kvm: x86, powerpc: do not allow clearing largepages debugfs entry
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125                                 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137
138 static bool largepages_enabled = true;
139
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147                 unsigned long start, unsigned long end, bool blockable)
148 {
149         return 0;
150 }
151
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154         if (pfn_valid(pfn))
155                 return PageReserved(pfn_to_page(pfn));
156
157         return true;
158 }
159
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165         int cpu = get_cpu();
166         preempt_notifier_register(&vcpu->preempt_notifier);
167         kvm_arch_vcpu_load(vcpu, cpu);
168         put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174         preempt_disable();
175         kvm_arch_vcpu_put(vcpu);
176         preempt_notifier_unregister(&vcpu->preempt_notifier);
177         preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185
186         /*
187          * We need to wait for the VCPU to reenable interrupts and get out of
188          * READING_SHADOW_PAGE_TABLES mode.
189          */
190         if (req & KVM_REQUEST_WAIT)
191                 return mode != OUTSIDE_GUEST_MODE;
192
193         /*
194          * Need to kick a running VCPU, but otherwise there is nothing to do.
195          */
196         return mode == IN_GUEST_MODE;
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 }
202
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205         if (unlikely(!cpus))
206                 cpus = cpu_online_mask;
207
208         if (cpumask_empty(cpus))
209                 return false;
210
211         smp_call_function_many(cpus, ack_flush, NULL, wait);
212         return true;
213 }
214
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218         int i, cpu, me;
219         struct kvm_vcpu *vcpu;
220         bool called;
221
222         me = get_cpu();
223
224         kvm_for_each_vcpu(i, vcpu, kvm) {
225                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226                         continue;
227
228                 kvm_make_request(req, vcpu);
229                 cpu = vcpu->cpu;
230
231                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232                         continue;
233
234                 if (tmp != NULL && cpu != -1 && cpu != me &&
235                     kvm_request_needs_ipi(vcpu, req))
236                         __cpumask_set_cpu(cpu, tmp);
237         }
238
239         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240         put_cpu();
241
242         return called;
243 }
244
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247         cpumask_var_t cpus;
248         bool called;
249
250         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251
252         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253
254         free_cpumask_var(cpus);
255         return called;
256 }
257
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261         /*
262          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263          * kvm_make_all_cpus_request.
264          */
265         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266
267         /*
268          * We want to publish modifications to the page tables before reading
269          * mode. Pairs with a memory barrier in arch-specific code.
270          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271          * and smp_mb in walk_shadow_page_lockless_begin/end.
272          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273          *
274          * There is already an smp_mb__after_atomic() before
275          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276          * barrier here.
277          */
278         if (!kvm_arch_flush_remote_tlb(kvm)
279             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280                 ++kvm->stat.remote_tlb_flush;
281         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293         struct page *page;
294         int r;
295
296         mutex_init(&vcpu->mutex);
297         vcpu->cpu = -1;
298         vcpu->kvm = kvm;
299         vcpu->vcpu_id = id;
300         vcpu->pid = NULL;
301         init_swait_queue_head(&vcpu->wq);
302         kvm_async_pf_vcpu_init(vcpu);
303
304         vcpu->pre_pcpu = -1;
305         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306
307         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308         if (!page) {
309                 r = -ENOMEM;
310                 goto fail;
311         }
312         vcpu->run = page_address(page);
313
314         kvm_vcpu_set_in_spin_loop(vcpu, false);
315         kvm_vcpu_set_dy_eligible(vcpu, false);
316         vcpu->preempted = false;
317         vcpu->ready = false;
318
319         r = kvm_arch_vcpu_init(vcpu);
320         if (r < 0)
321                 goto fail_free_run;
322         return 0;
323
324 fail_free_run:
325         free_page((unsigned long)vcpu->run);
326 fail:
327         return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333         /*
334          * no need for rcu_read_lock as VCPU_RUN is the only place that
335          * will change the vcpu->pid pointer and on uninit all file
336          * descriptors are already gone.
337          */
338         put_pid(rcu_dereference_protected(vcpu->pid, 1));
339         kvm_arch_vcpu_uninit(vcpu);
340         free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347         return container_of(mn, struct kvm, mmu_notifier);
348 }
349
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351                                         struct mm_struct *mm,
352                                         unsigned long address,
353                                         pte_t pte)
354 {
355         struct kvm *kvm = mmu_notifier_to_kvm(mn);
356         int idx;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         spin_lock(&kvm->mmu_lock);
360         kvm->mmu_notifier_seq++;
361
362         if (kvm_set_spte_hva(kvm, address, pte))
363                 kvm_flush_remote_tlbs(kvm);
364
365         spin_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370                                         const struct mmu_notifier_range *range)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373         int need_tlb_flush = 0, idx;
374         int ret;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * The count increase must become visible at unlock time as no
380          * spte can be established without taking the mmu_lock and
381          * count is also read inside the mmu_lock critical section.
382          */
383         kvm->mmu_notifier_count++;
384         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385         need_tlb_flush |= kvm->tlbs_dirty;
386         /* we've to flush the tlb before the pages can be freed */
387         if (need_tlb_flush)
388                 kvm_flush_remote_tlbs(kvm);
389
390         spin_unlock(&kvm->mmu_lock);
391
392         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393                                         range->end,
394                                         mmu_notifier_range_blockable(range));
395
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return ret;
399 }
400
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402                                         const struct mmu_notifier_range *range)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * This sequence increase will notify the kvm page fault that
409          * the page that is going to be mapped in the spte could have
410          * been freed.
411          */
412         kvm->mmu_notifier_seq++;
413         smp_wmb();
414         /*
415          * The above sequence increase must be visible before the
416          * below count decrease, which is ensured by the smp_wmb above
417          * in conjunction with the smp_rmb in mmu_notifier_retry().
418          */
419         kvm->mmu_notifier_count--;
420         spin_unlock(&kvm->mmu_lock);
421
422         BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426                                               struct mm_struct *mm,
427                                               unsigned long start,
428                                               unsigned long end)
429 {
430         struct kvm *kvm = mmu_notifier_to_kvm(mn);
431         int young, idx;
432
433         idx = srcu_read_lock(&kvm->srcu);
434         spin_lock(&kvm->mmu_lock);
435
436         young = kvm_age_hva(kvm, start, end);
437         if (young)
438                 kvm_flush_remote_tlbs(kvm);
439
440         spin_unlock(&kvm->mmu_lock);
441         srcu_read_unlock(&kvm->srcu, idx);
442
443         return young;
444 }
445
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447                                         struct mm_struct *mm,
448                                         unsigned long start,
449                                         unsigned long end)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         /*
457          * Even though we do not flush TLB, this will still adversely
458          * affect performance on pre-Haswell Intel EPT, where there is
459          * no EPT Access Bit to clear so that we have to tear down EPT
460          * tables instead. If we find this unacceptable, we can always
461          * add a parameter to kvm_age_hva so that it effectively doesn't
462          * do anything on clear_young.
463          *
464          * Also note that currently we never issue secondary TLB flushes
465          * from clear_young, leaving this job up to the regular system
466          * cadence. If we find this inaccurate, we might come up with a
467          * more sophisticated heuristic later.
