Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-block.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
95
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123                 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136                               int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138                                 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static const struct net_device_ops gfar_netdev_ops = {
151         .ndo_open = gfar_enet_open,
152         .ndo_start_xmit = gfar_start_xmit,
153         .ndo_stop = gfar_close,
154         .ndo_change_mtu = gfar_change_mtu,
155         .ndo_set_multicast_list = gfar_set_multi,
156         .ndo_tx_timeout = gfar_timeout,
157         .ndo_do_ioctl = gfar_ioctl,
158         .ndo_vlan_rx_register = gfar_vlan_rx_register,
159         .ndo_set_mac_address = eth_mac_addr,
160         .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162         .ndo_poll_controller = gfar_netpoll,
163 #endif
164 };
165
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
168 {
169         return priv->vlgrp || priv->rx_csum_enable;
170 }
171
172 static int gfar_of_init(struct net_device *dev)
173 {
174         const char *model;
175         const char *ctype;
176         const void *mac_addr;
177         u64 addr, size;
178         int err = 0;
179         struct gfar_private *priv = netdev_priv(dev);
180         struct device_node *np = priv->node;
181         const u32 *stash;
182         const u32 *stash_len;
183         const u32 *stash_idx;
184
185         if (!np || !of_device_is_available(np))
186                 return -ENODEV;
187
188         /* get a pointer to the register memory */
189         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190         priv->regs = ioremap(addr, size);
191
192         if (priv->regs == NULL)
193                 return -ENOMEM;
194
195         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
196
197         model = of_get_property(np, "model", NULL);
198
199         /* If we aren't the FEC we have multiple interrupts */
200         if (model && strcasecmp(model, "FEC")) {
201                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
202
203                 priv->interruptError = irq_of_parse_and_map(np, 2);
204
205                 if (priv->interruptTransmit < 0 ||
206                                 priv->interruptReceive < 0 ||
207                                 priv->interruptError < 0) {
208                         err = -EINVAL;
209                         goto err_out;
210                 }
211         }
212
213         stash = of_get_property(np, "bd-stash", NULL);
214
215         if(stash) {
216                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217                 priv->bd_stash_en = 1;
218         }
219
220         stash_len = of_get_property(np, "rx-stash-len", NULL);
221
222         if (stash_len)
223                 priv->rx_stash_size = *stash_len;
224
225         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
226
227         if (stash_idx)
228                 priv->rx_stash_index = *stash_idx;
229
230         if (stash_len || stash_idx)
231                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
232
233         mac_addr = of_get_mac_address(np);
234         if (mac_addr)
235                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
236
237         if (model && !strcasecmp(model, "TSEC"))
238                 priv->device_flags =
239                         FSL_GIANFAR_DEV_HAS_GIGABIT |
240                         FSL_GIANFAR_DEV_HAS_COALESCE |
241                         FSL_GIANFAR_DEV_HAS_RMON |
242                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243         if (model && !strcasecmp(model, "eTSEC"))
244                 priv->device_flags =
245                         FSL_GIANFAR_DEV_HAS_GIGABIT |
246                         FSL_GIANFAR_DEV_HAS_COALESCE |
247                         FSL_GIANFAR_DEV_HAS_RMON |
248                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249                         FSL_GIANFAR_DEV_HAS_PADDING |
250                         FSL_GIANFAR_DEV_HAS_CSUM |
251                         FSL_GIANFAR_DEV_HAS_VLAN |
252                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
254
255         ctype = of_get_property(np, "phy-connection-type", NULL);
256
257         /* We only care about rgmii-id.  The rest are autodetected */
258         if (ctype && !strcmp(ctype, "rgmii-id"))
259                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260         else
261                 priv->interface = PHY_INTERFACE_MODE_MII;
262
263         if (of_get_property(np, "fsl,magic-packet", NULL))
264                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
265
266         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
267         if (!priv->phy_node) {
268                 u32 *fixed_link;
269
270                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
271                 if (!fixed_link) {
272                         err = -ENODEV;
273                         goto err_out;
274                 }
275         }
276
277         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
278         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
279
280         return 0;
281
282 err_out:
283         iounmap(priv->regs);
284         return err;
285 }
286
287 /* Ioctl MII Interface */
288 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
289 {
290         struct gfar_private *priv = netdev_priv(dev);
291
292         if (!netif_running(dev))
293                 return -EINVAL;
294
295         if (!priv->phydev)
296                 return -ENODEV;
297
298         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
299 }
300
301 /* Set up the ethernet device structure, private data,
302  * and anything else we need before we start */
303 static int gfar_probe(struct of_device *ofdev,
304                 const struct of_device_id *match)
305 {
306         u32 tempval;
307         struct net_device *dev = NULL;
308         struct gfar_private *priv = NULL;
309         int err = 0;
310         int len_devname;
311
312         /* Create an ethernet device instance */
313         dev = alloc_etherdev(sizeof (*priv));
314
315         if (NULL == dev)
316                 return -ENOMEM;
317
318         priv = netdev_priv(dev);
319         priv->ndev = dev;
320         priv->ofdev = ofdev;
321         priv->node = ofdev->node;
322         SET_NETDEV_DEV(dev, &ofdev->dev);
323
324         err = gfar_of_init(dev);
325
326         if (err)
327                 goto regs_fail;
328
329         spin_lock_init(&priv->txlock);
330         spin_lock_init(&priv->rxlock);
331         spin_lock_init(&priv->bflock);
332         INIT_WORK(&priv->reset_task, gfar_reset_task);
333
334         dev_set_drvdata(&ofdev->dev, priv);
335
336         /* Stop the DMA engine now, in case it was running before */
337         /* (The firmware could have used it, and left it running). */
338         gfar_halt(dev);
339
340         /* Reset MAC layer */
341         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
342
343         /* We need to delay at least 3 TX clocks */
344         udelay(2);
345
346         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
347         gfar_write(&priv->regs->maccfg1, tempval);
348
349         /* Initialize MACCFG2. */
350         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
351
352         /* Initialize ECNTRL */
353         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
354
355         /* Set the dev->base_addr to the gfar reg region */
356         dev->base_addr = (unsigned long) (priv->regs);
357
358         SET_NETDEV_DEV(dev, &ofdev->dev);
359
360         /* Fill in the dev structure */
361         dev->watchdog_timeo = TX_TIMEOUT;
362         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
363         dev->mtu = 1500;
364
365         dev->netdev_ops = &gfar_netdev_ops;
366         dev->ethtool_ops = &gfar_ethtool_ops;
367
368         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
369                 priv->rx_csum_enable = 1;
370                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
371         } else
372                 priv->rx_csum_enable = 0;
373
374         priv->vlgrp = NULL;
375
376         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
377                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
378
379         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
380                 priv->extended_hash = 1;
381                 priv->hash_width = 9;
382
383                 priv->hash_regs[0] = &priv->regs->igaddr0;
384                 priv->hash_regs[1] = &priv->regs->igaddr1;
385                 priv->hash_regs[2] = &priv->regs->igaddr2;
386                 priv->hash_regs[3] = &priv->regs->igaddr3;
387                 priv->hash_regs[4] = &priv->regs->igaddr4;
388                 priv->hash_regs[5] = &priv->regs->igaddr5;
389                 priv->hash_regs[6] = &priv->regs->igaddr6;
390                 priv->hash_regs[7] = &priv->regs->igaddr7;
391                 priv->hash_regs[8] = &priv->regs->gaddr0;
392                 priv->hash_regs[9] = &priv->regs->gaddr1;
393                 priv->hash_regs[10] = &priv->regs->gaddr2;
394                 priv->hash_regs[11] = &priv->regs->gaddr3;
395                 priv->hash_regs[12] = &priv->regs->gaddr4;
396                 priv->hash_regs[13] = &priv->regs->gaddr5;
397                 priv->hash_regs[14] = &priv->regs->gaddr6;
398                 priv->hash_regs[15] = &priv->regs->gaddr7;
399
400         } else {
401                 priv->extended_hash = 0;
402                 priv->hash_width = 8;
403
404                 priv->hash_regs[0] = &priv->regs->gaddr0;
405                 priv->hash_regs[1] = &priv->regs->gaddr1;
406                 priv->hash_regs[2] = &priv->regs->gaddr2;
407                 priv->hash_regs[3] = &priv->regs->gaddr3;
408                 priv->hash_regs[4] = &priv->regs->gaddr4;
409                 priv->hash_regs[5] = &priv->regs->gaddr5;
410                 priv->hash_regs[6] = &priv->regs->gaddr6;
411                 priv->hash_regs[7] = &priv->regs->gaddr7;
412         }
413
414         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
415                 priv->padding = DEFAULT_PADDING;
416         else
417                 priv->padding = 0;
418
419         if (dev->features & NETIF_F_IP_CSUM)
