Merge branch 'x86/ptrace-syscall-exit' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
62eede62 111unsigned long zero_pfn __read_mostly;
03f6462a 112unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
113
114/*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117static int __init init_zero_pfn(void)
118{
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121}
122core_initcall(init_zero_pfn);
a62eaf15 123
1da177e4
LT
124/*
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
128 */
129
130void pgd_clear_bad(pgd_t *pgd)
131{
132 pgd_ERROR(*pgd);
133 pgd_clear(pgd);
134}
135
136void pud_clear_bad(pud_t *pud)
137{
138 pud_ERROR(*pud);
139 pud_clear(pud);
140}
141
142void pmd_clear_bad(pmd_t *pmd)
143{
144 pmd_ERROR(*pmd);
145 pmd_clear(pmd);
146}
147
148/*
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
151 */
9e1b32ca
BH
152static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 unsigned long addr)
1da177e4 154{
2f569afd 155 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 156 pmd_clear(pmd);
9e1b32ca 157 pte_free_tlb(tlb, token, addr);
e0da382c 158 tlb->mm->nr_ptes--;
1da177e4
LT
159}
160
e0da382c
HD
161static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 unsigned long addr, unsigned long end,
163 unsigned long floor, unsigned long ceiling)
1da177e4
LT
164{
165 pmd_t *pmd;
166 unsigned long next;
e0da382c 167 unsigned long start;
1da177e4 168
e0da382c 169 start = addr;
1da177e4 170 pmd = pmd_offset(pud, addr);
1da177e4
LT
171 do {
172 next = pmd_addr_end(addr, end);
173 if (pmd_none_or_clear_bad(pmd))
174 continue;
9e1b32ca 175 free_pte_range(tlb, pmd, addr);
1da177e4
LT
176 } while (pmd++, addr = next, addr != end);
177
e0da382c
HD
178 start &= PUD_MASK;
179 if (start < floor)
180 return;
181 if (ceiling) {
182 ceiling &= PUD_MASK;
183 if (!ceiling)
184 return;
1da177e4 185 }
e0da382c
HD
186 if (end - 1 > ceiling - 1)
187 return;
188
189 pmd = pmd_offset(pud, start);
190 pud_clear(pud);
9e1b32ca 191 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
192}
193
e0da382c
HD
194static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
1da177e4
LT
197{
198 pud_t *pud;
199 unsigned long next;
e0da382c 200 unsigned long start;
1da177e4 201
e0da382c 202 start = addr;
1da177e4 203 pud = pud_offset(pgd, addr);
1da177e4
LT
204 do {
205 next = pud_addr_end(addr, end);
206 if (pud_none_or_clear_bad(pud))
207 continue;
e0da382c 208 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
209 } while (pud++, addr = next, addr != end);
210
e0da382c
HD
211 start &= PGDIR_MASK;
212 if (start < floor)
213 return;
214 if (ceiling) {
215 ceiling &= PGDIR_MASK;
216 if (!ceiling)
217 return;
1da177e4 218 }
e0da382c
HD
219 if (end - 1 > ceiling - 1)
220 return;
221
222 pud = pud_offset(pgd, start);
223 pgd_clear(pgd);
9e1b32ca 224 pud_free_tlb(tlb, pud, start);
1da177e4
LT
225}
226
227/*
e0da382c
HD
228 * This function frees user-level page tables of a process.
229 *
1da177e4
LT
230 * Must be called with pagetable lock held.
231 */
42b77728 232void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pgd_t *pgd;
237 unsigned long next;
e0da382c
HD
238 unsigned long start;
239
240 /*
241 * The next few lines have given us lots of grief...
242 *
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
246 *
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
254 *
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
259 *
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
264 */
1da177e4 265
e0da382c
HD
266 addr &= PMD_MASK;
267 if (addr < floor) {
268 addr += PMD_SIZE;
269 if (!addr)
270 return;
271 }
272 if (ceiling) {
273 ceiling &= PMD_MASK;
274 if (!ceiling)
275 return;
276 }
277 if (end - 1 > ceiling - 1)
278 end -= PMD_SIZE;
279 if (addr > end - 1)
280 return;
281
282 start = addr;
42b77728 283 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
284 do {
285 next = pgd_addr_end(addr, end);
286 if (pgd_none_or_clear_bad(pgd))
287 continue;
42b77728 288 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 289 } while (pgd++, addr = next, addr != end);
e0da382c
HD
290}
291
42b77728 292void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 293 unsigned long floor, unsigned long ceiling)
e0da382c
HD
294{
295 while (vma) {
296 struct vm_area_struct *next = vma->vm_next;
297 unsigned long addr = vma->vm_start;
298
8f4f8c16
HD
299 /*
300 * Hide vma from rmap and vmtruncate before freeing pgtables
301 */
302 anon_vma_unlink(vma);
303 unlink_file_vma(vma);
304
9da61aef 305 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 306 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 307 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
308 } else {
309 /*
310 * Optimization: gather nearby vmas into one call down
311 */
312 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 313 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
314 vma = next;
315 next = vma->vm_next;
8f4f8c16
HD
316 anon_vma_unlink(vma);
317 unlink_file_vma(vma);
3bf5ee95
HD
318 }
319 free_pgd_range(tlb, addr, vma->vm_end,
320 floor, next? next->vm_start: ceiling);
321 }
e0da382c
HD
322 vma = next;
323 }
1da177e4
LT
324}
325
1bb3630e 326int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 327{
2f569afd 328 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
329 if (!new)
330 return -ENOMEM;
331
362a61ad
NP
332 /*
333 * Ensure all pte setup (eg. pte page lock and page clearing) are
334 * visible before the pte is made visible to other CPUs by being
335 * put into page tables.
336 *
337 * The other side of the story is the pointer chasing in the page
338 * table walking code (when walking the page table without locking;
339 * ie. most of the time). Fortunately, these data accesses consist
340 * of a chain of data-dependent loads, meaning most CPUs (alpha
341 * being the notable exception) will already guarantee loads are
342 * seen in-order. See the alpha page table accessors for the
343 * smp_read_barrier_depends() barriers in page table walking code.
344 */
345 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
346
c74df32c 347 spin_lock(&mm->page_table_lock);
2f569afd 348 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 349 mm->nr_ptes++;
1da177e4 350 pmd_populate(mm, pmd, new);
2f569afd 351 new = NULL;
1da177e4 352 }
c74df32c 353 spin_unlock(&mm->page_table_lock);
2f569afd
MS
354 if (new)
355 pte_free(mm, new);
1bb3630e 356 return 0;
1da177e4
LT
357}
358
1bb3630e 359int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 360{
1bb3630e
HD
361 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
362 if (!new)
363 return -ENOMEM;
364
362a61ad
NP
365 smp_wmb(); /* See comment in __pte_alloc */
366
1bb3630e 367 spin_lock(&init_mm.page_table_lock);
2f569afd 368 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 369 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
370 new = NULL;
371 }
1bb3630e 372 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
373 if (new)
374 pte_free_kernel(&init_mm, new);
1bb3630e 375 return 0;
1da177e4
LT
376}
377
ae859762
HD
378static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
379{
380 if (file_rss)
381 add_mm_counter(mm, file_rss, file_rss);
382 if (anon_rss)
383 add_mm_counter(mm, anon_rss, anon_rss);
384}
385
b5810039 386/*
6aab341e
LT
387 * This function is called to print an error when a bad pte
388 * is found. For example, we might have a PFN-mapped pte in
389 * a region that doesn't allow it.
b5810039
NP
390 *
391 * The calling function must still handle the error.
392 */
3dc14741
HD
393static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
394 pte_t pte, struct page *page)
b5810039 395{
3dc14741
HD
396 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
397 pud_t *pud = pud_offset(pgd, addr);
398 pmd_t *pmd = pmd_offset(pud, addr);
399 struct address_space *mapping;
400 pgoff_t index;
d936cf9b
HD
401 static unsigned long resume;
402 static unsigned long nr_shown;
403 static unsigned long nr_unshown;
404
405 /*
406 * Allow a burst of 60 reports, then keep quiet for that minute;
407 * or allow a steady drip of one report per second.
408 */
409 if (nr_shown == 60) {
410 if (time_before(jiffies, resume)) {
411 nr_unshown++;
412 return;
413 }
414 if (nr_unshown) {
1e9e6365
HD
415 printk(KERN_ALERT
416 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
417 nr_unshown);
418 nr_unshown = 0;
419 }
420 nr_shown = 0;
421 }
422 if (nr_shown++ == 0)
423 resume = jiffies + 60 * HZ;
3dc14741
HD
424
425 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
426 index = linear_page_index(vma, addr);
427
1e9e6365
HD
428 printk(KERN_ALERT
429 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
430 current->comm,
431 (long long)pte_val(pte), (long long)pmd_val(*pmd));
432 if (page) {
1e9e6365 433 printk(KERN_ALERT
3dc14741
HD
434 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
435 page, (void *)page->flags, page_count(page),
436 page_mapcount(page), page->mapping, page->index);
437 }
1e9e6365 438 printk(KERN_ALERT
3dc14741
HD
439 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
440 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
441 /*
442 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
443 */
444 if (vma->vm_ops)
1e9e6365 445 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
446 (unsigned long)vma->vm_ops->fault);
447 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 448 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 449 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 450 dump_stack();
3dc14741 451 add_taint(TAINT_BAD_PAGE);
b5810039
NP
452}
453
67121172
LT
454static inline int is_cow_mapping(unsigned int flags)
455{
456 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
457}
458
62eede62
HD
459#ifndef is_zero_pfn
460static inline int is_zero_pfn(unsigned long pfn)
461{
462 return pfn == zero_pfn;
463}
464#endif
465
466#ifndef my_zero_pfn
467static inline unsigned long my_zero_pfn(unsigned long addr)
468{
469 return zero_pfn;
470}
471#endif
472
ee498ed7 473/*
7e675137 474 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 475 *
7e675137
NP
476 * "Special" mappings do not wish to be associated with a "struct page" (either
477 * it doesn't exist, or it exists but they don't want to touch it). In this
478 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 479 *
7e675137
NP
480 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
481 * pte bit, in which case this function is trivial. Secondly, an architecture
482 * may not have a spare pte bit, which requires a more complicated scheme,
483 * described below.
484 *
485 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
486 * special mapping (even if there are underlying and valid "struct pages").
487 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 488 *
b379d790
JH
489 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
490 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
491 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
492 * mapping will always honor the rule
6aab341e
LT
493 *
494 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
495 *
7e675137
NP
496 * And for normal mappings this is false.
497 *
498 * This restricts such mappings to be a linear translation from virtual address
499 * to pfn. To get around this restriction, we allow arbitrary mappings so long
500 * as the vma is not a COW mapping; in that case, we know that all ptes are
501 * special (because none can have been COWed).
b379d790 502 *
b379d790 503 *
7e675137 504 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
505 *
506 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
507 * page" backing, however the difference is that _all_ pages with a struct
508 * page (that is, those where pfn_valid is true) are refcounted and considered
509 * normal pages by the VM. The disadvantage is that pages are refcounted
510 * (which can be slower and simply not an option for some PFNMAP users). The
511 * advantage is that we don't have to follow the strict linearity rule of
512 * PFNMAP mappings in order to support COWable mappings.
513 *
ee498ed7 514 */
7e675137
NP
515#ifdef __HAVE_ARCH_PTE_SPECIAL
516# define HAVE_PTE_SPECIAL 1
517#else
518# define HAVE_PTE_SPECIAL 0
519#endif
520struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
521 pte_t pte)
ee498ed7 522{
22b31eec 523 unsigned long pfn = pte_pfn(pte);
7e675137
NP
524
525 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
526 if (likely(!pte_special(pte)))
527 goto check_pfn;
a13ea5b7
HD
528 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
529 return NULL;
62eede62 530 if (!is_zero_pfn(pfn))
22b31eec 531 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
532 return NULL;
533 }
534
535 /* !HAVE_PTE_SPECIAL case follows: */
536
b379d790
JH
537 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
538 if (vma->vm_flags & VM_MIXEDMAP) {
539 if (!pfn_valid(pfn))
540 return NULL;
541 goto out;
542 } else {
7e675137
NP
543 unsigned long off;
544 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
545 if (pfn == vma->vm_pgoff + off)
546 return NULL;
547 if (!is_cow_mapping(vma->vm_flags))
548 return NULL;
549 }
6aab341e
LT
550 }
551
62eede62
HD
552 if (is_zero_pfn(pfn))
553 return NULL;
22b31eec
HD
554check_pfn:
555 if (unlikely(pfn > highest_memmap_pfn)) {
556 print_bad_pte(vma, addr, pte, NULL);
557 return NULL;
558 }
6aab341e
LT
559
560 /*
7e675137 561 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 562 * eg. VDSO mappings can cause them to exist.
6aab341e 563 */
b379d790 564out:
6aab341e 565 return pfn_to_page(pfn);
ee498ed7
HD
566}
567
1da177e4
LT
568/*
569 * copy one vm_area from one task to the other. Assumes the page tables
570 * already present in the new task to be cleared in the whole range
571 * covered by this vma.