468          */
469         young = kvm_age_hva(kvm, start, end);
470         spin_unlock(&kvm->mmu_lock);
471         srcu_read_unlock(&kvm->srcu, idx);
472
473         return young;
474 }
475
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477                                        struct mm_struct *mm,
478                                        unsigned long address)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         young = kvm_test_age_hva(kvm, address);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493                                      struct mm_struct *mm)
494 {
495         struct kvm *kvm = mmu_notifier_to_kvm(mn);
496         int idx;
497
498         idx = srcu_read_lock(&kvm->srcu);
499         kvm_arch_flush_shadow_all(kvm);
500         srcu_read_unlock(&kvm->srcu, idx);
501 }
502
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
506         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
507         .clear_young            = kvm_mmu_notifier_clear_young,
508         .test_young             = kvm_mmu_notifier_test_young,
509         .change_pte             = kvm_mmu_notifier_change_pte,
510         .release                = kvm_mmu_notifier_release,
511 };
512
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523         return 0;
524 }
525
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530         int i;
531         struct kvm_memslots *slots;
532
533         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534         if (!slots)
535                 return NULL;
536
537         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538                 slots->id_to_index[i] = slots->memslots[i].id = i;
539
540         return slots;
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556                               struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568         struct kvm_memory_slot *memslot;
569
570         if (!slots)
571                 return;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_memslot(kvm, memslot, NULL);
575
576         kvfree(slots);
577 }
578
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581         int i;
582
583         if (!kvm->debugfs_dentry)
584                 return;
585
586         debugfs_remove_recursive(kvm->debugfs_dentry);
587
588         if (kvm->debugfs_stat_data) {
589                 for (i = 0; i < kvm_debugfs_num_entries; i++)
590                         kfree(kvm->debugfs_stat_data[i]);
591                 kfree(kvm->debugfs_stat_data);
592         }
593 }
594
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597         char dir_name[ITOA_MAX_LEN * 2];
598         struct kvm_stat_data *stat_data;
599         struct kvm_stats_debugfs_item *p;
600
601         if (!debugfs_initialized())
602                 return 0;
603
604         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606
607         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608                                          sizeof(*kvm->debugfs_stat_data),
609                                          GFP_KERNEL_ACCOUNT);
610         if (!kvm->debugfs_stat_data)
611                 return -ENOMEM;
612
613         for (p = debugfs_entries; p->name; p++) {
614                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615                 if (!stat_data)
616                         return -ENOMEM;
617
618                 stat_data->kvm = kvm;
619                 stat_data->offset = p->offset;
620                 stat_data->mode = p->mode ? p->mode : 0644;
621                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
623                                     stat_data, stat_fops_per_vm[p->kind]);
624         }
625         return 0;
626 }
627
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630         int r, i;
631         struct kvm *kvm = kvm_arch_alloc_vm();
632
633         if (!kvm)
634                 return ERR_PTR(-ENOMEM);
635
636         spin_lock_init(&kvm->mmu_lock);
637         mmgrab(current->mm);
638         kvm->mm = current->mm;
639         kvm_eventfd_init(kvm);
640         mutex_init(&kvm->lock);
641         mutex_init(&kvm->irq_lock);
642         mutex_init(&kvm->slots_lock);
643         refcount_set(&kvm->users_count, 1);
644         INIT_LIST_HEAD(&kvm->devices);
645
646         r = kvm_arch_init_vm(kvm, type);
647         if (r)
648                 goto out_err_no_disable;
649
650         r = hardware_enable_all();
651         if (r)
652                 goto out_err_no_disable;
653
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657
658         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659
660         r = -ENOMEM;
661         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662                 struct kvm_memslots *slots = kvm_alloc_memslots();
663                 if (!slots)
664                         goto out_err_no_srcu;
665                 /* Generations must be different for each address space. */
666                 slots->generation = i;
667                 rcu_assign_pointer(kvm->memslots[i], slots);
668         }
669
670         if (init_srcu_struct(&kvm->srcu))
671                 goto out_err_no_srcu;
672         if (init_srcu_struct(&kvm->irq_srcu))
673                 goto out_err_no_irq_srcu;
674         for (i = 0; i < KVM_NR_BUSES; i++) {
675                 rcu_assign_pointer(kvm->buses[i],
676                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677                 if (!kvm->buses[i])
678                         goto out_err;
679         }
680
681         r = kvm_init_mmu_notifier(kvm);
682         if (r)
683                 goto out_err;
684
685         mutex_lock(&kvm_lock);
686         list_add(&kvm->vm_list, &vm_list);
687         mutex_unlock(&kvm_lock);
688
689         preempt_notifier_inc();
690
691         return kvm;
692
693 out_err:
694         cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696         cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698         hardware_disable_all();
699 out_err_no_disable:
700         refcount_set(&kvm->users_count, 0);
701         for (i = 0; i < KVM_NR_BUSES; i++)
702                 kfree(kvm_get_bus(kvm, i));
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705         kvm_arch_free_vm(kvm);
706         mmdrop(current->mm);
707         return ERR_PTR(r);
708 }
709
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712         struct kvm_device *dev, *tmp;
713
714         /*
715          * We do not need to take the kvm->lock here, because nobody else
716          * has a reference to the struct kvm at this point and therefore
717          * cannot access the devices list anyhow.
718          */
719         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720                 list_del(&dev->vm_node);
721                 dev->ops->destroy(dev);
722         }
723 }
724
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727         int i;
728         struct mm_struct *mm = kvm->mm;
729
730         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         mutex_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         mutex_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739
740                 if (bus)
741                         kvm_io_bus_destroy(bus);
742                 kvm->buses[i] = NULL;
743         }
744         kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748         kvm_arch_flush_shadow_all(kvm);
749 #endif
750         kvm_arch_destroy_vm(kvm);
751         kvm_destroy_devices(kvm);
752         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754         cleanup_srcu_struct(&kvm->irq_srcu);
755         cleanup_srcu_struct(&kvm->srcu);
756         kvm_arch_free_vm(kvm);
757         preempt_notifier_dec();
758         hardware_disable_all();
759         mmdrop(mm);
760 }
761
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764         refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770         if (refcount_dec_and_test(&kvm->users_count))
771                 kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774
775
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778         struct kvm *kvm = filp->private_data;
779
780         kvm_irqfd_release(kvm);
781
782         kvm_put_kvm(kvm);
783         return 0;
784 }
785
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793
794         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795         if (!memslot->dirty_bitmap)
796                 return -ENOMEM;
797
798         return 0;
799 }
800
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808                             struct kvm_memory_slot *new,
809                             enum kvm_mr_change change)
810 {
811         int id = new->id;
812         int i = slots->id_to_index[id];
813         struct kvm_memory_slot *mslots = slots->memslots;
814
815         WARN_ON(mslots[i].id != id);
816         switch (change) {
817         case KVM_MR_CREATE:
818                 slots->used_slots++;
819                 WARN_ON(mslots[i].npages || !new->npages);
820                 break;
821         case KVM_MR_DELETE:
822                 slots->used_slots--;
823                 WARN_ON(new->npages || !mslots[i].npages);
824                 break;
825         default:
826                 break;
827         }
828
829         while (i < KVM_MEM_SLOTS_NUM - 1 &&
830                new->base_gfn <= mslots[i + 1].base_gfn) {
831                 if (!mslots[i + 1].npages)
832                         break;
833                 mslots[i] = mslots[i + 1];
834                 slots->id_to_index[mslots[i].id] = i;
835                 i++;
836         }
837
838         /*
839          * The ">=" is needed when creating a slot with base_gfn == 0,
840          * so that it moves before all those with base_gfn == npages == 0.
841          *
842          * On the other hand, if new->npages is zero, the above loop has
843          * already left i pointing to the beginning of the empty part of
844          * mslots, and the ">=" would move the hole backwards in this
845          * case---which is wrong.  So skip the loop when deleting a slot.
846          */
847         if (new->npages) {
848                 while (i > 0 &&
849                        new->base_gfn >= mslots[i - 1].base_gfn) {
850                         mslots[i] = mslots[i - 1];
851                         slots->id_to_index[mslots[i].id] = i;
852                         i--;
853                 }
854         } else
855                 WARN_ON_ONCE(i != slots->used_slots);
856
857         mslots[i] = *new;
858         slots->id_to_index[mslots[i].id] = i;
859 }
860
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864
865 #ifdef __KVM_HAVE_READONLY_MEM
866         valid_flags |= KVM_MEM_READONLY;
867 #endif
868
869         if (mem->flags & ~valid_flags)
870                 return -EINVAL;
871
872         return 0;
873 }
874
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876                 int as_id, struct kvm_memslots *slots)
877 {
878         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879         u64 gen = old_memslots->generation;
880
881         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883
884         rcu_assign_pointer(kvm->memslots[as_id], slots);
885         synchronize_srcu_expedited(&kvm->srcu);
886
887         /*
888          * Increment the new memslot generation a second time, dropping the
889          * update in-progress flag and incrementing then generation based on
890          * the number of address spaces.  This provides a unique and easily
891          * identifiable generation number while the memslots are in flux.
