mm: ZERO_PAGE without PTE_SPECIAL
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
62eede62 111unsigned long zero_pfn __read_mostly;
a13ea5b7
HD
112
113/*
114 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
115 */
116static int __init init_zero_pfn(void)
117{
118 zero_pfn = page_to_pfn(ZERO_PAGE(0));
119 return 0;
120}
121core_initcall(init_zero_pfn);
a62eaf15 122
1da177e4
LT
123/*
124 * If a p?d_bad entry is found while walking page tables, report
125 * the error, before resetting entry to p?d_none. Usually (but
126 * very seldom) called out from the p?d_none_or_clear_bad macros.
127 */
128
129void pgd_clear_bad(pgd_t *pgd)
130{
131 pgd_ERROR(*pgd);
132 pgd_clear(pgd);
133}
134
135void pud_clear_bad(pud_t *pud)
136{
137 pud_ERROR(*pud);
138 pud_clear(pud);
139}
140
141void pmd_clear_bad(pmd_t *pmd)
142{
143 pmd_ERROR(*pmd);
144 pmd_clear(pmd);
145}
146
147/*
148 * Note: this doesn't free the actual pages themselves. That
149 * has been handled earlier when unmapping all the memory regions.
150 */
9e1b32ca
BH
151static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
152 unsigned long addr)
1da177e4 153{
2f569afd 154 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 155 pmd_clear(pmd);
9e1b32ca 156 pte_free_tlb(tlb, token, addr);
e0da382c 157 tlb->mm->nr_ptes--;
1da177e4
LT
158}
159
e0da382c
HD
160static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161 unsigned long addr, unsigned long end,
162 unsigned long floor, unsigned long ceiling)
1da177e4
LT
163{
164 pmd_t *pmd;
165 unsigned long next;
e0da382c 166 unsigned long start;
1da177e4 167
e0da382c 168 start = addr;
1da177e4 169 pmd = pmd_offset(pud, addr);
1da177e4
LT
170 do {
171 next = pmd_addr_end(addr, end);
172 if (pmd_none_or_clear_bad(pmd))
173 continue;
9e1b32ca 174 free_pte_range(tlb, pmd, addr);
1da177e4
LT
175 } while (pmd++, addr = next, addr != end);
176
e0da382c
HD
177 start &= PUD_MASK;
178 if (start < floor)
179 return;
180 if (ceiling) {
181 ceiling &= PUD_MASK;
182 if (!ceiling)
183 return;
1da177e4 184 }
e0da382c
HD
185 if (end - 1 > ceiling - 1)
186 return;
187
188 pmd = pmd_offset(pud, start);
189 pud_clear(pud);
9e1b32ca 190 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
191}
192
e0da382c
HD
193static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pud_t *pud;
198 unsigned long next;
e0da382c 199 unsigned long start;
1da177e4 200
e0da382c 201 start = addr;
1da177e4 202 pud = pud_offset(pgd, addr);
1da177e4
LT
203 do {
204 next = pud_addr_end(addr, end);
205 if (pud_none_or_clear_bad(pud))
206 continue;
e0da382c 207 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
208 } while (pud++, addr = next, addr != end);
209
e0da382c
HD
210 start &= PGDIR_MASK;
211 if (start < floor)
212 return;
213 if (ceiling) {
214 ceiling &= PGDIR_MASK;
215 if (!ceiling)
216 return;
1da177e4 217 }
e0da382c
HD
218 if (end - 1 > ceiling - 1)
219 return;
220
221 pud = pud_offset(pgd, start);
222 pgd_clear(pgd);
9e1b32ca 223 pud_free_tlb(tlb, pud, start);
1da177e4
LT
224}
225
226/*
e0da382c
HD
227 * This function frees user-level page tables of a process.
228 *
1da177e4
LT
229 * Must be called with pagetable lock held.
230 */
42b77728 231void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pgd_t *pgd;
236 unsigned long next;
e0da382c
HD
237 unsigned long start;
238
239 /*
240 * The next few lines have given us lots of grief...
241 *
242 * Why are we testing PMD* at this top level? Because often
243 * there will be no work to do at all, and we'd prefer not to
244 * go all the way down to the bottom just to discover that.
245 *
246 * Why all these "- 1"s? Because 0 represents both the bottom
247 * of the address space and the top of it (using -1 for the
248 * top wouldn't help much: the masks would do the wrong thing).
249 * The rule is that addr 0 and floor 0 refer to the bottom of
250 * the address space, but end 0 and ceiling 0 refer to the top
251 * Comparisons need to use "end - 1" and "ceiling - 1" (though
252 * that end 0 case should be mythical).
253 *
254 * Wherever addr is brought up or ceiling brought down, we must
255 * be careful to reject "the opposite 0" before it confuses the
256 * subsequent tests. But what about where end is brought down
257 * by PMD_SIZE below? no, end can't go down to 0 there.
258 *
259 * Whereas we round start (addr) and ceiling down, by different
260 * masks at different levels, in order to test whether a table
261 * now has no other vmas using it, so can be freed, we don't
262 * bother to round floor or end up - the tests don't need that.
263 */
1da177e4 264
e0da382c
HD
265 addr &= PMD_MASK;
266 if (addr < floor) {
267 addr += PMD_SIZE;
268 if (!addr)
269 return;
270 }
271 if (ceiling) {
272 ceiling &= PMD_MASK;
273 if (!ceiling)
274 return;
275 }
276 if (end - 1 > ceiling - 1)
277 end -= PMD_SIZE;
278 if (addr > end - 1)
279 return;
280
281 start = addr;
42b77728 282 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
283 do {
284 next = pgd_addr_end(addr, end);
285 if (pgd_none_or_clear_bad(pgd))
286 continue;
42b77728 287 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 288 } while (pgd++, addr = next, addr != end);
e0da382c
HD
289}
290
42b77728 291void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 292 unsigned long floor, unsigned long ceiling)
e0da382c
HD
293{
294 while (vma) {
295 struct vm_area_struct *next = vma->vm_next;
296 unsigned long addr = vma->vm_start;
297
8f4f8c16
HD
298 /*
299 * Hide vma from rmap and vmtruncate before freeing pgtables
300 */
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
303
9da61aef 304 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 305 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 306 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
307 } else {
308 /*
309 * Optimization: gather nearby vmas into one call down
310 */
311 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 312 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
313 vma = next;
314 next = vma->vm_next;
8f4f8c16
HD
315 anon_vma_unlink(vma);
316 unlink_file_vma(vma);
3bf5ee95
HD
317 }
318 free_pgd_range(tlb, addr, vma->vm_end,
319 floor, next? next->vm_start: ceiling);
320 }
e0da382c
HD
321 vma = next;
322 }
1da177e4
LT
323}
324
1bb3630e 325int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 326{
2f569afd 327 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
328 if (!new)
329 return -ENOMEM;
330
362a61ad
NP
331 /*
332 * Ensure all pte setup (eg. pte page lock and page clearing) are
333 * visible before the pte is made visible to other CPUs by being
334 * put into page tables.
335 *
336 * The other side of the story is the pointer chasing in the page
337 * table walking code (when walking the page table without locking;
338 * ie. most of the time). Fortunately, these data accesses consist
339 * of a chain of data-dependent loads, meaning most CPUs (alpha
340 * being the notable exception) will already guarantee loads are
341 * seen in-order. See the alpha page table accessors for the
342 * smp_read_barrier_depends() barriers in page table walking code.
343 */
344 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
345
c74df32c 346 spin_lock(&mm->page_table_lock);
2f569afd 347 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 348 mm->nr_ptes++;
1da177e4 349 pmd_populate(mm, pmd, new);
2f569afd 350 new = NULL;
1da177e4 351 }
c74df32c 352 spin_unlock(&mm->page_table_lock);
2f569afd
MS
353 if (new)
354 pte_free(mm, new);
1bb3630e 355 return 0;
1da177e4
LT
356}
357
1bb3630e 358int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 359{
1bb3630e
HD
360 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
361 if (!new)
362 return -ENOMEM;
363
362a61ad
NP
364 smp_wmb(); /* See comment in __pte_alloc */
365
1bb3630e 366 spin_lock(&init_mm.page_table_lock);
2f569afd 367 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 368 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
369 new = NULL;
370 }
1bb3630e 371 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
372 if (new)
373 pte_free_kernel(&init_mm, new);
1bb3630e 374 return 0;
1da177e4
LT
375}
376
ae859762
HD
377static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
378{
379 if (file_rss)
380 add_mm_counter(mm, file_rss, file_rss);
381 if (anon_rss)
382 add_mm_counter(mm, anon_rss, anon_rss);
383}
384
b5810039 385/*
6aab341e
LT
386 * This function is called to print an error when a bad pte
387 * is found. For example, we might have a PFN-mapped pte in
388 * a region that doesn't allow it.
b5810039
NP
389 *
390 * The calling function must still handle the error.
391 */
3dc14741
HD
392static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
393 pte_t pte, struct page *page)
b5810039 394{
3dc14741
HD
395 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
396 pud_t *pud = pud_offset(pgd, addr);
397 pmd_t *pmd = pmd_offset(pud, addr);
398 struct address_space *mapping;
399 pgoff_t index;
d936cf9b
HD
400 static unsigned long resume;
401 static unsigned long nr_shown;
402 static unsigned long nr_unshown;
403
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 return;
412 }
413 if (nr_unshown) {
1e9e6365
HD
414 printk(KERN_ALERT
415 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
3dc14741
HD
423
424 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
425 index = linear_page_index(vma, addr);
426
1e9e6365
HD
427 printk(KERN_ALERT
428 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
429 current->comm,
430 (long long)pte_val(pte), (long long)pmd_val(*pmd));
431 if (page) {
1e9e6365 432 printk(KERN_ALERT
3dc14741
HD
433 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
434 page, (void *)page->flags, page_count(page),
435 page_mapcount(page), page->mapping, page->index);
436 }
1e9e6365 437 printk(KERN_ALERT
3dc14741
HD
438 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
439 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
440 /*
441 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
442 */
443 if (vma->vm_ops)
1e9e6365 444 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
445 (unsigned long)vma->vm_ops->fault);
446 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 447 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 448 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 449 dump_stack();
3dc14741 450 add_taint(TAINT_BAD_PAGE);
b5810039
NP
451}
452
67121172
LT
453static inline int is_cow_mapping(unsigned int flags)
454{
455 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
456}
457
62eede62
HD
458#ifndef is_zero_pfn
459static inline int is_zero_pfn(unsigned long pfn)
460{
461 return pfn == zero_pfn;
462}
463#endif
464
465#ifndef my_zero_pfn
466static inline unsigned long my_zero_pfn(unsigned long addr)
467{
468 return zero_pfn;
469}
470#endif
471
ee498ed7 472/*
7e675137 473 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 474 *
7e675137
NP
475 * "Special" mappings do not wish to be associated with a "struct page" (either
476 * it doesn't exist, or it exists but they don't want to touch it). In this
477 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 478 *
7e675137
NP
479 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
480 * pte bit, in which case this function is trivial. Secondly, an architecture
481 * may not have a spare pte bit, which requires a more complicated scheme,
482 * described below.
483 *
484 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
485 * special mapping (even if there are underlying and valid "struct pages").
486 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 487 *
b379d790
JH
488 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
489 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
490 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
491 * mapping will always honor the rule
6aab341e
LT
492 *
493 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
494 *
7e675137
NP
495 * And for normal mappings this is false.
496 *
497 * This restricts such mappings to be a linear translation from virtual address
498 * to pfn. To get around this restriction, we allow arbitrary mappings so long
499 * as the vma is not a COW mapping; in that case, we know that all ptes are
500 * special (because none can have been COWed).
b379d790 501 *
b379d790 502 *
7e675137 503 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
504 *
505 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
506 * page" backing, however the difference is that _all_ pages with a struct
507 * page (that is, those where pfn_valid is true) are refcounted and considered
508 * normal pages by the VM. The disadvantage is that pages are refcounted
509 * (which can be slower and simply not an option for some PFNMAP users). The
510 * advantage is that we don't have to follow the strict linearity rule of
511 * PFNMAP mappings in order to support COWable mappings.
512 *
ee498ed7 513 */
7e675137
NP
514#ifdef __HAVE_ARCH_PTE_SPECIAL
515# define HAVE_PTE_SPECIAL 1
516#else
517# define HAVE_PTE_SPECIAL 0
518#endif
519struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte)
ee498ed7 521{
22b31eec 522 unsigned long pfn = pte_pfn(pte);
7e675137
NP
523
524 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
525 if (likely(!pte_special(pte)))
526 goto check_pfn;
a13ea5b7
HD
527 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
528 return NULL;
62eede62 529 if (!is_zero_pfn(pfn))
22b31eec 530 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
531 return NULL;
532 }
533
534 /* !HAVE_PTE_SPECIAL case follows: */
535
b379d790
JH
536 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
537 if (vma->vm_flags & VM_MIXEDMAP) {
538 if (!pfn_valid(pfn))
539 return NULL;
540 goto out;
541 } else {
7e675137
NP
542 unsigned long off;
543 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
544 if (pfn == vma->vm_pgoff + off)
545 return NULL;
546 if (!is_cow_mapping(vma->vm_flags))
547 return NULL;
548 }
6aab341e
LT
549 }
550
62eede62
HD
551 if (is_zero_pfn(pfn))
552 return NULL;
22b31eec
HD
553check_pfn:
554 if (unlikely(pfn > highest_memmap_pfn)) {
555 print_bad_pte(vma, addr, pte, NULL);
556 return NULL;
557 }
6aab341e
LT
558
559 /*
7e675137 560 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 561 * eg. VDSO mappings can cause them to exist.