1da177e4
LT
572 */
573
8c103762 574static inline void
1da177e4 575copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 576 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 577 unsigned long addr, int *rss)
1da177e4 578{
b5810039 579 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
580 pte_t pte = *src_pte;
581 struct page *page;
1da177e4
LT
582
583 /* pte contains position in swap or file, so copy. */
584 if (unlikely(!pte_present(pte))) {
585 if (!pte_file(pte)) {
0697212a
CL
586 swp_entry_t entry = pte_to_swp_entry(pte);
587
588 swap_duplicate(entry);
1da177e4
LT
589 /* make sure dst_mm is on swapoff's mmlist. */
590 if (unlikely(list_empty(&dst_mm->mmlist))) {
591 spin_lock(&mmlist_lock);
f412ac08
HD
592 if (list_empty(&dst_mm->mmlist))
593 list_add(&dst_mm->mmlist,
594 &src_mm->mmlist);
1da177e4
LT
595 spin_unlock(&mmlist_lock);
596 }
0697212a
CL
597 if (is_write_migration_entry(entry) &&
598 is_cow_mapping(vm_flags)) {
599 /*
600 * COW mappings require pages in both parent
601 * and child to be set to read.
602 */
603 make_migration_entry_read(&entry);
604 pte = swp_entry_to_pte(entry);
605 set_pte_at(src_mm, addr, src_pte, pte);
606 }
1da177e4 607 }
ae859762 608 goto out_set_pte;
1da177e4
LT
609 }
610
1da177e4
LT
611 /*
612 * If it's a COW mapping, write protect it both
613 * in the parent and the child
614 */
67121172 615 if (is_cow_mapping(vm_flags)) {
1da177e4 616 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 617 pte = pte_wrprotect(pte);
1da177e4
LT
618 }
619
620 /*
621 * If it's a shared mapping, mark it clean in
622 * the child
623 */
624 if (vm_flags & VM_SHARED)
625 pte = pte_mkclean(pte);
626 pte = pte_mkold(pte);
6aab341e
LT
627
628 page = vm_normal_page(vma, addr, pte);
629 if (page) {
630 get_page(page);
21333b2b 631 page_dup_rmap(page);
b7c46d15 632 rss[PageAnon(page)]++;
6aab341e 633 }
ae859762
HD
634
635out_set_pte:
636 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
637}
638
639static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
640 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
641 unsigned long addr, unsigned long end)
642{
643 pte_t *src_pte, *dst_pte;
c74df32c 644 spinlock_t *src_ptl, *dst_ptl;
e040f218 645 int progress = 0;
8c103762 646 int rss[2];
1da177e4
LT
647
648again:
ae859762 649 rss[1] = rss[0] = 0;
c74df32c 650 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
651 if (!dst_pte)
652 return -ENOMEM;
653 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 654 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 655 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 656 arch_enter_lazy_mmu_mode();
1da177e4 657
1da177e4
LT
658 do {
659 /*
660 * We are holding two locks at this point - either of them
661 * could generate latencies in another task on another CPU.
662 */
e040f218
HD
663 if (progress >= 32) {
664 progress = 0;
665 if (need_resched() ||
95c354fe 666 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
667 break;
668 }
1da177e4
LT
669 if (pte_none(*src_pte)) {
670 progress++;
671 continue;
672 }
8c103762 673 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
674 progress += 8;
675 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 676
6606c3e0 677 arch_leave_lazy_mmu_mode();
c74df32c 678 spin_unlock(src_ptl);
1da177e4 679 pte_unmap_nested(src_pte - 1);
ae859762 680 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
681 pte_unmap_unlock(dst_pte - 1, dst_ptl);
682 cond_resched();
1da177e4
LT
683 if (addr != end)
684 goto again;
685 return 0;
686}
687
688static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
689 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
690 unsigned long addr, unsigned long end)
691{
692 pmd_t *src_pmd, *dst_pmd;
693 unsigned long next;
694
695 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
696 if (!dst_pmd)
697 return -ENOMEM;
698 src_pmd = pmd_offset(src_pud, addr);
699 do {
700 next = pmd_addr_end(addr, end);
701 if (pmd_none_or_clear_bad(src_pmd))
702 continue;
703 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
704 vma, addr, next))
705 return -ENOMEM;
706 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
707 return 0;
708}
709
710static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
712 unsigned long addr, unsigned long end)
713{
714 pud_t *src_pud, *dst_pud;
715 unsigned long next;
716
717 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
718 if (!dst_pud)
719 return -ENOMEM;
720 src_pud = pud_offset(src_pgd, addr);
721 do {
722 next = pud_addr_end(addr, end);
723 if (pud_none_or_clear_bad(src_pud))
724 continue;
725 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
726 vma, addr, next))
727 return -ENOMEM;
728 } while (dst_pud++, src_pud++, addr = next, addr != end);
729 return 0;
730}
731
732int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
733 struct vm_area_struct *vma)
734{
735 pgd_t *src_pgd, *dst_pgd;
736 unsigned long next;
737 unsigned long addr = vma->vm_start;
738 unsigned long end = vma->vm_end;
cddb8a5c 739 int ret;
1da177e4 740
d992895b
NP
741 /*
742 * Don't copy ptes where a page fault will fill them correctly.
743 * Fork becomes much lighter when there are big shared or private
744 * readonly mappings. The tradeoff is that copy_page_range is more
745 * efficient than faulting.
746 */
4d7672b4 747 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
748 if (!vma->anon_vma)
749 return 0;
750 }
751
1da177e4
LT
752 if (is_vm_hugetlb_page(vma))
753 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
754
34801ba9 755 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 756 /*
757 * We do not free on error cases below as remove_vma
758 * gets called on error from higher level routine
759 */
760 ret = track_pfn_vma_copy(vma);
761 if (ret)
762 return ret;
763 }
764
cddb8a5c
AA
765 /*
766 * We need to invalidate the secondary MMU mappings only when
767 * there could be a permission downgrade on the ptes of the
768 * parent mm. And a permission downgrade will only happen if
769 * is_cow_mapping() returns true.
770 */
771 if (is_cow_mapping(vma->vm_flags))
772 mmu_notifier_invalidate_range_start(src_mm, addr, end);
773
774 ret = 0;
1da177e4
LT
775 dst_pgd = pgd_offset(dst_mm, addr);
776 src_pgd = pgd_offset(src_mm, addr);
777 do {
778 next = pgd_addr_end(addr, end);
779 if (pgd_none_or_clear_bad(src_pgd))
780 continue;
cddb8a5c
AA
781 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
782 vma, addr, next))) {
783 ret = -ENOMEM;
784 break;
785 }
1da177e4 786 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
787
788 if (is_cow_mapping(vma->vm_flags))
789 mmu_notifier_invalidate_range_end(src_mm,
790 vma->vm_start, end);
791 return ret;
1da177e4
LT
792}
793
51c6f666 794static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 795 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 796 unsigned long addr, unsigned long end,
51c6f666 797 long *zap_work, struct zap_details *details)
1da177e4 798{
b5810039 799 struct mm_struct *mm = tlb->mm;
1da177e4 800 pte_t *pte;
508034a3 801 spinlock_t *ptl;
ae859762
HD
802 int file_rss = 0;
803 int anon_rss = 0;
1da177e4 804
508034a3 805 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 806 arch_enter_lazy_mmu_mode();
1da177e4
LT
807 do {
808 pte_t ptent = *pte;
51c6f666
RH
809 if (pte_none(ptent)) {
810 (*zap_work)--;
1da177e4 811 continue;
51c6f666 812 }
6f5e6b9e
HD
813
814 (*zap_work) -= PAGE_SIZE;
815
1da177e4 816 if (pte_present(ptent)) {
ee498ed7 817 struct page *page;
51c6f666 818
6aab341e 819 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
820 if (unlikely(details) && page) {
821 /*
822 * unmap_shared_mapping_pages() wants to
823 * invalidate cache without truncating:
824 * unmap shared but keep private pages.
825 */
826 if (details->check_mapping &&
827 details->check_mapping != page->mapping)
828 continue;
829 /*
830 * Each page->index must be checked when
831 * invalidating or truncating nonlinear.
832 */
833 if (details->nonlinear_vma &&
834 (page->index < details->first_index ||
835 page->index > details->last_index))
836 continue;
837 }
b5810039 838 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 839 tlb->fullmm);
1da177e4
LT
840 tlb_remove_tlb_entry(tlb, pte, addr);
841 if (unlikely(!page))
842 continue;
843 if (unlikely(details) && details->nonlinear_vma
844 && linear_page_index(details->nonlinear_vma,
845 addr) != page->index)
b5810039 846 set_pte_at(mm, addr, pte,
1da177e4 847 pgoff_to_pte(page->index));
1da177e4 848 if (PageAnon(page))
86d912f4 849 anon_rss--;
6237bcd9
HD
850 else {
851 if (pte_dirty(ptent))
852 set_page_dirty(page);
4917e5d0
JW
853 if (pte_young(ptent) &&
854 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 855 mark_page_accessed(page);
86d912f4 856 file_rss--;
6237bcd9 857 }
edc315fd 858 page_remove_rmap(page);
3dc14741
HD
859 if (unlikely(page_mapcount(page) < 0))
860 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
861 tlb_remove_page(tlb, page);
862 continue;
863 }
864 /*
865 * If details->check_mapping, we leave swap entries;
866 * if details->nonlinear_vma, we leave file entries.
867 */
868 if (unlikely(details))
869 continue;
2509ef26
HD
870 if (pte_file(ptent)) {
871 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
872 print_bad_pte(vma, addr, ptent, NULL);
873 } else if
874 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
875 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 876 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 877 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 878
86d912f4 879 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 880 arch_leave_lazy_mmu_mode();
508034a3 881 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
882
883 return addr;
1da177e4
LT
884}
885
51c6f666 886static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 887 struct vm_area_struct *vma, pud_t *pud,
1da177e4 888 unsigned long addr, unsigned long end,
51c6f666 889 long *zap_work, struct zap_details *details)
1da177e4
LT
890{
891 pmd_t *pmd;
892 unsigned long next;
893
894 pmd = pmd_offset(pud, addr);
895 do {
896 next = pmd_addr_end(addr, end);
51c6f666
RH
897 if (pmd_none_or_clear_bad(pmd)) {
898 (*zap_work)--;
1da177e4 899 continue;
51c6f666
RH
900 }
901 next = zap_pte_range(tlb, vma, pmd, addr, next,
902 zap_work, details);
903 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
904
905 return addr;
1da177e4
LT
906}
907
51c6f666 908static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 909 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 910 unsigned long addr, unsigned long end,
51c6f666 911 long *zap_work, struct zap_details *details)
1da177e4
LT
912{
913 pud_t *pud;
914 unsigned long next;
915
916 pud = pud_offset(pgd, addr);
917 do {
918 next = pud_addr_end(addr, end);
51c6f666
RH
919 if (pud_none_or_clear_bad(pud)) {
920 (*zap_work)--;
1da177e4 921 continue;
51c6f666
RH
922 }
923 next = zap_pmd_range(tlb, vma, pud, addr, next,
924 zap_work, details);
925 } while (pud++, addr = next, (addr != end && *zap_work > 0));
926
927 return addr;
1da177e4
LT
928}
929
51c6f666
RH
930static unsigned long unmap_page_range(struct mmu_gather *tlb,
931 struct vm_area_struct *vma,
1da177e4 932 unsigned long addr, unsigned long end,
51c6f666 933 long *zap_work, struct zap_details *details)
1da177e4
LT
934{
935 pgd_t *pgd;
936 unsigned long next;
937
938 if (details && !details->check_mapping && !details->nonlinear_vma)
939 details = NULL;
940
941 BUG_ON(addr >= end);
942 tlb_start_vma(tlb, vma);
943 pgd = pgd_offset(vma->vm_mm, addr);
944 do {
945 next = pgd_addr_end(addr, end);
51c6f666
RH
946 if (pgd_none_or_clear_bad(pgd)) {
947 (*zap_work)--;
1da177e4 948 continue;
51c6f666
RH
949 }
950 next = zap_pud_range(tlb, vma, pgd, addr, next,
951 zap_work, details);
952 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 953 tlb_end_vma(tlb, vma);
51c6f666
RH
954
955 return addr;
1da177e4
LT
956}
957
958#ifdef CONFIG_PREEMPT
959# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
960#else
961/* No preempt: go for improved straight-line efficiency */
962# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
963#endif
964
965/**
966 * unmap_vmas - unmap a range of memory covered by a list of vma's
967 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
968 * @vma: the starting vma
969 * @start_addr: virtual address at which to start unmapping
970 * @end_addr: virtual address at which to end unmapping
971 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
972 * @details: details of nonlinear truncation or shared cache invalidation
973 *
ee39b37b 974 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 975 *
508034a3 976 * Unmap all pages in the vma list.
1da177e4 977 *
508034a3
HD
978 * We aim to not hold locks for too long (for scheduling latency reasons).
979 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
980 * return the ending mmu_gather to the caller.
981 *
982 * Only addresses between `start' and `end' will be unmapped.
983 *
984 * The VMA list must be sorted in ascending virtual address order.
985 *
986 * unmap_vmas() assumes that the caller will flush the whole unmapped address
987 * range after unmap_vmas() returns. So the only responsibility here is to
988 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
989 * drops the lock and schedules.
