STS_IOERR;
570
571 /*
572 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
573 * split and could result in non-contiguous sectors being written in
574 * different zones.
575 */
576 if (nr_sectors > q->limits.chunk_sectors)
577 return BLK_STS_IOERR;
578
579 /* Make sure the BIO is small enough and will not get split */
580 if (nr_sectors > q->limits.max_zone_append_sectors)
581 return BLK_STS_IOERR;
582
583 bio->bi_opf |= REQ_NOMERGE;
584
585 return BLK_STS_OK;
586}
587
900e0807
JA
588static void __submit_bio(struct bio *bio)
589{
7f36b7d0
ML
590 if (unlikely(!blk_crypto_bio_prep(&bio)))
591 return;
592
9f4107b0 593 if (!bio->bi_bdev->bd_has_submit_bio) {
3e08773c 594 blk_mq_submit_bio(bio);
7f36b7d0 595 } else if (likely(bio_queue_enter(bio) == 0)) {
9f4107b0
JA
596 struct gendisk *disk = bio->bi_bdev->bd_disk;
597
7f36b7d0
ML
598 disk->fops->submit_bio(bio);
599 blk_queue_exit(disk->queue);
600 }
ac7c5675
CH
601}
602
566acf2d
CH
603/*
604 * The loop in this function may be a bit non-obvious, and so deserves some
605 * explanation:
606 *
607 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
608 * that), so we have a list with a single bio.
609 * - We pretend that we have just taken it off a longer list, so we assign
610 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
611 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
612 * bios through a recursive call to submit_bio_noacct. If it did, we find a
613 * non-NULL value in bio_list and re-enter the loop from the top.
614 * - In this case we really did just take the bio of the top of the list (no
615 * pretending) and so remove it from bio_list, and call into ->submit_bio()
616 * again.
617 *
618 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
619 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 620 * ->submit_bio, but that haven't been processed yet.
566acf2d 621 */
3e08773c 622static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
623{
624 struct bio_list bio_list_on_stack[2];
566acf2d
CH
625
626 BUG_ON(bio->bi_next);
627
628 bio_list_init(&bio_list_on_stack[0]);
629 current->bio_list = bio_list_on_stack;
630
631 do {
eab4e027 632 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
633 struct bio_list lower, same;
634
566acf2d
CH
635 /*
636 * Create a fresh bio_list for all subordinate requests.
637 */
638 bio_list_on_stack[1] = bio_list_on_stack[0];
639 bio_list_init(&bio_list_on_stack[0]);
640
3e08773c 641 __submit_bio(bio);
566acf2d
CH
642
643 /*
644 * Sort new bios into those for a lower level and those for the
645 * same level.
646 */
647 bio_list_init(&lower);
648 bio_list_init(&same);
649 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 650 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
651 bio_list_add(&same, bio);
652 else
653 bio_list_add(&lower, bio);
654
655 /*
656 * Now assemble so we handle the lowest level first.
657 */
658 bio_list_merge(&bio_list_on_stack[0], &lower);
659 bio_list_merge(&bio_list_on_stack[0], &same);
660 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
661 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
662
663 current->bio_list = NULL;
566acf2d
CH
664}
665
3e08773c 666static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 667{
7c792f33 668 struct bio_list bio_list[2] = { };
ff93ea0c 669
7c792f33 670 current->bio_list = bio_list;
ff93ea0c
CH
671
672 do {
3e08773c 673 __submit_bio(bio);
7c792f33 674 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
675
676 current->bio_list = NULL;
ff93ea0c
CH
677}
678
3f98c753 679void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 680{
0f7c8f0f
JH
681 blk_cgroup_bio_start(bio);
682 blkcg_bio_issue_init(bio);
683
684 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
685 trace_block_bio_queue(bio);
686 /*
687 * Now that enqueuing has been traced, we need to trace
688 * completion as well.
689 */
690 bio_set_flag(bio, BIO_TRACE_COMPLETION);
691 }
692
27a84d54 693 /*
566acf2d
CH
694 * We only want one ->submit_bio to be active at a time, else stack
695 * usage with stacked devices could be a problem. Use current->bio_list
696 * to collect a list of requests submited by a ->submit_bio method while
697 * it is active, and then process them after it returned.
27a84d54 698 */
3e08773c 699 if (current->bio_list)
f5fe1b51 700 bio_list_add(&current->bio_list[0], bio);
9f4107b0 701 else if (!bio->bi_bdev->bd_has_submit_bio)
3e08773c
CH
702 __submit_bio_noacct_mq(bio);
703 else
704 __submit_bio_noacct(bio);
d89d8796 705}
3f98c753
ML
706
707/**
708 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
709 * @bio: The bio describing the location in memory and on the device.