420                 dev->hard_header_len += GMAC_FCB_LEN;
421
422         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
423         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
424         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
425         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
426
427         priv->txcoalescing = DEFAULT_TX_COALESCE;
428         priv->txic = DEFAULT_TXIC;
429         priv->rxcoalescing = DEFAULT_RX_COALESCE;
430         priv->rxic = DEFAULT_RXIC;
431
432         /* Enable most messages by default */
433         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
434
435         /* Carrier starts down, phylib will bring it up */
436         netif_carrier_off(dev);
437
438         err = register_netdev(dev);
439
440         if (err) {
441                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
442                                 dev->name);
443                 goto register_fail;
444         }
445
446         device_init_wakeup(&dev->dev,
447                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
448
449         /* fill out IRQ number and name fields */
450         len_devname = strlen(dev->name);
451         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
452         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
453                 strncpy(&priv->int_name_tx[len_devname],
454                         "_tx", sizeof("_tx") + 1);
455
456                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
457                 strncpy(&priv->int_name_rx[len_devname],
458                         "_rx", sizeof("_rx") + 1);
459
460                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
461                 strncpy(&priv->int_name_er[len_devname],
462                         "_er", sizeof("_er") + 1);
463         } else
464                 priv->int_name_tx[len_devname] = '\0';
465
466         /* Create all the sysfs files */
467         gfar_init_sysfs(dev);
468
469         /* Print out the device info */
470         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
471
472         /* Even more device info helps when determining which kernel */
473         /* provided which set of benchmarks. */
474         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
475         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
476                dev->name, priv->rx_ring_size, priv->tx_ring_size);
477
478         return 0;
479
480 register_fail:
481         iounmap(priv->regs);
482 regs_fail:
483         if (priv->phy_node)
484                 of_node_put(priv->phy_node);
485         if (priv->tbi_node)
486                 of_node_put(priv->tbi_node);
487         free_netdev(dev);
488         return err;
489 }
490
491 static int gfar_remove(struct of_device *ofdev)
492 {
493         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
494
495         if (priv->phy_node)
496                 of_node_put(priv->phy_node);
497         if (priv->tbi_node)
498                 of_node_put(priv->tbi_node);
499
500         dev_set_drvdata(&ofdev->dev, NULL);
501
502         iounmap(priv->regs);
503         free_netdev(priv->ndev);
504
505         return 0;
506 }
507
508 #ifdef CONFIG_PM
509 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
510 {
511         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
512         struct net_device *dev = priv->ndev;
513         unsigned long flags;
514         u32 tempval;
515
516         int magic_packet = priv->wol_en &&
517                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
518
519         netif_device_detach(dev);
520
521         if (netif_running(dev)) {
522                 spin_lock_irqsave(&priv->txlock, flags);
523                 spin_lock(&priv->rxlock);
524
525                 gfar_halt_nodisable(dev);
526
527                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
528                 tempval = gfar_read(&priv->regs->maccfg1);
529
530                 tempval &= ~MACCFG1_TX_EN;
531
532                 if (!magic_packet)
533                         tempval &= ~MACCFG1_RX_EN;
534
535                 gfar_write(&priv->regs->maccfg1, tempval);
536
537                 spin_unlock(&priv->rxlock);
538                 spin_unlock_irqrestore(&priv->txlock, flags);
539
540                 napi_disable(&priv->napi);
541
542                 if (magic_packet) {
543                         /* Enable interrupt on Magic Packet */
544                         gfar_write(&priv->regs->imask, IMASK_MAG);
545
546                         /* Enable Magic Packet mode */
547                         tempval = gfar_read(&priv->regs->maccfg2);
548                         tempval |= MACCFG2_MPEN;
549                         gfar_write(&priv->regs->maccfg2, tempval);
550                 } else {
551                         phy_stop(priv->phydev);
552                 }
553         }
554
555         return 0;
556 }
557
558 static int gfar_resume(struct of_device *ofdev)
559 {
560         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
561         struct net_device *dev = priv->ndev;
562         unsigned long flags;
563         u32 tempval;
564         int magic_packet = priv->wol_en &&
565                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
566
567         if (!netif_running(dev)) {
568                 netif_device_attach(dev);
569                 return 0;
570         }
571
572         if (!magic_packet && priv->phydev)
573                 phy_start(priv->phydev);
574
575         /* Disable Magic Packet mode, in case something
576          * else woke us up.
577          */
578
579         spin_lock_irqsave(&priv->txlock, flags);
580         spin_lock(&priv->rxlock);
581
582         tempval = gfar_read(&priv->regs->maccfg2);
583         tempval &= ~MACCFG2_MPEN;
584         gfar_write(&priv->regs->maccfg2, tempval);
585
586         gfar_start(dev);
587
588         spin_unlock(&priv->rxlock);
589         spin_unlock_irqrestore(&priv->txlock, flags);
590
591         netif_device_attach(dev);
592
593         napi_enable(&priv->napi);
594
595         return 0;
596 }
597 #else
598 #define gfar_suspend NULL
599 #define gfar_resume NULL
600 #endif
601
602 /* Reads the controller's registers to determine what interface
603  * connects it to the PHY.
604  */
605 static phy_interface_t gfar_get_interface(struct net_device *dev)
606 {
607         struct gfar_private *priv = netdev_priv(dev);
608         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
609
610         if (ecntrl & ECNTRL_SGMII_MODE)
611                 return PHY_INTERFACE_MODE_SGMII;
612
613         if (ecntrl & ECNTRL_TBI_MODE) {
614                 if (ecntrl & ECNTRL_REDUCED_MODE)
615                         return PHY_INTERFACE_MODE_RTBI;
616                 else
617                         return PHY_INTERFACE_MODE_TBI;
618         }
619
620         if (ecntrl & ECNTRL_REDUCED_MODE) {
621                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
622                         return PHY_INTERFACE_MODE_RMII;
623                 else {
624                         phy_interface_t interface = priv->interface;
625
626                         /*
627                          * This isn't autodetected right now, so it must
628                          * be set by the device tree or platform code.
629                          */
630                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
631                                 return PHY_INTERFACE_MODE_RGMII_ID;
632
633                         return PHY_INTERFACE_MODE_RGMII;
634                 }
635         }
636
637         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
638                 return PHY_INTERFACE_MODE_GMII;
639
640         return PHY_INTERFACE_MODE_MII;
641 }
642
643
644 /* Initializes driver's PHY state, and attaches to the PHY.
645  * Returns 0 on success.
646  */
647 static int init_phy(struct net_device *dev)
648 {
649         struct gfar_private *priv = netdev_priv(dev);
650         uint gigabit_support =
651                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
652                 SUPPORTED_1000baseT_Full : 0;
653         phy_interface_t interface;
654
655         priv->oldlink = 0;
656         priv->oldspeed = 0;
657         priv->oldduplex = -1;
658
659         interface = gfar_get_interface(dev);
660
661         if (priv->phy_node) {
662                 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link,
663                                               0, interface);
664                 if (!priv->phydev) {
665                         dev_err(&dev->dev, "error: Could not attach to PHY\n");
666                         return -ENODEV;
667                 }
668         }
669
670         if (interface == PHY_INTERFACE_MODE_SGMII)
671                 gfar_configure_serdes(dev);
672
673         /* Remove any features not supported by the controller */
674         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
675         priv->phydev->advertising = priv->phydev->supported;
676
677         return 0;
678 }
679
680 /*
681  * Initialize TBI PHY interface for communicating with the
682  * SERDES lynx PHY on the chip.  We communicate with this PHY
683  * through the MDIO bus on each controller, treating it as a
684  * "normal" PHY at the address found in the TBIPA register.  We assume
685  * that the TBIPA register is valid.  Either the MDIO bus code will set
686  * it to a value that doesn't conflict with other PHYs on the bus, or the
687  * value doesn't matter, as there are no other PHYs on the bus.
688  */
689 static void gfar_configure_serdes(struct net_device *dev)
690 {
691         struct gfar_private *priv = netdev_priv(dev);
692         struct phy_device *tbiphy;
693
694         if (!priv->tbi_node) {
695                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
696                                     "device tree specify a tbi-handle\n");
697                 return;
698         }
699
700         tbiphy = of_phy_find_device(priv->tbi_node);
701         if (!tbiphy) {
702                 dev_err(&dev->dev, "error: Could not get TBI device\n");
703                 return;
704         }
705
706         /*
707          * If the link is already up, we must already be ok, and don't need to
708          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
709          * everything for us?  Resetting it takes the link down and requires
710          * several seconds for it to come back.