990 */
508034a3 991unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
992 struct vm_area_struct *vma, unsigned long start_addr,
993 unsigned long end_addr, unsigned long *nr_accounted,
994 struct zap_details *details)
995{
51c6f666 996 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
997 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
998 int tlb_start_valid = 0;
ee39b37b 999 unsigned long start = start_addr;
1da177e4 1000 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1001 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1002 struct mm_struct *mm = vma->vm_mm;
1da177e4 1003
cddb8a5c 1004 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1005 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1006 unsigned long end;
1007
1008 start = max(vma->vm_start, start_addr);
1009 if (start >= vma->vm_end)
1010 continue;
1011 end = min(vma->vm_end, end_addr);
1012 if (end <= vma->vm_start)
1013 continue;
1014
1015 if (vma->vm_flags & VM_ACCOUNT)
1016 *nr_accounted += (end - start) >> PAGE_SHIFT;
1017
34801ba9 1018 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1019 untrack_pfn_vma(vma, 0, 0);
1020
1da177e4 1021 while (start != end) {
1da177e4
LT
1022 if (!tlb_start_valid) {
1023 tlb_start = start;
1024 tlb_start_valid = 1;
1025 }
1026
51c6f666 1027 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1028 /*
1029 * It is undesirable to test vma->vm_file as it
1030 * should be non-null for valid hugetlb area.
1031 * However, vm_file will be NULL in the error
1032 * cleanup path of do_mmap_pgoff. When
1033 * hugetlbfs ->mmap method fails,
1034 * do_mmap_pgoff() nullifies vma->vm_file
1035 * before calling this function to clean up.
1036 * Since no pte has actually been setup, it is
1037 * safe to do nothing in this case.
1038 */
1039 if (vma->vm_file) {
1040 unmap_hugepage_range(vma, start, end, NULL);
1041 zap_work -= (end - start) /
a5516438 1042 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1043 }
1044
51c6f666
RH
1045 start = end;
1046 } else
1047 start = unmap_page_range(*tlbp, vma,
1048 start, end, &zap_work, details);
1049
1050 if (zap_work > 0) {
1051 BUG_ON(start != end);
1052 break;
1da177e4
LT
1053 }
1054
1da177e4
LT
1055 tlb_finish_mmu(*tlbp, tlb_start, start);
1056
1057 if (need_resched() ||
95c354fe 1058 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1059 if (i_mmap_lock) {
508034a3 1060 *tlbp = NULL;
1da177e4
LT
1061 goto out;
1062 }
1da177e4 1063 cond_resched();
1da177e4
LT
1064 }
1065
508034a3 1066 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1067 tlb_start_valid = 0;
51c6f666 1068 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1069 }
1070 }
1071out:
cddb8a5c 1072 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1073 return start; /* which is now the end (or restart) address */
1da177e4
LT
1074}
1075
1076/**
1077 * zap_page_range - remove user pages in a given range
1078 * @vma: vm_area_struct holding the applicable pages
1079 * @address: starting address of pages to zap
1080 * @size: number of bytes to zap
1081 * @details: details of nonlinear truncation or shared cache invalidation
1082 */
ee39b37b 1083unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1084 unsigned long size, struct zap_details *details)
1085{
1086 struct mm_struct *mm = vma->vm_mm;
1087 struct mmu_gather *tlb;
1088 unsigned long end = address + size;
1089 unsigned long nr_accounted = 0;
1090
1da177e4 1091 lru_add_drain();
1da177e4 1092 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1093 update_hiwater_rss(mm);
508034a3
HD
1094 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1095 if (tlb)
1096 tlb_finish_mmu(tlb, address, end);
ee39b37b 1097 return end;
1da177e4
LT
1098}
1099
c627f9cc
JS
1100/**
1101 * zap_vma_ptes - remove ptes mapping the vma
1102 * @vma: vm_area_struct holding ptes to be zapped
1103 * @address: starting address of pages to zap
1104 * @size: number of bytes to zap
1105 *
1106 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1107 *
1108 * The entire address range must be fully contained within the vma.
1109 *
1110 * Returns 0 if successful.
1111 */
1112int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1113 unsigned long size)
1114{
1115 if (address < vma->vm_start || address + size > vma->vm_end ||
1116 !(vma->vm_flags & VM_PFNMAP))
1117 return -1;
1118 zap_page_range(vma, address, size, NULL);
1119 return 0;
1120}
1121EXPORT_SYMBOL_GPL(zap_vma_ptes);
1122
1da177e4
LT
1123/*
1124 * Do a quick page-table lookup for a single page.
1da177e4 1125 */
6aab341e 1126struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1127 unsigned int flags)
1da177e4
LT
1128{
1129 pgd_t *pgd;
1130 pud_t *pud;
1131 pmd_t *pmd;
1132 pte_t *ptep, pte;
deceb6cd 1133 spinlock_t *ptl;
1da177e4 1134 struct page *page;
6aab341e 1135 struct mm_struct *mm = vma->vm_mm;
1da177e4 1136
deceb6cd
HD
1137 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1138 if (!IS_ERR(page)) {
1139 BUG_ON(flags & FOLL_GET);
1140 goto out;
1141 }
1da177e4 1142
deceb6cd 1143 page = NULL;
1da177e4
LT
1144 pgd = pgd_offset(mm, address);
1145 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1146 goto no_page_table;
1da177e4
LT
1147
1148 pud = pud_offset(pgd, address);
ceb86879 1149 if (pud_none(*pud))
deceb6cd 1150 goto no_page_table;
ceb86879
AK
1151 if (pud_huge(*pud)) {
1152 BUG_ON(flags & FOLL_GET);
1153 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1154 goto out;
1155 }
1156 if (unlikely(pud_bad(*pud)))
1157 goto no_page_table;
1158
1da177e4 1159 pmd = pmd_offset(pud, address);
aeed5fce 1160 if (pmd_none(*pmd))
deceb6cd 1161 goto no_page_table;
deceb6cd
HD
1162 if (pmd_huge(*pmd)) {
1163 BUG_ON(flags & FOLL_GET);
1164 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1165 goto out;
deceb6cd 1166 }
aeed5fce
HD
1167 if (unlikely(pmd_bad(*pmd)))
1168 goto no_page_table;
1169
deceb6cd 1170 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1171
1172 pte = *ptep;
deceb6cd 1173 if (!pte_present(pte))
89f5b7da 1174 goto no_page;
deceb6cd
HD
1175 if ((flags & FOLL_WRITE) && !pte_write(pte))
1176 goto unlock;
a13ea5b7 1177
6aab341e 1178 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1179 if (unlikely(!page)) {
1180 if ((flags & FOLL_DUMP) ||
62eede62 1181 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1182 goto bad_page;
1183 page = pte_page(pte);
1184 }
1da177e4 1185
deceb6cd
HD
1186 if (flags & FOLL_GET)
1187 get_page(page);
1188 if (flags & FOLL_TOUCH) {
1189 if ((flags & FOLL_WRITE) &&
1190 !pte_dirty(pte) && !PageDirty(page))
1191 set_page_dirty(page);
bd775c42
KM
1192 /*
1193 * pte_mkyoung() would be more correct here, but atomic care
1194 * is needed to avoid losing the dirty bit: it is easier to use
1195 * mark_page_accessed().
1196 */
deceb6cd
HD
1197 mark_page_accessed(page);
1198 }
1199unlock:
1200 pte_unmap_unlock(ptep, ptl);
1da177e4 1201out:
deceb6cd 1202 return page;
1da177e4 1203
89f5b7da
LT
1204bad_page:
1205 pte_unmap_unlock(ptep, ptl);
1206 return ERR_PTR(-EFAULT);
1207
1208no_page:
1209 pte_unmap_unlock(ptep, ptl);
1210 if (!pte_none(pte))
1211 return page;
8e4b9a60 1212
deceb6cd
HD
1213no_page_table:
1214 /*
1215 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1216 * has touched so far, we don't want to allocate unnecessary pages or
1217 * page tables. Return error instead of NULL to skip handle_mm_fault,
1218 * then get_dump_page() will return NULL to leave a hole in the dump.
1219 * But we can only make this optimization where a hole would surely
1220 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1221 */
8e4b9a60
HD
1222 if ((flags & FOLL_DUMP) &&
1223 (!vma->vm_ops || !vma->vm_ops->fault))
1224 return ERR_PTR(-EFAULT);
deceb6cd 1225 return page;
1da177e4
LT
1226}
1227
b291f000 1228int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1229 unsigned long start, int nr_pages, unsigned int gup_flags,
9d73777e 1230 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1231{
1232 int i;
58fa879e 1233 unsigned long vm_flags;
1da177e4 1234
9d73777e 1235 if (nr_pages <= 0)
900cf086 1236 return 0;
58fa879e
HD
1237
1238 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1239
1da177e4
LT
1240 /*
1241 * Require read or write permissions.
58fa879e 1242 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1243 */
58fa879e
HD
1244 vm_flags = (gup_flags & FOLL_WRITE) ?
1245 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1246 vm_flags &= (gup_flags & FOLL_FORCE) ?
1247 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1248 i = 0;
1249
1250 do {
deceb6cd 1251 struct vm_area_struct *vma;
1da177e4
LT
1252
1253 vma = find_extend_vma(mm, start);
1254 if (!vma && in_gate_area(tsk, start)) {
1255 unsigned long pg = start & PAGE_MASK;
1256 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1257 pgd_t *pgd;
1258 pud_t *pud;
1259 pmd_t *pmd;
1260 pte_t *pte;
b291f000
NP
1261
1262 /* user gate pages are read-only */
58fa879e 1263 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1264 return i ? : -EFAULT;
1265 if (pg > TASK_SIZE)
1266 pgd = pgd_offset_k(pg);
1267 else
1268 pgd = pgd_offset_gate(mm, pg);
1269 BUG_ON(pgd_none(*pgd));
1270 pud = pud_offset(pgd, pg);
1271 BUG_ON(pud_none(*pud));
1272 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1273 if (pmd_none(*pmd))
1274 return i ? : -EFAULT;
1da177e4 1275 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1276 if (pte_none(*pte)) {
1277 pte_unmap(pte);
1278 return i ? : -EFAULT;
1279 }
1da177e4 1280 if (pages) {
fa2a455b 1281 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1282 pages[i] = page;
1283 if (page)
1284 get_page(page);
1da177e4
LT
1285 }
1286 pte_unmap(pte);
1287 if (vmas)
1288 vmas[i] = gate_vma;
1289 i++;
1290 start += PAGE_SIZE;
9d73777e 1291 nr_pages--;
1da177e4
LT
1292 continue;
1293 }
1294
b291f000
NP
1295 if (!vma ||
1296 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1297 !(vm_flags & vma->vm_flags))
1da177e4
LT
1298 return i ? : -EFAULT;
1299
2a15efc9
HD
1300 if (is_vm_hugetlb_page(vma)) {
1301 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1302 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1303 continue;
1304 }
deceb6cd 1305
1da177e4 1306 do {
08ef4729 1307 struct page *page;
58fa879e 1308 unsigned int foll_flags = gup_flags;
1da177e4 1309
462e00cc 1310 /*
4779280d 1311 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1312 * pages and potentially allocating memory.
462e00cc 1313 */
1c3aff1c 1314 if (unlikely(fatal_signal_pending(current)))
4779280d 1315 return i ? i : -ERESTARTSYS;
462e00cc 1316
deceb6cd 1317 cond_resched();
6aab341e 1318 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1319 int ret;
d06063cc 1320
d26ed650
HD
1321 ret = handle_mm_fault(mm, vma, start,
1322 (foll_flags & FOLL_WRITE) ?
1323 FAULT_FLAG_WRITE : 0);
1324
83c54070
NP
1325 if (ret & VM_FAULT_ERROR) {
1326 if (ret & VM_FAULT_OOM)
1327 return i ? i : -ENOMEM;
1328 else if (ret & VM_FAULT_SIGBUS)
1329 return i ? i : -EFAULT;
1330 BUG();
1331 }
1332 if (ret & VM_FAULT_MAJOR)
1333 tsk->maj_flt++;
1334 else
1335 tsk->min_flt++;
1336
a68d2ebc 1337 /*
83c54070
NP
1338 * The VM_FAULT_WRITE bit tells us that
1339 * do_wp_page has broken COW when necessary,
1340 * even if maybe_mkwrite decided not to set
1341 * pte_write. We can thus safely do subsequent
878b63ac
HD
1342 * page lookups as if they were reads. But only
1343 * do so when looping for pte_write is futile:
1344 * in some cases userspace may also be wanting
1345 * to write to the gotten user page, which a
1346 * read fault here might prevent (a readonly
1347 * page might get reCOWed by userspace write).
a68d2ebc 1348 */
878b63ac
HD
1349 if ((ret & VM_FAULT_WRITE) &&
1350 !(vma->vm_flags & VM_WRITE))
deceb6cd 1351 foll_flags &= ~FOLL_WRITE;
83c54070 1352
7f7bbbe5 1353 cond_resched();
1da177e4 1354 }
89f5b7da
LT
1355 if (IS_ERR(page))
1356 return i ? i : PTR_ERR(page);
1da177e4 1357 if (pages) {
08ef4729 1358 pages[i] = page;
03beb076 1359
a6f36be3 1360 flush_anon_page(vma, page, start);
08ef4729 1361 flush_dcache_page(page);
1da177e4
LT
1362 }
1363 if (vmas)
1364 vmas[i] = vma;
1365 i++;
1366 start += PAGE_SIZE;
9d73777e
PZ
1367 nr_pages--;
1368 } while (nr_pages && start < vma->vm_end);
1369 } while (nr_pages);
1da177e4
LT
1370 return i;
1371}
b291f000 1372
d2bf6be8
NP
1373/**
1374 * get_user_pages() - pin user pages in memory
1375 * @tsk: task_struct of target task
1376 * @mm: mm_struct of target mm
1377 * @start: starting user address
9d73777e 1378 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1379 * @write: whether pages will be written to by the caller
1380 * @force: whether to force write access even if user mapping is
1381 * readonly. This will result in the page being COWed even
1382 * in MAP_SHARED mappings. You do not want this.