710 *
711 * This is a version of submit_bio() that shall only be used for I/O that is
712 * resubmitted to lower level drivers by stacking block drivers. All file
713 * systems and other upper level users of the block layer should use
714 * submit_bio() instead.
715 */
716void submit_bio_noacct(struct bio *bio)
1da177e4 717{
309dca30 718 struct block_device *bdev = bio->bi_bdev;
eab4e027 719 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 720 blk_status_t status = BLK_STS_IOERR;
5a473e83 721 struct blk_plug *plug;
1da177e4
LT
722
723 might_sleep();
1da177e4 724
6deacb3b 725 plug = blk_mq_plug(bio);
5a473e83
JA
726 if (plug && plug->nowait)
727 bio->bi_opf |= REQ_NOWAIT;
728
03a07c92 729 /*
b0beb280 730 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 731 * if queue does not support NOWAIT.
03a07c92 732 */
568ec936 733 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 734 goto not_supported;
03a07c92 735
30abb3a6 736 if (should_fail_bio(bio))
5a7bbad2 737 goto end_io;
bdb7d420 738 bio_check_ro(bio);
3a905c37
CH
739 if (!bio_flagged(bio, BIO_REMAPPED)) {
740 if (unlikely(bio_check_eod(bio)))
741 goto end_io;
742 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
743 goto end_io;
744 }
2056a782 745
5a7bbad2 746 /*
ed00aabd
CH
747 * Filter flush bio's early so that bio based drivers without flush
748 * support don't have to worry about them.
5a7bbad2 749 */
b4a6bb3a
CH
750 if (op_is_flush(bio->bi_opf)) {
751 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
752 bio_op(bio) != REQ_OP_ZONE_APPEND))
51fd77bd 753 goto end_io;
b4a6bb3a
CH
754 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
755 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
756 if (!bio_sectors(bio)) {
757 status = BLK_STS_OK;
758 goto end_io;
759 }
51fd77bd 760 }
5a7bbad2 761 }
5ddfe969 762
d04c406f 763 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 764 bio_clear_polled(bio);
d04c406f 765
288dab8a
CH
766 switch (bio_op(bio)) {
767 case REQ_OP_DISCARD:
70200574 768 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
769 goto not_supported;
770 break;
771 case REQ_OP_SECURE_ERASE:
44abff2c 772 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
773 goto not_supported;
774 break;
0512a75b
KB
775 case REQ_OP_ZONE_APPEND:
776 status = blk_check_zone_append(q, bio);
777 if (status != BLK_STS_OK)
778 goto end_io;
779 break;
2d253440 780 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
781 case REQ_OP_ZONE_OPEN:
782 case REQ_OP_ZONE_CLOSE:
783 case REQ_OP_ZONE_FINISH:
edd1dbc8 784 if (!bdev_is_zoned(bio->bi_bdev))
2d253440 785 goto not_supported;
288dab8a 786 break;
6e33dbf2 787 case REQ_OP_ZONE_RESET_ALL:
edd1dbc8 788 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
6e33dbf2
CK
789 goto not_supported;
790 break;
a6f0788e 791 case REQ_OP_WRITE_ZEROES:
74d46992 792 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
793 goto not_supported;
794 break;
288dab8a
CH
795 default:
796 break;
5a7bbad2 797 }
01edede4 798
b781d8db 799 if (blk_throtl_bio(bio))
3f98c753
ML
800 return;
801 submit_bio_noacct_nocheck(bio);
d24c670e 802 return;
a7384677 803
288dab8a 804not_supported:
4e4cbee9 805 status = BLK_STS_NOTSUPP;
a7384677 806end_io:
4e4cbee9 807 bio->bi_status = status;
4246a0b6 808 bio_endio(bio);
d89d8796 809}
ed00aabd 810EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
811
812/**
710027a4 813 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
814 * @bio: The &struct bio which describes the I/O
815 *
3fdd4086
CH
816 * submit_bio() is used to submit I/O requests to block devices. It is passed a
817 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 818 * bio will be send to the device described by the bi_bdev field.
1da177e4 819 *
3fdd4086
CH
820 * The success/failure status of the request, along with notification of
821 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 822 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 823 * been called.