892          */
893         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894
895         /*
896          * Generations must be unique even across address spaces.  We do not need
897          * a global counter for that, instead the generation space is evenly split
898          * across address spaces.  For example, with two address spaces, address
899          * space 0 will use generations 0, 2, 4, ... while address space 1 will
900          * use generations 1, 3, 5, ...
901          */
902         gen += KVM_ADDRESS_SPACE_NUM;
903
904         kvm_arch_memslots_updated(kvm, gen);
905
906         slots->generation = gen;
907
908         return old_memslots;
909 }
910
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920                             const struct kvm_userspace_memory_region *mem)
921 {
922         int r;
923         gfn_t base_gfn;
924         unsigned long npages;
925         struct kvm_memory_slot *slot;
926         struct kvm_memory_slot old, new;
927         struct kvm_memslots *slots = NULL, *old_memslots;
928         int as_id, id;
929         enum kvm_mr_change change;
930
931         r = check_memory_region_flags(mem);
932         if (r)
933                 goto out;
934
935         r = -EINVAL;
936         as_id = mem->slot >> 16;
937         id = (u16)mem->slot;
938
939         /* General sanity checks */
940         if (mem->memory_size & (PAGE_SIZE - 1))
941                 goto out;
942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943                 goto out;
944         /* We can read the guest memory with __xxx_user() later on. */
945         if ((id < KVM_USER_MEM_SLOTS) &&
946             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948                         mem->memory_size)))
949                 goto out;
950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951                 goto out;
952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953                 goto out;
954
955         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957         npages = mem->memory_size >> PAGE_SHIFT;
958
959         if (npages > KVM_MEM_MAX_NR_PAGES)
960                 goto out;
961
962         new = old = *slot;
963
964         new.id = id;
965         new.base_gfn = base_gfn;
966         new.npages = npages;
967         new.flags = mem->flags;
968
969         if (npages) {
970                 if (!old.npages)
971                         change = KVM_MR_CREATE;
972                 else { /* Modify an existing slot. */
973                         if ((mem->userspace_addr != old.userspace_addr) ||
974                             (npages != old.npages) ||
975                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976                                 goto out;
977
978                         if (base_gfn != old.base_gfn)
979                                 change = KVM_MR_MOVE;
980                         else if (new.flags != old.flags)
981                                 change = KVM_MR_FLAGS_ONLY;
982                         else { /* Nothing to change. */
983                                 r = 0;
984                                 goto out;
985                         }
986                 }
987         } else {
988                 if (!old.npages)
989                         goto out;
990
991                 change = KVM_MR_DELETE;
992                 new.base_gfn = 0;
993                 new.flags = 0;
994         }
995
996         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997                 /* Check for overlaps */
998                 r = -EEXIST;
999                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000                         if (slot->id == id)
1001                                 continue;
1002                         if (!((base_gfn + npages <= slot->base_gfn) ||
1003                               (base_gfn >= slot->base_gfn + slot->npages)))
1004                                 goto out;
1005                 }
1006         }
1007
1008         /* Free page dirty bitmap if unneeded */
1009         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010                 new.dirty_bitmap = NULL;
1011
1012         r = -ENOMEM;
1013         if (change == KVM_MR_CREATE) {
1014                 new.userspace_addr = mem->userspace_addr;
1015
1016                 if (kvm_arch_create_memslot(kvm, &new, npages))
1017                         goto out_free;
1018         }
1019
1020         /* Allocate page dirty bitmap if needed */
1021         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022                 if (kvm_create_dirty_bitmap(&new) < 0)
1023                         goto out_free;
1024         }
1025
1026         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027         if (!slots)
1028                 goto out_free;
1029         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030
1031         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032                 slot = id_to_memslot(slots, id);
1033                 slot->flags |= KVM_MEMSLOT_INVALID;
1034
1035                 old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037                 /* From this point no new shadow pages pointing to a deleted,
1038                  * or moved, memslot will be created.
1039                  *
1040                  * validation of sp->gfn happens in:
1041                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042                  *      - kvm_is_visible_gfn (mmu_check_roots)
1043                  */
1044                 kvm_arch_flush_shadow_memslot(kvm, slot);
1045
1046                 /*
1047                  * We can re-use the old_memslots from above, the only difference
1048                  * from the currently installed memslots is the invalid flag.  This
1049                  * will get overwritten by update_memslots anyway.
1050                  */
1051                 slots = old_memslots;
1052         }
1053
1054         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055         if (r)
1056                 goto out_slots;
1057
1058         /* actual memory is freed via old in kvm_free_memslot below */
1059         if (change == KVM_MR_DELETE) {
1060                 new.dirty_bitmap = NULL;
1061                 memset(&new.arch, 0, sizeof(new.arch));
1062         }
1063
1064         update_memslots(slots, &new, change);
1065         old_memslots = install_new_memslots(kvm, as_id, slots);
1066
1067         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068
1069         kvm_free_memslot(kvm, &old, &new);
1070         kvfree(old_memslots);
1071         return 0;
1072
1073 out_slots:
1074         kvfree(slots);
1075 out_free:
1076         kvm_free_memslot(kvm, &new, &old);
1077 out:
1078         return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081
1082 int kvm_set_memory_region(struct kvm *kvm,
1083                           const struct kvm_userspace_memory_region *mem)
1084 {
1085         int r;
1086
1087         mutex_lock(&kvm->slots_lock);
1088         r = __kvm_set_memory_region(kvm, mem);
1089         mutex_unlock(&kvm->slots_lock);
1090         return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095                                           struct kvm_userspace_memory_region *mem)
1096 {
1097         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098                 return -EINVAL;
1099
1100         return kvm_set_memory_region(kvm, mem);
1101 }
1102
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104                         struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106         struct kvm_memslots *slots;
1107         struct kvm_memory_slot *memslot;
1108         int i, as_id, id;
1109         unsigned long n;
1110         unsigned long any = 0;
1111
1112         as_id = log->slot >> 16;
1113         id = (u16)log->slot;
1114         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115                 return -EINVAL;
1116
1117         slots = __kvm_memslots(kvm, as_id);
1118         memslot = id_to_memslot(slots, id);
1119         if (!memslot->dirty_bitmap)
1120                 return -ENOENT;
1121
1122         n = kvm_dirty_bitmap_bytes(memslot);
1123
1124         for (i = 0; !any && i < n/sizeof(long); ++i)
1125                 any = memslot->dirty_bitmap[i];
1126
1127         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128                 return -EFAULT;
1129
1130         if (any)
1131                 *is_dirty = 1;
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1139  *      and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:        pointer to kvm instance
1141  * @log:        slot id and address to which we copy the log
1142  * @flush:      true if TLB flush is needed by caller
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160                         struct kvm_dirty_log *log, bool *flush)
1161 {
1162         struct kvm_memslots *slots;
1163         struct kvm_memory_slot *memslot;
1164         int i, as_id, id;
1165         unsigned long n;
1166         unsigned long *dirty_bitmap;
1167         unsigned long *dirty_bitmap_buffer;
1168
1169         as_id = log->slot >> 16;
1170         id = (u16)log->slot;
1171         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172                 return -EINVAL;
1173
1174         slots = __kvm_memslots(kvm, as_id);
1175         memslot = id_to_memslot(slots, id);
1176
1177         dirty_bitmap = memslot->dirty_bitmap;
1178         if (!dirty_bitmap)
1179                 return -ENOENT;
1180
1181         n = kvm_dirty_bitmap_bytes(memslot);
1182         *flush = false;
1183         if (kvm->manual_dirty_log_protect) {
1184                 /*
1185                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1186                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187                  * is some code duplication between this function and
1188                  * kvm_get_dirty_log, but hopefully all architecture
1189                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190                  * can be eliminated.