6aab341e 562 */
b379d790 563out:
6aab341e 564 return pfn_to_page(pfn);
ee498ed7
HD
565}
566
1da177e4
LT
567/*
568 * copy one vm_area from one task to the other. Assumes the page tables
569 * already present in the new task to be cleared in the whole range
570 * covered by this vma.
1da177e4
LT
571 */
572
8c103762 573static inline void
1da177e4 574copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 575 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 576 unsigned long addr, int *rss)
1da177e4 577{
b5810039 578 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
579 pte_t pte = *src_pte;
580 struct page *page;
1da177e4
LT
581
582 /* pte contains position in swap or file, so copy. */
583 if (unlikely(!pte_present(pte))) {
584 if (!pte_file(pte)) {
0697212a
CL
585 swp_entry_t entry = pte_to_swp_entry(pte);
586
587 swap_duplicate(entry);
1da177e4
LT
588 /* make sure dst_mm is on swapoff's mmlist. */
589 if (unlikely(list_empty(&dst_mm->mmlist))) {
590 spin_lock(&mmlist_lock);
f412ac08
HD
591 if (list_empty(&dst_mm->mmlist))
592 list_add(&dst_mm->mmlist,
593 &src_mm->mmlist);
1da177e4
LT
594 spin_unlock(&mmlist_lock);
595 }
0697212a
CL
596 if (is_write_migration_entry(entry) &&
597 is_cow_mapping(vm_flags)) {
598 /*
599 * COW mappings require pages in both parent
600 * and child to be set to read.
601 */
602 make_migration_entry_read(&entry);
603 pte = swp_entry_to_pte(entry);
604 set_pte_at(src_mm, addr, src_pte, pte);
605 }
1da177e4 606 }
ae859762 607 goto out_set_pte;
1da177e4
LT
608 }
609
1da177e4
LT
610 /*
611 * If it's a COW mapping, write protect it both
612 * in the parent and the child
613 */
67121172 614 if (is_cow_mapping(vm_flags)) {
1da177e4 615 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 616 pte = pte_wrprotect(pte);
1da177e4
LT
617 }
618
619 /*
620 * If it's a shared mapping, mark it clean in
621 * the child
622 */
623 if (vm_flags & VM_SHARED)
624 pte = pte_mkclean(pte);
625 pte = pte_mkold(pte);
6aab341e
LT
626
627 page = vm_normal_page(vma, addr, pte);
628 if (page) {
629 get_page(page);
21333b2b 630 page_dup_rmap(page);
b7c46d15 631 rss[PageAnon(page)]++;
6aab341e 632 }
ae859762
HD
633
634out_set_pte:
635 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
636}
637
638static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
639 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
640 unsigned long addr, unsigned long end)
641{
642 pte_t *src_pte, *dst_pte;
c74df32c 643 spinlock_t *src_ptl, *dst_ptl;
e040f218 644 int progress = 0;
8c103762 645 int rss[2];
1da177e4
LT
646
647again:
ae859762 648 rss[1] = rss[0] = 0;
c74df32c 649 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
650 if (!dst_pte)
651 return -ENOMEM;
652 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 653 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 654 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 655 arch_enter_lazy_mmu_mode();
1da177e4 656
1da177e4
LT
657 do {
658 /*
659 * We are holding two locks at this point - either of them
660 * could generate latencies in another task on another CPU.
661 */
e040f218
HD
662 if (progress >= 32) {
663 progress = 0;
664 if (need_resched() ||
95c354fe 665 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
666 break;
667 }
1da177e4
LT
668 if (pte_none(*src_pte)) {
669 progress++;
670 continue;
671 }
8c103762 672 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
673 progress += 8;
674 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 675
6606c3e0 676 arch_leave_lazy_mmu_mode();
c74df32c 677 spin_unlock(src_ptl);
1da177e4 678 pte_unmap_nested(src_pte - 1);
ae859762 679 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
680 pte_unmap_unlock(dst_pte - 1, dst_ptl);
681 cond_resched();
1da177e4
LT
682 if (addr != end)
683 goto again;
684 return 0;
685}
686
687static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
688 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
689 unsigned long addr, unsigned long end)
690{
691 pmd_t *src_pmd, *dst_pmd;
692 unsigned long next;
693
694 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
695 if (!dst_pmd)
696 return -ENOMEM;
697 src_pmd = pmd_offset(src_pud, addr);
698 do {
699 next = pmd_addr_end(addr, end);
700 if (pmd_none_or_clear_bad(src_pmd))
701 continue;
702 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
703 vma, addr, next))
704 return -ENOMEM;
705 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
706 return 0;
707}
708
709static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
711 unsigned long addr, unsigned long end)
712{
713 pud_t *src_pud, *dst_pud;
714 unsigned long next;
715
716 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
717 if (!dst_pud)
718 return -ENOMEM;
719 src_pud = pud_offset(src_pgd, addr);
720 do {
721 next = pud_addr_end(addr, end);
722 if (pud_none_or_clear_bad(src_pud))
723 continue;
724 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
725 vma, addr, next))
726 return -ENOMEM;
727 } while (dst_pud++, src_pud++, addr = next, addr != end);
728 return 0;
729}
730
731int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
732 struct vm_area_struct *vma)
733{
734 pgd_t *src_pgd, *dst_pgd;
735 unsigned long next;
736 unsigned long addr = vma->vm_start;
737 unsigned long end = vma->vm_end;
cddb8a5c 738 int ret;
1da177e4 739
d992895b
NP
740 /*
741 * Don't copy ptes where a page fault will fill them correctly.
742 * Fork becomes much lighter when there are big shared or private
743 * readonly mappings. The tradeoff is that copy_page_range is more
744 * efficient than faulting.
745 */
4d7672b4 746 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
747 if (!vma->anon_vma)
748 return 0;
749 }
750
1da177e4
LT
751 if (is_vm_hugetlb_page(vma))
752 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
753
34801ba9 754 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 755 /*
756 * We do not free on error cases below as remove_vma
757 * gets called on error from higher level routine
758 */
759 ret = track_pfn_vma_copy(vma);
760 if (ret)
761 return ret;
762 }
763
cddb8a5c
AA
764 /*
765 * We need to invalidate the secondary MMU mappings only when
766 * there could be a permission downgrade on the ptes of the
767 * parent mm. And a permission downgrade will only happen if
768 * is_cow_mapping() returns true.
769 */
770 if (is_cow_mapping(vma->vm_flags))
771 mmu_notifier_invalidate_range_start(src_mm, addr, end);
772
773 ret = 0;
1da177e4
LT
774 dst_pgd = pgd_offset(dst_mm, addr);
775 src_pgd = pgd_offset(src_mm, addr);
776 do {
777 next = pgd_addr_end(addr, end);
778 if (pgd_none_or_clear_bad(src_pgd))
779 continue;
cddb8a5c
AA
780 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
781 vma, addr, next))) {
782 ret = -ENOMEM;
783 break;
784 }
1da177e4 785 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
786
787 if (is_cow_mapping(vma->vm_flags))
788 mmu_notifier_invalidate_range_end(src_mm,
789 vma->vm_start, end);
790 return ret;
1da177e4
LT
791}
792
51c6f666 793static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 794 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 795 unsigned long addr, unsigned long end,
51c6f666 796 long *zap_work, struct zap_details *details)
1da177e4 797{
b5810039 798 struct mm_struct *mm = tlb->mm;
1da177e4 799 pte_t *pte;
508034a3 800 spinlock_t *ptl;
ae859762
HD
801 int file_rss = 0;
802 int anon_rss = 0;
1da177e4 803
508034a3 804 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 805 arch_enter_lazy_mmu_mode();
1da177e4
LT
806 do {
807 pte_t ptent = *pte;
51c6f666
RH
808 if (pte_none(ptent)) {
809 (*zap_work)--;
1da177e4 810 continue;
51c6f666 811 }
6f5e6b9e
HD
812
813 (*zap_work) -= PAGE_SIZE;
814
1da177e4 815 if (pte_present(ptent)) {
ee498ed7 816 struct page *page;
51c6f666 817
6aab341e 818 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
819 if (unlikely(details) && page) {
820 /*
821 * unmap_shared_mapping_pages() wants to
822 * invalidate cache without truncating:
823 * unmap shared but keep private pages.
824 */
825 if (details->check_mapping &&
826 details->check_mapping != page->mapping)
827 continue;
828 /*
829 * Each page->index must be checked when
830 * invalidating or truncating nonlinear.
831 */
832 if (details->nonlinear_vma &&
833 (page->index < details->first_index ||
834 page->index > details->last_index))
835 continue;
836 }
b5810039 837 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 838 tlb->fullmm);
1da177e4
LT
839 tlb_remove_tlb_entry(tlb, pte, addr);
840 if (unlikely(!page))
841 continue;
842 if (unlikely(details) && details->nonlinear_vma
843 && linear_page_index(details->nonlinear_vma,
844 addr) != page->index)
b5810039 845 set_pte_at(mm, addr, pte,
1da177e4 846 pgoff_to_pte(page->index));
1da177e4 847 if (PageAnon(page))
86d912f4 848 anon_rss--;
6237bcd9
HD
849 else {
850 if (pte_dirty(ptent))
851 set_page_dirty(page);
4917e5d0
JW
852 if (pte_young(ptent) &&
853 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 854 mark_page_accessed(page);
86d912f4 855 file_rss--;
6237bcd9 856 }
edc315fd 857 page_remove_rmap(page);
3dc14741
HD
858 if (unlikely(page_mapcount(page) < 0))
859 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
860 tlb_remove_page(tlb, page);
861 continue;
862 }
863 /*
864 * If details->check_mapping, we leave swap entries;
865 * if details->nonlinear_vma, we leave file entries.
866 */
867 if (unlikely(details))
868 continue;
2509ef26
HD
869 if (pte_file(ptent)) {
870 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
871 print_bad_pte(vma, addr, ptent, NULL);
872 } else if
873 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
874 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 875 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 876 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 877
86d912f4 878 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 879 arch_leave_lazy_mmu_mode();
508034a3 880 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
881
882 return addr;
1da177e4
LT
883}
884
51c6f666 885static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 886 struct vm_area_struct *vma, pud_t *pud,
1da177e4 887 unsigned long addr, unsigned long end,
51c6f666 888 long *zap_work, struct zap_details *details)
1da177e4
LT
889{
890 pmd_t *pmd;
891 unsigned long next;
892
893 pmd = pmd_offset(pud, addr);
894 do {
895 next = pmd_addr_end(addr, end);
51c6f666
RH
896 if (pmd_none_or_clear_bad(pmd)) {
897 (*zap_work)--;
1da177e4 898 continue;
51c6f666
RH
899 }
900 next = zap_pte_range(tlb, vma, pmd, addr, next,
901 zap_work, details);
902 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
903
904 return addr;
1da177e4
LT
905}
906
51c6f666 907static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 908 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 909 unsigned long addr, unsigned long end,
51c6f666 910 long *zap_work, struct zap_details *details)
1da177e4
LT
911{
912 pud_t *pud;
913 unsigned long next;
914
915 pud = pud_offset(pgd, addr);
916 do {
917 next = pud_addr_end(addr, end);
51c6f666
RH
918 if (pud_none_or_clear_bad(pud)) {
919 (*zap_work)--;
1da177e4 920 continue;
51c6f666
RH
921 }
922 next = zap_pmd_range(tlb, vma, pud, addr, next,
923 zap_work, details);
924 } while (pud++, addr = next, (addr != end && *zap_work > 0));
925
926 return addr;
1da177e4
LT
927}
928
51c6f666
RH
929static unsigned long unmap_page_range(struct mmu_gather *tlb,
930 struct vm_area_struct *vma,
1da177e4 931 unsigned long addr, unsigned long end,
51c6f666 932 long *zap_work, struct zap_details *details)
1da177e4
LT
933{
934 pgd_t *pgd;
935 unsigned long next;
936
937 if (details && !details->check_mapping && !details->nonlinear_vma)
938 details = NULL;
939
940 BUG_ON(addr >= end);
941 tlb_start_vma(tlb, vma);
942 pgd = pgd_offset(vma->vm_mm, addr);
943 do {
944 next = pgd_addr_end(addr, end);
51c6f666
RH
945 if (pgd_none_or_clear_bad(pgd)) {
946 (*zap_work)--;
1da177e4 947 continue;
51c6f666
RH
948 }
949 next = zap_pud_range(tlb, vma, pgd, addr, next,
950 zap_work, details);
951 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 952 tlb_end_vma(tlb, vma);
51c6f666
RH
953
954 return addr;
1da177e4
LT
955}
956
957#ifdef CONFIG_PREEMPT
958# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
959#else
960/* No preempt: go for improved straight-line efficiency */
961# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
962#endif
963
964/**
965 * unmap_vmas - unmap a range of memory covered by a list of vma's
966 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
967 * @vma: the starting vma
968 * @start_addr: virtual address at which to start unmapping
969 * @end_addr: virtual address at which to end unmapping
970 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
971 * @details: details of nonlinear truncation or shared cache invalidation
972 *
ee39b37b 973 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 974 *
508034a3 975 * Unmap all pages in the vma list.
1da177e4 976 *
508034a3
HD
977 * We aim to not hold locks for too long (for scheduling latency reasons).
978 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
979 * return the ending mmu_gather to the caller.
980 *
981 * Only addresses between `start' and `end' will be unmapped.
982 *
983 * The VMA list must be sorted in ascending virtual address order.
984 *
985 * unmap_vmas() assumes that the caller will flush the whole unmapped address
986 * range after unmap_vmas() returns. So the only responsibility here is to
987 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
988 * drops the lock and schedules.