711          */
712         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
713                 return;
714
715         /* Single clk mode, mii mode off(for serdes communication) */
716         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
717
718         phy_write(tbiphy, MII_ADVERTISE,
719                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
720                         ADVERTISE_1000XPSE_ASYM);
721
722         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
723                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
724 }
725
726 static void init_registers(struct net_device *dev)
727 {
728         struct gfar_private *priv = netdev_priv(dev);
729
730         /* Clear IEVENT */
731         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
732
733         /* Initialize IMASK */
734         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
735
736         /* Init hash registers to zero */
737         gfar_write(&priv->regs->igaddr0, 0);
738         gfar_write(&priv->regs->igaddr1, 0);
739         gfar_write(&priv->regs->igaddr2, 0);
740         gfar_write(&priv->regs->igaddr3, 0);
741         gfar_write(&priv->regs->igaddr4, 0);
742         gfar_write(&priv->regs->igaddr5, 0);
743         gfar_write(&priv->regs->igaddr6, 0);
744         gfar_write(&priv->regs->igaddr7, 0);
745
746         gfar_write(&priv->regs->gaddr0, 0);
747         gfar_write(&priv->regs->gaddr1, 0);
748         gfar_write(&priv->regs->gaddr2, 0);
749         gfar_write(&priv->regs->gaddr3, 0);
750         gfar_write(&priv->regs->gaddr4, 0);
751         gfar_write(&priv->regs->gaddr5, 0);
752         gfar_write(&priv->regs->gaddr6, 0);
753         gfar_write(&priv->regs->gaddr7, 0);
754
755         /* Zero out the rmon mib registers if it has them */
756         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
757                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
758
759                 /* Mask off the CAM interrupts */
760                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
761                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
762         }
763
764         /* Initialize the max receive buffer length */
765         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
766
767         /* Initialize the Minimum Frame Length Register */
768         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
769 }
770
771
772 /* Halt the receive and transmit queues */
773 static void gfar_halt_nodisable(struct net_device *dev)
774 {
775         struct gfar_private *priv = netdev_priv(dev);
776         struct gfar __iomem *regs = priv->regs;
777         u32 tempval;
778
779         /* Mask all interrupts */
780         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
781
782         /* Clear all interrupts */
783         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
784
785         /* Stop the DMA, and wait for it to stop */
786         tempval = gfar_read(&priv->regs->dmactrl);
787         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
788             != (DMACTRL_GRS | DMACTRL_GTS)) {
789                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
790                 gfar_write(&priv->regs->dmactrl, tempval);
791
792                 while (!(gfar_read(&priv->regs->ievent) &
793                          (IEVENT_GRSC | IEVENT_GTSC)))
794                         cpu_relax();
795         }
796 }
797
798 /* Halt the receive and transmit queues */
799 void gfar_halt(struct net_device *dev)
800 {
801         struct gfar_private *priv = netdev_priv(dev);
802         struct gfar __iomem *regs = priv->regs;
803         u32 tempval;
804
805         gfar_halt_nodisable(dev);
806
807         /* Disable Rx and Tx */
808         tempval = gfar_read(&regs->maccfg1);
809         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
810         gfar_write(&regs->maccfg1, tempval);
811 }
812
813 void stop_gfar(struct net_device *dev)
814 {
815         struct gfar_private *priv = netdev_priv(dev);
816         struct gfar __iomem *regs = priv->regs;
817         unsigned long flags;
818
819         phy_stop(priv->phydev);
820
821         /* Lock it down */
822         spin_lock_irqsave(&priv->txlock, flags);
823         spin_lock(&priv->rxlock);
824
825         gfar_halt(dev);
826
827         spin_unlock(&priv->rxlock);
828         spin_unlock_irqrestore(&priv->txlock, flags);
829
830         /* Free the IRQs */
831         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
832                 free_irq(priv->interruptError, dev);
833                 free_irq(priv->interruptTransmit, dev);
834                 free_irq(priv->interruptReceive, dev);
835         } else {
836                 free_irq(priv->interruptTransmit, dev);
837         }
838
839         free_skb_resources(priv);
840
841         dma_free_coherent(&priv->ofdev->dev,
842                         sizeof(struct txbd8)*priv->tx_ring_size
843                         + sizeof(struct rxbd8)*priv->rx_ring_size,
844                         priv->tx_bd_base,
845                         gfar_read(&regs->tbase0));
846 }
847
848 /* If there are any tx skbs or rx skbs still around, free them.
849  * Then free tx_skbuff and rx_skbuff */
850 static void free_skb_resources(struct gfar_private *priv)
851 {
852         struct rxbd8 *rxbdp;
853         struct txbd8 *txbdp;
854         int i, j;
855
856         /* Go through all the buffer descriptors and free their data buffers */
857         txbdp = priv->tx_bd_base;
858
859         for (i = 0; i < priv->tx_ring_size; i++) {
860                 if (!priv->tx_skbuff[i])
861                         continue;
862
863                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
864                                 txbdp->length, DMA_TO_DEVICE);
865                 txbdp->lstatus = 0;
866                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
867                         txbdp++;
868                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
869                                         txbdp->length, DMA_TO_DEVICE);
870                 }
871                 txbdp++;
872                 dev_kfree_skb_any(priv->tx_skbuff[i]);
873                 priv->tx_skbuff[i] = NULL;
874         }
875
876         kfree(priv->tx_skbuff);
877
878         rxbdp = priv->rx_bd_base;
879
880         /* rx_skbuff is not guaranteed to be allocated, so only
881          * free it and its contents if it is allocated */
882         if(priv->rx_skbuff != NULL) {
883                 for (i = 0; i < priv->rx_ring_size; i++) {
884                         if (priv->rx_skbuff[i]) {
885                                 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
886                                                 priv->rx_buffer_size,
887                                                 DMA_FROM_DEVICE);
888
889                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
890                                 priv->rx_skbuff[i] = NULL;
891                         }
892
893                         rxbdp->lstatus = 0;
894                         rxbdp->bufPtr = 0;
895
896                         rxbdp++;
897                 }
898
899                 kfree(priv->rx_skbuff);
900         }
901 }
902
903 void gfar_start(struct net_device *dev)
904 {
905         struct gfar_private *priv = netdev_priv(dev);
906         struct gfar __iomem *regs = priv->regs;
907         u32 tempval;
908
909         /* Enable Rx and Tx in MACCFG1 */
910         tempval = gfar_read(&regs->maccfg1);
911         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
912         gfar_write(&regs->maccfg1, tempval);
913
914         /* Initialize DMACTRL to have WWR and WOP */
915         tempval = gfar_read(&priv->regs->dmactrl);
916         tempval |= DMACTRL_INIT_SETTINGS;
917         gfar_write(&priv->regs->dmactrl, tempval);
918
919         /* Make sure we aren't stopped */
920         tempval = gfar_read(&priv->regs->dmactrl);
921         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
922         gfar_write(&priv->regs->dmactrl, tempval);
923
924         /* Clear THLT/RHLT, so that the DMA starts polling now */
925         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
926         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
927
928         /* Unmask the interrupts we look for */
929         gfar_write(&regs->imask, IMASK_DEFAULT);
930
931         dev->trans_start = jiffies;
932 }
933
934 /* Bring the controller up and running */
935 int startup_gfar(struct net_device *dev)
936 {
937         struct txbd8 *txbdp;
938         struct rxbd8 *rxbdp;
939         dma_addr_t addr = 0;
940         unsigned long vaddr;
941         int i;
942         struct gfar_private *priv = netdev_priv(dev);
943         struct gfar __iomem *regs = priv->regs;
944         int err = 0;
945         u32 rctrl = 0;
946         u32 attrs = 0;
947
948         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
949
950         /* Allocate memory for the buffer descriptors */
951         vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
952                         sizeof (struct txbd8) * priv->tx_ring_size +
953                         sizeof (struct rxbd8) * priv->rx_ring_size,
954                         &addr, GFP_KERNEL);
955
956         if (vaddr == 0) {
957                 if (netif_msg_ifup(priv))
958                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
959                                         dev->name);
960                 return -ENOMEM;
961         }
962
963         priv->tx_bd_base = (struct txbd8 *) vaddr;
964
965         /* enet DMA only understands physical addresses */
966         gfar_write(&regs->tbase0, addr);
967