1383 * @pages: array that receives pointers to the pages pinned.
1384 * Should be at least nr_pages long. Or NULL, if caller
1385 * only intends to ensure the pages are faulted in.
1386 * @vmas: array of pointers to vmas corresponding to each page.
1387 * Or NULL if the caller does not require them.
1388 *
1389 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1390 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1391 * were pinned, returns -errno. Each page returned must be released
1392 * with a put_page() call when it is finished with. vmas will only
1393 * remain valid while mmap_sem is held.
1394 *
1395 * Must be called with mmap_sem held for read or write.
1396 *
1397 * get_user_pages walks a process's page tables and takes a reference to
1398 * each struct page that each user address corresponds to at a given
1399 * instant. That is, it takes the page that would be accessed if a user
1400 * thread accesses the given user virtual address at that instant.
1401 *
1402 * This does not guarantee that the page exists in the user mappings when
1403 * get_user_pages returns, and there may even be a completely different
1404 * page there in some cases (eg. if mmapped pagecache has been invalidated
1405 * and subsequently re faulted). However it does guarantee that the page
1406 * won't be freed completely. And mostly callers simply care that the page
1407 * contains data that was valid *at some point in time*. Typically, an IO
1408 * or similar operation cannot guarantee anything stronger anyway because
1409 * locks can't be held over the syscall boundary.
1410 *
1411 * If write=0, the page must not be written to. If the page is written to,
1412 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1413 * after the page is finished with, and before put_page is called.
1414 *
1415 * get_user_pages is typically used for fewer-copy IO operations, to get a
1416 * handle on the memory by some means other than accesses via the user virtual
1417 * addresses. The pages may be submitted for DMA to devices or accessed via
1418 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1419 * use the correct cache flushing APIs.
1420 *
1421 * See also get_user_pages_fast, for performance critical applications.
1422 */
b291f000 1423int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1424 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1425 struct page **pages, struct vm_area_struct **vmas)
1426{
58fa879e 1427 int flags = FOLL_TOUCH;
b291f000 1428
58fa879e
HD
1429 if (pages)
1430 flags |= FOLL_GET;
b291f000 1431 if (write)
58fa879e 1432 flags |= FOLL_WRITE;
b291f000 1433 if (force)
58fa879e 1434 flags |= FOLL_FORCE;
b291f000 1435
9d73777e 1436 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1437}
1da177e4
LT
1438EXPORT_SYMBOL(get_user_pages);
1439
f3e8fccd
HD
1440/**
1441 * get_dump_page() - pin user page in memory while writing it to core dump
1442 * @addr: user address
1443 *
1444 * Returns struct page pointer of user page pinned for dump,
1445 * to be freed afterwards by page_cache_release() or put_page().
1446 *
1447 * Returns NULL on any kind of failure - a hole must then be inserted into
1448 * the corefile, to preserve alignment with its headers; and also returns
1449 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1450 * allowing a hole to be left in the corefile to save diskspace.
1451 *
1452 * Called without mmap_sem, but after all other threads have been killed.
1453 */
1454#ifdef CONFIG_ELF_CORE
1455struct page *get_dump_page(unsigned long addr)
1456{
1457 struct vm_area_struct *vma;
1458 struct page *page;
1459
1460 if (__get_user_pages(current, current->mm, addr, 1,
58fa879e 1461 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
f3e8fccd 1462 return NULL;
f3e8fccd
HD
1463 flush_cache_page(vma, addr, page_to_pfn(page));
1464 return page;
1465}
1466#endif /* CONFIG_ELF_CORE */
1467
920c7a5d
HH
1468pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1469 spinlock_t **ptl)
c9cfcddf
LT
1470{
1471 pgd_t * pgd = pgd_offset(mm, addr);
1472 pud_t * pud = pud_alloc(mm, pgd, addr);
1473 if (pud) {
49c91fb0 1474 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1475 if (pmd)
1476 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1477 }
1478 return NULL;
1479}
1480
238f58d8
LT
1481/*
1482 * This is the old fallback for page remapping.
1483 *
1484 * For historical reasons, it only allows reserved pages. Only
1485 * old drivers should use this, and they needed to mark their
1486 * pages reserved for the old functions anyway.
1487 */
423bad60
NP
1488static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1489 struct page *page, pgprot_t prot)
238f58d8 1490{
423bad60 1491 struct mm_struct *mm = vma->vm_mm;
238f58d8 1492 int retval;
c9cfcddf 1493 pte_t *pte;
8a9f3ccd
BS
1494 spinlock_t *ptl;
1495
238f58d8 1496 retval = -EINVAL;
a145dd41 1497 if (PageAnon(page))
5b4e655e 1498 goto out;
238f58d8
LT
1499 retval = -ENOMEM;
1500 flush_dcache_page(page);
c9cfcddf 1501 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1502 if (!pte)
5b4e655e 1503 goto out;
238f58d8
LT
1504 retval = -EBUSY;
1505 if (!pte_none(*pte))
1506 goto out_unlock;
1507
1508 /* Ok, finally just insert the thing.. */
1509 get_page(page);
1510 inc_mm_counter(mm, file_rss);
1511 page_add_file_rmap(page);
1512 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1513
1514 retval = 0;
8a9f3ccd
BS
1515 pte_unmap_unlock(pte, ptl);
1516 return retval;
238f58d8
LT
1517out_unlock:
1518 pte_unmap_unlock(pte, ptl);
1519out:
1520 return retval;
1521}
1522
bfa5bf6d
REB
1523/**
1524 * vm_insert_page - insert single page into user vma
1525 * @vma: user vma to map to
1526 * @addr: target user address of this page
1527 * @page: source kernel page
1528 *
a145dd41
LT
1529 * This allows drivers to insert individual pages they've allocated
1530 * into a user vma.
1531 *
1532 * The page has to be a nice clean _individual_ kernel allocation.
1533 * If you allocate a compound page, you need to have marked it as
1534 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1535 * (see split_page()).
a145dd41
LT
1536 *
1537 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1538 * took an arbitrary page protection parameter. This doesn't allow
1539 * that. Your vma protection will have to be set up correctly, which
1540 * means that if you want a shared writable mapping, you'd better
1541 * ask for a shared writable mapping!
1542 *
1543 * The page does not need to be reserved.
1544 */
423bad60
NP
1545int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1546 struct page *page)
a145dd41
LT
1547{
1548 if (addr < vma->vm_start || addr >= vma->vm_end)
1549 return -EFAULT;
1550 if (!page_count(page))
1551 return -EINVAL;
4d7672b4 1552 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1553 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1554}
e3c3374f 1555EXPORT_SYMBOL(vm_insert_page);
a145dd41 1556
423bad60
NP
1557static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1558 unsigned long pfn, pgprot_t prot)
1559{
1560 struct mm_struct *mm = vma->vm_mm;
1561 int retval;
1562 pte_t *pte, entry;
1563 spinlock_t *ptl;
1564
1565 retval = -ENOMEM;
1566 pte = get_locked_pte(mm, addr, &ptl);
1567 if (!pte)
1568 goto out;
1569 retval = -EBUSY;
1570 if (!pte_none(*pte))
1571 goto out_unlock;
1572
1573 /* Ok, finally just insert the thing.. */
1574 entry = pte_mkspecial(pfn_pte(pfn, prot));
1575 set_pte_at(mm, addr, pte, entry);
1576 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1577
1578 retval = 0;
1579out_unlock:
1580 pte_unmap_unlock(pte, ptl);
1581out:
1582 return retval;
1583}
1584
e0dc0d8f
NP
1585/**
1586 * vm_insert_pfn - insert single pfn into user vma
1587 * @vma: user vma to map to
1588 * @addr: target user address of this page
1589 * @pfn: source kernel pfn
1590 *
1591 * Similar to vm_inert_page, this allows drivers to insert individual pages
1592 * they've allocated into a user vma. Same comments apply.
1593 *
1594 * This function should only be called from a vm_ops->fault handler, and
1595 * in that case the handler should return NULL.
0d71d10a
NP
1596 *
1597 * vma cannot be a COW mapping.
1598 *
1599 * As this is called only for pages that do not currently exist, we
1600 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1601 */
1602int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1603 unsigned long pfn)
e0dc0d8f 1604{
2ab64037 1605 int ret;
e4b866ed 1606 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1607 /*
1608 * Technically, architectures with pte_special can avoid all these
1609 * restrictions (same for remap_pfn_range). However we would like
1610 * consistency in testing and feature parity among all, so we should
1611 * try to keep these invariants in place for everybody.
1612 */
b379d790
JH
1613 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1614 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1615 (VM_PFNMAP|VM_MIXEDMAP));
1616 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1617 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1618
423bad60
NP
1619 if (addr < vma->vm_start || addr >= vma->vm_end)
1620 return -EFAULT;
e4b866ed 1621 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1622 return -EINVAL;
1623
e4b866ed 1624 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1625
1626 if (ret)
1627 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1628
1629 return ret;
423bad60
NP
1630}
1631EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1632
423bad60
NP
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn)
1635{
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1637
423bad60
NP
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
e0dc0d8f 1640
423bad60
NP
1641 /*
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1647 */
1648 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649 struct page *page;
1650
1651 page = pfn_to_page(pfn);
1652 return insert_page(vma, addr, page, vma->vm_page_prot);
1653 }
1654 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1655}
423bad60 1656EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1657
1da177e4
LT
1658/*
1659 * maps a range of physical memory into the requested pages. the old
1660 * mappings are removed. any references to nonexistent pages results
1661 * in null mappings (currently treated as "copy-on-access")
1662 */
1663static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664 unsigned long addr, unsigned long end,
1665 unsigned long pfn, pgprot_t prot)
1666{
1667 pte_t *pte;
c74df32c 1668 spinlock_t *ptl;
1da177e4 1669
c74df32c 1670 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1671 if (!pte)
1672 return -ENOMEM;
6606c3e0 1673 arch_enter_lazy_mmu_mode();
1da177e4
LT
1674 do {
1675 BUG_ON(!pte_none(*pte));
7e675137 1676 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1677 pfn++;
1678 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1679 arch_leave_lazy_mmu_mode();
c74df32c 1680 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1681 return 0;
1682}
1683
1684static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687{
1688 pmd_t *pmd;
1689 unsigned long next;
1690
1691 pfn -= addr >> PAGE_SHIFT;
1692 pmd = pmd_alloc(mm, pud, addr);
1693 if (!pmd)
1694 return -ENOMEM;
1695 do {
1696 next = pmd_addr_end(addr, end);
1697 if (remap_pte_range(mm, pmd, addr, next,
1698 pfn + (addr >> PAGE_SHIFT), prot))
1699 return -ENOMEM;
1700 } while (pmd++, addr = next, addr != end);
1701 return 0;
1702}
1703
1704static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705 unsigned long addr, unsigned long end,
1706 unsigned long pfn, pgprot_t prot)
1707{
1708 pud_t *pud;
1709 unsigned long next;
1710
1711 pfn -= addr >> PAGE_SHIFT;
1712 pud = pud_alloc(mm, pgd, addr);
1713 if (!pud)
1714 return -ENOMEM;
1715 do {
1716 next = pud_addr_end(addr, end);
1717 if (remap_pmd_range(mm, pud, addr, next,
1718 pfn + (addr >> PAGE_SHIFT), prot))
1719 return -ENOMEM;
1720 } while (pud++, addr = next, addr != end);
1721 return 0;
1722}
1723
bfa5bf6d
REB
1724/**
1725 * remap_pfn_range - remap kernel memory to userspace
1726 * @vma: user vma to map to
1727 * @addr: target user address to start at
1728 * @pfn: physical address of kernel memory
1729 * @size: size of map area
1730 * @prot: page protection flags for this mapping
1731 *
1732 * Note: this is only safe if the mm semaphore is held when called.
1733 */
1da177e4
LT
1734int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735 unsigned long pfn, unsigned long size, pgprot_t prot)
1736{
1737 pgd_t *pgd;
1738 unsigned long next;
2d15cab8 1739 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1740 struct mm_struct *mm = vma->vm_mm;
1741 int err;
1742
1743 /*
1744 * Physically remapped pages are special. Tell the
1745 * rest of the world about it:
1746 * VM_IO tells people not to look at these pages
1747 * (accesses can have side effects).