1191                  */
1192                 dirty_bitmap_buffer = dirty_bitmap;
1193         } else {
1194                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195                 memset(dirty_bitmap_buffer, 0, n);
1196
1197                 spin_lock(&kvm->mmu_lock);
1198                 for (i = 0; i < n / sizeof(long); i++) {
1199                         unsigned long mask;
1200                         gfn_t offset;
1201
1202                         if (!dirty_bitmap[i])
1203                                 continue;
1204
1205                         *flush = true;
1206                         mask = xchg(&dirty_bitmap[i], 0);
1207                         dirty_bitmap_buffer[i] = mask;
1208
1209                         offset = i * BITS_PER_LONG;
1210                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211                                                                 offset, mask);
1212                 }
1213                 spin_unlock(&kvm->mmu_lock);
1214         }
1215
1216         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217                 return -EFAULT;
1218         return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *      and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:        pointer to kvm instance
1226  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1227  * @flush:      true if TLB flush is needed by caller
1228  */
1229 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1230                                 struct kvm_clear_dirty_log *log, bool *flush)
1231 {
1232         struct kvm_memslots *slots;
1233         struct kvm_memory_slot *memslot;
1234         int as_id, id;
1235         gfn_t offset;
1236         unsigned long i, n;
1237         unsigned long *dirty_bitmap;
1238         unsigned long *dirty_bitmap_buffer;
1239
1240         as_id = log->slot >> 16;
1241         id = (u16)log->slot;
1242         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1243                 return -EINVAL;
1244
1245         if (log->first_page & 63)
1246                 return -EINVAL;
1247
1248         slots = __kvm_memslots(kvm, as_id);
1249         memslot = id_to_memslot(slots, id);
1250
1251         dirty_bitmap = memslot->dirty_bitmap;
1252         if (!dirty_bitmap)
1253                 return -ENOENT;
1254
1255         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1256
1257         if (log->first_page > memslot->npages ||
1258             log->num_pages > memslot->npages - log->first_page ||
1259             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1260             return -EINVAL;
1261
1262         *flush = false;
1263         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1264         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1265                 return -EFAULT;
1266
1267         spin_lock(&kvm->mmu_lock);
1268         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1269                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1270              i++, offset += BITS_PER_LONG) {
1271                 unsigned long mask = *dirty_bitmap_buffer++;
1272                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1273                 if (!mask)
1274                         continue;
1275
1276                 mask &= atomic_long_fetch_andnot(mask, p);
1277
1278                 /*
1279                  * mask contains the bits that really have been cleared.  This
1280                  * never includes any bits beyond the length of the memslot (if
1281                  * the length is not aligned to 64 pages), therefore it is not
1282                  * a problem if userspace sets them in log->dirty_bitmap.
1283                 */
1284                 if (mask) {
1285                         *flush = true;
1286                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1287                                                                 offset, mask);
1288                 }
1289         }
1290         spin_unlock(&kvm->mmu_lock);
1291
1292         return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1295 #endif
1296
1297 bool kvm_largepages_enabled(void)
1298 {
1299         return largepages_enabled;
1300 }
1301
1302 void kvm_disable_largepages(void)
1303 {
1304         largepages_enabled = false;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1307
1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1309 {
1310         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1313
1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1317 }
1318
1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1320 {
1321         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1322
1323         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1324               memslot->flags & KVM_MEMSLOT_INVALID)
1325                 return false;
1326
1327         return true;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1330
1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1332 {
1333         struct vm_area_struct *vma;
1334         unsigned long addr, size;
1335
1336         size = PAGE_SIZE;
1337
1338         addr = gfn_to_hva(kvm, gfn);
1339         if (kvm_is_error_hva(addr))
1340                 return PAGE_SIZE;
1341
1342         down_read(&current->mm->mmap_sem);
1343         vma = find_vma(current->mm, addr);
1344         if (!vma)
1345                 goto out;
1346
1347         size = vma_kernel_pagesize(vma);
1348
1349 out:
1350         up_read(&current->mm->mmap_sem);
1351
1352         return size;
1353 }
1354
1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1356 {
1357         return slot->flags & KVM_MEM_READONLY;
1358 }
1359
1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1361                                        gfn_t *nr_pages, bool write)
1362 {
1363         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1364                 return KVM_HVA_ERR_BAD;
1365
1366         if (memslot_is_readonly(slot) && write)
1367                 return KVM_HVA_ERR_RO_BAD;
1368
1369         if (nr_pages)
1370                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1371
1372         return __gfn_to_hva_memslot(slot, gfn);
1373 }
1374
1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1376                                      gfn_t *nr_pages)
1377 {
1378         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1379 }
1380
1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1382                                         gfn_t gfn)
1383 {
1384         return gfn_to_hva_many(slot, gfn, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1387
1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1389 {
1390         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1391 }
1392 EXPORT_SYMBOL_GPL(gfn_to_hva);
1393
1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1395 {
1396         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1399
1400 /*
1401  * Return the hva of a @gfn and the R/W attribute if possible.
1402  *
1403  * @slot: the kvm_memory_slot which contains @gfn
1404  * @gfn: the gfn to be translated
1405  * @writable: used to return the read/write attribute of the @slot if the hva
1406  * is valid and @writable is not NULL
1407  */
1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1409                                       gfn_t gfn, bool *writable)
1410 {
1411         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1412
1413         if (!kvm_is_error_hva(hva) && writable)
1414                 *writable = !memslot_is_readonly(slot);
1415
1416         return hva;
1417 }
1418
1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1420 {
1421         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1422
1423         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1424 }
1425
1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1427 {
1428         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429
1430         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1431 }
1432
1433 static inline int check_user_page_hwpoison(unsigned long addr)
1434 {
1435         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1436
1437         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1438         return rc == -EHWPOISON;
1439 }
1440
1441 /*
1442  * The fast path to get the writable pfn which will be stored in @pfn,
1443  * true indicates success, otherwise false is returned.  It's also the
1444  * only part that runs if we can are in atomic context.
1445  */
1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1447                             bool *writable, kvm_pfn_t *pfn)
1448 {
1449         struct page *page[1];
1450         int npages;
1451
1452         /*
1453          * Fast pin a writable pfn only if it is a write fault request
1454          * or the caller allows to map a writable pfn for a read fault
1455          * request.
1456          */
1457         if (!(write_fault || writable))
1458                 return false;
1459
1460         npages = __get_user_pages_fast(addr, 1, 1, page);
1461         if (npages == 1) {
1462                 *pfn = page_to_pfn(page[0]);
1463
1464                 if (writable)
1465                         *writable = true;
1466                 return true;
1467         }
1468
1469         return false;
1470 }
1471
1472 /*
1473  * The slow path to get the pfn of the specified host virtual address,
1474  * 1 indicates success, -errno is returned if error is detected.
1475  */
1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1477                            bool *writable, kvm_pfn_t *pfn)
1478 {
1479         unsigned int flags = FOLL_HWPOISON;
1480         struct page *page;
1481         int npages = 0;
1482
1483         might_sleep();
1484
1485         if (writable)
1486                 *writable = write_fault;
1487
1488         if (write_fault)
1489                 flags |= FOLL_WRITE;
1490         if (async)
1491                 flags |= FOLL_NOWAIT;
1492
1493         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1494         if (npages != 1)
1495                 return npages;
1496
1497         /* map read fault as writable if possible */
1498         if (unlikely(!write_fault) && writable) {
1499                 struct page *wpage;
1500
1501                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1502                         *writable = true;
1503                         put_page(page);
1504                         page = wpage;
1505                 }
1506         }
1507         *pfn = page_to_pfn(page);
1508         return npages;
1509 }
1510
1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1512 {
1513         if (unlikely(!(vma->vm_flags & VM_READ)))
1514                 return false;
1515
1516         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1517                 return false;
1518
1519         return true;
1520 }
1521
1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1523                                unsigned long addr, bool *async,
1524                                bool write_fault, bool *writable,
1525                                kvm_pfn_t *p_pfn)
1526 {
1527         unsigned long pfn;
1528         int r;
1529
1530         r = follow_pfn(vma, addr, &pfn);
1531         if (r) {
1532                 /*
1533                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1534                  * not call the fault handler, so do it here.