968         /* Start the rx descriptor ring where the tx ring leaves off */
969         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
970         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
971         priv->rx_bd_base = (struct rxbd8 *) vaddr;
972         gfar_write(&regs->rbase0, addr);
973
974         /* Setup the skbuff rings */
975         priv->tx_skbuff =
976             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
977                                         priv->tx_ring_size, GFP_KERNEL);
978
979         if (NULL == priv->tx_skbuff) {
980                 if (netif_msg_ifup(priv))
981                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
982                                         dev->name);
983                 err = -ENOMEM;
984                 goto tx_skb_fail;
985         }
986
987         for (i = 0; i < priv->tx_ring_size; i++)
988                 priv->tx_skbuff[i] = NULL;
989
990         priv->rx_skbuff =
991             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
992                                         priv->rx_ring_size, GFP_KERNEL);
993
994         if (NULL == priv->rx_skbuff) {
995                 if (netif_msg_ifup(priv))
996                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
997                                         dev->name);
998                 err = -ENOMEM;
999                 goto rx_skb_fail;
1000         }
1001
1002         for (i = 0; i < priv->rx_ring_size; i++)
1003                 priv->rx_skbuff[i] = NULL;
1004
1005         /* Initialize some variables in our dev structure */
1006         priv->num_txbdfree = priv->tx_ring_size;
1007         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1008         priv->cur_rx = priv->rx_bd_base;
1009         priv->skb_curtx = priv->skb_dirtytx = 0;
1010         priv->skb_currx = 0;
1011
1012         /* Initialize Transmit Descriptor Ring */
1013         txbdp = priv->tx_bd_base;
1014         for (i = 0; i < priv->tx_ring_size; i++) {
1015                 txbdp->lstatus = 0;
1016                 txbdp->bufPtr = 0;
1017                 txbdp++;
1018         }
1019
1020         /* Set the last descriptor in the ring to indicate wrap */
1021         txbdp--;
1022         txbdp->status |= TXBD_WRAP;
1023
1024         rxbdp = priv->rx_bd_base;
1025         for (i = 0; i < priv->rx_ring_size; i++) {
1026                 struct sk_buff *skb;
1027
1028                 skb = gfar_new_skb(dev);
1029
1030                 if (!skb) {
1031                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1032                                         dev->name);
1033
1034                         goto err_rxalloc_fail;
1035                 }
1036
1037                 priv->rx_skbuff[i] = skb;
1038
1039                 gfar_new_rxbdp(dev, rxbdp, skb);
1040
1041                 rxbdp++;
1042         }
1043
1044         /* Set the last descriptor in the ring to wrap */
1045         rxbdp--;
1046         rxbdp->status |= RXBD_WRAP;
1047
1048         /* If the device has multiple interrupts, register for
1049          * them.  Otherwise, only register for the one */
1050         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1051                 /* Install our interrupt handlers for Error,
1052                  * Transmit, and Receive */
1053                 if (request_irq(priv->interruptError, gfar_error,
1054                                 0, priv->int_name_er, dev) < 0) {
1055                         if (netif_msg_intr(priv))
1056                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1057                                         dev->name, priv->interruptError);
1058
1059                         err = -1;
1060                         goto err_irq_fail;
1061                 }
1062
1063                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1064                                 0, priv->int_name_tx, dev) < 0) {
1065                         if (netif_msg_intr(priv))
1066                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1067                                         dev->name, priv->interruptTransmit);
1068
1069                         err = -1;
1070
1071                         goto tx_irq_fail;
1072                 }
1073
1074                 if (request_irq(priv->interruptReceive, gfar_receive,
1075                                 0, priv->int_name_rx, dev) < 0) {
1076                         if (netif_msg_intr(priv))
1077                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1078                                                 dev->name, priv->interruptReceive);
1079
1080                         err = -1;
1081                         goto rx_irq_fail;
1082                 }
1083         } else {
1084                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1085                                 0, priv->int_name_tx, dev) < 0) {
1086                         if (netif_msg_intr(priv))
1087                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1088                                         dev->name, priv->interruptTransmit);
1089
1090                         err = -1;
1091                         goto err_irq_fail;
1092                 }
1093         }
1094
1095         phy_start(priv->phydev);
1096
1097         /* Configure the coalescing support */
1098         gfar_write(&regs->txic, 0);
1099         if (priv->txcoalescing)
1100                 gfar_write(&regs->txic, priv->txic);
1101
1102         gfar_write(&regs->rxic, 0);
1103         if (priv->rxcoalescing)
1104                 gfar_write(&regs->rxic, priv->rxic);
1105
1106         if (priv->rx_csum_enable)
1107                 rctrl |= RCTRL_CHECKSUMMING;
1108
1109         if (priv->extended_hash) {
1110                 rctrl |= RCTRL_EXTHASH;
1111
1112                 gfar_clear_exact_match(dev);
1113                 rctrl |= RCTRL_EMEN;
1114         }
1115
1116         if (priv->padding) {
1117                 rctrl &= ~RCTRL_PAL_MASK;
1118                 rctrl |= RCTRL_PADDING(priv->padding);
1119         }
1120
1121         /* Init rctrl based on our settings */
1122         gfar_write(&priv->regs->rctrl, rctrl);
1123
1124         if (dev->features & NETIF_F_IP_CSUM)
1125                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1126
1127         /* Set the extraction length and index */
1128         attrs = ATTRELI_EL(priv->rx_stash_size) |
1129                 ATTRELI_EI(priv->rx_stash_index);
1130
1131         gfar_write(&priv->regs->attreli, attrs);
1132
1133         /* Start with defaults, and add stashing or locking
1134          * depending on the approprate variables */
1135         attrs = ATTR_INIT_SETTINGS;
1136
1137         if (priv->bd_stash_en)
1138                 attrs |= ATTR_BDSTASH;
1139
1140         if (priv->rx_stash_size != 0)
1141                 attrs |= ATTR_BUFSTASH;
1142
1143         gfar_write(&priv->regs->attr, attrs);
1144
1145         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1146         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1147         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1148
1149         /* Start the controller */
1150         gfar_start(dev);
1151
1152         return 0;
1153
1154 rx_irq_fail:
1155         free_irq(priv->interruptTransmit, dev);
1156 tx_irq_fail:
1157         free_irq(priv->interruptError, dev);
1158 err_irq_fail:
1159 err_rxalloc_fail:
1160 rx_skb_fail:
1161         free_skb_resources(priv);
1162 tx_skb_fail:
1163         dma_free_coherent(&priv->ofdev->dev,
1164                         sizeof(struct txbd8)*priv->tx_ring_size
1165                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1166                         priv->tx_bd_base,
1167                         gfar_read(&regs->tbase0));
1168
1169         return err;
1170 }
1171
1172 /* Called when something needs to use the ethernet device */
1173 /* Returns 0 for success. */
1174 static int gfar_enet_open(struct net_device *dev)
1175 {
1176         struct gfar_private *priv = netdev_priv(dev);
1177         int err;
1178
1179         napi_enable(&priv->napi);
1180
1181         skb_queue_head_init(&priv->rx_recycle);
1182
1183         /* Initialize a bunch of registers */
1184         init_registers(dev);
1185
1186         gfar_set_mac_address(dev);
1187
1188         err = init_phy(dev);
1189
1190         if(err) {
1191                 napi_disable(&priv->napi);
1192                 return err;
1193         }
1194
1195         err = startup_gfar(dev);
1196         if (err) {
1197                 napi_disable(&priv->napi);
1198                 return err;
1199         }
1200
1201         netif_start_queue(dev);
1202
1203         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1204
1205         return err;
1206 }
1207
1208 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1209 {
1210         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1211
1212         memset(fcb, 0, GMAC_FCB_LEN);
1213
1214         return fcb;
1215 }
1216
1217 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1218 {
1219         u8 flags = 0;
1220
1221         /* If we're here, it's a IP packet with a TCP or UDP
1222          * payload.  We set it to checksum, using a pseudo-header
1223          * we provide
1224          */
1225         flags = TXFCB_DEFAULT;
1226
1227         /* Tell the controller what the protocol is */
1228         /* And provide the already calculated phcs */
1229         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1230                 flags |= TXFCB_UDP;
1231                 fcb->phcs = udp_hdr(skb)->check;
1232         } else
1233                 fcb->phcs = tcp_hdr(skb)->check;
1234
1235         /* l3os is the distance between the start of the
1236          * frame (skb->data) and the start of the IP hdr.