0b14c179
HD
1748 * VM_RESERVED is specified all over the place, because
1749 * in 2.4 it kept swapout's vma scan off this vma; but
1750 * in 2.6 the LRU scan won't even find its pages, so this
1751 * flag means no more than count its pages in reserved_vm,
1752 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1753 * VM_PFNMAP tells the core MM that the base pages are just
1754 * raw PFN mappings, and do not have a "struct page" associated
1755 * with them.
fb155c16
LT
1756 *
1757 * There's a horrible special case to handle copy-on-write
1758 * behaviour that some programs depend on. We mark the "original"
1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1760 */
4bb9c5c0 1761 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1762 vma->vm_pgoff = pfn;
895791da 1763 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1764 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1765 return -EINVAL;
fb155c16 1766
6aab341e 1767 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1768
e4b866ed 1769 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1770 if (err) {
1771 /*
1772 * To indicate that track_pfn related cleanup is not
1773 * needed from higher level routine calling unmap_vmas
1774 */
1775 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1776 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1777 return -EINVAL;
a3670613 1778 }
2ab64037 1779
1da177e4
LT
1780 BUG_ON(addr >= end);
1781 pfn -= addr >> PAGE_SHIFT;
1782 pgd = pgd_offset(mm, addr);
1783 flush_cache_range(vma, addr, end);
1da177e4
LT
1784 do {
1785 next = pgd_addr_end(addr, end);
1786 err = remap_pud_range(mm, pgd, addr, next,
1787 pfn + (addr >> PAGE_SHIFT), prot);
1788 if (err)
1789 break;
1790 } while (pgd++, addr = next, addr != end);
2ab64037 1791
1792 if (err)
1793 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1794
1da177e4
LT
1795 return err;
1796}
1797EXPORT_SYMBOL(remap_pfn_range);
1798
aee16b3c
JF
1799static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 pte_fn_t fn, void *data)
1802{
1803 pte_t *pte;
1804 int err;
2f569afd 1805 pgtable_t token;
94909914 1806 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1807
1808 pte = (mm == &init_mm) ?
1809 pte_alloc_kernel(pmd, addr) :
1810 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 if (!pte)
1812 return -ENOMEM;
1813
1814 BUG_ON(pmd_huge(*pmd));
1815
38e0edb1
JF
1816 arch_enter_lazy_mmu_mode();
1817
2f569afd 1818 token = pmd_pgtable(*pmd);
aee16b3c
JF
1819
1820 do {
2f569afd 1821 err = fn(pte, token, addr, data);
aee16b3c
JF
1822 if (err)
1823 break;
1824 } while (pte++, addr += PAGE_SIZE, addr != end);
1825
38e0edb1
JF
1826 arch_leave_lazy_mmu_mode();
1827
aee16b3c
JF
1828 if (mm != &init_mm)
1829 pte_unmap_unlock(pte-1, ptl);
1830 return err;
1831}
1832
1833static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1836{
1837 pmd_t *pmd;
1838 unsigned long next;
1839 int err;
1840
ceb86879
AK
1841 BUG_ON(pud_huge(*pud));
1842
aee16b3c
JF
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 if (err)
1850 break;
1851 } while (pmd++, addr = next, addr != end);
1852 return err;
1853}
1854
1855static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1858{
1859 pud_t *pud;
1860 unsigned long next;
1861 int err;
1862
1863 pud = pud_alloc(mm, pgd, addr);
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pud++, addr = next, addr != end);
1872 return err;
1873}
1874
1875/*
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1878 */
1879int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 unsigned long size, pte_fn_t fn, void *data)
1881{
1882 pgd_t *pgd;
1883 unsigned long next;
cddb8a5c 1884 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1885 int err;
1886
1887 BUG_ON(addr >= end);
cddb8a5c 1888 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1889 pgd = pgd_offset(mm, addr);
1890 do {
1891 next = pgd_addr_end(addr, end);
1892 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893 if (err)
1894 break;
1895 } while (pgd++, addr = next, addr != end);
cddb8a5c 1896 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1897 return err;
1898}
1899EXPORT_SYMBOL_GPL(apply_to_page_range);
1900
8f4e2101
HD
1901/*
1902 * handle_pte_fault chooses page fault handler according to an entry
1903 * which was read non-atomically. Before making any commitment, on
1904 * those architectures or configurations (e.g. i386 with PAE) which
1905 * might give a mix of unmatched parts, do_swap_page and do_file_page
1906 * must check under lock before unmapping the pte and proceeding
1907 * (but do_wp_page is only called after already making such a check;
1908 * and do_anonymous_page and do_no_page can safely check later on).
1909 */
4c21e2f2 1910static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1911 pte_t *page_table, pte_t orig_pte)
1912{
1913 int same = 1;
1914#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1916 spinlock_t *ptl = pte_lockptr(mm, pmd);
1917 spin_lock(ptl);
8f4e2101 1918 same = pte_same(*page_table, orig_pte);
4c21e2f2 1919 spin_unlock(ptl);
8f4e2101
HD
1920 }
1921#endif
1922 pte_unmap(page_table);
1923 return same;
1924}
1925
1da177e4
LT
1926/*
1927 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1928 * servicing faults for write access. In the normal case, do always want
1929 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1930 * that do not have writing enabled, when used by access_process_vm.
1931 */
1932static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1933{
1934 if (likely(vma->vm_flags & VM_WRITE))
1935 pte = pte_mkwrite(pte);
1936 return pte;
1937}
1938
9de455b2 1939static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1940{
1941 /*
1942 * If the source page was a PFN mapping, we don't have
1943 * a "struct page" for it. We do a best-effort copy by
1944 * just copying from the original user address. If that
1945 * fails, we just zero-fill it. Live with it.
1946 */
1947 if (unlikely(!src)) {
1948 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1949 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1950
1951 /*
1952 * This really shouldn't fail, because the page is there
1953 * in the page tables. But it might just be unreadable,
1954 * in which case we just give up and fill the result with
1955 * zeroes.
1956 */
1957 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1958 memset(kaddr, 0, PAGE_SIZE);
1959 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1960 flush_dcache_page(dst);
0ed361de
NP
1961 } else
1962 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1963}
1964
1da177e4
LT
1965/*
1966 * This routine handles present pages, when users try to write
1967 * to a shared page. It is done by copying the page to a new address
1968 * and decrementing the shared-page counter for the old page.
1969 *
1da177e4
LT
1970 * Note that this routine assumes that the protection checks have been
1971 * done by the caller (the low-level page fault routine in most cases).
1972 * Thus we can safely just mark it writable once we've done any necessary
1973 * COW.
1974 *
1975 * We also mark the page dirty at this point even though the page will
1976 * change only once the write actually happens. This avoids a few races,
1977 * and potentially makes it more efficient.
1978 *
8f4e2101
HD
1979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980 * but allow concurrent faults), with pte both mapped and locked.
1981 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1982 */
65500d23
HD
1983static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1984 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1985 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1986{
e5bbe4df 1987 struct page *old_page, *new_page;
1da177e4 1988 pte_t entry;
83c54070 1989 int reuse = 0, ret = 0;
a200ee18 1990 int page_mkwrite = 0;
d08b3851 1991 struct page *dirty_page = NULL;
1da177e4 1992
6aab341e 1993 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1994 if (!old_page) {
1995 /*
1996 * VM_MIXEDMAP !pfn_valid() case
1997 *
1998 * We should not cow pages in a shared writeable mapping.
1999 * Just mark the pages writable as we can't do any dirty
2000 * accounting on raw pfn maps.
2001 */
2002 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2003 (VM_WRITE|VM_SHARED))
2004 goto reuse;
6aab341e 2005 goto gotten;
251b97f5 2006 }
1da177e4 2007
d08b3851 2008 /*
ee6a6457
PZ
2009 * Take out anonymous pages first, anonymous shared vmas are
2010 * not dirty accountable.
d08b3851 2011 */
9a840895 2012 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2013 if (!trylock_page(old_page)) {
2014 page_cache_get(old_page);
2015 pte_unmap_unlock(page_table, ptl);
2016 lock_page(old_page);
2017 page_table = pte_offset_map_lock(mm, pmd, address,
2018 &ptl);
2019 if (!pte_same(*page_table, orig_pte)) {
2020 unlock_page(old_page);
2021 page_cache_release(old_page);
2022 goto unlock;
2023 }
2024 page_cache_release(old_page);
ee6a6457 2025 }
7b1fe597 2026 reuse = reuse_swap_page(old_page);
ab967d86 2027 unlock_page(old_page);
ee6a6457 2028 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2029 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2030 /*
2031 * Only catch write-faults on shared writable pages,
2032 * read-only shared pages can get COWed by
2033 * get_user_pages(.write=1, .force=1).
2034 */
9637a5ef 2035 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2036 struct vm_fault vmf;
2037 int tmp;
2038
2039 vmf.virtual_address = (void __user *)(address &
2040 PAGE_MASK);
2041 vmf.pgoff = old_page->index;
2042 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2043 vmf.page = old_page;
2044
9637a5ef
DH
2045 /*
2046 * Notify the address space that the page is about to
2047 * become writable so that it can prohibit this or wait
2048 * for the page to get into an appropriate state.
2049 *
2050 * We do this without the lock held, so that it can
2051 * sleep if it needs to.
2052 */
2053 page_cache_get(old_page);
2054 pte_unmap_unlock(page_table, ptl);
2055
c2ec175c
NP
2056 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2057 if (unlikely(tmp &
2058 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2059 ret = tmp;
9637a5ef 2060 goto unwritable_page;
c2ec175c 2061 }
b827e496
NP
2062 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2063 lock_page(old_page);
2064 if (!old_page->mapping) {
2065 ret = 0; /* retry the fault */
2066 unlock_page(old_page);
2067 goto unwritable_page;
2068 }
2069 } else
2070 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2071
9637a5ef
DH
2072 /*
2073 * Since we dropped the lock we need to revalidate
2074 * the PTE as someone else may have changed it. If
2075 * they did, we just return, as we can count on the
2076 * MMU to tell us if they didn't also make it writable.
2077 */
2078 page_table = pte_offset_map_lock(mm, pmd, address,
2079 &ptl);
b827e496
NP
2080 if (!pte_same(*page_table, orig_pte)) {
2081 unlock_page(old_page);
2082 page_cache_release(old_page);
9637a5ef 2083 goto unlock;
b827e496 2084 }
a200ee18
PZ
2085
2086 page_mkwrite = 1;
1da177e4 2087 }
d08b3851
PZ
2088 dirty_page = old_page;
2089 get_page(dirty_page);
9637a5ef 2090 reuse = 1;
9637a5ef
DH
2091 }
2092
2093 if (reuse) {
251b97f5 2094reuse:
9637a5ef
DH
2095 flush_cache_page(vma, address, pte_pfn(orig_pte));
2096 entry = pte_mkyoung(orig_pte);
2097 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2098 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 2099 update_mmu_cache(vma, address, entry);
9637a5ef
DH
2100 ret |= VM_FAULT_WRITE;
2101 goto unlock;
1da177e4 2102 }
1da177e4
LT
2103
2104 /*
2105 * Ok, we need to copy. Oh, well..
2106 */
b5810039 2107 page_cache_get(old_page);
920fc356 2108gotten:
8f4e2101 2109 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2110
2111 if (unlikely(anon_vma_prepare(vma)))
65500d23 2112 goto oom;
a13ea5b7 2113
62eede62 2114 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2115 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2116 if (!new_page)
2117 goto oom;
2118 } else {
2119 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2120 if (!new_page)
2121 goto oom;
2122 cow_user_page(new_page, old_page, address, vma);
2123 }
2124 __SetPageUptodate(new_page);
2125
b291f000
NP
2126 /*
2127 * Don't let another task, with possibly unlocked vma,
2128 * keep the mlocked page.
2129 */
ab92661d 2130 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2131 lock_page(old_page); /* for LRU manipulation */
2132 clear_page_mlock(old_page);
2133 unlock_page(old_page);
2134 }
65500d23 2135
2c26fdd7 2136 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2137 goto oom_free_new;
2138
1da177e4
LT
2139 /*
2140 * Re-check the pte - we dropped the lock
2141 */
8f4e2101 2142 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2143 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2144 if (old_page) {
920fc356
HD
2145 if (!PageAnon(old_page)) {
2146 dec_mm_counter(mm, file_rss);
2147 inc_mm_counter(mm, anon_rss);
2148 }
2149 } else
4294621f 2150 inc_mm_counter(mm, anon_rss);
eca35133 2151 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2152 entry = mk_pte(new_page, vma->vm_page_prot);
2153 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2154 /*
2155 * Clear the pte entry and flush it first, before updating the
2156 * pte with the new entry. This will avoid a race condition
2157 * seen in the presence of one thread doing SMC and another
2158 * thread doing COW.
2159 */
828502d3 2160 ptep_clear_flush(vma, address, page_table);
9617d95e 2161 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2162 /*
2163 * We call the notify macro here because, when using secondary
2164 * mmu page tables (such as kvm shadow page tables), we want the
2165 * new page to be mapped directly into the secondary page table.
2166 */
2167 set_pte_at_notify(mm, address, page_table, entry);
64d6519d 2168 update_mmu_cache(vma, address, entry);
945754a1
NP
2169 if (old_page) {
2170 /*
2171 * Only after switching the pte to the new page may
2172 * we remove the mapcount here. Otherwise another
2173 * process may come and find the rmap count decremented
2174 * before the pte is switched to the new page, and
2175 * "reuse" the old page writing into it while our pte
2176 * here still points into it and can be read by other
2177 * threads.
2178 *
2179 * The critical issue is to order this
2180 * page_remove_rmap with the ptp_clear_flush above.
2181 * Those stores are ordered by (if nothing else,)
2182 * the barrier present in the atomic_add_negative
2183 * in page_remove_rmap.
2184 *
2185 * Then the TLB flush in ptep_clear_flush ensures that
2186 * no process can access the old page before the
2187 * decremented mapcount is visible. And the old page
2188 * cannot be reused until after the decremented
2189 * mapcount is visible. So transitively, TLBs to
2190 * old page will be flushed before it can be reused.