989 */
508034a3 990unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
991 struct vm_area_struct *vma, unsigned long start_addr,
992 unsigned long end_addr, unsigned long *nr_accounted,
993 struct zap_details *details)
994{
51c6f666 995 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
996 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
997 int tlb_start_valid = 0;
ee39b37b 998 unsigned long start = start_addr;
1da177e4 999 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1000 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1001 struct mm_struct *mm = vma->vm_mm;
1da177e4 1002
cddb8a5c 1003 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1004 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1005 unsigned long end;
1006
1007 start = max(vma->vm_start, start_addr);
1008 if (start >= vma->vm_end)
1009 continue;
1010 end = min(vma->vm_end, end_addr);
1011 if (end <= vma->vm_start)
1012 continue;
1013
1014 if (vma->vm_flags & VM_ACCOUNT)
1015 *nr_accounted += (end - start) >> PAGE_SHIFT;
1016
34801ba9 1017 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1018 untrack_pfn_vma(vma, 0, 0);
1019
1da177e4 1020 while (start != end) {
1da177e4
LT
1021 if (!tlb_start_valid) {
1022 tlb_start = start;
1023 tlb_start_valid = 1;
1024 }
1025
51c6f666 1026 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1027 /*
1028 * It is undesirable to test vma->vm_file as it
1029 * should be non-null for valid hugetlb area.
1030 * However, vm_file will be NULL in the error
1031 * cleanup path of do_mmap_pgoff. When
1032 * hugetlbfs ->mmap method fails,
1033 * do_mmap_pgoff() nullifies vma->vm_file
1034 * before calling this function to clean up.
1035 * Since no pte has actually been setup, it is
1036 * safe to do nothing in this case.
1037 */
1038 if (vma->vm_file) {
1039 unmap_hugepage_range(vma, start, end, NULL);
1040 zap_work -= (end - start) /
a5516438 1041 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1042 }
1043
51c6f666
RH
1044 start = end;
1045 } else
1046 start = unmap_page_range(*tlbp, vma,
1047 start, end, &zap_work, details);
1048
1049 if (zap_work > 0) {
1050 BUG_ON(start != end);
1051 break;
1da177e4
LT
1052 }
1053
1da177e4
LT
1054 tlb_finish_mmu(*tlbp, tlb_start, start);
1055
1056 if (need_resched() ||
95c354fe 1057 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1058 if (i_mmap_lock) {
508034a3 1059 *tlbp = NULL;
1da177e4
LT
1060 goto out;
1061 }
1da177e4 1062 cond_resched();
1da177e4
LT
1063 }
1064
508034a3 1065 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1066 tlb_start_valid = 0;
51c6f666 1067 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1068 }
1069 }
1070out:
cddb8a5c 1071 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1072 return start; /* which is now the end (or restart) address */
1da177e4
LT
1073}
1074
1075/**
1076 * zap_page_range - remove user pages in a given range
1077 * @vma: vm_area_struct holding the applicable pages
1078 * @address: starting address of pages to zap
1079 * @size: number of bytes to zap
1080 * @details: details of nonlinear truncation or shared cache invalidation
1081 */
ee39b37b 1082unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1083 unsigned long size, struct zap_details *details)
1084{
1085 struct mm_struct *mm = vma->vm_mm;
1086 struct mmu_gather *tlb;
1087 unsigned long end = address + size;
1088 unsigned long nr_accounted = 0;
1089
1da177e4 1090 lru_add_drain();
1da177e4 1091 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1092 update_hiwater_rss(mm);
508034a3
HD
1093 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1094 if (tlb)
1095 tlb_finish_mmu(tlb, address, end);
ee39b37b 1096 return end;
1da177e4
LT
1097}
1098
c627f9cc
JS
1099/**
1100 * zap_vma_ptes - remove ptes mapping the vma
1101 * @vma: vm_area_struct holding ptes to be zapped
1102 * @address: starting address of pages to zap
1103 * @size: number of bytes to zap
1104 *
1105 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1106 *
1107 * The entire address range must be fully contained within the vma.
1108 *
1109 * Returns 0 if successful.
1110 */
1111int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1112 unsigned long size)
1113{
1114 if (address < vma->vm_start || address + size > vma->vm_end ||
1115 !(vma->vm_flags & VM_PFNMAP))
1116 return -1;
1117 zap_page_range(vma, address, size, NULL);
1118 return 0;
1119}
1120EXPORT_SYMBOL_GPL(zap_vma_ptes);
1121
1da177e4
LT
1122/*
1123 * Do a quick page-table lookup for a single page.
1da177e4 1124 */
6aab341e 1125struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1126 unsigned int flags)
1da177e4
LT
1127{
1128 pgd_t *pgd;
1129 pud_t *pud;
1130 pmd_t *pmd;
1131 pte_t *ptep, pte;
deceb6cd 1132 spinlock_t *ptl;
1da177e4 1133 struct page *page;
6aab341e 1134 struct mm_struct *mm = vma->vm_mm;
1da177e4 1135
deceb6cd
HD
1136 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1137 if (!IS_ERR(page)) {
1138 BUG_ON(flags & FOLL_GET);
1139 goto out;
1140 }
1da177e4 1141
deceb6cd 1142 page = NULL;
1da177e4
LT
1143 pgd = pgd_offset(mm, address);
1144 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1145 goto no_page_table;
1da177e4
LT
1146
1147 pud = pud_offset(pgd, address);
ceb86879 1148 if (pud_none(*pud))
deceb6cd 1149 goto no_page_table;
ceb86879
AK
1150 if (pud_huge(*pud)) {
1151 BUG_ON(flags & FOLL_GET);
1152 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1153 goto out;
1154 }
1155 if (unlikely(pud_bad(*pud)))
1156 goto no_page_table;
1157
1da177e4 1158 pmd = pmd_offset(pud, address);
aeed5fce 1159 if (pmd_none(*pmd))
deceb6cd 1160 goto no_page_table;
deceb6cd
HD
1161 if (pmd_huge(*pmd)) {
1162 BUG_ON(flags & FOLL_GET);
1163 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1164 goto out;
deceb6cd 1165 }
aeed5fce
HD
1166 if (unlikely(pmd_bad(*pmd)))
1167 goto no_page_table;
1168
deceb6cd 1169 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1170
1171 pte = *ptep;
deceb6cd 1172 if (!pte_present(pte))
89f5b7da 1173 goto no_page;
deceb6cd
HD
1174 if ((flags & FOLL_WRITE) && !pte_write(pte))
1175 goto unlock;
a13ea5b7 1176
6aab341e 1177 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1178 if (unlikely(!page)) {
1179 if ((flags & FOLL_DUMP) ||
62eede62 1180 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1181 goto bad_page;
1182 page = pte_page(pte);
1183 }
1da177e4 1184
deceb6cd
HD
1185 if (flags & FOLL_GET)
1186 get_page(page);
1187 if (flags & FOLL_TOUCH) {
1188 if ((flags & FOLL_WRITE) &&
1189 !pte_dirty(pte) && !PageDirty(page))
1190 set_page_dirty(page);
bd775c42
KM
1191 /*
1192 * pte_mkyoung() would be more correct here, but atomic care
1193 * is needed to avoid losing the dirty bit: it is easier to use
1194 * mark_page_accessed().
1195 */
deceb6cd
HD
1196 mark_page_accessed(page);
1197 }
1198unlock:
1199 pte_unmap_unlock(ptep, ptl);
1da177e4 1200out:
deceb6cd 1201 return page;
1da177e4 1202
89f5b7da
LT
1203bad_page:
1204 pte_unmap_unlock(ptep, ptl);
1205 return ERR_PTR(-EFAULT);
1206
1207no_page:
1208 pte_unmap_unlock(ptep, ptl);
1209 if (!pte_none(pte))
1210 return page;
8e4b9a60 1211
deceb6cd
HD
1212no_page_table:
1213 /*
1214 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1215 * has touched so far, we don't want to allocate unnecessary pages or
1216 * page tables. Return error instead of NULL to skip handle_mm_fault,
1217 * then get_dump_page() will return NULL to leave a hole in the dump.
1218 * But we can only make this optimization where a hole would surely
1219 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1220 */
8e4b9a60
HD
1221 if ((flags & FOLL_DUMP) &&
1222 (!vma->vm_ops || !vma->vm_ops->fault))
1223 return ERR_PTR(-EFAULT);
deceb6cd 1224 return page;
1da177e4
LT
1225}
1226
b291f000 1227int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1228 unsigned long start, int nr_pages, unsigned int gup_flags,
9d73777e 1229 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1230{
1231 int i;
58fa879e 1232 unsigned long vm_flags;
1da177e4 1233
9d73777e 1234 if (nr_pages <= 0)
900cf086 1235 return 0;
58fa879e
HD
1236
1237 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1238
1da177e4
LT
1239 /*
1240 * Require read or write permissions.
58fa879e 1241 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1242 */
58fa879e
HD
1243 vm_flags = (gup_flags & FOLL_WRITE) ?
1244 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1245 vm_flags &= (gup_flags & FOLL_FORCE) ?
1246 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1247 i = 0;
1248
1249 do {
deceb6cd 1250 struct vm_area_struct *vma;
1da177e4
LT
1251
1252 vma = find_extend_vma(mm, start);
1253 if (!vma && in_gate_area(tsk, start)) {
1254 unsigned long pg = start & PAGE_MASK;
1255 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1256 pgd_t *pgd;
1257 pud_t *pud;
1258 pmd_t *pmd;
1259 pte_t *pte;
b291f000
NP
1260
1261 /* user gate pages are read-only */
58fa879e 1262 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1263 return i ? : -EFAULT;
1264 if (pg > TASK_SIZE)
1265 pgd = pgd_offset_k(pg);
1266 else
1267 pgd = pgd_offset_gate(mm, pg);
1268 BUG_ON(pgd_none(*pgd));
1269 pud = pud_offset(pgd, pg);
1270 BUG_ON(pud_none(*pud));
1271 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1272 if (pmd_none(*pmd))
1273 return i ? : -EFAULT;
1da177e4 1274 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1275 if (pte_none(*pte)) {
1276 pte_unmap(pte);
1277 return i ? : -EFAULT;
1278 }
1da177e4 1279 if (pages) {
fa2a455b 1280 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1281 pages[i] = page;
1282 if (page)
1283 get_page(page);
1da177e4
LT
1284 }
1285 pte_unmap(pte);
1286 if (vmas)
1287 vmas[i] = gate_vma;
1288 i++;
1289 start += PAGE_SIZE;
9d73777e 1290 nr_pages--;
1da177e4
LT
1291 continue;
1292 }
1293
b291f000
NP
1294 if (!vma ||
1295 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1296 !(vm_flags & vma->vm_flags))
1da177e4
LT
1297 return i ? : -EFAULT;
1298
2a15efc9
HD
1299 if (is_vm_hugetlb_page(vma)) {
1300 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1301 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1302 continue;
1303 }
deceb6cd 1304
1da177e4 1305 do {
08ef4729 1306 struct page *page;
58fa879e 1307 unsigned int foll_flags = gup_flags;
1da177e4 1308
462e00cc 1309 /*
4779280d 1310 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1311 * pages and potentially allocating memory.
462e00cc 1312 */
1c3aff1c 1313 if (unlikely(fatal_signal_pending(current)))
4779280d 1314 return i ? i : -ERESTARTSYS;
462e00cc 1315
deceb6cd 1316 cond_resched();
6aab341e 1317 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1318 int ret;
d06063cc 1319
d26ed650
HD
1320 ret = handle_mm_fault(mm, vma, start,
1321 (foll_flags & FOLL_WRITE) ?
1322 FAULT_FLAG_WRITE : 0);
1323
83c54070
NP
1324 if (ret & VM_FAULT_ERROR) {
1325 if (ret & VM_FAULT_OOM)
1326 return i ? i : -ENOMEM;
1327 else if (ret & VM_FAULT_SIGBUS)
1328 return i ? i : -EFAULT;
1329 BUG();
1330 }
1331 if (ret & VM_FAULT_MAJOR)
1332 tsk->maj_flt++;
1333 else
1334 tsk->min_flt++;
1335
a68d2ebc 1336 /*
83c54070
NP
1337 * The VM_FAULT_WRITE bit tells us that
1338 * do_wp_page has broken COW when necessary,
1339 * even if maybe_mkwrite decided not to set
1340 * pte_write. We can thus safely do subsequent
878b63ac
HD
1341 * page lookups as if they were reads. But only
1342 * do so when looping for pte_write is futile:
1343 * in some cases userspace may also be wanting
1344 * to write to the gotten user page, which a
1345 * read fault here might prevent (a readonly
1346 * page might get reCOWed by userspace write).
a68d2ebc 1347 */
878b63ac
HD
1348 if ((ret & VM_FAULT_WRITE) &&
1349 !(vma->vm_flags & VM_WRITE))
deceb6cd 1350 foll_flags &= ~FOLL_WRITE;
83c54070 1351
7f7bbbe5 1352 cond_resched();
1da177e4 1353 }
89f5b7da
LT
1354 if (IS_ERR(page))
1355 return i ? i : PTR_ERR(page);
1da177e4 1356 if (pages) {
08ef4729 1357 pages[i] = page;
03beb076 1358
a6f36be3 1359 flush_anon_page(vma, page, start);
08ef4729 1360 flush_dcache_page(page);
1da177e4
LT
1361 }
1362 if (vmas)
1363 vmas[i] = vma;
1364 i++;
1365 start += PAGE_SIZE;
9d73777e
PZ
1366 nr_pages--;
1367 } while (nr_pages && start < vma->vm_end);
1368 } while (nr_pages);
1da177e4
LT
1369 return i;
1370}
b291f000 1371
d2bf6be8
NP
1372/**
1373 * get_user_pages() - pin user pages in memory
1374 * @tsk: task_struct of target task
1375 * @mm: mm_struct of target mm
1376 * @start: starting user address
9d73777e 1377 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1378 * @write: whether pages will be written to by the caller
1379 * @force: whether to force write access even if user mapping is
1380 * readonly. This will result in the page being COWed even
1381 * in MAP_SHARED mappings. You do not want this.