1535                  */
1536                 bool unlocked = false;
1537                 r = fixup_user_fault(current, current->mm, addr,
1538                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1539                                      &unlocked);
1540                 if (unlocked)
1541                         return -EAGAIN;
1542                 if (r)
1543                         return r;
1544
1545                 r = follow_pfn(vma, addr, &pfn);
1546                 if (r)
1547                         return r;
1548
1549         }
1550
1551         if (writable)
1552                 *writable = true;
1553
1554         /*
1555          * Get a reference here because callers of *hva_to_pfn* and
1556          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1557          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1558          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1559          * simply do nothing for reserved pfns.
1560          *
1561          * Whoever called remap_pfn_range is also going to call e.g.
1562          * unmap_mapping_range before the underlying pages are freed,
1563          * causing a call to our MMU notifier.
1564          */ 
1565         kvm_get_pfn(pfn);
1566
1567         *p_pfn = pfn;
1568         return 0;
1569 }
1570
1571 /*
1572  * Pin guest page in memory and return its pfn.
1573  * @addr: host virtual address which maps memory to the guest
1574  * @atomic: whether this function can sleep
1575  * @async: whether this function need to wait IO complete if the
1576  *         host page is not in the memory
1577  * @write_fault: whether we should get a writable host page
1578  * @writable: whether it allows to map a writable host page for !@write_fault
1579  *
1580  * The function will map a writable host page for these two cases:
1581  * 1): @write_fault = true
1582  * 2): @write_fault = false && @writable, @writable will tell the caller
1583  *     whether the mapping is writable.
1584  */
1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1586                         bool write_fault, bool *writable)
1587 {
1588         struct vm_area_struct *vma;
1589         kvm_pfn_t pfn = 0;
1590         int npages, r;
1591
1592         /* we can do it either atomically or asynchronously, not both */
1593         BUG_ON(atomic && async);
1594
1595         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1596                 return pfn;
1597
1598         if (atomic)
1599                 return KVM_PFN_ERR_FAULT;
1600
1601         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1602         if (npages == 1)
1603                 return pfn;
1604
1605         down_read(&current->mm->mmap_sem);
1606         if (npages == -EHWPOISON ||
1607               (!async && check_user_page_hwpoison(addr))) {
1608                 pfn = KVM_PFN_ERR_HWPOISON;
1609                 goto exit;
1610         }
1611
1612 retry:
1613         vma = find_vma_intersection(current->mm, addr, addr + 1);
1614
1615         if (vma == NULL)
1616                 pfn = KVM_PFN_ERR_FAULT;
1617         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1618                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1619                 if (r == -EAGAIN)
1620                         goto retry;
1621                 if (r < 0)
1622                         pfn = KVM_PFN_ERR_FAULT;
1623         } else {
1624                 if (async && vma_is_valid(vma, write_fault))
1625                         *async = true;
1626                 pfn = KVM_PFN_ERR_FAULT;
1627         }
1628 exit:
1629         up_read(&current->mm->mmap_sem);
1630         return pfn;
1631 }
1632
1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1634                                bool atomic, bool *async, bool write_fault,
1635                                bool *writable)
1636 {
1637         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1638
1639         if (addr == KVM_HVA_ERR_RO_BAD) {
1640                 if (writable)
1641                         *writable = false;
1642                 return KVM_PFN_ERR_RO_FAULT;
1643         }
1644
1645         if (kvm_is_error_hva(addr)) {
1646                 if (writable)
1647                         *writable = false;
1648                 return KVM_PFN_NOSLOT;
1649         }
1650
1651         /* Do not map writable pfn in the readonly memslot. */
1652         if (writable && memslot_is_readonly(slot)) {
1653                 *writable = false;
1654                 writable = NULL;
1655         }
1656
1657         return hva_to_pfn(addr, atomic, async, write_fault,
1658                           writable);
1659 }
1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1661
1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1663                       bool *writable)
1664 {
1665         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1666                                     write_fault, writable);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1669
1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1671 {
1672         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1675
1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1677 {
1678         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1681
1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1683 {
1684         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1687
1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1693
1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1695 {
1696         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1697 }
1698 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1699
1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1701 {
1702         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1705
1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1707                             struct page **pages, int nr_pages)
1708 {
1709         unsigned long addr;
1710         gfn_t entry = 0;
1711
1712         addr = gfn_to_hva_many(slot, gfn, &entry);
1713         if (kvm_is_error_hva(addr))
1714                 return -1;
1715
1716         if (entry < nr_pages)
1717                 return 0;
1718
1719         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1720 }
1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1722
1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1724 {
1725         if (is_error_noslot_pfn(pfn))
1726                 return KVM_ERR_PTR_BAD_PAGE;
1727
1728         if (kvm_is_reserved_pfn(pfn)) {
1729                 WARN_ON(1);
1730                 return KVM_ERR_PTR_BAD_PAGE;
1731         }
1732
1733         return pfn_to_page(pfn);
1734 }
1735
1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1737 {
1738         kvm_pfn_t pfn;
1739
1740         pfn = gfn_to_pfn(kvm, gfn);
1741
1742         return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(gfn_to_page);
1745
1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1747                          struct kvm_host_map *map)
1748 {
1749         kvm_pfn_t pfn;
1750         void *hva = NULL;
1751         struct page *page = KVM_UNMAPPED_PAGE;
1752
1753         if (!map)
1754                 return -EINVAL;
1755
1756         pfn = gfn_to_pfn_memslot(slot, gfn);
1757         if (is_error_noslot_pfn(pfn))
1758                 return -EINVAL;
1759
1760         if (pfn_valid(pfn)) {
1761                 page = pfn_to_page(pfn);
1762                 hva = kmap(page);
1763 #ifdef CONFIG_HAS_IOMEM
1764         } else {
1765                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1766 #endif
1767         }
1768
1769         if (!hva)
1770                 return -EFAULT;
1771
1772         map->page = page;
1773         map->hva = hva;
1774         map->pfn = pfn;
1775         map->gfn = gfn;
1776
1777         return 0;
1778 }
1779
1780 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1781 {
1782         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1785
1786 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1787                     bool dirty)
1788 {
1789         if (!map)
1790                 return;
1791
1792         if (!map->hva)
1793                 return;
1794
1795         if (map->page != KVM_UNMAPPED_PAGE)
1796                 kunmap(map->page);
1797 #ifdef CONFIG_HAS_IOMEM
1798         else
1799                 memunmap(map->hva);
1800 #endif
1801
1802         if (dirty) {
1803                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1804                 kvm_release_pfn_dirty(map->pfn);
1805         } else {
1806                 kvm_release_pfn_clean(map->pfn);
1807         }
1808
1809         map->hva = NULL;
1810         map->page = NULL;
1811 }
1812 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1813
1814 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1815 {
1816         kvm_pfn_t pfn;
1817
1818         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1819
1820         return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1823
1824 void kvm_release_page_clean(struct page *page)
1825 {
1826         WARN_ON(is_error_page(page));
1827
1828         kvm_release_pfn_clean(page_to_pfn(page));
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1831
1832 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1833 {
1834         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1835                 put_page(pfn_to_page(pfn));
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1838
1839 void kvm_release_page_dirty(struct page *page)
1840 {
1841         WARN_ON(is_error_page(page));
1842
1843         kvm_release_pfn_dirty(page_to_pfn(page));
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1846
1847 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1848 {
1849         kvm_set_pfn_dirty(pfn);
1850         kvm_release_pfn_clean(pfn);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1853
1854 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1855 {
1856         if (!kvm_is_reserved_pfn(pfn)) {
1857                 struct page *page = pfn_to_page(pfn);
1858
1859                 SetPageDirty(page);
1860         }
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863
1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 {
1866         if (!kvm_is_reserved_pfn(pfn))
1867                 mark_page_accessed(pfn_to_page(pfn));
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870
1871 void kvm_get_pfn(kvm_pfn_t pfn)
1872 {
1873         if (!kvm_is_reserved_pfn(pfn))
1874                 get_page(pfn_to_page(pfn));
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877
1878 static int next_segment(unsigned long len, int offset)
1879 {
1880         if (len > PAGE_SIZE - offset)
1881                 return PAGE_SIZE - offset;
1882         else
1883                 return len;
1884 }
1885
1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1887                                  void *data, int offset, int len)
1888 {
1889         int r;
1890         unsigned long addr;
1891
1892         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1893         if (kvm_is_error_hva(addr))
1894                 return -EFAULT;
1895         r = __copy_from_user(data, (void __user *)addr + offset, len);
1896         if (r)
1897                 return -EFAULT;
1898         return 0;
1899 }
1900