2191 */
edc315fd 2192 page_remove_rmap(old_page);
945754a1
NP
2193 }
2194
1da177e4
LT
2195 /* Free the old page.. */
2196 new_page = old_page;
f33ea7f4 2197 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2198 } else
2199 mem_cgroup_uncharge_page(new_page);
2200
920fc356
HD
2201 if (new_page)
2202 page_cache_release(new_page);
2203 if (old_page)
2204 page_cache_release(old_page);
65500d23 2205unlock:
8f4e2101 2206 pte_unmap_unlock(page_table, ptl);
d08b3851 2207 if (dirty_page) {
79352894
NP
2208 /*
2209 * Yes, Virginia, this is actually required to prevent a race
2210 * with clear_page_dirty_for_io() from clearing the page dirty
2211 * bit after it clear all dirty ptes, but before a racing
2212 * do_wp_page installs a dirty pte.
2213 *
2214 * do_no_page is protected similarly.
2215 */
b827e496
NP
2216 if (!page_mkwrite) {
2217 wait_on_page_locked(dirty_page);
2218 set_page_dirty_balance(dirty_page, page_mkwrite);
2219 }
d08b3851 2220 put_page(dirty_page);
b827e496
NP
2221 if (page_mkwrite) {
2222 struct address_space *mapping = dirty_page->mapping;
2223
2224 set_page_dirty(dirty_page);
2225 unlock_page(dirty_page);
2226 page_cache_release(dirty_page);
2227 if (mapping) {
2228 /*
2229 * Some device drivers do not set page.mapping
2230 * but still dirty their pages
2231 */
2232 balance_dirty_pages_ratelimited(mapping);
2233 }
2234 }
2235
2236 /* file_update_time outside page_lock */
2237 if (vma->vm_file)
2238 file_update_time(vma->vm_file);
d08b3851 2239 }
f33ea7f4 2240 return ret;
8a9f3ccd 2241oom_free_new:
6dbf6d3b 2242 page_cache_release(new_page);
65500d23 2243oom:
b827e496
NP
2244 if (old_page) {
2245 if (page_mkwrite) {
2246 unlock_page(old_page);
2247 page_cache_release(old_page);
2248 }
920fc356 2249 page_cache_release(old_page);
b827e496 2250 }
1da177e4 2251 return VM_FAULT_OOM;
9637a5ef
DH
2252
2253unwritable_page:
2254 page_cache_release(old_page);
c2ec175c 2255 return ret;
1da177e4
LT
2256}
2257
2258/*
2259 * Helper functions for unmap_mapping_range().
2260 *
2261 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2262 *
2263 * We have to restart searching the prio_tree whenever we drop the lock,
2264 * since the iterator is only valid while the lock is held, and anyway
2265 * a later vma might be split and reinserted earlier while lock dropped.
2266 *
2267 * The list of nonlinear vmas could be handled more efficiently, using
2268 * a placeholder, but handle it in the same way until a need is shown.
2269 * It is important to search the prio_tree before nonlinear list: a vma
2270 * may become nonlinear and be shifted from prio_tree to nonlinear list
2271 * while the lock is dropped; but never shifted from list to prio_tree.
2272 *
2273 * In order to make forward progress despite restarting the search,
2274 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2275 * quickly skip it next time around. Since the prio_tree search only
2276 * shows us those vmas affected by unmapping the range in question, we
2277 * can't efficiently keep all vmas in step with mapping->truncate_count:
2278 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2279 * mapping->truncate_count and vma->vm_truncate_count are protected by
2280 * i_mmap_lock.
2281 *
2282 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2283 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2284 * and restart from that address when we reach that vma again. It might
2285 * have been split or merged, shrunk or extended, but never shifted: so
2286 * restart_addr remains valid so long as it remains in the vma's range.
2287 * unmap_mapping_range forces truncate_count to leap over page-aligned
2288 * values so we can save vma's restart_addr in its truncate_count field.
2289 */
2290#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2291
2292static void reset_vma_truncate_counts(struct address_space *mapping)
2293{
2294 struct vm_area_struct *vma;
2295 struct prio_tree_iter iter;
2296
2297 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2298 vma->vm_truncate_count = 0;
2299 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2300 vma->vm_truncate_count = 0;
2301}
2302
2303static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2304 unsigned long start_addr, unsigned long end_addr,
2305 struct zap_details *details)
2306{
2307 unsigned long restart_addr;
2308 int need_break;
2309
d00806b1
NP
2310 /*
2311 * files that support invalidating or truncating portions of the
d0217ac0 2312 * file from under mmaped areas must have their ->fault function
83c54070
NP
2313 * return a locked page (and set VM_FAULT_LOCKED in the return).
2314 * This provides synchronisation against concurrent unmapping here.
d00806b1 2315 */
d00806b1 2316
1da177e4
LT
2317again:
2318 restart_addr = vma->vm_truncate_count;
2319 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2320 start_addr = restart_addr;
2321 if (start_addr >= end_addr) {
2322 /* Top of vma has been split off since last time */
2323 vma->vm_truncate_count = details->truncate_count;
2324 return 0;
2325 }
2326 }
2327
ee39b37b
HD
2328 restart_addr = zap_page_range(vma, start_addr,
2329 end_addr - start_addr, details);
95c354fe 2330 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2331
ee39b37b 2332 if (restart_addr >= end_addr) {
1da177e4
LT
2333 /* We have now completed this vma: mark it so */
2334 vma->vm_truncate_count = details->truncate_count;
2335 if (!need_break)
2336 return 0;
2337 } else {
2338 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2339 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2340 if (!need_break)
2341 goto again;
2342 }
2343
2344 spin_unlock(details->i_mmap_lock);
2345 cond_resched();
2346 spin_lock(details->i_mmap_lock);
2347 return -EINTR;
2348}
2349
2350static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2351 struct zap_details *details)
2352{
2353 struct vm_area_struct *vma;
2354 struct prio_tree_iter iter;
2355 pgoff_t vba, vea, zba, zea;
2356
2357restart:
2358 vma_prio_tree_foreach(vma, &iter, root,
2359 details->first_index, details->last_index) {
2360 /* Skip quickly over those we have already dealt with */
2361 if (vma->vm_truncate_count == details->truncate_count)
2362 continue;
2363
2364 vba = vma->vm_pgoff;
2365 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2366 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367 zba = details->first_index;
2368 if (zba < vba)
2369 zba = vba;
2370 zea = details->last_index;
2371 if (zea > vea)
2372 zea = vea;
2373
2374 if (unmap_mapping_range_vma(vma,
2375 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2376 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2377 details) < 0)
2378 goto restart;
2379 }
2380}
2381
2382static inline void unmap_mapping_range_list(struct list_head *head,
2383 struct zap_details *details)
2384{
2385 struct vm_area_struct *vma;
2386
2387 /*
2388 * In nonlinear VMAs there is no correspondence between virtual address
2389 * offset and file offset. So we must perform an exhaustive search
2390 * across *all* the pages in each nonlinear VMA, not just the pages
2391 * whose virtual address lies outside the file truncation point.
2392 */
2393restart:
2394 list_for_each_entry(vma, head, shared.vm_set.list) {
2395 /* Skip quickly over those we have already dealt with */
2396 if (vma->vm_truncate_count == details->truncate_count)
2397 continue;
2398 details->nonlinear_vma = vma;
2399 if (unmap_mapping_range_vma(vma, vma->vm_start,
2400 vma->vm_end, details) < 0)
2401 goto restart;
2402 }
2403}
2404
2405/**
72fd4a35 2406 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2407 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2408 * @holebegin: byte in first page to unmap, relative to the start of
2409 * the underlying file. This will be rounded down to a PAGE_SIZE
2410 * boundary. Note that this is different from vmtruncate(), which
2411 * must keep the partial page. In contrast, we must get rid of
2412 * partial pages.
2413 * @holelen: size of prospective hole in bytes. This will be rounded
2414 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2415 * end of the file.
2416 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2417 * but 0 when invalidating pagecache, don't throw away private data.
2418 */
2419void unmap_mapping_range(struct address_space *mapping,
2420 loff_t const holebegin, loff_t const holelen, int even_cows)
2421{
2422 struct zap_details details;
2423 pgoff_t hba = holebegin >> PAGE_SHIFT;
2424 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425
2426 /* Check for overflow. */
2427 if (sizeof(holelen) > sizeof(hlen)) {
2428 long long holeend =
2429 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430 if (holeend & ~(long long)ULONG_MAX)
2431 hlen = ULONG_MAX - hba + 1;
2432 }
2433
2434 details.check_mapping = even_cows? NULL: mapping;
2435 details.nonlinear_vma = NULL;
2436 details.first_index = hba;
2437 details.last_index = hba + hlen - 1;
2438 if (details.last_index < details.first_index)
2439 details.last_index = ULONG_MAX;
2440 details.i_mmap_lock = &mapping->i_mmap_lock;
2441
2442 spin_lock(&mapping->i_mmap_lock);
2443
d00806b1 2444 /* Protect against endless unmapping loops */
1da177e4 2445 mapping->truncate_count++;
1da177e4
LT
2446 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2447 if (mapping->truncate_count == 0)
2448 reset_vma_truncate_counts(mapping);
2449 mapping->truncate_count++;
2450 }
2451 details.truncate_count = mapping->truncate_count;
2452
2453 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2454 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2455 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2456 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2457 spin_unlock(&mapping->i_mmap_lock);
2458}
2459EXPORT_SYMBOL(unmap_mapping_range);
2460
bfa5bf6d
REB
2461/**
2462 * vmtruncate - unmap mappings "freed" by truncate() syscall
2463 * @inode: inode of the file used
2464 * @offset: file offset to start truncating
1da177e4
LT
2465 *
2466 * NOTE! We have to be ready to update the memory sharing
2467 * between the file and the memory map for a potential last
2468 * incomplete page. Ugly, but necessary.
2469 */
2470int vmtruncate(struct inode * inode, loff_t offset)
2471{
61d5048f
CH
2472 if (inode->i_size < offset) {
2473 unsigned long limit;
2474
2475 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2476 if (limit != RLIM_INFINITY && offset > limit)
2477 goto out_sig;
2478 if (offset > inode->i_sb->s_maxbytes)
2479 goto out_big;
2480 i_size_write(inode, offset);
2481 } else {
2482 struct address_space *mapping = inode->i_mapping;
1da177e4 2483
61d5048f
CH
2484 /*
2485 * truncation of in-use swapfiles is disallowed - it would
2486 * cause subsequent swapout to scribble on the now-freed
2487 * blocks.
2488 */
2489 if (IS_SWAPFILE(inode))
2490 return -ETXTBSY;
2491 i_size_write(inode, offset);
2492
2493 /*
2494 * unmap_mapping_range is called twice, first simply for
2495 * efficiency so that truncate_inode_pages does fewer
2496 * single-page unmaps. However after this first call, and
2497 * before truncate_inode_pages finishes, it is possible for
2498 * private pages to be COWed, which remain after
2499 * truncate_inode_pages finishes, hence the second
2500 * unmap_mapping_range call must be made for correctness.
2501 */
2502 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2503 truncate_inode_pages(mapping, offset);
2504 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2505 }
d00806b1 2506
acfa4380 2507 if (inode->i_op->truncate)
1da177e4
LT
2508 inode->i_op->truncate(inode);
2509 return 0;
61d5048f 2510
1da177e4
LT
2511out_sig:
2512 send_sig(SIGXFSZ, current, 0);
2513out_big:
2514 return -EFBIG;
1da177e4 2515}
1da177e4
LT
2516EXPORT_SYMBOL(vmtruncate);
2517
f6b3ec23
BP
2518int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2519{
2520 struct address_space *mapping = inode->i_mapping;
2521
2522 /*
2523 * If the underlying filesystem is not going to provide
2524 * a way to truncate a range of blocks (punch a hole) -
2525 * we should return failure right now.
2526 */
acfa4380 2527 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2528 return -ENOSYS;
2529
1b1dcc1b 2530 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2531 down_write(&inode->i_alloc_sem);
2532 unmap_mapping_range(mapping, offset, (end - offset), 1);
2533 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2534 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2535 inode->i_op->truncate_range(inode, offset, end);
2536 up_write(&inode->i_alloc_sem);
1b1dcc1b 2537 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2538
2539 return 0;
2540}
f6b3ec23 2541
1da177e4 2542/*
8f4e2101
HD
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2546 */
65500d23
HD
2547static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2548 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2549 unsigned int flags, pte_t orig_pte)
1da177e4 2550{
8f4e2101 2551 spinlock_t *ptl;
1da177e4 2552 struct page *page;
65500d23 2553 swp_entry_t entry;
1da177e4 2554 pte_t pte;
7a81b88c 2555 struct mem_cgroup *ptr = NULL;
83c54070 2556 int ret = 0;
1da177e4 2557
4c21e2f2 2558 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2559 goto out;
65500d23
HD
2560
2561 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2562 if (is_migration_entry(entry)) {
2563 migration_entry_wait(mm, pmd, address);
2564 goto out;
2565 }
0ff92245 2566 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2567 page = lookup_swap_cache(entry);
2568 if (!page) {
a5c9b696 2569 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2570 page = swapin_readahead(entry,
2571 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2572 if (!page) {
2573 /*
8f4e2101
HD
2574 * Back out if somebody else faulted in this pte
2575 * while we released the pte lock.