1382 * @pages: array that receives pointers to the pages pinned.
1383 * Should be at least nr_pages long. Or NULL, if caller
1384 * only intends to ensure the pages are faulted in.
1385 * @vmas: array of pointers to vmas corresponding to each page.
1386 * Or NULL if the caller does not require them.
1387 *
1388 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1389 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1390 * were pinned, returns -errno. Each page returned must be released
1391 * with a put_page() call when it is finished with. vmas will only
1392 * remain valid while mmap_sem is held.
1393 *
1394 * Must be called with mmap_sem held for read or write.
1395 *
1396 * get_user_pages walks a process's page tables and takes a reference to
1397 * each struct page that each user address corresponds to at a given
1398 * instant. That is, it takes the page that would be accessed if a user
1399 * thread accesses the given user virtual address at that instant.
1400 *
1401 * This does not guarantee that the page exists in the user mappings when
1402 * get_user_pages returns, and there may even be a completely different
1403 * page there in some cases (eg. if mmapped pagecache has been invalidated
1404 * and subsequently re faulted). However it does guarantee that the page
1405 * won't be freed completely. And mostly callers simply care that the page
1406 * contains data that was valid *at some point in time*. Typically, an IO
1407 * or similar operation cannot guarantee anything stronger anyway because
1408 * locks can't be held over the syscall boundary.
1409 *
1410 * If write=0, the page must not be written to. If the page is written to,
1411 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1412 * after the page is finished with, and before put_page is called.
1413 *
1414 * get_user_pages is typically used for fewer-copy IO operations, to get a
1415 * handle on the memory by some means other than accesses via the user virtual
1416 * addresses. The pages may be submitted for DMA to devices or accessed via
1417 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1418 * use the correct cache flushing APIs.
1419 *
1420 * See also get_user_pages_fast, for performance critical applications.
1421 */
b291f000 1422int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1423 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1424 struct page **pages, struct vm_area_struct **vmas)
1425{
58fa879e 1426 int flags = FOLL_TOUCH;
b291f000 1427
58fa879e
HD
1428 if (pages)
1429 flags |= FOLL_GET;
b291f000 1430 if (write)
58fa879e 1431 flags |= FOLL_WRITE;
b291f000 1432 if (force)
58fa879e 1433 flags |= FOLL_FORCE;
b291f000 1434
9d73777e 1435 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1436}
1da177e4
LT
1437EXPORT_SYMBOL(get_user_pages);
1438
f3e8fccd
HD
1439/**
1440 * get_dump_page() - pin user page in memory while writing it to core dump
1441 * @addr: user address
1442 *
1443 * Returns struct page pointer of user page pinned for dump,
1444 * to be freed afterwards by page_cache_release() or put_page().
1445 *
1446 * Returns NULL on any kind of failure - a hole must then be inserted into
1447 * the corefile, to preserve alignment with its headers; and also returns
1448 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1449 * allowing a hole to be left in the corefile to save diskspace.
1450 *
1451 * Called without mmap_sem, but after all other threads have been killed.
1452 */
1453#ifdef CONFIG_ELF_CORE
1454struct page *get_dump_page(unsigned long addr)
1455{
1456 struct vm_area_struct *vma;
1457 struct page *page;
1458
1459 if (__get_user_pages(current, current->mm, addr, 1,
58fa879e 1460 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
f3e8fccd 1461 return NULL;
f3e8fccd
HD
1462 flush_cache_page(vma, addr, page_to_pfn(page));
1463 return page;
1464}
1465#endif /* CONFIG_ELF_CORE */
1466
920c7a5d
HH
1467pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1468 spinlock_t **ptl)
c9cfcddf
LT
1469{
1470 pgd_t * pgd = pgd_offset(mm, addr);
1471 pud_t * pud = pud_alloc(mm, pgd, addr);
1472 if (pud) {
49c91fb0 1473 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1474 if (pmd)
1475 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1476 }
1477 return NULL;
1478}
1479
238f58d8
LT
1480/*
1481 * This is the old fallback for page remapping.
1482 *
1483 * For historical reasons, it only allows reserved pages. Only
1484 * old drivers should use this, and they needed to mark their
1485 * pages reserved for the old functions anyway.
1486 */
423bad60
NP
1487static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 struct page *page, pgprot_t prot)
238f58d8 1489{
423bad60 1490 struct mm_struct *mm = vma->vm_mm;
238f58d8 1491 int retval;
c9cfcddf 1492 pte_t *pte;
8a9f3ccd
BS
1493 spinlock_t *ptl;
1494
238f58d8 1495 retval = -EINVAL;
a145dd41 1496 if (PageAnon(page))
5b4e655e 1497 goto out;
238f58d8
LT
1498 retval = -ENOMEM;
1499 flush_dcache_page(page);
c9cfcddf 1500 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1501 if (!pte)
5b4e655e 1502 goto out;
238f58d8
LT
1503 retval = -EBUSY;
1504 if (!pte_none(*pte))
1505 goto out_unlock;
1506
1507 /* Ok, finally just insert the thing.. */
1508 get_page(page);
1509 inc_mm_counter(mm, file_rss);
1510 page_add_file_rmap(page);
1511 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1512
1513 retval = 0;
8a9f3ccd
BS
1514 pte_unmap_unlock(pte, ptl);
1515 return retval;
238f58d8
LT
1516out_unlock:
1517 pte_unmap_unlock(pte, ptl);
1518out:
1519 return retval;
1520}
1521
bfa5bf6d
REB
1522/**
1523 * vm_insert_page - insert single page into user vma
1524 * @vma: user vma to map to
1525 * @addr: target user address of this page
1526 * @page: source kernel page
1527 *
a145dd41
LT
1528 * This allows drivers to insert individual pages they've allocated
1529 * into a user vma.
1530 *
1531 * The page has to be a nice clean _individual_ kernel allocation.
1532 * If you allocate a compound page, you need to have marked it as
1533 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1534 * (see split_page()).
a145dd41
LT
1535 *
1536 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1537 * took an arbitrary page protection parameter. This doesn't allow
1538 * that. Your vma protection will have to be set up correctly, which
1539 * means that if you want a shared writable mapping, you'd better
1540 * ask for a shared writable mapping!
1541 *
1542 * The page does not need to be reserved.
1543 */
423bad60
NP
1544int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545 struct page *page)
a145dd41
LT
1546{
1547 if (addr < vma->vm_start || addr >= vma->vm_end)
1548 return -EFAULT;
1549 if (!page_count(page))
1550 return -EINVAL;
4d7672b4 1551 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1552 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1553}
e3c3374f 1554EXPORT_SYMBOL(vm_insert_page);
a145dd41 1555
423bad60
NP
1556static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557 unsigned long pfn, pgprot_t prot)
1558{
1559 struct mm_struct *mm = vma->vm_mm;
1560 int retval;
1561 pte_t *pte, entry;
1562 spinlock_t *ptl;
1563
1564 retval = -ENOMEM;
1565 pte = get_locked_pte(mm, addr, &ptl);
1566 if (!pte)
1567 goto out;
1568 retval = -EBUSY;
1569 if (!pte_none(*pte))
1570 goto out_unlock;
1571
1572 /* Ok, finally just insert the thing.. */
1573 entry = pte_mkspecial(pfn_pte(pfn, prot));
1574 set_pte_at(mm, addr, pte, entry);
1575 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1576
1577 retval = 0;
1578out_unlock:
1579 pte_unmap_unlock(pte, ptl);
1580out:
1581 return retval;
1582}
1583
e0dc0d8f
NP
1584/**
1585 * vm_insert_pfn - insert single pfn into user vma
1586 * @vma: user vma to map to
1587 * @addr: target user address of this page
1588 * @pfn: source kernel pfn
1589 *
1590 * Similar to vm_inert_page, this allows drivers to insert individual pages
1591 * they've allocated into a user vma. Same comments apply.
1592 *
1593 * This function should only be called from a vm_ops->fault handler, and
1594 * in that case the handler should return NULL.
0d71d10a
NP
1595 *
1596 * vma cannot be a COW mapping.
1597 *
1598 * As this is called only for pages that do not currently exist, we
1599 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1600 */
1601int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1602 unsigned long pfn)
e0dc0d8f 1603{
2ab64037 1604 int ret;
e4b866ed 1605 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1606 /*
1607 * Technically, architectures with pte_special can avoid all these
1608 * restrictions (same for remap_pfn_range). However we would like
1609 * consistency in testing and feature parity among all, so we should
1610 * try to keep these invariants in place for everybody.
1611 */
b379d790
JH
1612 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614 (VM_PFNMAP|VM_MIXEDMAP));
1615 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1617
423bad60
NP
1618 if (addr < vma->vm_start || addr >= vma->vm_end)
1619 return -EFAULT;
e4b866ed 1620 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1621 return -EINVAL;
1622
e4b866ed 1623 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1624
1625 if (ret)
1626 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1627
1628 return ret;
423bad60
NP
1629}
1630EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1631
423bad60
NP
1632int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1633 unsigned long pfn)
1634{
1635 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1636
423bad60
NP
1637 if (addr < vma->vm_start || addr >= vma->vm_end)
1638 return -EFAULT;
e0dc0d8f 1639
423bad60
NP
1640 /*
1641 * If we don't have pte special, then we have to use the pfn_valid()
1642 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1643 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1644 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1645 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1646 */
1647 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1648 struct page *page;
1649
1650 page = pfn_to_page(pfn);
1651 return insert_page(vma, addr, page, vma->vm_page_prot);
1652 }
1653 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1654}
423bad60 1655EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1656
1da177e4
LT
1657/*
1658 * maps a range of physical memory into the requested pages. the old
1659 * mappings are removed. any references to nonexistent pages results
1660 * in null mappings (currently treated as "copy-on-access")
1661 */
1662static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1663 unsigned long addr, unsigned long end,
1664 unsigned long pfn, pgprot_t prot)
1665{
1666 pte_t *pte;
c74df32c 1667 spinlock_t *ptl;
1da177e4 1668
c74df32c 1669 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1670 if (!pte)
1671 return -ENOMEM;
6606c3e0 1672 arch_enter_lazy_mmu_mode();
1da177e4
LT
1673 do {
1674 BUG_ON(!pte_none(*pte));
7e675137 1675 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1676 pfn++;
1677 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1678 arch_leave_lazy_mmu_mode();
c74df32c 1679 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1680 return 0;
1681}
1682
1683static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1684 unsigned long addr, unsigned long end,
1685 unsigned long pfn, pgprot_t prot)
1686{
1687 pmd_t *pmd;
1688 unsigned long next;
1689
1690 pfn -= addr >> PAGE_SHIFT;
1691 pmd = pmd_alloc(mm, pud, addr);
1692 if (!pmd)
1693 return -ENOMEM;
1694 do {
1695 next = pmd_addr_end(addr, end);
1696 if (remap_pte_range(mm, pmd, addr, next,
1697 pfn + (addr >> PAGE_SHIFT), prot))
1698 return -ENOMEM;
1699 } while (pmd++, addr = next, addr != end);
1700 return 0;
1701}
1702
1703static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1704 unsigned long addr, unsigned long end,
1705 unsigned long pfn, pgprot_t prot)
1706{
1707 pud_t *pud;
1708 unsigned long next;
1709
1710 pfn -= addr >> PAGE_SHIFT;
1711 pud = pud_alloc(mm, pgd, addr);
1712 if (!pud)
1713 return -ENOMEM;
1714 do {
1715 next = pud_addr_end(addr, end);
1716 if (remap_pmd_range(mm, pud, addr, next,
1717 pfn + (addr >> PAGE_SHIFT), prot))
1718 return -ENOMEM;
1719 } while (pud++, addr = next, addr != end);
1720 return 0;
1721}
1722
bfa5bf6d
REB
1723/**
1724 * remap_pfn_range - remap kernel memory to userspace
1725 * @vma: user vma to map to
1726 * @addr: target user address to start at
1727 * @pfn: physical address of kernel memory
1728 * @size: size of map area
1729 * @prot: page protection flags for this mapping
1730 *
1731 * Note: this is only safe if the mm semaphore is held when called.
1732 */
1da177e4
LT
1733int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1734 unsigned long pfn, unsigned long size, pgprot_t prot)
1735{
1736 pgd_t *pgd;
1737 unsigned long next;
2d15cab8 1738 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1739 struct mm_struct *mm = vma->vm_mm;
1740 int err;
1741
1742 /*
1743 * Physically remapped pages are special. Tell the
1744 * rest of the world about it:
1745 * VM_IO tells people not to look at these pages
1746 * (accesses can have side effects).