1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1902                         int len)
1903 {
1904         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905
1906         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909
1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1911                              int offset, int len)
1912 {
1913         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914
1915         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918
1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 {
1921         gfn_t gfn = gpa >> PAGE_SHIFT;
1922         int seg;
1923         int offset = offset_in_page(gpa);
1924         int ret;
1925
1926         while ((seg = next_segment(len, offset)) != 0) {
1927                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1928                 if (ret < 0)
1929                         return ret;
1930                 offset = 0;
1931                 len -= seg;
1932                 data += seg;
1933                 ++gfn;
1934         }
1935         return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938
1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 {
1941         gfn_t gfn = gpa >> PAGE_SHIFT;
1942         int seg;
1943         int offset = offset_in_page(gpa);
1944         int ret;
1945
1946         while ((seg = next_segment(len, offset)) != 0) {
1947                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1948                 if (ret < 0)
1949                         return ret;
1950                 offset = 0;
1951                 len -= seg;
1952                 data += seg;
1953                 ++gfn;
1954         }
1955         return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958
1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1960                                    void *data, int offset, unsigned long len)
1961 {
1962         int r;
1963         unsigned long addr;
1964
1965         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1966         if (kvm_is_error_hva(addr))
1967                 return -EFAULT;
1968         pagefault_disable();
1969         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1970         pagefault_enable();
1971         if (r)
1972                 return -EFAULT;
1973         return 0;
1974 }
1975
1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1977                           unsigned long len)
1978 {
1979         gfn_t gfn = gpa >> PAGE_SHIFT;
1980         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1981         int offset = offset_in_page(gpa);
1982
1983         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986
1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1988                                void *data, unsigned long len)
1989 {
1990         gfn_t gfn = gpa >> PAGE_SHIFT;
1991         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992         int offset = offset_in_page(gpa);
1993
1994         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997
1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1999                                   const void *data, int offset, int len)
2000 {
2001         int r;
2002         unsigned long addr;
2003
2004         addr = gfn_to_hva_memslot(memslot, gfn);
2005         if (kvm_is_error_hva(addr))
2006                 return -EFAULT;
2007         r = __copy_to_user((void __user *)addr + offset, data, len);
2008         if (r)
2009                 return -EFAULT;
2010         mark_page_dirty_in_slot(memslot, gfn);
2011         return 0;
2012 }
2013
2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2015                          const void *data, int offset, int len)
2016 {
2017         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018
2019         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022
2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2024                               const void *data, int offset, int len)
2025 {
2026         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027
2028         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031
2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2033                     unsigned long len)
2034 {
2035         gfn_t gfn = gpa >> PAGE_SHIFT;
2036         int seg;
2037         int offset = offset_in_page(gpa);
2038         int ret;
2039
2040         while ((seg = next_segment(len, offset)) != 0) {
2041                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2042                 if (ret < 0)
2043                         return ret;
2044                 offset = 0;
2045                 len -= seg;
2046                 data += seg;
2047                 ++gfn;
2048         }
2049         return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052
2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2054                          unsigned long len)
2055 {
2056         gfn_t gfn = gpa >> PAGE_SHIFT;
2057         int seg;
2058         int offset = offset_in_page(gpa);
2059         int ret;
2060
2061         while ((seg = next_segment(len, offset)) != 0) {
2062                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2063                 if (ret < 0)
2064                         return ret;
2065                 offset = 0;
2066                 len -= seg;
2067                 data += seg;
2068                 ++gfn;
2069         }
2070         return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073
2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2075                                        struct gfn_to_hva_cache *ghc,
2076                                        gpa_t gpa, unsigned long len)
2077 {
2078         int offset = offset_in_page(gpa);
2079         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2080         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2081         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2082         gfn_t nr_pages_avail;
2083         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084
2085         ghc->gpa = gpa;
2086         ghc->generation = slots->generation;
2087         ghc->len = len;
2088         ghc->hva = KVM_HVA_ERR_BAD;
2089
2090         /*
2091          * If the requested region crosses two memslots, we still
2092          * verify that the entire region is valid here.
2093          */
2094         while (!r && start_gfn <= end_gfn) {
2095                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2096                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2097                                            &nr_pages_avail);
2098                 if (kvm_is_error_hva(ghc->hva))
2099                         r = -EFAULT;
2100                 start_gfn += nr_pages_avail;
2101         }
2102
2103         /* Use the slow path for cross page reads and writes. */
2104         if (!r && nr_pages_needed == 1)
2105                 ghc->hva += offset;
2106         else
2107                 ghc->memslot = NULL;
2108
2109         return r;
2110 }
2111
2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2113                               gpa_t gpa, unsigned long len)
2114 {
2115         struct kvm_memslots *slots = kvm_memslots(kvm);
2116         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119
2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2121                                   void *data, unsigned int offset,
2122                                   unsigned long len)
2123 {
2124         struct kvm_memslots *slots = kvm_memslots(kvm);
2125         int r;
2126         gpa_t gpa = ghc->gpa + offset;
2127
2128         BUG_ON(len + offset > ghc->len);
2129
2130         if (slots->generation != ghc->generation)
2131                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132
2133         if (unlikely(!ghc->memslot))
2134                 return kvm_write_guest(kvm, gpa, data, len);
2135
2136         if (kvm_is_error_hva(ghc->hva))
2137                 return -EFAULT;
2138
2139         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2140         if (r)
2141                 return -EFAULT;
2142         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143
2144         return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147
2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2149                            void *data, unsigned long len)
2150 {
2151         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154
2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2156                            void *data, unsigned long len)
2157 {
2158         struct kvm_memslots *slots = kvm_memslots(kvm);
2159         int r;
2160
2161         BUG_ON(len > ghc->len);
2162
2163         if (slots->generation != ghc->generation)
2164                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165
2166         if (unlikely(!ghc->memslot))
2167                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2168
2169         if (kvm_is_error_hva(ghc->hva))
2170                 return -EFAULT;
2171
2172         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2173         if (r)
2174                 return -EFAULT;
2175
2176         return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179
2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 {
2182         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183
2184         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187
2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 {
2190         gfn_t gfn = gpa >> PAGE_SHIFT;
2191         int seg;
2192         int offset = offset_in_page(gpa);
2193         int ret;
2194
2195         while ((seg = next_segment(len, offset)) != 0) {
2196                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2197                 if (ret < 0)
2198                         return ret;
2199                 offset = 0;
2200                 len -= seg;
2201                 ++gfn;
2202         }
2203         return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206
2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2208                                     gfn_t gfn)
2209 {
2210         if (memslot && memslot->dirty_bitmap) {
2211                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2212
2213                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2214         }
2215 }
2216
2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 {
2219         struct kvm_memory_slot *memslot;
2220
2221         memslot = gfn_to_memslot(kvm, gfn);
2222         mark_page_dirty_in_slot(memslot, gfn);
2223 }
2224 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225
2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 {
2228         struct kvm_memory_slot *memslot;
2229
2230         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231         mark_page_dirty_in_slot(memslot, gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234
2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 {
2237         if (!vcpu->sigset_active)
2238                 return;
2239
2240         /*
2241          * This does a lockless modification of ->real_blocked, which is fine
2242          * because, only current can change ->real_blocked and all readers of
2243          * ->real_blocked don't care as long ->real_blocked is always a subset
2244          * of ->blocked.