1237          * l4os is the distance between the start of the
1238          * l3 hdr and the l4 hdr */
1239         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1240         fcb->l4os = skb_network_header_len(skb);
1241
1242         fcb->flags = flags;
1243 }
1244
1245 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1246 {
1247         fcb->flags |= TXFCB_VLN;
1248         fcb->vlctl = vlan_tx_tag_get(skb);
1249 }
1250
1251 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1252                                struct txbd8 *base, int ring_size)
1253 {
1254         struct txbd8 *new_bd = bdp + stride;
1255
1256         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1257 }
1258
1259 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1260                 int ring_size)
1261 {
1262         return skip_txbd(bdp, 1, base, ring_size);
1263 }
1264
1265 /* This is called by the kernel when a frame is ready for transmission. */
1266 /* It is pointed to by the dev->hard_start_xmit function pointer */
1267 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1268 {
1269         struct gfar_private *priv = netdev_priv(dev);
1270         struct txfcb *fcb = NULL;
1271         struct txbd8 *txbdp, *txbdp_start, *base;
1272         u32 lstatus;
1273         int i;
1274         u32 bufaddr;
1275         unsigned long flags;
1276         unsigned int nr_frags, length;
1277
1278         base = priv->tx_bd_base;
1279
1280         /* make space for additional header when fcb is needed */
1281         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1282                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1283                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1284                 struct sk_buff *skb_new;
1285
1286                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1287                 if (!skb_new) {
1288                         dev->stats.tx_errors++;
1289                         kfree_skb(skb);
1290                         return NETDEV_TX_OK;
1291                 }
1292                 kfree_skb(skb);
1293                 skb = skb_new;
1294         }
1295
1296         /* total number of fragments in the SKB */
1297         nr_frags = skb_shinfo(skb)->nr_frags;
1298
1299         spin_lock_irqsave(&priv->txlock, flags);
1300
1301         /* check if there is space to queue this packet */
1302         if ((nr_frags+1) > priv->num_txbdfree) {
1303                 /* no space, stop the queue */
1304                 netif_stop_queue(dev);
1305                 dev->stats.tx_fifo_errors++;
1306                 spin_unlock_irqrestore(&priv->txlock, flags);
1307                 return NETDEV_TX_BUSY;
1308         }
1309
1310         /* Update transmit stats */
1311         dev->stats.tx_bytes += skb->len;
1312
1313         txbdp = txbdp_start = priv->cur_tx;
1314
1315         if (nr_frags == 0) {
1316                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1317         } else {
1318                 /* Place the fragment addresses and lengths into the TxBDs */
1319                 for (i = 0; i < nr_frags; i++) {
1320                         /* Point at the next BD, wrapping as needed */
1321                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1322
1323                         length = skb_shinfo(skb)->frags[i].size;
1324
1325                         lstatus = txbdp->lstatus | length |
1326                                 BD_LFLAG(TXBD_READY);
1327
1328                         /* Handle the last BD specially */
1329                         if (i == nr_frags - 1)
1330                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1331
1332                         bufaddr = dma_map_page(&priv->ofdev->dev,
1333                                         skb_shinfo(skb)->frags[i].page,
1334                                         skb_shinfo(skb)->frags[i].page_offset,
1335                                         length,
1336                                         DMA_TO_DEVICE);
1337
1338                         /* set the TxBD length and buffer pointer */
1339                         txbdp->bufPtr = bufaddr;
1340                         txbdp->lstatus = lstatus;
1341                 }
1342
1343                 lstatus = txbdp_start->lstatus;
1344         }
1345
1346         /* Set up checksumming */
1347         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1348                 fcb = gfar_add_fcb(skb);
1349                 lstatus |= BD_LFLAG(TXBD_TOE);
1350                 gfar_tx_checksum(skb, fcb);
1351         }
1352
1353         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1354                 if (unlikely(NULL == fcb)) {
1355                         fcb = gfar_add_fcb(skb);
1356                         lstatus |= BD_LFLAG(TXBD_TOE);
1357                 }
1358
1359                 gfar_tx_vlan(skb, fcb);
1360         }
1361
1362         /* setup the TxBD length and buffer pointer for the first BD */
1363         priv->tx_skbuff[priv->skb_curtx] = skb;
1364         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1365                         skb_headlen(skb), DMA_TO_DEVICE);
1366
1367         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1368
1369         /*
1370          * The powerpc-specific eieio() is used, as wmb() has too strong
1371          * semantics (it requires synchronization between cacheable and
1372          * uncacheable mappings, which eieio doesn't provide and which we
1373          * don't need), thus requiring a more expensive sync instruction.  At
1374          * some point, the set of architecture-independent barrier functions
1375          * should be expanded to include weaker barriers.
1376          */
1377         eieio();
1378
1379         txbdp_start->lstatus = lstatus;
1380
1381         /* Update the current skb pointer to the next entry we will use
1382          * (wrapping if necessary) */
1383         priv->skb_curtx = (priv->skb_curtx + 1) &
1384                 TX_RING_MOD_MASK(priv->tx_ring_size);
1385
1386         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1387
1388         /* reduce TxBD free count */
1389         priv->num_txbdfree -= (nr_frags + 1);
1390
1391         dev->trans_start = jiffies;
1392
1393         /* If the next BD still needs to be cleaned up, then the bds
1394            are full.  We need to tell the kernel to stop sending us stuff. */
1395         if (!priv->num_txbdfree) {
1396                 netif_stop_queue(dev);
1397
1398                 dev->stats.tx_fifo_errors++;
1399         }
1400
1401         /* Tell the DMA to go go go */
1402         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1403
1404         /* Unlock priv */
1405         spin_unlock_irqrestore(&priv->txlock, flags);
1406
1407         return NETDEV_TX_OK;
1408 }
1409
1410 /* Stops the kernel queue, and halts the controller */
1411 static int gfar_close(struct net_device *dev)
1412 {
1413         struct gfar_private *priv = netdev_priv(dev);
1414
1415         napi_disable(&priv->napi);
1416
1417         skb_queue_purge(&priv->rx_recycle);
1418         cancel_work_sync(&priv->reset_task);
1419         stop_gfar(dev);
1420
1421         /* Disconnect from the PHY */
1422         phy_disconnect(priv->phydev);
1423         priv->phydev = NULL;
1424
1425         netif_stop_queue(dev);
1426
1427         return 0;
1428 }
1429
1430 /* Changes the mac address if the controller is not running. */
1431 static int gfar_set_mac_address(struct net_device *dev)
1432 {
1433         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1434
1435         return 0;
1436 }
1437
1438
1439 /* Enables and disables VLAN insertion/extraction */
1440 static void gfar_vlan_rx_register(struct net_device *dev,
1441                 struct vlan_group *grp)
1442 {
1443         struct gfar_private *priv = netdev_priv(dev);
1444         unsigned long flags;
1445         u32 tempval;
1446
1447         spin_lock_irqsave(&priv->rxlock, flags);
1448
1449         priv->vlgrp = grp;
1450
1451         if (grp) {
1452                 /* Enable VLAN tag insertion */
1453                 tempval = gfar_read(&priv->regs->tctrl);
1454                 tempval |= TCTRL_VLINS;
1455
1456                 gfar_write(&priv->regs->tctrl, tempval);
1457
1458                 /* Enable VLAN tag extraction */
1459                 tempval = gfar_read(&priv->regs->rctrl);
1460                 tempval |= RCTRL_VLEX;
1461                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1462                 gfar_write(&priv->regs->rctrl, tempval);
1463         } else {
1464                 /* Disable VLAN tag insertion */
1465                 tempval = gfar_read(&priv->regs->tctrl);
1466                 tempval &= ~TCTRL_VLINS;
1467                 gfar_write(&priv->regs->tctrl, tempval);
1468
1469                 /* Disable VLAN tag extraction */
1470                 tempval = gfar_read(&priv->regs->rctrl);
1471                 tempval &= ~RCTRL_VLEX;
1472                 /* If parse is no longer required, then disable parser */
1473                 if (tempval & RCTRL_REQ_PARSER)
1474                         tempval |= RCTRL_PRSDEP_INIT;
1475                 else
1476                         tempval &= ~RCTRL_PRSDEP_INIT;
1477                 gfar_write(&priv->regs->rctrl, tempval);
1478         }
1479
1480         gfar_change_mtu(dev, dev->mtu);
1481
1482         spin_unlock_irqrestore(&priv->rxlock, flags);
1483 }
1484
1485 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1486 {
1487         int tempsize, tempval;
1488         struct gfar_private *priv = netdev_priv(dev);
1489         int oldsize = priv->rx_buffer_size;
1490         int frame_size = new_mtu + ETH_HLEN;
1491
1492         if (priv->vlgrp)
1493                 frame_size += VLAN_HLEN;
1494
1495         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1496                 if (netif_msg_drv(priv))
1497                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1498                                         dev->name);
1499                 return -EINVAL;
1500         }
1501
1502         if (gfar_uses_fcb(priv))
1503                 frame_size += GMAC_FCB_LEN;
1504
1505         frame_size += priv->padding;
1506
1507         tempsize =
1508             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1509             INCREMENTAL_BUFFER_SIZE;
1510
1511         /* Only stop and start the controller if it isn't already
1512          * stopped, and we changed something */
1513         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1514                 stop_gfar(dev);
1515
1516         priv->rx_buffer_size = tempsize;
1517
1518         dev->mtu = new_mtu;
1519
1520         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1521         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1522
1523         /* If the mtu is larger than the max size for standard
1524          * ethernet frames (ie, a jumbo frame), then set maccfg2
1525          * to allow huge frames, and to check the length */
1526         tempval = gfar_read(&priv->regs->maccfg2);
1527
1528         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1529                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1530         else
1531                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1532
1533         gfar_write(&priv->regs->maccfg2, tempval);
1534
1535         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1536                 startup_gfar(dev);
1537
1538         return 0;
1539 }
1540
1541 /* gfar_reset_task gets scheduled when a packet has not been
1542  * transmitted after a set amount of time.
1543  * For now, assume that clearing out all the structures, and
1544  * starting over will fix the problem.