0b14c179
HD
1747 * VM_RESERVED is specified all over the place, because
1748 * in 2.4 it kept swapout's vma scan off this vma; but
1749 * in 2.6 the LRU scan won't even find its pages, so this
1750 * flag means no more than count its pages in reserved_vm,
1751 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1752 * VM_PFNMAP tells the core MM that the base pages are just
1753 * raw PFN mappings, and do not have a "struct page" associated
1754 * with them.
fb155c16
LT
1755 *
1756 * There's a horrible special case to handle copy-on-write
1757 * behaviour that some programs depend on. We mark the "original"
1758 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1759 */
4bb9c5c0 1760 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1761 vma->vm_pgoff = pfn;
895791da 1762 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1763 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1764 return -EINVAL;
fb155c16 1765
6aab341e 1766 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1767
e4b866ed 1768 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1769 if (err) {
1770 /*
1771 * To indicate that track_pfn related cleanup is not
1772 * needed from higher level routine calling unmap_vmas
1773 */
1774 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1775 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1776 return -EINVAL;
a3670613 1777 }
2ab64037 1778
1da177e4
LT
1779 BUG_ON(addr >= end);
1780 pfn -= addr >> PAGE_SHIFT;
1781 pgd = pgd_offset(mm, addr);
1782 flush_cache_range(vma, addr, end);
1da177e4
LT
1783 do {
1784 next = pgd_addr_end(addr, end);
1785 err = remap_pud_range(mm, pgd, addr, next,
1786 pfn + (addr >> PAGE_SHIFT), prot);
1787 if (err)
1788 break;
1789 } while (pgd++, addr = next, addr != end);
2ab64037 1790
1791 if (err)
1792 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1793
1da177e4
LT
1794 return err;
1795}
1796EXPORT_SYMBOL(remap_pfn_range);
1797
aee16b3c
JF
1798static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799 unsigned long addr, unsigned long end,
1800 pte_fn_t fn, void *data)
1801{
1802 pte_t *pte;
1803 int err;
2f569afd 1804 pgtable_t token;
94909914 1805 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1806
1807 pte = (mm == &init_mm) ?
1808 pte_alloc_kernel(pmd, addr) :
1809 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810 if (!pte)
1811 return -ENOMEM;
1812
1813 BUG_ON(pmd_huge(*pmd));
1814
38e0edb1
JF
1815 arch_enter_lazy_mmu_mode();
1816
2f569afd 1817 token = pmd_pgtable(*pmd);
aee16b3c
JF
1818
1819 do {
2f569afd 1820 err = fn(pte, token, addr, data);
aee16b3c
JF
1821 if (err)
1822 break;
1823 } while (pte++, addr += PAGE_SIZE, addr != end);
1824
38e0edb1
JF
1825 arch_leave_lazy_mmu_mode();
1826
aee16b3c
JF
1827 if (mm != &init_mm)
1828 pte_unmap_unlock(pte-1, ptl);
1829 return err;
1830}
1831
1832static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833 unsigned long addr, unsigned long end,
1834 pte_fn_t fn, void *data)
1835{
1836 pmd_t *pmd;
1837 unsigned long next;
1838 int err;
1839
ceb86879
AK
1840 BUG_ON(pud_huge(*pud));
1841
aee16b3c
JF
1842 pmd = pmd_alloc(mm, pud, addr);
1843 if (!pmd)
1844 return -ENOMEM;
1845 do {
1846 next = pmd_addr_end(addr, end);
1847 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848 if (err)
1849 break;
1850 } while (pmd++, addr = next, addr != end);
1851 return err;
1852}
1853
1854static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855 unsigned long addr, unsigned long end,
1856 pte_fn_t fn, void *data)
1857{
1858 pud_t *pud;
1859 unsigned long next;
1860 int err;
1861
1862 pud = pud_alloc(mm, pgd, addr);
1863 if (!pud)
1864 return -ENOMEM;
1865 do {
1866 next = pud_addr_end(addr, end);
1867 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868 if (err)
1869 break;
1870 } while (pud++, addr = next, addr != end);
1871 return err;
1872}
1873
1874/*
1875 * Scan a region of virtual memory, filling in page tables as necessary
1876 * and calling a provided function on each leaf page table.
1877 */
1878int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879 unsigned long size, pte_fn_t fn, void *data)
1880{
1881 pgd_t *pgd;
1882 unsigned long next;
cddb8a5c 1883 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1884 int err;
1885
1886 BUG_ON(addr >= end);
cddb8a5c 1887 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1888 pgd = pgd_offset(mm, addr);
1889 do {
1890 next = pgd_addr_end(addr, end);
1891 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892 if (err)
1893 break;
1894 } while (pgd++, addr = next, addr != end);
cddb8a5c 1895 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1896 return err;
1897}
1898EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
8f4e2101
HD
1900/*
1901 * handle_pte_fault chooses page fault handler according to an entry
1902 * which was read non-atomically. Before making any commitment, on
1903 * those architectures or configurations (e.g. i386 with PAE) which
1904 * might give a mix of unmatched parts, do_swap_page and do_file_page
1905 * must check under lock before unmapping the pte and proceeding
1906 * (but do_wp_page is only called after already making such a check;
1907 * and do_anonymous_page and do_no_page can safely check later on).
1908 */
4c21e2f2 1909static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1910 pte_t *page_table, pte_t orig_pte)
1911{
1912 int same = 1;
1913#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1914 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1915 spinlock_t *ptl = pte_lockptr(mm, pmd);
1916 spin_lock(ptl);
8f4e2101 1917 same = pte_same(*page_table, orig_pte);
4c21e2f2 1918 spin_unlock(ptl);
8f4e2101
HD
1919 }
1920#endif
1921 pte_unmap(page_table);
1922 return same;
1923}
1924
1da177e4
LT
1925/*
1926 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1927 * servicing faults for write access. In the normal case, do always want
1928 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1929 * that do not have writing enabled, when used by access_process_vm.
1930 */
1931static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1932{
1933 if (likely(vma->vm_flags & VM_WRITE))
1934 pte = pte_mkwrite(pte);
1935 return pte;
1936}
1937
9de455b2 1938static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1939{
1940 /*
1941 * If the source page was a PFN mapping, we don't have
1942 * a "struct page" for it. We do a best-effort copy by
1943 * just copying from the original user address. If that
1944 * fails, we just zero-fill it. Live with it.
1945 */
1946 if (unlikely(!src)) {
1947 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1948 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1949
1950 /*
1951 * This really shouldn't fail, because the page is there
1952 * in the page tables. But it might just be unreadable,
1953 * in which case we just give up and fill the result with
1954 * zeroes.
1955 */
1956 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1957 memset(kaddr, 0, PAGE_SIZE);
1958 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1959 flush_dcache_page(dst);
0ed361de
NP
1960 } else
1961 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1962}
1963
1da177e4
LT
1964/*
1965 * This routine handles present pages, when users try to write
1966 * to a shared page. It is done by copying the page to a new address
1967 * and decrementing the shared-page counter for the old page.
1968 *
1da177e4
LT
1969 * Note that this routine assumes that the protection checks have been
1970 * done by the caller (the low-level page fault routine in most cases).
1971 * Thus we can safely just mark it writable once we've done any necessary
1972 * COW.
1973 *
1974 * We also mark the page dirty at this point even though the page will
1975 * change only once the write actually happens. This avoids a few races,
1976 * and potentially makes it more efficient.
1977 *
8f4e2101
HD
1978 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1979 * but allow concurrent faults), with pte both mapped and locked.
1980 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1981 */
65500d23
HD
1982static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1983 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1984 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1985{
e5bbe4df 1986 struct page *old_page, *new_page;
1da177e4 1987 pte_t entry;
83c54070 1988 int reuse = 0, ret = 0;
a200ee18 1989 int page_mkwrite = 0;
d08b3851 1990 struct page *dirty_page = NULL;
1da177e4 1991
6aab341e 1992 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1993 if (!old_page) {
1994 /*
1995 * VM_MIXEDMAP !pfn_valid() case
1996 *
1997 * We should not cow pages in a shared writeable mapping.
1998 * Just mark the pages writable as we can't do any dirty
1999 * accounting on raw pfn maps.
2000 */
2001 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2002 (VM_WRITE|VM_SHARED))
2003 goto reuse;
6aab341e 2004 goto gotten;
251b97f5 2005 }
1da177e4 2006
d08b3851 2007 /*
ee6a6457
PZ
2008 * Take out anonymous pages first, anonymous shared vmas are
2009 * not dirty accountable.
d08b3851 2010 */
9a840895 2011 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2012 if (!trylock_page(old_page)) {
2013 page_cache_get(old_page);
2014 pte_unmap_unlock(page_table, ptl);
2015 lock_page(old_page);
2016 page_table = pte_offset_map_lock(mm, pmd, address,
2017 &ptl);
2018 if (!pte_same(*page_table, orig_pte)) {
2019 unlock_page(old_page);
2020 page_cache_release(old_page);
2021 goto unlock;
2022 }
2023 page_cache_release(old_page);
ee6a6457 2024 }
7b1fe597 2025 reuse = reuse_swap_page(old_page);
ab967d86 2026 unlock_page(old_page);
ee6a6457 2027 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2028 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2029 /*
2030 * Only catch write-faults on shared writable pages,
2031 * read-only shared pages can get COWed by
2032 * get_user_pages(.write=1, .force=1).
2033 */
9637a5ef 2034 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2035 struct vm_fault vmf;
2036 int tmp;
2037
2038 vmf.virtual_address = (void __user *)(address &
2039 PAGE_MASK);
2040 vmf.pgoff = old_page->index;
2041 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2042 vmf.page = old_page;
2043
9637a5ef
DH
2044 /*
2045 * Notify the address space that the page is about to
2046 * become writable so that it can prohibit this or wait
2047 * for the page to get into an appropriate state.
2048 *
2049 * We do this without the lock held, so that it can
2050 * sleep if it needs to.
2051 */
2052 page_cache_get(old_page);
2053 pte_unmap_unlock(page_table, ptl);
2054
c2ec175c
NP
2055 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2056 if (unlikely(tmp &
2057 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2058 ret = tmp;
9637a5ef 2059 goto unwritable_page;
c2ec175c 2060 }
b827e496
NP
2061 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2062 lock_page(old_page);
2063 if (!old_page->mapping) {
2064 ret = 0; /* retry the fault */
2065 unlock_page(old_page);
2066 goto unwritable_page;
2067 }
2068 } else
2069 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2070
9637a5ef
DH
2071 /*
2072 * Since we dropped the lock we need to revalidate
2073 * the PTE as someone else may have changed it. If
2074 * they did, we just return, as we can count on the
2075 * MMU to tell us if they didn't also make it writable.
2076 */
2077 page_table = pte_offset_map_lock(mm, pmd, address,
2078 &ptl);
b827e496
NP
2079 if (!pte_same(*page_table, orig_pte)) {
2080 unlock_page(old_page);
2081 page_cache_release(old_page);
9637a5ef 2082 goto unlock;
b827e496 2083 }
a200ee18
PZ
2084
2085 page_mkwrite = 1;
1da177e4 2086 }
d08b3851
PZ
2087 dirty_page = old_page;
2088 get_page(dirty_page);
9637a5ef 2089 reuse = 1;
9637a5ef
DH
2090 }
2091
2092 if (reuse) {
251b97f5 2093reuse:
9637a5ef
DH
2094 flush_cache_page(vma, address, pte_pfn(orig_pte));
2095 entry = pte_mkyoung(orig_pte);
2096 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2097 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 2098 update_mmu_cache(vma, address, entry);
9637a5ef
DH
2099 ret |= VM_FAULT_WRITE;
2100 goto unlock;
1da177e4 2101 }
1da177e4
LT
2102
2103 /*
2104 * Ok, we need to copy. Oh, well..
2105 */
b5810039 2106 page_cache_get(old_page);
920fc356 2107gotten:
8f4e2101 2108 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2109
2110 if (unlikely(anon_vma_prepare(vma)))
65500d23 2111 goto oom;
a13ea5b7 2112
62eede62 2113 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2114 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2115 if (!new_page)
2116 goto oom;
2117 } else {
2118 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2119 if (!new_page)
2120 goto oom;
2121 cow_user_page(new_page, old_page, address, vma);
2122 }
2123 __SetPageUptodate(new_page);
2124
b291f000
NP
2125 /*
2126 * Don't let another task, with possibly unlocked vma,
2127 * keep the mlocked page.
2128 */
ab92661d 2129 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2130 lock_page(old_page); /* for LRU manipulation */
2131 clear_page_mlock(old_page);
2132 unlock_page(old_page);
2133 }
65500d23 2134
2c26fdd7 2135 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2136 goto oom_free_new;
2137
1da177e4
LT
2138 /*
2139 * Re-check the pte - we dropped the lock
2140 */
8f4e2101 2141 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2142 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2143 if (old_page) {
920fc356
HD
2144 if (!PageAnon(old_page)) {
2145 dec_mm_counter(mm, file_rss);
2146 inc_mm_counter(mm, anon_rss);
2147 }
2148 } else
4294621f 2149 inc_mm_counter(mm, anon_rss);
eca35133 2150 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2151 entry = mk_pte(new_page, vma->vm_page_prot);
2152 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2153 /*
2154 * Clear the pte entry and flush it first, before updating the
2155 * pte with the new entry. This will avoid a race condition
2156 * seen in the presence of one thread doing SMC and another
2157 * thread doing COW.
2158 */
828502d3 2159 ptep_clear_flush(vma, address, page_table);
9617d95e 2160 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2161 /*
2162 * We call the notify macro here because, when using secondary
2163 * mmu page tables (such as kvm shadow page tables), we want the
2164 * new page to be mapped directly into the secondary page table.
2165 */
2166 set_pte_at_notify(mm, address, page_table, entry);
64d6519d 2167 update_mmu_cache(vma, address, entry);
945754a1
NP
2168 if (old_page) {
2169 /*
2170 * Only after switching the pte to the new page may
2171 * we remove the mapcount here. Otherwise another
2172 * process may come and find the rmap count decremented
2173 * before the pte is switched to the new page, and
2174 * "reuse" the old page writing into it while our pte
2175 * here still points into it and can be read by other
2176 * threads.
2177 *
2178 * The critical issue is to order this
2179 * page_remove_rmap with the ptp_clear_flush above.
2180 * Those stores are ordered by (if nothing else,)
2181 * the barrier present in the atomic_add_negative
2182 * in page_remove_rmap.