1da177e4 2576 */
8f4e2101 2577 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2578 if (likely(pte_same(*page_table, orig_pte)))
2579 ret = VM_FAULT_OOM;
0ff92245 2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2581 goto unlock;
1da177e4
LT
2582 }
2583
2584 /* Had to read the page from swap area: Major fault */
2585 ret = VM_FAULT_MAJOR;
f8891e5e 2586 count_vm_event(PGMAJFAULT);
1da177e4
LT
2587 }
2588
073e587e
KH
2589 lock_page(page);
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591
2c26fdd7 2592 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2593 ret = VM_FAULT_OOM;
bc43f75c 2594 goto out_page;
8a9f3ccd
BS
2595 }
2596
1da177e4 2597 /*
8f4e2101 2598 * Back out if somebody else already faulted in this pte.
1da177e4 2599 */
8f4e2101 2600 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2601 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2602 goto out_nomap;
b8107480
KK
2603
2604 if (unlikely(!PageUptodate(page))) {
2605 ret = VM_FAULT_SIGBUS;
2606 goto out_nomap;
1da177e4
LT
2607 }
2608
8c7c6e34
KH
2609 /*
2610 * The page isn't present yet, go ahead with the fault.
2611 *
2612 * Be careful about the sequence of operations here.
2613 * To get its accounting right, reuse_swap_page() must be called
2614 * while the page is counted on swap but not yet in mapcount i.e.
2615 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2616 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2617 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2618 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2619 * in page->private. In this case, a record in swap_cgroup is silently
2620 * discarded at swap_free().
8c7c6e34 2621 */
1da177e4 2622
4294621f 2623 inc_mm_counter(mm, anon_rss);
1da177e4 2624 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2625 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2626 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2627 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2628 }
1da177e4
LT
2629 flush_icache_page(vma, page);
2630 set_pte_at(mm, address, page_table, pte);
2631 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2632 /* It's better to call commit-charge after rmap is established */
2633 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2634
c475a8ab 2635 swap_free(entry);
b291f000 2636 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2637 try_to_free_swap(page);
c475a8ab
HD
2638 unlock_page(page);
2639
30c9f3a9 2640 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2641 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2642 if (ret & VM_FAULT_ERROR)
2643 ret &= VM_FAULT_ERROR;
1da177e4
LT
2644 goto out;
2645 }
2646
2647 /* No need to invalidate - it was non-present before */
2648 update_mmu_cache(vma, address, pte);
65500d23 2649unlock:
8f4e2101 2650 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2651out:
2652 return ret;
b8107480 2653out_nomap:
7a81b88c 2654 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2655 pte_unmap_unlock(page_table, ptl);
bc43f75c 2656out_page:
b8107480
KK
2657 unlock_page(page);
2658 page_cache_release(page);
65500d23 2659 return ret;
1da177e4
LT
2660}
2661
2662/*
8f4e2101
HD
2663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664 * but allow concurrent faults), and pte mapped but not yet locked.
2665 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2666 */
65500d23
HD
2667static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2668 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2669 unsigned int flags)
1da177e4 2670{
8f4e2101
HD
2671 struct page *page;
2672 spinlock_t *ptl;
1da177e4 2673 pte_t entry;
1da177e4 2674
62eede62
HD
2675 if (!(flags & FAULT_FLAG_WRITE)) {
2676 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2677 vma->vm_page_prot));
a13ea5b7
HD
2678 ptl = pte_lockptr(mm, pmd);
2679 spin_lock(ptl);
2680 if (!pte_none(*page_table))
2681 goto unlock;
2682 goto setpte;
2683 }
2684
557ed1fa
NP
2685 /* Allocate our own private page. */
2686 pte_unmap(page_table);
8f4e2101 2687
557ed1fa
NP
2688 if (unlikely(anon_vma_prepare(vma)))
2689 goto oom;
2690 page = alloc_zeroed_user_highpage_movable(vma, address);
2691 if (!page)
2692 goto oom;
0ed361de 2693 __SetPageUptodate(page);
8f4e2101 2694
2c26fdd7 2695 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2696 goto oom_free_page;
2697
557ed1fa 2698 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2699 if (vma->vm_flags & VM_WRITE)
2700 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2701
557ed1fa 2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2703 if (!pte_none(*page_table))
557ed1fa 2704 goto release;
9ba69294 2705
557ed1fa 2706 inc_mm_counter(mm, anon_rss);
557ed1fa 2707 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2708setpte:
65500d23 2709 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2710
2711 /* No need to invalidate - it was non-present before */
65500d23 2712 update_mmu_cache(vma, address, entry);
65500d23 2713unlock:
8f4e2101 2714 pte_unmap_unlock(page_table, ptl);
83c54070 2715 return 0;
8f4e2101 2716release:
8a9f3ccd 2717 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2718 page_cache_release(page);
2719 goto unlock;
8a9f3ccd 2720oom_free_page:
6dbf6d3b 2721 page_cache_release(page);
65500d23 2722oom:
1da177e4
LT
2723 return VM_FAULT_OOM;
2724}
2725
2726/*
54cb8821 2727 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2728 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2729 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2730 * the next page fault.
1da177e4
LT
2731 *
2732 * As this is called only for pages that do not currently exist, we
2733 * do not need to flush old virtual caches or the TLB.
2734 *
8f4e2101 2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2736 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2738 */
54cb8821 2739static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2740 unsigned long address, pmd_t *pmd,
54cb8821 2741 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2742{
16abfa08 2743 pte_t *page_table;
8f4e2101 2744 spinlock_t *ptl;
d0217ac0 2745 struct page *page;
1da177e4 2746 pte_t entry;
1da177e4 2747 int anon = 0;
5b4e655e 2748 int charged = 0;
d08b3851 2749 struct page *dirty_page = NULL;
d0217ac0
NP
2750 struct vm_fault vmf;
2751 int ret;
a200ee18 2752 int page_mkwrite = 0;
54cb8821 2753
d0217ac0
NP
2754 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2755 vmf.pgoff = pgoff;
2756 vmf.flags = flags;
2757 vmf.page = NULL;
1da177e4 2758
3c18ddd1
NP
2759 ret = vma->vm_ops->fault(vma, &vmf);
2760 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2761 return ret;
1da177e4 2762
d00806b1 2763 /*
d0217ac0 2764 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2765 * locked.
2766 */
83c54070 2767 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2768 lock_page(vmf.page);
54cb8821 2769 else
d0217ac0 2770 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2771
1da177e4
LT
2772 /*
2773 * Should we do an early C-O-W break?
2774 */
d0217ac0 2775 page = vmf.page;
54cb8821 2776 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2777 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2778 anon = 1;
d00806b1 2779 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2780 ret = VM_FAULT_OOM;
54cb8821 2781 goto out;
d00806b1 2782 }
83c54070
NP
2783 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2784 vma, address);
d00806b1 2785 if (!page) {
d0217ac0 2786 ret = VM_FAULT_OOM;
54cb8821 2787 goto out;
d00806b1 2788 }
2c26fdd7 2789 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2790 ret = VM_FAULT_OOM;
2791 page_cache_release(page);
2792 goto out;
2793 }
2794 charged = 1;
b291f000
NP
2795 /*
2796 * Don't let another task, with possibly unlocked vma,
2797 * keep the mlocked page.
2798 */
2799 if (vma->vm_flags & VM_LOCKED)
2800 clear_page_mlock(vmf.page);
d0217ac0 2801 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2802 __SetPageUptodate(page);
9637a5ef 2803 } else {
54cb8821
NP
2804 /*
2805 * If the page will be shareable, see if the backing
9637a5ef 2806 * address space wants to know that the page is about
54cb8821
NP
2807 * to become writable
2808 */
69676147 2809 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2810 int tmp;
2811
69676147 2812 unlock_page(page);
b827e496 2813 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2814 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2815 if (unlikely(tmp &
2816 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2817 ret = tmp;
b827e496 2818 goto unwritable_page;
d0217ac0 2819 }
b827e496
NP
2820 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2821 lock_page(page);
2822 if (!page->mapping) {
2823 ret = 0; /* retry the fault */
2824 unlock_page(page);
2825 goto unwritable_page;
2826 }
2827 } else
2828 VM_BUG_ON(!PageLocked(page));
a200ee18 2829 page_mkwrite = 1;
9637a5ef
DH
2830 }
2831 }
54cb8821 2832
1da177e4
LT
2833 }
2834
8f4e2101 2835 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2836
2837 /*
2838 * This silly early PAGE_DIRTY setting removes a race
2839 * due to the bad i386 page protection. But it's valid
2840 * for other architectures too.
2841 *
30c9f3a9 2842 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2843 * an exclusive copy of the page, or this is a shared mapping,
2844 * so we can make it writable and dirty to avoid having to
2845 * handle that later.
2846 */
2847 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2848 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2849 flush_icache_page(vma, page);
2850 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2851 if (flags & FAULT_FLAG_WRITE)
1da177e4 2852 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2853 if (anon) {
64d6519d 2854 inc_mm_counter(mm, anon_rss);
64d6519d 2855 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2856 } else {
4294621f 2857 inc_mm_counter(mm, file_rss);
d00806b1 2858 page_add_file_rmap(page);
54cb8821 2859 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2860 dirty_page = page;
d08b3851
PZ
2861 get_page(dirty_page);
2862 }
4294621f 2863 }
64d6519d 2864 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2865
2866 /* no need to invalidate: a not-present page won't be cached */
2867 update_mmu_cache(vma, address, entry);
1da177e4 2868 } else {
5b4e655e
KH
2869 if (charged)
2870 mem_cgroup_uncharge_page(page);
d00806b1
NP
2871 if (anon)
2872 page_cache_release(page);
2873 else
54cb8821 2874 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2875 }
2876
8f4e2101 2877 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2878
2879out:
b827e496
NP
2880 if (dirty_page) {
2881 struct address_space *mapping = page->mapping;
8f7b3d15 2882
b827e496
NP
2883 if (set_page_dirty(dirty_page))
2884 page_mkwrite = 1;
2885 unlock_page(dirty_page);
d08b3851 2886 put_page(dirty_page);
b827e496
NP
2887 if (page_mkwrite && mapping) {
2888 /*
2889 * Some device drivers do not set page.mapping but still
2890 * dirty their pages
2891 */
2892 balance_dirty_pages_ratelimited(mapping);
2893 }
2894
2895 /* file_update_time outside page_lock */
2896 if (vma->vm_file)
2897 file_update_time(vma->vm_file);
2898 } else {
2899 unlock_page(vmf.page);
2900 if (anon)
2901 page_cache_release(vmf.page);
d08b3851 2902 }
d00806b1 2903
83c54070 2904 return ret;
b827e496
NP
2905
2906unwritable_page:
2907 page_cache_release(page);
2908 return ret;
54cb8821 2909}
d00806b1 2910
54cb8821
NP
2911static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2912 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2913 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2914{
2915 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2916 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2917
16abfa08
HD
2918 pte_unmap(page_table);
2919 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2920}
2921
1da177e4
LT
2922/*
2923 * Fault of a previously existing named mapping. Repopulate the pte
2924 * from the encoded file_pte if possible. This enables swappable
2925 * nonlinear vmas.
8f4e2101
HD
2926 *
2927 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2928 * but allow concurrent faults), and pte mapped but not yet locked.
2929 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2930 */
d0217ac0 2931static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 2932 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2933 unsigned int flags, pte_t orig_pte)
1da177e4 2934{
65500d23 2935 pgoff_t pgoff;
1da177e4 2936
30c9f3a9
LT
2937 flags |= FAULT_FLAG_NONLINEAR;
2938
4c21e2f2 2939 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2940 return 0;
1da177e4 2941
2509ef26 2942 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2943 /*
2944 * Page table corrupted: show pte and kill process.
2945 */
3dc14741 2946 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2947 return VM_FAULT_OOM;
2948 }
65500d23
HD
2949
2950 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2951 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2952}
2953
2954/*
2955 * These routines also need to handle stuff like marking pages dirty
2956 * and/or accessed for architectures that don't do it in hardware (most
2957 * RISC architectures). The early dirtying is also good on the i386.
2958 *
2959 * There is also a hook called "update_mmu_cache()" that architectures
2960 * with external mmu caches can use to update those (ie the Sparc or
2961 * PowerPC hashed page tables that act as extended TLBs).
2962 *
c74df32c
HD
2963 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2964 * but allow concurrent faults), and pte mapped but not yet locked.
2965 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2966 */
2967static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 2968 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 2969 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
2970{
2971 pte_t entry;
8f4e2101 2972 spinlock_t *ptl;
1da177e4 2973
8dab5241 2974 entry = *pte;
1da177e4 2975 if (!pte_present(entry)) {
65500d23 2976 if (pte_none(entry)) {
f4b81804 2977 if (vma->vm_ops) {
3c18ddd1 2978 if (likely(vma->vm_ops->fault))
54cb8821 2979 return do_linear_fault(mm, vma, address,
30c9f3a9 2980 pte, pmd, flags, entry);
f4b81804
JS
2981 }
2982 return do_anonymous_page(mm, vma, address,
30c9f3a9 2983 pte, pmd, flags);
65500d23 2984 }
1da177e4 2985 if (pte_file(entry))
d0217ac0 2986 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 2987 pte, pmd, flags, entry);
65500d23 2988 return do_swap_page(mm, vma, address,
30c9f3a9 2989 pte, pmd, flags, entry);
1da177e4
LT
2990 }
2991
4c21e2f2 2992 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2993 spin_lock(ptl);
2994 if (unlikely(!pte_same(*pte, entry)))
2995 goto unlock;
30c9f3a9 2996 if (flags & FAULT_FLAG_WRITE) {
1da177e4 2997 if (!pte_write(entry))
8f4e2101
HD
2998 return do_wp_page(mm, vma, address,
2999 pte, pmd, ptl, entry);
1da177e4
LT
3000 entry = pte_mkdirty(entry);
3001 }
3002 entry = pte_mkyoung(entry);
30c9f3a9 3003 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
1a44e149 3004 update_mmu_cache(vma, address, entry);
1a44e149
AA
3005 } else {
3006 /*
3007 * This is needed only for protection faults but the arch code
3008 * is not yet telling us if this is a protection fault or not.