1da177e4 824 */
3e08773c 825void submit_bio(struct bio *bio)
1da177e4 826{
d3f77dfd 827 if (blkcg_punt_bio_submit(bio))
3e08773c 828 return;
d3f77dfd 829
a3e7689b
CH
830 if (bio_op(bio) == REQ_OP_READ) {
831 task_io_account_read(bio->bi_iter.bi_size);
832 count_vm_events(PGPGIN, bio_sectors(bio));
833 } else if (bio_op(bio) == REQ_OP_WRITE) {
834 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
835 }
836
3e08773c 837 submit_bio_noacct(bio);
1da177e4 838}
1da177e4
LT
839EXPORT_SYMBOL(submit_bio);
840
3e08773c
CH
841/**
842 * bio_poll - poll for BIO completions
843 * @bio: bio to poll for
e30028ac 844 * @iob: batches of IO
3e08773c
CH
845 * @flags: BLK_POLL_* flags that control the behavior
846 *
847 * Poll for completions on queue associated with the bio. Returns number of
848 * completed entries found.
849 *
850 * Note: the caller must either be the context that submitted @bio, or
851 * be in a RCU critical section to prevent freeing of @bio.
852 */
5a72e899 853int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 854{
3e08773c 855 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
310726c3
JA
856 struct block_device *bdev;
857 struct request_queue *q;
69fe0f29 858 int ret = 0;
3e08773c 859
310726c3
JA
860 bdev = READ_ONCE(bio->bi_bdev);
861 if (!bdev)
862 return 0;
863
864 q = bdev_get_queue(bdev);
3e08773c
CH
865 if (cookie == BLK_QC_T_NONE ||
866 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
867 return 0;
868
110fdb44
PR
869 /*
870 * As the requests that require a zone lock are not plugged in the
871 * first place, directly accessing the plug instead of using
872 * blk_mq_plug() should not have any consequences during flushing for
873 * zoned devices.
874 */
aa8dccca 875 blk_flush_plug(current->plug, false);
3e08773c 876
33391eec
JA
877 /*
878 * We need to be able to enter a frozen queue, similar to how
879 * timeouts also need to do that. If that is blocked, then we can
880 * have pending IO when a queue freeze is started, and then the
881 * wait for the freeze to finish will wait for polled requests to
882 * timeout as the poller is preventer from entering the queue and
883 * completing them. As long as we prevent new IO from being queued,
884 * that should be all that matters.
885 */
886 if (!percpu_ref_tryget(&q->q_usage_counter))
3e08773c 887 return 0;
69fe0f29 888 if (queue_is_mq(q)) {
5a72e899 889 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
890 } else {
891 struct gendisk *disk = q->disk;
892
893 if (disk && disk->fops->poll_bio)
894 ret = disk->fops->poll_bio(bio, iob, flags);
895 }
3e08773c
CH
896 blk_queue_exit(q);
897 return ret;
898}
899EXPORT_SYMBOL_GPL(bio_poll);
900
901/*
902 * Helper to implement file_operations.iopoll. Requires the bio to be stored
903 * in iocb->private, and cleared before freeing the bio.
904 */
5a72e899
JA
905int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
906 unsigned int flags)
3e08773c
CH
907{
908 struct bio *bio;
909 int ret = 0;
910
911 /*
912 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
913 * point to a freshly allocated bio at this point. If that happens
914 * we have a few cases to consider:
915 *
916 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
917 * simply nothing in this case
918 * 2) the bio points to a not poll enabled device. bio_poll will catch
919 * this and return 0
920 * 3) the bio points to a poll capable device, including but not
921 * limited to the one that the original bio pointed to. In this
922 * case we will call into the actual poll method and poll for I/O,
923 * even if we don't need to, but it won't cause harm either.
924 *
925 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
926 * is still allocated. Because partitions hold a reference to the whole
927 * device bdev and thus disk, the disk is also still valid. Grabbing
928 * a reference to the queue in bio_poll() ensures the hctxs and requests
929 * are still valid as well.