2245          */
2246         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2247 }
2248
2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 {
2251         if (!vcpu->sigset_active)
2252                 return;
2253
2254         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2255         sigemptyset(&current->real_blocked);
2256 }
2257
2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 {
2260         unsigned int old, val, grow, grow_start;
2261
2262         old = val = vcpu->halt_poll_ns;
2263         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2264         grow = READ_ONCE(halt_poll_ns_grow);
2265         if (!grow)
2266                 goto out;
2267
2268         val *= grow;
2269         if (val < grow_start)
2270                 val = grow_start;
2271
2272         if (val > halt_poll_ns)
2273                 val = halt_poll_ns;
2274
2275         vcpu->halt_poll_ns = val;
2276 out:
2277         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2278 }
2279
2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 {
2282         unsigned int old, val, shrink;
2283
2284         old = val = vcpu->halt_poll_ns;
2285         shrink = READ_ONCE(halt_poll_ns_shrink);
2286         if (shrink == 0)
2287                 val = 0;
2288         else
2289                 val /= shrink;
2290
2291         vcpu->halt_poll_ns = val;
2292         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2293 }
2294
2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 {
2297         int ret = -EINTR;
2298         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299
2300         if (kvm_arch_vcpu_runnable(vcpu)) {
2301                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2302                 goto out;
2303         }
2304         if (kvm_cpu_has_pending_timer(vcpu))
2305                 goto out;
2306         if (signal_pending(current))
2307                 goto out;
2308
2309         ret = 0;
2310 out:
2311         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2312         return ret;
2313 }
2314
2315 /*
2316  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317  */
2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 {
2320         ktime_t start, cur;
2321         DECLARE_SWAITQUEUE(wait);
2322         bool waited = false;
2323         u64 block_ns;
2324
2325         kvm_arch_vcpu_blocking(vcpu);
2326
2327         start = cur = ktime_get();
2328         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2329                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2330
2331                 ++vcpu->stat.halt_attempted_poll;
2332                 do {
2333                         /*
2334                          * This sets KVM_REQ_UNHALT if an interrupt
2335                          * arrives.
2336                          */
2337                         if (kvm_vcpu_check_block(vcpu) < 0) {
2338                                 ++vcpu->stat.halt_successful_poll;
2339                                 if (!vcpu_valid_wakeup(vcpu))
2340                                         ++vcpu->stat.halt_poll_invalid;
2341                                 goto out;
2342                         }
2343                         cur = ktime_get();
2344                 } while (single_task_running() && ktime_before(cur, stop));
2345         }
2346
2347         for (;;) {
2348                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349
2350                 if (kvm_vcpu_check_block(vcpu) < 0)
2351                         break;
2352
2353                 waited = true;
2354                 schedule();
2355         }
2356
2357         finish_swait(&vcpu->wq, &wait);
2358         cur = ktime_get();
2359 out:
2360         kvm_arch_vcpu_unblocking(vcpu);
2361         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2362
2363         if (!vcpu_valid_wakeup(vcpu))
2364                 shrink_halt_poll_ns(vcpu);
2365         else if (halt_poll_ns) {
2366                 if (block_ns <= vcpu->halt_poll_ns)
2367                         ;
2368                 /* we had a long block, shrink polling */
2369                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2370                         shrink_halt_poll_ns(vcpu);
2371                 /* we had a short halt and our poll time is too small */
2372                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2373                         block_ns < halt_poll_ns)
2374                         grow_halt_poll_ns(vcpu);
2375         } else
2376                 vcpu->halt_poll_ns = 0;
2377
2378         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2379         kvm_arch_vcpu_block_finish(vcpu);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2382
2383 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2384 {
2385         struct swait_queue_head *wqp;
2386
2387         wqp = kvm_arch_vcpu_wq(vcpu);
2388         if (swq_has_sleeper(wqp)) {
2389                 swake_up_one(wqp);
2390                 WRITE_ONCE(vcpu->ready, true);
2391                 ++vcpu->stat.halt_wakeup;
2392                 return true;
2393         }
2394
2395         return false;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2398
2399 #ifndef CONFIG_S390
2400 /*
2401  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402  */
2403 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2404 {
2405         int me;
2406         int cpu = vcpu->cpu;
2407
2408         if (kvm_vcpu_wake_up(vcpu))
2409                 return;
2410
2411         me = get_cpu();
2412         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2413                 if (kvm_arch_vcpu_should_kick(vcpu))
2414                         smp_send_reschedule(cpu);
2415         put_cpu();
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2418 #endif /* !CONFIG_S390 */
2419
2420 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2421 {
2422         struct pid *pid;
2423         struct task_struct *task = NULL;
2424         int ret = 0;
2425
2426         rcu_read_lock();
2427         pid = rcu_dereference(target->pid);
2428         if (pid)
2429                 task = get_pid_task(pid, PIDTYPE_PID);
2430         rcu_read_unlock();
2431         if (!task)
2432                 return ret;
2433         ret = yield_to(task, 1);
2434         put_task_struct(task);
2435
2436         return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2439
2440 /*
2441  * Helper that checks whether a VCPU is eligible for directed yield.
2442  * Most eligible candidate to yield is decided by following heuristics:
2443  *
2444  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2445  *  (preempted lock holder), indicated by @in_spin_loop.
2446  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2447  *
2448  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2449  *  chance last time (mostly it has become eligible now since we have probably
2450  *  yielded to lockholder in last iteration. This is done by toggling
2451  *  @dy_eligible each time a VCPU checked for eligibility.)
2452  *
2453  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2454  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2455  *  burning. Giving priority for a potential lock-holder increases lock
2456  *  progress.
2457  *
2458  *  Since algorithm is based on heuristics, accessing another VCPU data without
2459  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2460  *  and continue with next VCPU and so on.
2461  */
2462 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2463 {
2464 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2465         bool eligible;
2466
2467         eligible = !vcpu->spin_loop.in_spin_loop ||
2468                     vcpu->spin_loop.dy_eligible;
2469
2470         if (vcpu->spin_loop.in_spin_loop)
2471                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2472
2473         return eligible;
2474 #else
2475         return true;
2476 #endif
2477 }
2478
2479 /*
2480  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2481  * a vcpu_load/vcpu_put pair.  However, for most architectures
2482  * kvm_arch_vcpu_runnable does not require vcpu_load.
2483  */
2484 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2485 {
2486         return kvm_arch_vcpu_runnable(vcpu);
2487 }
2488
2489 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2490 {
2491         if (kvm_arch_dy_runnable(vcpu))
2492                 return true;
2493
2494 #ifdef CONFIG_KVM_ASYNC_PF
2495         if (!list_empty_careful(&vcpu->async_pf.done))
2496                 return true;
2497 #endif
2498
2499         return false;
2500 }
2501
2502 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2503 {
2504         struct kvm *kvm = me->kvm;
2505         struct kvm_vcpu *vcpu;
2506         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2507         int yielded = 0;
2508         int try = 3;
2509         int pass;
2510         int i;
2511
2512         kvm_vcpu_set_in_spin_loop(me, true);
2513         /*
2514          * We boost the priority of a VCPU that is runnable but not
2515          * currently running, because it got preempted by something
2516          * else and called schedule in __vcpu_run.  Hopefully that
2517          * VCPU is holding the lock that we need and will release it.
2518          * We approximate round-robin by starting at the last boosted VCPU.