1545  */
1546 static void gfar_reset_task(struct work_struct *work)
1547 {
1548         struct gfar_private *priv = container_of(work, struct gfar_private,
1549                         reset_task);
1550         struct net_device *dev = priv->ndev;
1551
1552         if (dev->flags & IFF_UP) {
1553                 netif_stop_queue(dev);
1554                 stop_gfar(dev);
1555                 startup_gfar(dev);
1556                 netif_start_queue(dev);
1557         }
1558
1559         netif_tx_schedule_all(dev);
1560 }
1561
1562 static void gfar_timeout(struct net_device *dev)
1563 {
1564         struct gfar_private *priv = netdev_priv(dev);
1565
1566         dev->stats.tx_errors++;
1567         schedule_work(&priv->reset_task);
1568 }
1569
1570 /* Interrupt Handler for Transmit complete */
1571 static int gfar_clean_tx_ring(struct net_device *dev)
1572 {
1573         struct gfar_private *priv = netdev_priv(dev);
1574         struct txbd8 *bdp;
1575         struct txbd8 *lbdp = NULL;
1576         struct txbd8 *base = priv->tx_bd_base;
1577         struct sk_buff *skb;
1578         int skb_dirtytx;
1579         int tx_ring_size = priv->tx_ring_size;
1580         int frags = 0;
1581         int i;
1582         int howmany = 0;
1583         u32 lstatus;
1584
1585         bdp = priv->dirty_tx;
1586         skb_dirtytx = priv->skb_dirtytx;
1587
1588         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1589                 frags = skb_shinfo(skb)->nr_frags;
1590                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1591
1592                 lstatus = lbdp->lstatus;
1593
1594                 /* Only clean completed frames */
1595                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1596                                 (lstatus & BD_LENGTH_MASK))
1597                         break;
1598
1599                 dma_unmap_single(&priv->ofdev->dev,
1600                                 bdp->bufPtr,
1601                                 bdp->length,
1602                                 DMA_TO_DEVICE);
1603
1604                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1605                 bdp = next_txbd(bdp, base, tx_ring_size);
1606
1607                 for (i = 0; i < frags; i++) {
1608                         dma_unmap_page(&priv->ofdev->dev,
1609                                         bdp->bufPtr,
1610                                         bdp->length,
1611                                         DMA_TO_DEVICE);
1612                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1613                         bdp = next_txbd(bdp, base, tx_ring_size);
1614                 }
1615
1616                 /*
1617                  * If there's room in the queue (limit it to rx_buffer_size)
1618                  * we add this skb back into the pool, if it's the right size
1619                  */
1620                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1621                                 skb_recycle_check(skb, priv->rx_buffer_size +
1622                                         RXBUF_ALIGNMENT))
1623                         __skb_queue_head(&priv->rx_recycle, skb);
1624                 else
1625                         dev_kfree_skb_any(skb);
1626
1627                 priv->tx_skbuff[skb_dirtytx] = NULL;
1628
1629                 skb_dirtytx = (skb_dirtytx + 1) &
1630                         TX_RING_MOD_MASK(tx_ring_size);
1631
1632                 howmany++;
1633                 priv->num_txbdfree += frags + 1;
1634         }
1635
1636         /* If we freed a buffer, we can restart transmission, if necessary */
1637         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1638                 netif_wake_queue(dev);
1639
1640         /* Update dirty indicators */
1641         priv->skb_dirtytx = skb_dirtytx;
1642         priv->dirty_tx = bdp;
1643
1644         dev->stats.tx_packets += howmany;
1645
1646         return howmany;
1647 }
1648
1649 static void gfar_schedule_cleanup(struct net_device *dev)
1650 {
1651         struct gfar_private *priv = netdev_priv(dev);
1652         unsigned long flags;
1653
1654         spin_lock_irqsave(&priv->txlock, flags);
1655         spin_lock(&priv->rxlock);
1656
1657         if (napi_schedule_prep(&priv->napi)) {
1658                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1659                 __napi_schedule(&priv->napi);
1660         } else {
1661                 /*
1662                  * Clear IEVENT, so interrupts aren't called again
1663                  * because of the packets that have already arrived.
1664                  */
1665                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1666         }
1667
1668         spin_unlock(&priv->rxlock);
1669         spin_unlock_irqrestore(&priv->txlock, flags);
1670 }
1671
1672 /* Interrupt Handler for Transmit complete */
1673 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1674 {
1675         gfar_schedule_cleanup((struct net_device *)dev_id);
1676         return IRQ_HANDLED;
1677 }
1678
1679 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1680                 struct sk_buff *skb)
1681 {
1682         struct gfar_private *priv = netdev_priv(dev);
1683         u32 lstatus;
1684
1685         bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1686                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1687
1688         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1689
1690         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1691                 lstatus |= BD_LFLAG(RXBD_WRAP);
1692
1693         eieio();
1694
1695         bdp->lstatus = lstatus;
1696 }
1697
1698
1699 struct sk_buff * gfar_new_skb(struct net_device *dev)
1700 {
1701         unsigned int alignamount;
1702         struct gfar_private *priv = netdev_priv(dev);
1703         struct sk_buff *skb = NULL;
1704
1705         skb = __skb_dequeue(&priv->rx_recycle);
1706         if (!skb)
1707                 skb = netdev_alloc_skb(dev,
1708                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1709
1710         if (!skb)
1711                 return NULL;
1712
1713         alignamount = RXBUF_ALIGNMENT -
1714                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1715
1716         /* We need the data buffer to be aligned properly.  We will reserve
1717          * as many bytes as needed to align the data properly
1718          */
1719         skb_reserve(skb, alignamount);
1720
1721         return skb;
1722 }
1723
1724 static inline void count_errors(unsigned short status, struct net_device *dev)
1725 {
1726         struct gfar_private *priv = netdev_priv(dev);
1727         struct net_device_stats *stats = &dev->stats;
1728         struct gfar_extra_stats *estats = &priv->extra_stats;
1729
1730         /* If the packet was truncated, none of the other errors
1731          * matter */
1732         if (status & RXBD_TRUNCATED) {
1733                 stats->rx_length_errors++;
1734
1735                 estats->rx_trunc++;
1736
1737                 return;
1738         }
1739         /* Count the errors, if there were any */
1740         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1741                 stats->rx_length_errors++;
1742
1743                 if (status & RXBD_LARGE)
1744                         estats->rx_large++;
1745                 else
1746                         estats->rx_short++;
1747         }
1748         if (status & RXBD_NONOCTET) {
1749                 stats->rx_frame_errors++;
1750                 estats->rx_nonoctet++;
1751         }
1752         if (status & RXBD_CRCERR) {
1753                 estats->rx_crcerr++;
1754                 stats->rx_crc_errors++;
1755         }
1756         if (status & RXBD_OVERRUN) {
1757                 estats->rx_overrun++;
1758                 stats->rx_crc_errors++;
1759         }
1760 }
1761
1762 irqreturn_t gfar_receive(int irq, void *dev_id)
1763 {
1764         gfar_schedule_cleanup((struct net_device *)dev_id);
1765         return IRQ_HANDLED;
1766 }
1767
1768 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1769 {
1770         /* If valid headers were found, and valid sums
1771          * were verified, then we tell the kernel that no
1772          * checksumming is necessary.  Otherwise, it is */
1773         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1774                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1775         else
1776                 skb->ip_summed = CHECKSUM_NONE;
1777 }
1778
1779
1780 /* gfar_process_frame() -- handle one incoming packet if skb
1781  * isn't NULL.  */
1782 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1783                               int amount_pull)
1784 {
1785         struct gfar_private *priv = netdev_priv(dev);
1786         struct rxfcb *fcb = NULL;
1787
1788         int ret;
1789
1790         /* fcb is at the beginning if exists */
1791         fcb = (struct rxfcb *)skb->data;
1792
1793         /* Remove the FCB from the skb */
1794         /* Remove the padded bytes, if there are any */
1795         if (amount_pull)
1796                 skb_pull(skb, amount_pull);
1797
1798         if (priv->rx_csum_enable)
1799                 gfar_rx_checksum(skb, fcb);
1800
1801         /* Tell the skb what kind of packet this is */
1802         skb->protocol = eth_type_trans(skb, dev);
1803
1804         /* Send the packet up the stack */
1805         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1806                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1807         else
1808                 ret = netif_receive_skb(skb);
1809
1810         if (NET_RX_DROP == ret)
1811                 priv->extra_stats.kernel_dropped++;
1812
1813         return 0;
1814 }
1815
1816 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1817  *   until the budget/quota has been reached. Returns the number
1818  *   of frames handled
1819  */
1820 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1821 {
1822         struct rxbd8 *bdp, *base;
1823         struct sk_buff *skb;
1824         int pkt_len;
1825         int amount_pull;
1826         int howmany = 0;
1827         struct gfar_private *priv = netdev_priv(dev);
1828
1829         /* Get the first full descriptor */
1830         bdp = priv->cur_rx;
1831         base = priv->rx_bd_base;
1832
1833         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1834                 priv->padding;
1835
1836         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1837                 struct sk_buff *newskb;
1838                 rmb();
1839
1840                 /* Add another skb for the future */
1841                 newskb = gfar_new_skb(dev);
1842
1843                 skb = priv->rx_skbuff[priv->skb_currx];
1844
1845                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1846                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1847
1848                 /* We drop the frame if we failed to allocate a new buffer */
1849                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1850                                  bdp->status & RXBD_ERR)) {
1851                         count_errors(bdp->status, dev);
1852
1853                         if (unlikely(!newskb))
1854                                 newskb = skb;
1855                         else if (skb) {
1856                                 /*
1857                                  * We need to reset ->data to what it
1858                                  * was before gfar_new_skb() re-aligned
1859                                  * it to an RXBUF_ALIGNMENT boundary
1860                                  * before we put the skb back on the
1861                                  * recycle list.