2183 *
2184 * Then the TLB flush in ptep_clear_flush ensures that
2185 * no process can access the old page before the
2186 * decremented mapcount is visible. And the old page
2187 * cannot be reused until after the decremented
2188 * mapcount is visible. So transitively, TLBs to
2189 * old page will be flushed before it can be reused.
2190 */
edc315fd 2191 page_remove_rmap(old_page);
945754a1
NP
2192 }
2193
1da177e4
LT
2194 /* Free the old page.. */
2195 new_page = old_page;
f33ea7f4 2196 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2197 } else
2198 mem_cgroup_uncharge_page(new_page);
2199
920fc356
HD
2200 if (new_page)
2201 page_cache_release(new_page);
2202 if (old_page)
2203 page_cache_release(old_page);
65500d23 2204unlock:
8f4e2101 2205 pte_unmap_unlock(page_table, ptl);
d08b3851 2206 if (dirty_page) {
79352894
NP
2207 /*
2208 * Yes, Virginia, this is actually required to prevent a race
2209 * with clear_page_dirty_for_io() from clearing the page dirty
2210 * bit after it clear all dirty ptes, but before a racing
2211 * do_wp_page installs a dirty pte.
2212 *
2213 * do_no_page is protected similarly.
2214 */
b827e496
NP
2215 if (!page_mkwrite) {
2216 wait_on_page_locked(dirty_page);
2217 set_page_dirty_balance(dirty_page, page_mkwrite);
2218 }
d08b3851 2219 put_page(dirty_page);
b827e496
NP
2220 if (page_mkwrite) {
2221 struct address_space *mapping = dirty_page->mapping;
2222
2223 set_page_dirty(dirty_page);
2224 unlock_page(dirty_page);
2225 page_cache_release(dirty_page);
2226 if (mapping) {
2227 /*
2228 * Some device drivers do not set page.mapping
2229 * but still dirty their pages
2230 */
2231 balance_dirty_pages_ratelimited(mapping);
2232 }
2233 }
2234
2235 /* file_update_time outside page_lock */
2236 if (vma->vm_file)
2237 file_update_time(vma->vm_file);
d08b3851 2238 }
f33ea7f4 2239 return ret;
8a9f3ccd 2240oom_free_new:
6dbf6d3b 2241 page_cache_release(new_page);
65500d23 2242oom:
b827e496
NP
2243 if (old_page) {
2244 if (page_mkwrite) {
2245 unlock_page(old_page);
2246 page_cache_release(old_page);
2247 }
920fc356 2248 page_cache_release(old_page);
b827e496 2249 }
1da177e4 2250 return VM_FAULT_OOM;
9637a5ef
DH
2251
2252unwritable_page:
2253 page_cache_release(old_page);
c2ec175c 2254 return ret;
1da177e4
LT
2255}
2256
2257/*
2258 * Helper functions for unmap_mapping_range().
2259 *
2260 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2261 *
2262 * We have to restart searching the prio_tree whenever we drop the lock,
2263 * since the iterator is only valid while the lock is held, and anyway
2264 * a later vma might be split and reinserted earlier while lock dropped.
2265 *
2266 * The list of nonlinear vmas could be handled more efficiently, using
2267 * a placeholder, but handle it in the same way until a need is shown.
2268 * It is important to search the prio_tree before nonlinear list: a vma
2269 * may become nonlinear and be shifted from prio_tree to nonlinear list
2270 * while the lock is dropped; but never shifted from list to prio_tree.
2271 *
2272 * In order to make forward progress despite restarting the search,
2273 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2274 * quickly skip it next time around. Since the prio_tree search only
2275 * shows us those vmas affected by unmapping the range in question, we
2276 * can't efficiently keep all vmas in step with mapping->truncate_count:
2277 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2278 * mapping->truncate_count and vma->vm_truncate_count are protected by
2279 * i_mmap_lock.
2280 *
2281 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2282 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2283 * and restart from that address when we reach that vma again. It might
2284 * have been split or merged, shrunk or extended, but never shifted: so
2285 * restart_addr remains valid so long as it remains in the vma's range.
2286 * unmap_mapping_range forces truncate_count to leap over page-aligned
2287 * values so we can save vma's restart_addr in its truncate_count field.
2288 */
2289#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2290
2291static void reset_vma_truncate_counts(struct address_space *mapping)
2292{
2293 struct vm_area_struct *vma;
2294 struct prio_tree_iter iter;
2295
2296 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2297 vma->vm_truncate_count = 0;
2298 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2299 vma->vm_truncate_count = 0;
2300}
2301
2302static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2303 unsigned long start_addr, unsigned long end_addr,
2304 struct zap_details *details)
2305{
2306 unsigned long restart_addr;
2307 int need_break;
2308
d00806b1
NP
2309 /*
2310 * files that support invalidating or truncating portions of the
d0217ac0 2311 * file from under mmaped areas must have their ->fault function
83c54070
NP
2312 * return a locked page (and set VM_FAULT_LOCKED in the return).
2313 * This provides synchronisation against concurrent unmapping here.
d00806b1 2314 */
d00806b1 2315
1da177e4
LT
2316again:
2317 restart_addr = vma->vm_truncate_count;
2318 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2319 start_addr = restart_addr;
2320 if (start_addr >= end_addr) {
2321 /* Top of vma has been split off since last time */
2322 vma->vm_truncate_count = details->truncate_count;
2323 return 0;
2324 }
2325 }
2326
ee39b37b
HD
2327 restart_addr = zap_page_range(vma, start_addr,
2328 end_addr - start_addr, details);
95c354fe 2329 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2330
ee39b37b 2331 if (restart_addr >= end_addr) {
1da177e4
LT
2332 /* We have now completed this vma: mark it so */
2333 vma->vm_truncate_count = details->truncate_count;
2334 if (!need_break)
2335 return 0;
2336 } else {
2337 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2338 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2339 if (!need_break)
2340 goto again;
2341 }
2342
2343 spin_unlock(details->i_mmap_lock);
2344 cond_resched();
2345 spin_lock(details->i_mmap_lock);
2346 return -EINTR;
2347}
2348
2349static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2350 struct zap_details *details)
2351{
2352 struct vm_area_struct *vma;
2353 struct prio_tree_iter iter;
2354 pgoff_t vba, vea, zba, zea;
2355
2356restart:
2357 vma_prio_tree_foreach(vma, &iter, root,
2358 details->first_index, details->last_index) {
2359 /* Skip quickly over those we have already dealt with */
2360 if (vma->vm_truncate_count == details->truncate_count)
2361 continue;
2362
2363 vba = vma->vm_pgoff;
2364 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2365 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2366 zba = details->first_index;
2367 if (zba < vba)
2368 zba = vba;
2369 zea = details->last_index;
2370 if (zea > vea)
2371 zea = vea;
2372
2373 if (unmap_mapping_range_vma(vma,
2374 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2375 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2376 details) < 0)
2377 goto restart;
2378 }
2379}
2380
2381static inline void unmap_mapping_range_list(struct list_head *head,
2382 struct zap_details *details)
2383{
2384 struct vm_area_struct *vma;
2385
2386 /*
2387 * In nonlinear VMAs there is no correspondence between virtual address
2388 * offset and file offset. So we must perform an exhaustive search
2389 * across *all* the pages in each nonlinear VMA, not just the pages
2390 * whose virtual address lies outside the file truncation point.
2391 */
2392restart:
2393 list_for_each_entry(vma, head, shared.vm_set.list) {
2394 /* Skip quickly over those we have already dealt with */
2395 if (vma->vm_truncate_count == details->truncate_count)
2396 continue;
2397 details->nonlinear_vma = vma;
2398 if (unmap_mapping_range_vma(vma, vma->vm_start,
2399 vma->vm_end, details) < 0)
2400 goto restart;
2401 }
2402}
2403
2404/**
72fd4a35 2405 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2406 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2407 * @holebegin: byte in first page to unmap, relative to the start of
2408 * the underlying file. This will be rounded down to a PAGE_SIZE
2409 * boundary. Note that this is different from vmtruncate(), which
2410 * must keep the partial page. In contrast, we must get rid of
2411 * partial pages.
2412 * @holelen: size of prospective hole in bytes. This will be rounded
2413 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2414 * end of the file.
2415 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2416 * but 0 when invalidating pagecache, don't throw away private data.
2417 */
2418void unmap_mapping_range(struct address_space *mapping,
2419 loff_t const holebegin, loff_t const holelen, int even_cows)
2420{
2421 struct zap_details details;
2422 pgoff_t hba = holebegin >> PAGE_SHIFT;
2423 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2424
2425 /* Check for overflow. */
2426 if (sizeof(holelen) > sizeof(hlen)) {
2427 long long holeend =
2428 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2429 if (holeend & ~(long long)ULONG_MAX)
2430 hlen = ULONG_MAX - hba + 1;
2431 }
2432
2433 details.check_mapping = even_cows? NULL: mapping;
2434 details.nonlinear_vma = NULL;
2435 details.first_index = hba;
2436 details.last_index = hba + hlen - 1;
2437 if (details.last_index < details.first_index)
2438 details.last_index = ULONG_MAX;
2439 details.i_mmap_lock = &mapping->i_mmap_lock;
2440
2441 spin_lock(&mapping->i_mmap_lock);
2442
d00806b1 2443 /* Protect against endless unmapping loops */
1da177e4 2444 mapping->truncate_count++;
1da177e4
LT
2445 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2446 if (mapping->truncate_count == 0)
2447 reset_vma_truncate_counts(mapping);
2448 mapping->truncate_count++;
2449 }
2450 details.truncate_count = mapping->truncate_count;
2451
2452 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2453 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2454 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2455 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2456 spin_unlock(&mapping->i_mmap_lock);
2457}
2458EXPORT_SYMBOL(unmap_mapping_range);
2459
bfa5bf6d
REB
2460/**
2461 * vmtruncate - unmap mappings "freed" by truncate() syscall
2462 * @inode: inode of the file used
2463 * @offset: file offset to start truncating
1da177e4
LT
2464 *
2465 * NOTE! We have to be ready to update the memory sharing
2466 * between the file and the memory map for a potential last
2467 * incomplete page. Ugly, but necessary.
2468 */
2469int vmtruncate(struct inode * inode, loff_t offset)
2470{
61d5048f
CH
2471 if (inode->i_size < offset) {
2472 unsigned long limit;
2473
2474 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2475 if (limit != RLIM_INFINITY && offset > limit)
2476 goto out_sig;
2477 if (offset > inode->i_sb->s_maxbytes)
2478 goto out_big;
2479 i_size_write(inode, offset);
2480 } else {
2481 struct address_space *mapping = inode->i_mapping;
1da177e4 2482
61d5048f
CH
2483 /*
2484 * truncation of in-use swapfiles is disallowed - it would
2485 * cause subsequent swapout to scribble on the now-freed
2486 * blocks.
2487 */
2488 if (IS_SWAPFILE(inode))
2489 return -ETXTBSY;
2490 i_size_write(inode, offset);
2491
2492 /*
2493 * unmap_mapping_range is called twice, first simply for
2494 * efficiency so that truncate_inode_pages does fewer
2495 * single-page unmaps. However after this first call, and
2496 * before truncate_inode_pages finishes, it is possible for
2497 * private pages to be COWed, which remain after
2498 * truncate_inode_pages finishes, hence the second
2499 * unmap_mapping_range call must be made for correctness.
2500 */
2501 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2502 truncate_inode_pages(mapping, offset);
2503 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2504 }
d00806b1 2505
acfa4380 2506 if (inode->i_op->truncate)
1da177e4
LT
2507 inode->i_op->truncate(inode);
2508 return 0;
61d5048f 2509
1da177e4
LT
2510out_sig:
2511 send_sig(SIGXFSZ, current, 0);
2512out_big:
2513 return -EFBIG;
1da177e4 2514}
1da177e4
LT
2515EXPORT_SYMBOL(vmtruncate);
2516
f6b3ec23
BP
2517int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2518{
2519 struct address_space *mapping = inode->i_mapping;
2520
2521 /*
2522 * If the underlying filesystem is not going to provide
2523 * a way to truncate a range of blocks (punch a hole) -
2524 * we should return failure right now.
2525 */
acfa4380 2526 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2527 return -ENOSYS;
2528
1b1dcc1b 2529 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2530 down_write(&inode->i_alloc_sem);
2531 unmap_mapping_range(mapping, offset, (end - offset), 1);
2532 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2533 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2534 inode->i_op->truncate_range(inode, offset, end);
2535 up_write(&inode->i_alloc_sem);
1b1dcc1b 2536 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2537
2538 return 0;
2539}
f6b3ec23 2540
1da177e4 2541/*
8f4e2101
HD
2542 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543 * but allow concurrent faults), and pte mapped but not yet locked.
2544 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2545 */
65500d23
HD
2546static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2547 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2548 unsigned int flags, pte_t orig_pte)
1da177e4 2549{
8f4e2101 2550 spinlock_t *ptl;
1da177e4 2551 struct page *page;
65500d23 2552 swp_entry_t entry;
1da177e4 2553 pte_t pte;
7a81b88c 2554 struct mem_cgroup *ptr = NULL;
83c54070 2555 int ret = 0;
1da177e4 2556
4c21e2f2 2557 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2558 goto out;
65500d23
HD
2559
2560 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2561 if (is_migration_entry(entry)) {
2562 migration_entry_wait(mm, pmd, address);
2563 goto out;
2564 }
0ff92245 2565 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2566 page = lookup_swap_cache(entry);
2567 if (!page) {
a5c9b696 2568 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2569 page = swapin_readahead(entry,
2570 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2571 if (!page) {
2572 /*
8f4e2101
HD
2573 * Back out if somebody else faulted in this pte
2574 * while we released the pte lock.