930 */
931 rcu_read_lock();
932 bio = READ_ONCE(kiocb->private);
310726c3 933 if (bio)
5a72e899 934 ret = bio_poll(bio, iob, flags);
3e08773c
CH
935 rcu_read_unlock();
936
937 return ret;
938}
939EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
940
450b7879 941void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
942{
943 unsigned long stamp;
944again:
8446fe92 945 stamp = READ_ONCE(part->bd_stamp);
d80c228d 946 if (unlikely(time_after(now, stamp))) {
939f9dd0 947 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
9123bf6f
CH
948 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
949 }
8446fe92
CH
950 if (part->bd_partno) {
951 part = bdev_whole(part);
9123bf6f
CH
952 goto again;
953 }
954}
955
5f0614a5 956unsigned long bdev_start_io_acct(struct block_device *bdev,
77e7ffd7 957 unsigned int sectors, enum req_op op,
5f0614a5 958 unsigned long start_time)
956d510e 959{
956d510e 960 const int sgrp = op_stat_group(op);
956d510e
CH
961
962 part_stat_lock();
5f0614a5
ML
963 update_io_ticks(bdev, start_time, false);
964 part_stat_inc(bdev, ios[sgrp]);
965 part_stat_add(bdev, sectors[sgrp], sectors);
966 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 967 part_stat_unlock();
320ae51f 968
e45c47d1
MS
969 return start_time;
970}
5f0614a5 971EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 972
99dfc43e
CH
973/**
974 * bio_start_io_acct - start I/O accounting for bio based drivers
975 * @bio: bio to start account for
976 *
977 * Returns the start time that should be passed back to bio_end_io_acct().
978 */
979unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 980{
5f0614a5
ML
981 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
982 bio_op(bio), jiffies);
7b26410b 983}
99dfc43e 984EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 985
77e7ffd7 986void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 987 unsigned long start_time)
956d510e 988{
956d510e
CH
989 const int sgrp = op_stat_group(op);
990 unsigned long now = READ_ONCE(jiffies);
991 unsigned long duration = now - start_time;
5b18b5a7 992
956d510e 993 part_stat_lock();
5f0614a5
ML
994 update_io_ticks(bdev, now, true);
995 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
996 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
997 part_stat_unlock();
998}
5f0614a5 999EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 1000
99dfc43e 1001void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 1002 struct block_device *orig_bdev)
7b26410b 1003{
5f0614a5 1004 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1005}
99dfc43e 1006EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1007
ef9e3fac
KU
1008/**
1009 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1010 * @q : the queue of the device being checked
1011 *
1012 * Description:
1013 * Check if underlying low-level drivers of a device are busy.
1014 * If the drivers want to export their busy state, they must set own
1015 * exporting function using blk_queue_lld_busy() first.
1016 *
1017 * Basically, this function is used only by request stacking drivers
1018 * to stop dispatching requests to underlying devices when underlying
1019 * devices are busy. This behavior helps more I/O merging on the queue
1020 * of the request stacking driver and prevents I/O throughput regression
1021 * on burst I/O load.
1022 *
1023 * Return:
1024 * 0 - Not busy (The request stacking driver should dispatch request)
1025 * 1 - Busy (The request stacking driver should stop dispatching request)
1026 */
1027int blk_lld_busy(struct request_queue *q)
1028{
344e9ffc 1029 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1030 return q->mq_ops->busy(q);
ef9e3fac
KU
1031
1032 return 0;
1033}
1034EXPORT_SYMBOL_GPL(blk_lld_busy);
1035
59c3d45e 1036int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1037{
1038 return queue_work(kblockd_workqueue, work);
1039}
1da177e4
LT
1040EXPORT_SYMBOL(kblockd_schedule_work);
1041
818cd1cb
JA
1042int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1043 unsigned long delay)
1044{
1045 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1046}
1047EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1048
47c122e3
JA
1049void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1050{
1051 struct task_struct *tsk = current;
1052
1053 /*
1054 * If this is a nested plug, don't actually assign it.
1055 */
1056 if (tsk->plug)
1057 return;
1058
bc490f81 1059 plug->mq_list = NULL;
47c122e3
JA
1060 plug->cached_rq = NULL;
1061 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1062 plug->rq_count = 0;
1063 plug->multiple_queues = false;
dc5fc361 1064 plug->has_elevator = false;
47c122e3
JA
1065 plug->nowait = false;
1066 INIT_LIST_HEAD(&plug->cb_list);
1067
1068 /*
1069 * Store ordering should not be needed here, since a potential
1070 * preempt will imply a full memory barrier
1071 */
1072 tsk->plug = plug;
1073}
1074
75df7136
SJ
1075/**
1076 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1077 * @plug: The &struct blk_plug that needs to be initialized
1078 *
1079 * Description:
40405851
JM
1080 * blk_start_plug() indicates to the block layer an intent by the caller
1081 * to submit multiple I/O requests in a batch. The block layer may use
1082 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1083 * is called. However, the block layer may choose to submit requests
1084 * before a call to blk_finish_plug() if the number of queued I/Os
1085 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1086 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1087 * the task schedules (see below).