3009 * This still avoids useless tlb flushes for .text page faults
3010 * with threads.
3011 */
30c9f3a9 3012 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3013 flush_tlb_page(vma, address);
3014 }
8f4e2101
HD
3015unlock:
3016 pte_unmap_unlock(pte, ptl);
83c54070 3017 return 0;
1da177e4
LT
3018}
3019
3020/*
3021 * By the time we get here, we already hold the mm semaphore
3022 */
83c54070 3023int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3024 unsigned long address, unsigned int flags)
1da177e4
LT
3025{
3026 pgd_t *pgd;
3027 pud_t *pud;
3028 pmd_t *pmd;
3029 pte_t *pte;
3030
3031 __set_current_state(TASK_RUNNING);
3032
f8891e5e 3033 count_vm_event(PGFAULT);
1da177e4 3034
ac9b9c66 3035 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3036 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3037
1da177e4 3038 pgd = pgd_offset(mm, address);
1da177e4
LT
3039 pud = pud_alloc(mm, pgd, address);
3040 if (!pud)
c74df32c 3041 return VM_FAULT_OOM;
1da177e4
LT
3042 pmd = pmd_alloc(mm, pud, address);
3043 if (!pmd)
c74df32c 3044 return VM_FAULT_OOM;
1da177e4
LT
3045 pte = pte_alloc_map(mm, pmd, address);
3046 if (!pte)
c74df32c 3047 return VM_FAULT_OOM;
1da177e4 3048
30c9f3a9 3049 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3050}
3051
3052#ifndef __PAGETABLE_PUD_FOLDED
3053/*
3054 * Allocate page upper directory.
872fec16 3055 * We've already handled the fast-path in-line.
1da177e4 3056 */
1bb3630e 3057int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3058{
c74df32c
HD
3059 pud_t *new = pud_alloc_one(mm, address);
3060 if (!new)
1bb3630e 3061 return -ENOMEM;
1da177e4 3062
362a61ad
NP
3063 smp_wmb(); /* See comment in __pte_alloc */
3064
872fec16 3065 spin_lock(&mm->page_table_lock);
1bb3630e 3066 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3067 pud_free(mm, new);
1bb3630e
HD
3068 else
3069 pgd_populate(mm, pgd, new);
c74df32c 3070 spin_unlock(&mm->page_table_lock);
1bb3630e 3071 return 0;
1da177e4
LT
3072}
3073#endif /* __PAGETABLE_PUD_FOLDED */
3074
3075#ifndef __PAGETABLE_PMD_FOLDED
3076/*
3077 * Allocate page middle directory.
872fec16 3078 * We've already handled the fast-path in-line.
1da177e4 3079 */
1bb3630e 3080int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3081{
c74df32c
HD
3082 pmd_t *new = pmd_alloc_one(mm, address);
3083 if (!new)
1bb3630e 3084 return -ENOMEM;
1da177e4 3085
362a61ad
NP
3086 smp_wmb(); /* See comment in __pte_alloc */
3087
872fec16 3088 spin_lock(&mm->page_table_lock);
1da177e4 3089#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3090 if (pud_present(*pud)) /* Another has populated it */
5e541973 3091 pmd_free(mm, new);
1bb3630e
HD
3092 else
3093 pud_populate(mm, pud, new);
1da177e4 3094#else
1bb3630e 3095 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3096 pmd_free(mm, new);
1bb3630e
HD
3097 else
3098 pgd_populate(mm, pud, new);
1da177e4 3099#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3100 spin_unlock(&mm->page_table_lock);
1bb3630e 3101 return 0;
e0f39591 3102}
1da177e4
LT
3103#endif /* __PAGETABLE_PMD_FOLDED */
3104
3105int make_pages_present(unsigned long addr, unsigned long end)
3106{
3107 int ret, len, write;
3108 struct vm_area_struct * vma;
3109
3110 vma = find_vma(current->mm, addr);
3111 if (!vma)
a477097d 3112 return -ENOMEM;
1da177e4 3113 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3114 BUG_ON(addr >= end);
3115 BUG_ON(end > vma->vm_end);
68e116a3 3116 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3117 ret = get_user_pages(current, current->mm, addr,
3118 len, write, 0, NULL, NULL);
c11d69d8 3119 if (ret < 0)
1da177e4 3120 return ret;
9978ad58 3121 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3122}
3123
1da177e4
LT
3124#if !defined(__HAVE_ARCH_GATE_AREA)
3125
3126#if defined(AT_SYSINFO_EHDR)
5ce7852c 3127static struct vm_area_struct gate_vma;
1da177e4
LT
3128
3129static int __init gate_vma_init(void)
3130{
3131 gate_vma.vm_mm = NULL;
3132 gate_vma.vm_start = FIXADDR_USER_START;
3133 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3134 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3135 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3136 /*
3137 * Make sure the vDSO gets into every core dump.
3138 * Dumping its contents makes post-mortem fully interpretable later
3139 * without matching up the same kernel and hardware config to see
3140 * what PC values meant.
3141 */
3142 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3143 return 0;
3144}
3145__initcall(gate_vma_init);
3146#endif
3147
3148struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3149{
3150#ifdef AT_SYSINFO_EHDR
3151 return &gate_vma;
3152#else
3153 return NULL;
3154#endif
3155}
3156
3157int in_gate_area_no_task(unsigned long addr)
3158{
3159#ifdef AT_SYSINFO_EHDR
3160 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3161 return 1;
3162#endif
3163 return 0;
3164}
3165
3166#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3167
f8ad0f49
JW
3168static int follow_pte(struct mm_struct *mm, unsigned long address,
3169 pte_t **ptepp, spinlock_t **ptlp)
3170{
3171 pgd_t *pgd;
3172 pud_t *pud;
3173 pmd_t *pmd;
3174 pte_t *ptep;
3175
3176 pgd = pgd_offset(mm, address);
3177 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3178 goto out;
3179
3180 pud = pud_offset(pgd, address);
3181 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3182 goto out;
3183
3184 pmd = pmd_offset(pud, address);
3185 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3186 goto out;
3187
3188 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3189 if (pmd_huge(*pmd))
3190 goto out;
3191
3192 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3193 if (!ptep)
3194 goto out;
3195 if (!pte_present(*ptep))
3196 goto unlock;
3197 *ptepp = ptep;
3198 return 0;
3199unlock:
3200 pte_unmap_unlock(ptep, *ptlp);
3201out:
3202 return -EINVAL;
3203}
3204
3b6748e2
JW
3205/**
3206 * follow_pfn - look up PFN at a user virtual address
3207 * @vma: memory mapping
3208 * @address: user virtual address
3209 * @pfn: location to store found PFN
3210 *
3211 * Only IO mappings and raw PFN mappings are allowed.
3212 *
3213 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3214 */
3215int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3216 unsigned long *pfn)
3217{
3218 int ret = -EINVAL;
3219 spinlock_t *ptl;
3220 pte_t *ptep;
3221
3222 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3223 return ret;
3224
3225 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3226 if (ret)
3227 return ret;
3228 *pfn = pte_pfn(*ptep);
3229 pte_unmap_unlock(ptep, ptl);
3230 return 0;
3231}
3232EXPORT_SYMBOL(follow_pfn);
3233
28b2ee20 3234#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3235int follow_phys(struct vm_area_struct *vma,
3236 unsigned long address, unsigned int flags,
3237 unsigned long *prot, resource_size_t *phys)
28b2ee20 3238{
03668a4d 3239 int ret = -EINVAL;
28b2ee20
RR
3240 pte_t *ptep, pte;
3241 spinlock_t *ptl;
28b2ee20 3242
d87fe660 3243 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3244 goto out;
28b2ee20 3245
03668a4d 3246 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3247 goto out;
28b2ee20 3248 pte = *ptep;
03668a4d 3249
28b2ee20
RR
3250 if ((flags & FOLL_WRITE) && !pte_write(pte))
3251 goto unlock;
28b2ee20
RR
3252
3253 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3254 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3255
03668a4d 3256 ret = 0;
28b2ee20
RR
3257unlock:
3258 pte_unmap_unlock(ptep, ptl);
3259out:
d87fe660 3260 return ret;
28b2ee20
RR
3261}
3262
3263int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3264 void *buf, int len, int write)
3265{
3266 resource_size_t phys_addr;
3267 unsigned long prot = 0;
2bc7273b 3268 void __iomem *maddr;
28b2ee20
RR
3269 int offset = addr & (PAGE_SIZE-1);
3270
d87fe660 3271 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3272 return -EINVAL;
3273
3274 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3275 if (write)
3276 memcpy_toio(maddr + offset, buf, len);
3277 else
3278 memcpy_fromio(buf, maddr + offset, len);
3279 iounmap(maddr);
3280
3281 return len;
3282}
3283#endif
3284
0ec76a11
DH
3285/*
3286 * Access another process' address space.
3287 * Source/target buffer must be kernel space,
3288 * Do not walk the page table directly, use get_user_pages
3289 */
3290int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3291{
3292 struct mm_struct *mm;
3293 struct vm_area_struct *vma;
0ec76a11
DH
3294 void *old_buf = buf;
3295
3296 mm = get_task_mm(tsk);
3297 if (!mm)
3298 return 0;
3299
3300 down_read(&mm->mmap_sem);
183ff22b 3301 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3302 while (len) {
3303 int bytes, ret, offset;
3304 void *maddr;
28b2ee20 3305 struct page *page = NULL;
0ec76a11
DH
3306
3307 ret = get_user_pages(tsk, mm, addr, 1,
3308 write, 1, &page, &vma);
28b2ee20
RR
3309 if (ret <= 0) {
3310 /*
3311 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3312 * we can access using slightly different code.
3313 */
3314#ifdef CONFIG_HAVE_IOREMAP_PROT
3315 vma = find_vma(mm, addr);
3316 if (!vma)
3317 break;
3318 if (vma->vm_ops && vma->vm_ops->access)
3319 ret = vma->vm_ops->access(vma, addr, buf,
3320 len, write);
3321 if (ret <= 0)
3322#endif
3323 break;
3324 bytes = ret;
0ec76a11 3325 } else {
28b2ee20
RR
3326 bytes = len;
3327 offset = addr & (PAGE_SIZE-1);
3328 if (bytes > PAGE_SIZE-offset)
3329 bytes = PAGE_SIZE-offset;
3330
3331 maddr = kmap(page);
3332 if (write) {
3333 copy_to_user_page(vma, page, addr,
3334 maddr + offset, buf, bytes);
3335 set_page_dirty_lock(page);
3336 } else {
3337 copy_from_user_page(vma, page, addr,
3338 buf, maddr + offset, bytes);
3339 }
3340 kunmap(page);
3341 page_cache_release(page);
0ec76a11 3342 }
0ec76a11
DH
3343 len -= bytes;
3344 buf += bytes;
3345 addr += bytes;
3346 }
3347 up_read(&mm->mmap_sem);
3348 mmput(mm);
3349
3350 return buf - old_buf;
3351}
03252919
AK
3352
3353/*
3354 * Print the name of a VMA.
3355 */
3356void print_vma_addr(char *prefix, unsigned long ip)
3357{
3358 struct mm_struct *mm = current->mm;
3359 struct vm_area_struct *vma;
3360
e8bff74a
IM
3361 /*
3362 * Do not print if we are in atomic
3363 * contexts (in exception stacks, etc.):
3364 */
3365 if (preempt_count())
3366 return;
3367
03252919
AK
3368 down_read(&mm->mmap_sem);
3369 vma = find_vma(mm, ip);
3370 if (vma && vma->vm_file) {
3371 struct file *f = vma->vm_file;
3372 char *buf = (char *)__get_free_page(GFP_KERNEL);
3373 if (buf) {
3374 char *p, *s;
3375
cf28b486 3376 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3377 if (IS_ERR(p))
3378 p = "?";
3379 s = strrchr(p, '/');
3380 if (s)
3381 p = s+1;
3382 printk("%s%s[%lx+%lx]", prefix, p,
3383 vma->vm_start,
3384 vma->vm_end - vma->vm_start);
3385 free_page((unsigned long)buf);
3386 }
3387 }
3388 up_read(&current->mm->mmap_sem);
3389}
3ee1afa3
NP
3390
3391#ifdef CONFIG_PROVE_LOCKING
3392void might_fault(void)
3393{
95156f00
PZ
3394 /*
3395 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3396 * holding the mmap_sem, this is safe because kernel memory doesn't
3397 * get paged out, therefore we'll never actually fault, and the
3398 * below annotations will generate false positives.
3399 */
3400 if (segment_eq(get_fs(), KERNEL_DS))
3401 return;
3402
3ee1afa3
NP
3403 might_sleep();
3404 /*
3405 * it would be nicer only to annotate paths which are not under
3406 * pagefault_disable, however that requires a larger audit and
3407 * providing helpers like get_user_atomic.
3408 */
3409 if (!in_atomic() && current->mm)
3410 might_lock_read(&current->mm->mmap_sem);
3411}
3412EXPORT_SYMBOL(might_fault);
3413#endif