1da177e4 2575 */
8f4e2101 2576 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2577 if (likely(pte_same(*page_table, orig_pte)))
2578 ret = VM_FAULT_OOM;
0ff92245 2579 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2580 goto unlock;
1da177e4
LT
2581 }
2582
2583 /* Had to read the page from swap area: Major fault */
2584 ret = VM_FAULT_MAJOR;
f8891e5e 2585 count_vm_event(PGMAJFAULT);
1da177e4
LT
2586 }
2587
073e587e
KH
2588 lock_page(page);
2589 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590
2c26fdd7 2591 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2592 ret = VM_FAULT_OOM;
bc43f75c 2593 goto out_page;
8a9f3ccd
BS
2594 }
2595
1da177e4 2596 /*
8f4e2101 2597 * Back out if somebody else already faulted in this pte.
1da177e4 2598 */
8f4e2101 2599 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2600 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2601 goto out_nomap;
b8107480
KK
2602
2603 if (unlikely(!PageUptodate(page))) {
2604 ret = VM_FAULT_SIGBUS;
2605 goto out_nomap;
1da177e4
LT
2606 }
2607
8c7c6e34
KH
2608 /*
2609 * The page isn't present yet, go ahead with the fault.
2610 *
2611 * Be careful about the sequence of operations here.
2612 * To get its accounting right, reuse_swap_page() must be called
2613 * while the page is counted on swap but not yet in mapcount i.e.
2614 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2615 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2616 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2617 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2618 * in page->private. In this case, a record in swap_cgroup is silently
2619 * discarded at swap_free().
8c7c6e34 2620 */
1da177e4 2621
4294621f 2622 inc_mm_counter(mm, anon_rss);
1da177e4 2623 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2624 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2625 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2626 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2627 }
1da177e4
LT
2628 flush_icache_page(vma, page);
2629 set_pte_at(mm, address, page_table, pte);
2630 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2631 /* It's better to call commit-charge after rmap is established */
2632 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2633
c475a8ab 2634 swap_free(entry);
b291f000 2635 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2636 try_to_free_swap(page);
c475a8ab
HD
2637 unlock_page(page);
2638
30c9f3a9 2639 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2640 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2641 if (ret & VM_FAULT_ERROR)
2642 ret &= VM_FAULT_ERROR;
1da177e4
LT
2643 goto out;
2644 }
2645
2646 /* No need to invalidate - it was non-present before */
2647 update_mmu_cache(vma, address, pte);
65500d23 2648unlock:
8f4e2101 2649 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2650out:
2651 return ret;
b8107480 2652out_nomap:
7a81b88c 2653 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2654 pte_unmap_unlock(page_table, ptl);
bc43f75c 2655out_page:
b8107480
KK
2656 unlock_page(page);
2657 page_cache_release(page);
65500d23 2658 return ret;
1da177e4
LT
2659}
2660
2661/*
8f4e2101
HD
2662 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2663 * but allow concurrent faults), and pte mapped but not yet locked.
2664 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2665 */
65500d23
HD
2666static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2667 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2668 unsigned int flags)
1da177e4 2669{
8f4e2101
HD
2670 struct page *page;
2671 spinlock_t *ptl;
1da177e4 2672 pte_t entry;
1da177e4 2673
62eede62
HD
2674 if (!(flags & FAULT_FLAG_WRITE)) {
2675 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2676 vma->vm_page_prot));
a13ea5b7
HD
2677 ptl = pte_lockptr(mm, pmd);
2678 spin_lock(ptl);
2679 if (!pte_none(*page_table))
2680 goto unlock;
2681 goto setpte;
2682 }
2683
557ed1fa
NP
2684 /* Allocate our own private page. */
2685 pte_unmap(page_table);
8f4e2101 2686
557ed1fa
NP
2687 if (unlikely(anon_vma_prepare(vma)))
2688 goto oom;
2689 page = alloc_zeroed_user_highpage_movable(vma, address);
2690 if (!page)
2691 goto oom;
0ed361de 2692 __SetPageUptodate(page);
8f4e2101 2693
2c26fdd7 2694 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2695 goto oom_free_page;
2696
557ed1fa 2697 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2698 if (vma->vm_flags & VM_WRITE)
2699 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2700
557ed1fa 2701 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2702 if (!pte_none(*page_table))
557ed1fa 2703 goto release;
9ba69294 2704
557ed1fa 2705 inc_mm_counter(mm, anon_rss);
557ed1fa 2706 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2707setpte:
65500d23 2708 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2709
2710 /* No need to invalidate - it was non-present before */
65500d23 2711 update_mmu_cache(vma, address, entry);
65500d23 2712unlock:
8f4e2101 2713 pte_unmap_unlock(page_table, ptl);
83c54070 2714 return 0;
8f4e2101 2715release:
8a9f3ccd 2716 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2717 page_cache_release(page);
2718 goto unlock;
8a9f3ccd 2719oom_free_page:
6dbf6d3b 2720 page_cache_release(page);
65500d23 2721oom:
1da177e4
LT
2722 return VM_FAULT_OOM;
2723}
2724
2725/*
54cb8821 2726 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2727 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2728 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2729 * the next page fault.
1da177e4
LT
2730 *
2731 * As this is called only for pages that do not currently exist, we
2732 * do not need to flush old virtual caches or the TLB.
2733 *
8f4e2101 2734 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2735 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2736 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2737 */
54cb8821 2738static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2739 unsigned long address, pmd_t *pmd,
54cb8821 2740 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2741{
16abfa08 2742 pte_t *page_table;
8f4e2101 2743 spinlock_t *ptl;
d0217ac0 2744 struct page *page;
1da177e4 2745 pte_t entry;
1da177e4 2746 int anon = 0;
5b4e655e 2747 int charged = 0;
d08b3851 2748 struct page *dirty_page = NULL;
d0217ac0
NP
2749 struct vm_fault vmf;
2750 int ret;
a200ee18 2751 int page_mkwrite = 0;
54cb8821 2752
d0217ac0
NP
2753 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2754 vmf.pgoff = pgoff;
2755 vmf.flags = flags;
2756 vmf.page = NULL;
1da177e4 2757
3c18ddd1
NP
2758 ret = vma->vm_ops->fault(vma, &vmf);
2759 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2760 return ret;
1da177e4 2761
d00806b1 2762 /*
d0217ac0 2763 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2764 * locked.
2765 */
83c54070 2766 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2767 lock_page(vmf.page);
54cb8821 2768 else
d0217ac0 2769 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2770
1da177e4
LT
2771 /*
2772 * Should we do an early C-O-W break?
2773 */
d0217ac0 2774 page = vmf.page;
54cb8821 2775 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2776 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2777 anon = 1;
d00806b1 2778 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2779 ret = VM_FAULT_OOM;
54cb8821 2780 goto out;
d00806b1 2781 }
83c54070
NP
2782 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2783 vma, address);
d00806b1 2784 if (!page) {
d0217ac0 2785 ret = VM_FAULT_OOM;
54cb8821 2786 goto out;
d00806b1 2787 }
2c26fdd7 2788 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2789 ret = VM_FAULT_OOM;
2790 page_cache_release(page);
2791 goto out;
2792 }
2793 charged = 1;
b291f000
NP
2794 /*
2795 * Don't let another task, with possibly unlocked vma,
2796 * keep the mlocked page.
2797 */
2798 if (vma->vm_flags & VM_LOCKED)
2799 clear_page_mlock(vmf.page);
d0217ac0 2800 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2801 __SetPageUptodate(page);
9637a5ef 2802 } else {
54cb8821
NP
2803 /*
2804 * If the page will be shareable, see if the backing
9637a5ef 2805 * address space wants to know that the page is about
54cb8821
NP
2806 * to become writable
2807 */
69676147 2808 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2809 int tmp;
2810
69676147 2811 unlock_page(page);
b827e496 2812 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2813 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2814 if (unlikely(tmp &
2815 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2816 ret = tmp;
b827e496 2817 goto unwritable_page;
d0217ac0 2818 }
b827e496
NP
2819 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2820 lock_page(page);
2821 if (!page->mapping) {
2822 ret = 0; /* retry the fault */
2823 unlock_page(page);
2824 goto unwritable_page;
2825 }
2826 } else
2827 VM_BUG_ON(!PageLocked(page));
a200ee18 2828 page_mkwrite = 1;
9637a5ef
DH
2829 }
2830 }
54cb8821 2831
1da177e4
LT
2832 }
2833
8f4e2101 2834 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2835
2836 /*
2837 * This silly early PAGE_DIRTY setting removes a race
2838 * due to the bad i386 page protection. But it's valid
2839 * for other architectures too.
2840 *
30c9f3a9 2841 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2842 * an exclusive copy of the page, or this is a shared mapping,
2843 * so we can make it writable and dirty to avoid having to
2844 * handle that later.
2845 */
2846 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2847 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2848 flush_icache_page(vma, page);
2849 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2850 if (flags & FAULT_FLAG_WRITE)
1da177e4 2851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2852 if (anon) {
64d6519d 2853 inc_mm_counter(mm, anon_rss);
64d6519d 2854 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2855 } else {
4294621f 2856 inc_mm_counter(mm, file_rss);
d00806b1 2857 page_add_file_rmap(page);
54cb8821 2858 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2859 dirty_page = page;
d08b3851
PZ
2860 get_page(dirty_page);
2861 }
4294621f 2862 }
64d6519d 2863 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2864
2865 /* no need to invalidate: a not-present page won't be cached */
2866 update_mmu_cache(vma, address, entry);
1da177e4 2867 } else {
5b4e655e
KH
2868 if (charged)
2869 mem_cgroup_uncharge_page(page);
d00806b1
NP
2870 if (anon)
2871 page_cache_release(page);
2872 else
54cb8821 2873 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2874 }
2875
8f4e2101 2876 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2877
2878out:
b827e496
NP
2879 if (dirty_page) {
2880 struct address_space *mapping = page->mapping;
8f7b3d15 2881
b827e496
NP
2882 if (set_page_dirty(dirty_page))
2883 page_mkwrite = 1;
2884 unlock_page(dirty_page);
d08b3851 2885 put_page(dirty_page);
b827e496
NP
2886 if (page_mkwrite && mapping) {
2887 /*
2888 * Some device drivers do not set page.mapping but still
2889 * dirty their pages
2890 */
2891 balance_dirty_pages_ratelimited(mapping);
2892 }
2893
2894 /* file_update_time outside page_lock */
2895 if (vma->vm_file)
2896 file_update_time(vma->vm_file);
2897 } else {
2898 unlock_page(vmf.page);
2899 if (anon)
2900 page_cache_release(vmf.page);
d08b3851 2901 }
d00806b1 2902
83c54070 2903 return ret;
b827e496
NP
2904
2905unwritable_page:
2906 page_cache_release(page);
2907 return ret;
54cb8821 2908}
d00806b1 2909
54cb8821
NP
2910static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2911 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2912 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2913{
2914 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2915 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2916
16abfa08
HD
2917 pte_unmap(page_table);
2918 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2919}
2920
1da177e4
LT
2921/*
2922 * Fault of a previously existing named mapping. Repopulate the pte
2923 * from the encoded file_pte if possible. This enables swappable
2924 * nonlinear vmas.
8f4e2101
HD
2925 *
2926 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2927 * but allow concurrent faults), and pte mapped but not yet locked.
2928 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2929 */
d0217ac0 2930static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 2931 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2932 unsigned int flags, pte_t orig_pte)
1da177e4 2933{
65500d23 2934 pgoff_t pgoff;
1da177e4 2935
30c9f3a9
LT
2936 flags |= FAULT_FLAG_NONLINEAR;
2937
4c21e2f2 2938 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2939 return 0;
1da177e4 2940
2509ef26 2941 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2942 /*
2943 * Page table corrupted: show pte and kill process.
2944 */
3dc14741 2945 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2946 return VM_FAULT_OOM;
2947 }
65500d23
HD
2948
2949 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2950 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2951}
2952
2953/*
2954 * These routines also need to handle stuff like marking pages dirty
2955 * and/or accessed for architectures that don't do it in hardware (most
2956 * RISC architectures). The early dirtying is also good on the i386.
2957 *
2958 * There is also a hook called "update_mmu_cache()" that architectures
2959 * with external mmu caches can use to update those (ie the Sparc or
2960 * PowerPC hashed page tables that act as extended TLBs).
2961 *
c74df32c
HD
2962 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2963 * but allow concurrent faults), and pte mapped but not yet locked.
2964 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2965 */
2966static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 2967 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 2968 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
2969{
2970 pte_t entry;
8f4e2101 2971 spinlock_t *ptl;
1da177e4 2972
8dab5241 2973 entry = *pte;
1da177e4 2974 if (!pte_present(entry)) {
65500d23 2975 if (pte_none(entry)) {
f4b81804 2976 if (vma->vm_ops) {
3c18ddd1 2977 if (likely(vma->vm_ops->fault))
54cb8821 2978 return do_linear_fault(mm, vma, address,
30c9f3a9 2979 pte, pmd, flags, entry);
f4b81804
JS
2980 }
2981 return do_anonymous_page(mm, vma, address,
30c9f3a9 2982 pte, pmd, flags);
65500d23 2983 }
1da177e4 2984 if (pte_file(entry))
d0217ac0 2985 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 2986 pte, pmd, flags, entry);
65500d23 2987 return do_swap_page(mm, vma, address,
30c9f3a9 2988 pte, pmd, flags, entry);
1da177e4
LT
2989 }
2990
4c21e2f2 2991 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2992 spin_lock(ptl);
2993 if (unlikely(!pte_same(*pte, entry)))
2994 goto unlock;
30c9f3a9 2995 if (flags & FAULT_FLAG_WRITE) {
1da177e4 2996 if (!pte_write(entry))
8f4e2101
HD
2997 return do_wp_page(mm, vma, address,
2998 pte, pmd, ptl, entry);
1da177e4
LT
2999 entry = pte_mkdirty(entry);
3000 }
3001 entry = pte_mkyoung(entry);
30c9f3a9 3002 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
1a44e149 3003 update_mmu_cache(vma, address, entry);
1a44e149
AA
3004 } else {
3005 /*
3006 * This is needed only for protection faults but the arch code
3007 * is not yet telling us if this is a protection fault or not.