1862                                  */
1863                                 skb->data = skb->head + NET_SKB_PAD;
1864                                 __skb_queue_head(&priv->rx_recycle, skb);
1865                         }
1866                 } else {
1867                         /* Increment the number of packets */
1868                         dev->stats.rx_packets++;
1869                         howmany++;
1870
1871                         if (likely(skb)) {
1872                                 pkt_len = bdp->length - ETH_FCS_LEN;
1873                                 /* Remove the FCS from the packet length */
1874                                 skb_put(skb, pkt_len);
1875                                 dev->stats.rx_bytes += pkt_len;
1876
1877                                 if (in_irq() || irqs_disabled())
1878                                         printk("Interrupt problem!\n");
1879                                 gfar_process_frame(dev, skb, amount_pull);
1880
1881                         } else {
1882                                 if (netif_msg_rx_err(priv))
1883                                         printk(KERN_WARNING
1884                                                "%s: Missing skb!\n", dev->name);
1885                                 dev->stats.rx_dropped++;
1886                                 priv->extra_stats.rx_skbmissing++;
1887                         }
1888
1889                 }
1890
1891                 priv->rx_skbuff[priv->skb_currx] = newskb;
1892
1893                 /* Setup the new bdp */
1894                 gfar_new_rxbdp(dev, bdp, newskb);
1895
1896                 /* Update to the next pointer */
1897                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1898
1899                 /* update to point at the next skb */
1900                 priv->skb_currx =
1901                     (priv->skb_currx + 1) &
1902                     RX_RING_MOD_MASK(priv->rx_ring_size);
1903         }
1904
1905         /* Update the current rxbd pointer to be the next one */
1906         priv->cur_rx = bdp;
1907
1908         return howmany;
1909 }
1910
1911 static int gfar_poll(struct napi_struct *napi, int budget)
1912 {
1913         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1914         struct net_device *dev = priv->ndev;
1915         int tx_cleaned = 0;
1916         int rx_cleaned = 0;
1917         unsigned long flags;
1918
1919         /* Clear IEVENT, so interrupts aren't called again
1920          * because of the packets that have already arrived */
1921         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1922
1923         /* If we fail to get the lock, don't bother with the TX BDs */
1924         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1925                 tx_cleaned = gfar_clean_tx_ring(dev);
1926                 spin_unlock_irqrestore(&priv->txlock, flags);
1927         }
1928
1929         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1930
1931         if (tx_cleaned)
1932                 return budget;
1933
1934         if (rx_cleaned < budget) {
1935                 napi_complete(napi);
1936
1937                 /* Clear the halt bit in RSTAT */
1938                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1939
1940                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1941
1942                 /* If we are coalescing interrupts, update the timer */
1943                 /* Otherwise, clear it */
1944                 if (likely(priv->rxcoalescing)) {
1945                         gfar_write(&priv->regs->rxic, 0);
1946                         gfar_write(&priv->regs->rxic, priv->rxic);
1947                 }
1948                 if (likely(priv->txcoalescing)) {
1949                         gfar_write(&priv->regs->txic, 0);
1950                         gfar_write(&priv->regs->txic, priv->txic);
1951                 }
1952         }
1953
1954         return rx_cleaned;
1955 }
1956
1957 #ifdef CONFIG_NET_POLL_CONTROLLER
1958 /*
1959  * Polling 'interrupt' - used by things like netconsole to send skbs
1960  * without having to re-enable interrupts. It's not called while
1961  * the interrupt routine is executing.
1962  */
1963 static void gfar_netpoll(struct net_device *dev)
1964 {
1965         struct gfar_private *priv = netdev_priv(dev);
1966
1967         /* If the device has multiple interrupts, run tx/rx */
1968         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1969                 disable_irq(priv->interruptTransmit);
1970                 disable_irq(priv->interruptReceive);
1971                 disable_irq(priv->interruptError);
1972                 gfar_interrupt(priv->interruptTransmit, dev);
1973                 enable_irq(priv->interruptError);
1974                 enable_irq(priv->interruptReceive);
1975                 enable_irq(priv->interruptTransmit);
1976         } else {
1977                 disable_irq(priv->interruptTransmit);
1978                 gfar_interrupt(priv->interruptTransmit, dev);
1979                 enable_irq(priv->interruptTransmit);
1980         }
1981 }
1982 #endif
1983
1984 /* The interrupt handler for devices with one interrupt */
1985 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1986 {
1987         struct net_device *dev = dev_id;
1988         struct gfar_private *priv = netdev_priv(dev);
1989
1990         /* Save ievent for future reference */
1991         u32 events = gfar_read(&priv->regs->ievent);
1992
1993         /* Check for reception */
1994         if (events & IEVENT_RX_MASK)
1995                 gfar_receive(irq, dev_id);
1996
1997         /* Check for transmit completion */
1998         if (events & IEVENT_TX_MASK)
1999                 gfar_transmit(irq, dev_id);
2000
2001         /* Check for errors */
2002         if (events & IEVENT_ERR_MASK)
2003                 gfar_error(irq, dev_id);
2004
2005         return IRQ_HANDLED;
2006 }
2007
2008 /* Called every time the controller might need to be made
2009  * aware of new link state.  The PHY code conveys this
2010  * information through variables in the phydev structure, and this
2011  * function converts those variables into the appropriate
2012  * register values, and can bring down the device if needed.
2013  */
2014 static void adjust_link(struct net_device *dev)
2015 {
2016         struct gfar_private *priv = netdev_priv(dev);
2017         struct gfar __iomem *regs = priv->regs;
2018         unsigned long flags;
2019         struct phy_device *phydev = priv->phydev;
2020         int new_state = 0;
2021
2022         spin_lock_irqsave(&priv->txlock, flags);
2023         if (phydev->link) {
2024                 u32 tempval = gfar_read(&regs->maccfg2);
2025                 u32 ecntrl = gfar_read(&regs->ecntrl);
2026
2027                 /* Now we make sure that we can be in full duplex mode.
2028                  * If not, we operate in half-duplex mode. */
2029                 if (phydev->duplex != priv->oldduplex) {
2030                         new_state = 1;
2031                         if (!(phydev->duplex))
2032                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2033                         else
2034                                 tempval |= MACCFG2_FULL_DUPLEX;
2035
2036                         priv->oldduplex = phydev->duplex;
2037                 }
2038
2039                 if (phydev->speed != priv->oldspeed) {
2040                         new_state = 1;
2041                         switch (phydev->speed) {
2042                         case 1000:
2043                                 tempval =
2044                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2045
2046                                 ecntrl &= ~(ECNTRL_R100);
2047                                 break;
2048                         case 100:
2049                         case 10:
2050                                 tempval =
2051                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2052
2053                                 /* Reduced mode distinguishes
2054                                  * between 10 and 100 */
2055                                 if (phydev->speed == SPEED_100)
2056                                         ecntrl |= ECNTRL_R100;
2057                                 else
2058                                         ecntrl &= ~(ECNTRL_R100);
2059                                 break;
2060                         default:
2061                                 if (netif_msg_link(priv))
2062                                         printk(KERN_WARNING
2063                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2064                                                 dev->name, phydev->speed);
2065                                 break;
2066                         }
2067
2068                         priv->oldspeed = phydev->speed;
2069                 }
2070
2071                 gfar_write(&regs->maccfg2, tempval);
2072                 gfar_write(&regs->ecntrl, ecntrl);
2073
2074                 if (!priv->oldlink) {
2075                         new_state = 1;
2076                         priv->oldlink = 1;
2077                 }
2078         } else if (priv->oldlink) {
2079                 new_state = 1;
2080                 priv->oldlink = 0;
2081                 priv->oldspeed = 0;
2082                 priv->oldduplex = -1;
2083         }
2084
2085         if (new_state && netif_msg_link(priv))
2086                 phy_print_status(phydev);
2087
2088         spin_unlock_irqrestore(&priv->txlock, flags);
2089 }
2090
2091 /* Update the hash table based on the current list of multicast
2092  * addresses we subscribe to.  Also, change the promiscuity of
2093  * the device based on the flags (this function is called
2094  * whenever dev->flags is changed */
2095 static void gfar_set_multi(struct net_device *dev)
2096 {
2097         struct dev_mc_list *mc_ptr;
2098         struct gfar_private *priv = netdev_priv(dev);
2099         struct gfar __iomem *regs = priv->regs;
2100         u32 tempval;
2101
2102         if(dev->flags & IFF_PROMISC) {
2103                 /* Set RCTRL to PROM */
2104                 tempval = gfar_read(&regs->rctrl);
2105                 tempval |= RCTRL_PROM;
2106                 gfar_write(&regs->rctrl, tempval);
2107         } else {