1088 *
75df7136
SJ
1089 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1090 * pending I/O should the task end up blocking between blk_start_plug() and
1091 * blk_finish_plug(). This is important from a performance perspective, but
1092 * also ensures that we don't deadlock. For instance, if the task is blocking
1093 * for a memory allocation, memory reclaim could end up wanting to free a
1094 * page belonging to that request that is currently residing in our private
1095 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1096 * this kind of deadlock.
1097 */
73c10101
JA
1098void blk_start_plug(struct blk_plug *plug)
1099{
47c122e3 1100 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1101}
1102EXPORT_SYMBOL(blk_start_plug);
1103
74018dc3 1104static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1105{
1106 LIST_HEAD(callbacks);
1107
2a7d5559
SL
1108 while (!list_empty(&plug->cb_list)) {
1109 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1110
2a7d5559
SL
1111 while (!list_empty(&callbacks)) {
1112 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1113 struct blk_plug_cb,
1114 list);
2a7d5559 1115 list_del(&cb->list);
74018dc3 1116 cb->callback(cb, from_schedule);
2a7d5559 1117 }
048c9374
N
1118 }
1119}
1120
9cbb1750
N
1121struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1122 int size)
1123{
1124 struct blk_plug *plug = current->plug;
1125 struct blk_plug_cb *cb;
1126
1127 if (!plug)
1128 return NULL;
1129
1130 list_for_each_entry(cb, &plug->cb_list, list)
1131 if (cb->callback == unplug && cb->data == data)
1132 return cb;
1133
1134 /* Not currently on the callback list */
1135 BUG_ON(size < sizeof(*cb));
1136 cb = kzalloc(size, GFP_ATOMIC);
1137 if (cb) {
1138 cb->data = data;
1139 cb->callback = unplug;
1140 list_add(&cb->list, &plug->cb_list);
1141 }
1142 return cb;
1143}
1144EXPORT_SYMBOL(blk_check_plugged);
1145
aa8dccca 1146void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1147{
b600455d
PB
1148 if (!list_empty(&plug->cb_list))
1149 flush_plug_callbacks(plug, from_schedule);
bc490f81 1150 if (!rq_list_empty(plug->mq_list))
320ae51f 1151 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1152 /*
1153 * Unconditionally flush out cached requests, even if the unplug
1154 * event came from schedule. Since we know hold references to the
1155 * queue for cached requests, we don't want a blocked task holding
1156 * up a queue freeze/quiesce event.
1157 */
1158 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1159 blk_mq_free_plug_rqs(plug);
73c10101 1160}
73c10101 1161
40405851
JM
1162/**
1163 * blk_finish_plug - mark the end of a batch of submitted I/O
1164 * @plug: The &struct blk_plug passed to blk_start_plug()
1165 *
1166 * Description:
1167 * Indicate that a batch of I/O submissions is complete. This function
1168 * must be paired with an initial call to blk_start_plug(). The intent
1169 * is to allow the block layer to optimize I/O submission. See the
1170 * documentation for blk_start_plug() for more information.
1171 */
73c10101
JA
1172void blk_finish_plug(struct blk_plug *plug)
1173{
008f75a2 1174 if (plug == current->plug) {
aa8dccca 1175 __blk_flush_plug(plug, false);
008f75a2
CH
1176 current->plug = NULL;
1177 }
73c10101 1178}
88b996cd 1179EXPORT_SYMBOL(blk_finish_plug);
73c10101 1180
71ac860a
ML
1181void blk_io_schedule(void)
1182{
1183 /* Prevent hang_check timer from firing at us during very long I/O */
1184 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1185
1186 if (timeout)
1187 io_schedule_timeout(timeout);
1188 else
1189 io_schedule();
1190}
1191EXPORT_SYMBOL_GPL(blk_io_schedule);
1192
1da177e4
LT
1193int __init blk_dev_init(void)
1194{
16458cf3 1195 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1196 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1197 sizeof_field(struct request, cmd_flags));
ef295ecf 1198 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1199 sizeof_field(struct bio, bi_opf));
9eb55b03 1200
89b90be2
TH
1201 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1202 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1203 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1204 if (!kblockd_workqueue)
1205 panic("Failed to create kblockd\n");
1206
c2789bd4 1207 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1208 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1209
18fbda91 1210 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1211
d38ecf93 1212 return 0;
1da177e4 1213}