3008 * This still avoids useless tlb flushes for .text page faults
3009 * with threads.
3010 */
30c9f3a9 3011 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3012 flush_tlb_page(vma, address);
3013 }
8f4e2101
HD
3014unlock:
3015 pte_unmap_unlock(pte, ptl);
83c54070 3016 return 0;
1da177e4
LT
3017}
3018
3019/*
3020 * By the time we get here, we already hold the mm semaphore
3021 */
83c54070 3022int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3023 unsigned long address, unsigned int flags)
1da177e4
LT
3024{
3025 pgd_t *pgd;
3026 pud_t *pud;
3027 pmd_t *pmd;
3028 pte_t *pte;
3029
3030 __set_current_state(TASK_RUNNING);
3031
f8891e5e 3032 count_vm_event(PGFAULT);
1da177e4 3033
ac9b9c66 3034 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3035 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3036
1da177e4 3037 pgd = pgd_offset(mm, address);
1da177e4
LT
3038 pud = pud_alloc(mm, pgd, address);
3039 if (!pud)
c74df32c 3040 return VM_FAULT_OOM;
1da177e4
LT
3041 pmd = pmd_alloc(mm, pud, address);
3042 if (!pmd)
c74df32c 3043 return VM_FAULT_OOM;
1da177e4
LT
3044 pte = pte_alloc_map(mm, pmd, address);
3045 if (!pte)
c74df32c 3046 return VM_FAULT_OOM;
1da177e4 3047
30c9f3a9 3048 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3049}
3050
3051#ifndef __PAGETABLE_PUD_FOLDED
3052/*
3053 * Allocate page upper directory.
872fec16 3054 * We've already handled the fast-path in-line.
1da177e4 3055 */
1bb3630e 3056int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3057{
c74df32c
HD
3058 pud_t *new = pud_alloc_one(mm, address);
3059 if (!new)
1bb3630e 3060 return -ENOMEM;
1da177e4 3061
362a61ad
NP
3062 smp_wmb(); /* See comment in __pte_alloc */
3063
872fec16 3064 spin_lock(&mm->page_table_lock);
1bb3630e 3065 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3066 pud_free(mm, new);
1bb3630e
HD
3067 else
3068 pgd_populate(mm, pgd, new);
c74df32c 3069 spin_unlock(&mm->page_table_lock);
1bb3630e 3070 return 0;
1da177e4
LT
3071}
3072#endif /* __PAGETABLE_PUD_FOLDED */
3073
3074#ifndef __PAGETABLE_PMD_FOLDED
3075/*
3076 * Allocate page middle directory.
872fec16 3077 * We've already handled the fast-path in-line.
1da177e4 3078 */
1bb3630e 3079int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3080{
c74df32c
HD
3081 pmd_t *new = pmd_alloc_one(mm, address);
3082 if (!new)
1bb3630e 3083 return -ENOMEM;
1da177e4 3084
362a61ad
NP
3085 smp_wmb(); /* See comment in __pte_alloc */
3086
872fec16 3087 spin_lock(&mm->page_table_lock);
1da177e4 3088#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3089 if (pud_present(*pud)) /* Another has populated it */
5e541973 3090 pmd_free(mm, new);
1bb3630e
HD
3091 else
3092 pud_populate(mm, pud, new);
1da177e4 3093#else
1bb3630e 3094 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3095 pmd_free(mm, new);
1bb3630e
HD
3096 else
3097 pgd_populate(mm, pud, new);
1da177e4 3098#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3099 spin_unlock(&mm->page_table_lock);
1bb3630e 3100 return 0;
e0f39591 3101}
1da177e4
LT
3102#endif /* __PAGETABLE_PMD_FOLDED */
3103
3104int make_pages_present(unsigned long addr, unsigned long end)
3105{
3106 int ret, len, write;
3107 struct vm_area_struct * vma;
3108
3109 vma = find_vma(current->mm, addr);
3110 if (!vma)
a477097d 3111 return -ENOMEM;
1da177e4 3112 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3113 BUG_ON(addr >= end);
3114 BUG_ON(end > vma->vm_end);
68e116a3 3115 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3116 ret = get_user_pages(current, current->mm, addr,
3117 len, write, 0, NULL, NULL);
c11d69d8 3118 if (ret < 0)
1da177e4 3119 return ret;
9978ad58 3120 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3121}
3122
1da177e4
LT
3123#if !defined(__HAVE_ARCH_GATE_AREA)
3124
3125#if defined(AT_SYSINFO_EHDR)
5ce7852c 3126static struct vm_area_struct gate_vma;
1da177e4
LT
3127
3128static int __init gate_vma_init(void)
3129{
3130 gate_vma.vm_mm = NULL;
3131 gate_vma.vm_start = FIXADDR_USER_START;
3132 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3133 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3134 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3135 /*
3136 * Make sure the vDSO gets into every core dump.
3137 * Dumping its contents makes post-mortem fully interpretable later
3138 * without matching up the same kernel and hardware config to see
3139 * what PC values meant.
3140 */
3141 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3142 return 0;
3143}
3144__initcall(gate_vma_init);
3145#endif
3146
3147struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3148{
3149#ifdef AT_SYSINFO_EHDR
3150 return &gate_vma;
3151#else
3152 return NULL;
3153#endif
3154}
3155
3156int in_gate_area_no_task(unsigned long addr)
3157{
3158#ifdef AT_SYSINFO_EHDR
3159 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3160 return 1;
3161#endif
3162 return 0;
3163}
3164
3165#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3166
f8ad0f49
JW
3167static int follow_pte(struct mm_struct *mm, unsigned long address,
3168 pte_t **ptepp, spinlock_t **ptlp)
3169{
3170 pgd_t *pgd;
3171 pud_t *pud;
3172 pmd_t *pmd;
3173 pte_t *ptep;
3174
3175 pgd = pgd_offset(mm, address);
3176 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3177 goto out;
3178
3179 pud = pud_offset(pgd, address);
3180 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3181 goto out;
3182
3183 pmd = pmd_offset(pud, address);
3184 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3185 goto out;
3186
3187 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3188 if (pmd_huge(*pmd))
3189 goto out;
3190
3191 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3192 if (!ptep)
3193 goto out;
3194 if (!pte_present(*ptep))
3195 goto unlock;
3196 *ptepp = ptep;
3197 return 0;
3198unlock:
3199 pte_unmap_unlock(ptep, *ptlp);
3200out:
3201 return -EINVAL;
3202}
3203
3b6748e2
JW
3204/**
3205 * follow_pfn - look up PFN at a user virtual address
3206 * @vma: memory mapping
3207 * @address: user virtual address
3208 * @pfn: location to store found PFN
3209 *
3210 * Only IO mappings and raw PFN mappings are allowed.
3211 *
3212 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3213 */
3214int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3215 unsigned long *pfn)
3216{
3217 int ret = -EINVAL;
3218 spinlock_t *ptl;
3219 pte_t *ptep;
3220
3221 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3222 return ret;
3223
3224 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3225 if (ret)
3226 return ret;
3227 *pfn = pte_pfn(*ptep);
3228 pte_unmap_unlock(ptep, ptl);
3229 return 0;
3230}
3231EXPORT_SYMBOL(follow_pfn);
3232
28b2ee20 3233#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3234int follow_phys(struct vm_area_struct *vma,
3235 unsigned long address, unsigned int flags,
3236 unsigned long *prot, resource_size_t *phys)
28b2ee20 3237{
03668a4d 3238 int ret = -EINVAL;
28b2ee20
RR
3239 pte_t *ptep, pte;
3240 spinlock_t *ptl;
28b2ee20 3241
d87fe660 3242 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3243 goto out;
28b2ee20 3244
03668a4d 3245 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3246 goto out;
28b2ee20 3247 pte = *ptep;
03668a4d 3248
28b2ee20
RR
3249 if ((flags & FOLL_WRITE) && !pte_write(pte))
3250 goto unlock;
28b2ee20
RR
3251
3252 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3253 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3254
03668a4d 3255 ret = 0;
28b2ee20
RR
3256unlock:
3257 pte_unmap_unlock(ptep, ptl);
3258out:
d87fe660 3259 return ret;
28b2ee20
RR
3260}
3261
3262int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3263 void *buf, int len, int write)
3264{
3265 resource_size_t phys_addr;
3266 unsigned long prot = 0;
2bc7273b 3267 void __iomem *maddr;
28b2ee20
RR
3268 int offset = addr & (PAGE_SIZE-1);
3269
d87fe660 3270 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3271 return -EINVAL;
3272
3273 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3274 if (write)
3275 memcpy_toio(maddr + offset, buf, len);
3276 else
3277 memcpy_fromio(buf, maddr + offset, len);
3278 iounmap(maddr);
3279
3280 return len;
3281}
3282#endif
3283
0ec76a11
DH
3284/*
3285 * Access another process' address space.
3286 * Source/target buffer must be kernel space,
3287 * Do not walk the page table directly, use get_user_pages
3288 */
3289int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3290{
3291 struct mm_struct *mm;
3292 struct vm_area_struct *vma;
0ec76a11
DH
3293 void *old_buf = buf;
3294
3295 mm = get_task_mm(tsk);
3296 if (!mm)
3297 return 0;
3298
3299 down_read(&mm->mmap_sem);
183ff22b 3300 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3301 while (len) {
3302 int bytes, ret, offset;
3303 void *maddr;
28b2ee20 3304 struct page *page = NULL;
0ec76a11
DH
3305
3306 ret = get_user_pages(tsk, mm, addr, 1,
3307 write, 1, &page, &vma);
28b2ee20
RR
3308 if (ret <= 0) {
3309 /*
3310 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3311 * we can access using slightly different code.
3312 */
3313#ifdef CONFIG_HAVE_IOREMAP_PROT
3314 vma = find_vma(mm, addr);
3315 if (!vma)
3316 break;
3317 if (vma->vm_ops && vma->vm_ops->access)
3318 ret = vma->vm_ops->access(vma, addr, buf,
3319 len, write);
3320 if (ret <= 0)
3321#endif
3322 break;
3323 bytes = ret;
0ec76a11 3324 } else {
28b2ee20
RR
3325 bytes = len;
3326 offset = addr & (PAGE_SIZE-1);
3327 if (bytes > PAGE_SIZE-offset)
3328 bytes = PAGE_SIZE-offset;
3329
3330 maddr = kmap(page);
3331 if (write) {
3332 copy_to_user_page(vma, page, addr,
3333 maddr + offset, buf, bytes);
3334 set_page_dirty_lock(page);
3335 } else {
3336 copy_from_user_page(vma, page, addr,
3337 buf, maddr + offset, bytes);
3338 }
3339 kunmap(page);
3340 page_cache_release(page);
0ec76a11 3341 }
0ec76a11
DH
3342 len -= bytes;
3343 buf += bytes;
3344 addr += bytes;
3345 }
3346 up_read(&mm->mmap_sem);
3347 mmput(mm);
3348
3349 return buf - old_buf;
3350}
03252919
AK
3351
3352/*
3353 * Print the name of a VMA.
3354 */
3355void print_vma_addr(char *prefix, unsigned long ip)
3356{
3357 struct mm_struct *mm = current->mm;
3358 struct vm_area_struct *vma;
3359
e8bff74a
IM
3360 /*
3361 * Do not print if we are in atomic
3362 * contexts (in exception stacks, etc.):
3363 */
3364 if (preempt_count())
3365 return;
3366
03252919
AK
3367 down_read(&mm->mmap_sem);
3368 vma = find_vma(mm, ip);
3369 if (vma && vma->vm_file) {
3370 struct file *f = vma->vm_file;
3371 char *buf = (char *)__get_free_page(GFP_KERNEL);
3372 if (buf) {
3373 char *p, *s;
3374
cf28b486 3375 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3376 if (IS_ERR(p))
3377 p = "?";
3378 s = strrchr(p, '/');
3379 if (s)
3380 p = s+1;
3381 printk("%s%s[%lx+%lx]", prefix, p,
3382 vma->vm_start,
3383 vma->vm_end - vma->vm_start);
3384 free_page((unsigned long)buf);
3385 }
3386 }
3387 up_read(&current->mm->mmap_sem);
3388}
3ee1afa3
NP
3389
3390#ifdef CONFIG_PROVE_LOCKING
3391void might_fault(void)
3392{
95156f00
PZ
3393 /*
3394 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3395 * holding the mmap_sem, this is safe because kernel memory doesn't
3396 * get paged out, therefore we'll never actually fault, and the
3397 * below annotations will generate false positives.
3398 */
3399 if (segment_eq(get_fs(), KERNEL_DS))
3400 return;
3401
3ee1afa3
NP
3402 might_sleep();
3403 /*
3404 * it would be nicer only to annotate paths which are not under
3405 * pagefault_disable, however that requires a larger audit and
3406 * providing helpers like get_user_atomic.
3407 */
3408 if (!in_atomic() && current->mm)
3409 might_lock_read(&current->mm->mmap_sem);
3410}
3411EXPORT_SYMBOL(might_fault);
3412#endif