2108                 /* Set RCTRL to not PROM */
2109                 tempval = gfar_read(&regs->rctrl);
2110                 tempval &= ~(RCTRL_PROM);
2111                 gfar_write(&regs->rctrl, tempval);
2112         }
2113
2114         if(dev->flags & IFF_ALLMULTI) {
2115                 /* Set the hash to rx all multicast frames */
2116                 gfar_write(&regs->igaddr0, 0xffffffff);
2117                 gfar_write(&regs->igaddr1, 0xffffffff);
2118                 gfar_write(&regs->igaddr2, 0xffffffff);
2119                 gfar_write(&regs->igaddr3, 0xffffffff);
2120                 gfar_write(&regs->igaddr4, 0xffffffff);
2121                 gfar_write(&regs->igaddr5, 0xffffffff);
2122                 gfar_write(&regs->igaddr6, 0xffffffff);
2123                 gfar_write(&regs->igaddr7, 0xffffffff);
2124                 gfar_write(&regs->gaddr0, 0xffffffff);
2125                 gfar_write(&regs->gaddr1, 0xffffffff);
2126                 gfar_write(&regs->gaddr2, 0xffffffff);
2127                 gfar_write(&regs->gaddr3, 0xffffffff);
2128                 gfar_write(&regs->gaddr4, 0xffffffff);
2129                 gfar_write(&regs->gaddr5, 0xffffffff);
2130                 gfar_write(&regs->gaddr6, 0xffffffff);
2131                 gfar_write(&regs->gaddr7, 0xffffffff);
2132         } else {
2133                 int em_num;
2134                 int idx;
2135
2136                 /* zero out the hash */
2137                 gfar_write(&regs->igaddr0, 0x0);
2138                 gfar_write(&regs->igaddr1, 0x0);
2139                 gfar_write(&regs->igaddr2, 0x0);
2140                 gfar_write(&regs->igaddr3, 0x0);
2141                 gfar_write(&regs->igaddr4, 0x0);
2142                 gfar_write(&regs->igaddr5, 0x0);
2143                 gfar_write(&regs->igaddr6, 0x0);
2144                 gfar_write(&regs->igaddr7, 0x0);
2145                 gfar_write(&regs->gaddr0, 0x0);
2146                 gfar_write(&regs->gaddr1, 0x0);
2147                 gfar_write(&regs->gaddr2, 0x0);
2148                 gfar_write(&regs->gaddr3, 0x0);
2149                 gfar_write(&regs->gaddr4, 0x0);
2150                 gfar_write(&regs->gaddr5, 0x0);
2151                 gfar_write(&regs->gaddr6, 0x0);
2152                 gfar_write(&regs->gaddr7, 0x0);
2153
2154                 /* If we have extended hash tables, we need to
2155                  * clear the exact match registers to prepare for
2156                  * setting them */
2157                 if (priv->extended_hash) {
2158                         em_num = GFAR_EM_NUM + 1;
2159                         gfar_clear_exact_match(dev);
2160                         idx = 1;
2161                 } else {
2162                         idx = 0;
2163                         em_num = 0;
2164                 }
2165
2166                 if(dev->mc_count == 0)
2167                         return;
2168
2169                 /* Parse the list, and set the appropriate bits */
2170                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2171                         if (idx < em_num) {
2172                                 gfar_set_mac_for_addr(dev, idx,
2173                                                 mc_ptr->dmi_addr);
2174                                 idx++;
2175                         } else
2176                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2177                 }
2178         }
2179
2180         return;
2181 }
2182
2183
2184 /* Clears each of the exact match registers to zero, so they
2185  * don't interfere with normal reception */
2186 static void gfar_clear_exact_match(struct net_device *dev)
2187 {
2188         int idx;
2189         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2190
2191         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2192                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2193 }
2194
2195 /* Set the appropriate hash bit for the given addr */
2196 /* The algorithm works like so:
2197  * 1) Take the Destination Address (ie the multicast address), and
2198  * do a CRC on it (little endian), and reverse the bits of the
2199  * result.
2200  * 2) Use the 8 most significant bits as a hash into a 256-entry
2201  * table.  The table is controlled through 8 32-bit registers:
2202  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2203  * gaddr7.  This means that the 3 most significant bits in the
2204  * hash index which gaddr register to use, and the 5 other bits
2205  * indicate which bit (assuming an IBM numbering scheme, which
2206  * for PowerPC (tm) is usually the case) in the register holds
2207  * the entry. */
2208 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2209 {
2210         u32 tempval;
2211         struct gfar_private *priv = netdev_priv(dev);
2212         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2213         int width = priv->hash_width;
2214         u8 whichbit = (result >> (32 - width)) & 0x1f;
2215         u8 whichreg = result >> (32 - width + 5);
2216         u32 value = (1 << (31-whichbit));
2217
2218         tempval = gfar_read(priv->hash_regs[whichreg]);
2219         tempval |= value;
2220         gfar_write(priv->hash_regs[whichreg], tempval);
2221
2222         return;
2223 }
2224
2225
2226 /* There are multiple MAC Address register pairs on some controllers
2227  * This function sets the numth pair to a given address
2228  */
2229 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2230 {
2231         struct gfar_private *priv = netdev_priv(dev);
2232         int idx;
2233         char tmpbuf[MAC_ADDR_LEN];
2234         u32 tempval;
2235         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2236
2237         macptr += num*2;
2238
2239         /* Now copy it into the mac registers backwards, cuz */
2240         /* little endian is silly */
2241         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2242                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2243
2244         gfar_write(macptr, *((u32 *) (tmpbuf)));
2245
2246         tempval = *((u32 *) (tmpbuf + 4));
2247
2248         gfar_write(macptr+1, tempval);
2249 }
2250
2251 /* GFAR error interrupt handler */
2252 static irqreturn_t gfar_error(int irq, void *dev_id)
2253 {
2254         struct net_device *dev = dev_id;
2255         struct gfar_private *priv = netdev_priv(dev);
2256
2257         /* Save ievent for future reference */
2258         u32 events = gfar_read(&priv->regs->ievent);
2259
2260         /* Clear IEVENT */
2261         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2262
2263         /* Magic Packet is not an error. */
2264         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2265             (events & IEVENT_MAG))
2266                 events &= ~IEVENT_MAG;
2267
2268         /* Hmm... */
2269         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2270                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2271                        dev->name, events, gfar_read(&priv->regs->imask));
2272
2273         /* Update the error counters */
2274         if (events & IEVENT_TXE) {
2275                 dev->stats.tx_errors++;
2276
2277                 if (events & IEVENT_LC)
2278                         dev->stats.tx_window_errors++;
2279                 if (events & IEVENT_CRL)
2280                         dev->stats.tx_aborted_errors++;
2281                 if (events & IEVENT_XFUN) {
2282                         if (netif_msg_tx_err(priv))
2283                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2284                                        "packet dropped.\n", dev->name);
2285                         dev->stats.tx_dropped++;
2286                         priv->extra_stats.tx_underrun++;
2287
2288                         /* Reactivate the Tx Queues */
2289                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2290                 }
2291                 if (netif_msg_tx_err(priv))
2292                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2293         }
2294         if (events & IEVENT_BSY) {
2295                 dev->stats.rx_errors++;
2296                 priv->extra_stats.rx_bsy++;
2297
2298                 gfar_receive(irq, dev_id);
2299
2300                 if (netif_msg_rx_err(priv))
2301                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2302                                dev->name, gfar_read(&priv->regs->rstat));
2303         }
2304         if (events & IEVENT_BABR) {
2305                 dev->stats.rx_errors++;
2306                 priv->extra_stats.rx_babr++;
2307
2308                 if (netif_msg_rx_err(priv))
2309                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2310         }
2311         if (events & IEVENT_EBERR) {
2312                 priv->extra_stats.eberr++;
2313                 if (netif_msg_rx_err(priv))
2314                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2315         }
2316         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2317                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2318
2319         if (events & IEVENT_BABT) {
2320                 priv->extra_stats.tx_babt++;
2321                 if (netif_msg_tx_err(priv))
2322                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2323         }
2324         return IRQ_HANDLED;
2325 }
2326
2327 /* work with hotplug and coldplug */
2328 MODULE_ALIAS("platform:fsl-gianfar");
2329
2330 static struct of_device_id gfar_match[] =
2331 {
2332         {
2333                 .type = "network",
2334                 .compatible = "gianfar",
2335         },
2336         {},
2337 };
2338
2339 /* Structure for a device driver */
2340 static struct of_platform_driver gfar_driver = {
2341         .name = "fsl-gianfar",
2342         .match_table = gfar_match,
2343
2344         .probe = gfar_probe,
2345         .remove = gfar_remove,
2346         .suspend = gfar_suspend,
2347         .resume = gfar_resume,
2348 };
2349
2350 static int __init gfar_init(void)
2351 {
2352         return of_register_platform_driver(&gfar_driver);
2353 }
2354
2355 static void __exit gfar_exit(void)
2356 {
2357         of_unregister_platform_driver(&gfar_driver);
2358 }
2359
2360 module_init(gfar_init);
2361 module_exit(gfar_exit);
2362