2519          */
2520         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2521                 kvm_for_each_vcpu(i, vcpu, kvm) {
2522                         if (!pass && i <= last_boosted_vcpu) {
2523                                 i = last_boosted_vcpu;
2524                                 continue;
2525                         } else if (pass && i > last_boosted_vcpu)
2526                                 break;
2527                         if (!READ_ONCE(vcpu->ready))
2528                                 continue;
2529                         if (vcpu == me)
2530                                 continue;
2531                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2532                                 continue;
2533                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2534                                 !kvm_arch_vcpu_in_kernel(vcpu))
2535                                 continue;
2536                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2537                                 continue;
2538
2539                         yielded = kvm_vcpu_yield_to(vcpu);
2540                         if (yielded > 0) {
2541                                 kvm->last_boosted_vcpu = i;
2542                                 break;
2543                         } else if (yielded < 0) {
2544                                 try--;
2545                                 if (!try)
2546                                         break;
2547                         }
2548                 }
2549         }
2550         kvm_vcpu_set_in_spin_loop(me, false);
2551
2552         /* Ensure vcpu is not eligible during next spinloop */
2553         kvm_vcpu_set_dy_eligible(me, false);
2554 }
2555 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2556
2557 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2558 {
2559         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2560         struct page *page;
2561
2562         if (vmf->pgoff == 0)
2563                 page = virt_to_page(vcpu->run);
2564 #ifdef CONFIG_X86
2565         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2566                 page = virt_to_page(vcpu->arch.pio_data);
2567 #endif
2568 #ifdef CONFIG_KVM_MMIO
2569         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2570                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2571 #endif
2572         else
2573                 return kvm_arch_vcpu_fault(vcpu, vmf);
2574         get_page(page);
2575         vmf->page = page;
2576         return 0;
2577 }
2578
2579 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2580         .fault = kvm_vcpu_fault,
2581 };
2582
2583 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2584 {
2585         vma->vm_ops = &kvm_vcpu_vm_ops;
2586         return 0;
2587 }
2588
2589 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2590 {
2591         struct kvm_vcpu *vcpu = filp->private_data;
2592
2593         debugfs_remove_recursive(vcpu->debugfs_dentry);
2594         kvm_put_kvm(vcpu->kvm);
2595         return 0;
2596 }
2597
2598 static struct file_operations kvm_vcpu_fops = {
2599         .release        = kvm_vcpu_release,
2600         .unlocked_ioctl = kvm_vcpu_ioctl,
2601         .mmap           = kvm_vcpu_mmap,
2602         .llseek         = noop_llseek,
2603         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2604 };
2605
2606 /*
2607  * Allocates an inode for the vcpu.
2608  */
2609 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2610 {
2611         char name[8 + 1 + ITOA_MAX_LEN + 1];
2612
2613         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2614         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2615 }
2616
2617 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2618 {
2619 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2620         char dir_name[ITOA_MAX_LEN * 2];
2621
2622         if (!debugfs_initialized())
2623                 return;
2624
2625         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2626         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2627                                                   vcpu->kvm->debugfs_dentry);
2628
2629         kvm_arch_create_vcpu_debugfs(vcpu);
2630 #endif
2631 }
2632
2633 /*
2634  * Creates some virtual cpus.  Good luck creating more than one.
2635  */
2636 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2637 {
2638         int r;
2639         struct kvm_vcpu *vcpu;
2640
2641         if (id >= KVM_MAX_VCPU_ID)
2642                 return -EINVAL;
2643
2644         mutex_lock(&kvm->lock);
2645         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2646                 mutex_unlock(&kvm->lock);
2647                 return -EINVAL;
2648         }
2649
2650         kvm->created_vcpus++;
2651         mutex_unlock(&kvm->lock);
2652
2653         vcpu = kvm_arch_vcpu_create(kvm, id);
2654         if (IS_ERR(vcpu)) {
2655                 r = PTR_ERR(vcpu);
2656                 goto vcpu_decrement;
2657         }
2658
2659         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2660
2661         r = kvm_arch_vcpu_setup(vcpu);
2662         if (r)
2663                 goto vcpu_destroy;
2664
2665         kvm_create_vcpu_debugfs(vcpu);
2666
2667         mutex_lock(&kvm->lock);
2668         if (kvm_get_vcpu_by_id(kvm, id)) {
2669                 r = -EEXIST;
2670                 goto unlock_vcpu_destroy;
2671         }
2672
2673         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2674
2675         /* Now it's all set up, let userspace reach it */
2676         kvm_get_kvm(kvm);
2677         r = create_vcpu_fd(vcpu);
2678         if (r < 0) {
2679                 kvm_put_kvm(kvm);
2680                 goto unlock_vcpu_destroy;
2681         }
2682
2683         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2684
2685         /*
2686          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2687          * before kvm->online_vcpu's incremented value.
2688          */
2689         smp_wmb();
2690         atomic_inc(&kvm->online_vcpus);
2691
2692         mutex_unlock(&kvm->lock);
2693         kvm_arch_vcpu_postcreate(vcpu);
2694         return r;
2695
2696 unlock_vcpu_destroy:
2697         mutex_unlock(&kvm->lock);
2698         debugfs_remove_recursive(vcpu->debugfs_dentry);
2699 vcpu_destroy:
2700         kvm_arch_vcpu_destroy(vcpu);
2701 vcpu_decrement:
2702         mutex_lock(&kvm->lock);
2703         kvm->created_vcpus--;
2704         mutex_unlock(&kvm->lock);
2705         return r;
2706 }
2707
2708 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2709 {
2710         if (sigset) {
2711                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2712                 vcpu->sigset_active = 1;
2713                 vcpu->sigset = *sigset;
2714         } else
2715                 vcpu->sigset_active = 0;
2716         return 0;
2717 }
2718
2719 static long kvm_vcpu_ioctl(struct file *filp,
2720                            unsigned int ioctl, unsigned long arg)
2721 {
2722         struct kvm_vcpu *vcpu = filp->private_data;
2723         void __user *argp = (void __user *)arg;
2724         int r;
2725         struct kvm_fpu *fpu = NULL;
2726         struct kvm_sregs *kvm_sregs = NULL;
2727
2728         if (vcpu->kvm->mm != current->mm)
2729                 return -EIO;
2730
2731         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2732                 return -EINVAL;
2733
2734         /*
2735          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2736          * execution; mutex_lock() would break them.
2737          */
2738         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2739         if (r != -ENOIOCTLCMD)
2740                 return r;
2741
2742         if (mutex_lock_killable(&vcpu->mutex))
2743                 return -EINTR;
2744         switch (ioctl) {
2745         case KVM_RUN: {
2746                 struct pid *oldpid;
2747                 r = -EINVAL;
2748                 if (arg)
2749                         goto out;
2750                 oldpid = rcu_access_pointer(vcpu->pid);
2751                 if (unlikely(oldpid != task_pid(current))) {
2752                         /* The thread running this VCPU changed. */
2753                         struct pid *newpid;
2754
2755                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2756                         if (r)
2757                                 break;
2758
2759                         newpid = get_task_pid(current, PIDTYPE_PID);
2760                         rcu_assign_pointer(vcpu->pid, newpid);
2761                         if (oldpid)
2762                                 synchronize_rcu();
2763                         put_pid(oldpid);
2764                 }
2765                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2766                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2767                 break;
2768         }
2769         case KVM_GET_REGS: {
2770                 struct kvm_regs *kvm_regs;
2771
2772                 r = -ENOMEM;
2773                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2774                 if (!kvm_regs)
2775                         goto out;
2776                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2777                 if (r)
2778                         goto out_free1;
2779                 r = -EFAULT;
2780                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2781                         goto out_free1;
2782                 r = 0;
2783 out_free1:
2784                 kfree(kvm_regs);
2785                 break;
2786         }
2787         case KVM_SET_REGS: {
2788                 struct kvm_regs *kvm_regs;
2789
2790                 r = -ENOMEM;
2791                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2792                 if (IS_ERR(kvm_regs)) {
2793                         r = PTR_ERR(kvm_regs);
2794                         goto out;
2795                 }
2796                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2797                 kfree(kvm_regs);
2798                 break;
2799         }
2800         case KVM_GET_SREGS: {
2801                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2802                                     GFP_KERNEL_ACCOUNT);
2803                 r = -ENOMEM;
2804                 if (!kvm_sregs)
2805                         goto out;
2806                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2807                 if (r)
2808                         goto out;
2809                 r = -EFAULT;
2810                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2811                         goto out;
2812                 r = 0;
2813                 break;
2814         }
2815         case KVM_SET_SREGS: {
2816                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2817                 if (IS_ERR(kvm_sregs)) {
2818                         r = PTR_ERR(kvm_sregs);
2819                         kvm_sregs = NULL;
2820                         goto out;
2821                 }
2822                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2823                 break;
2824         }
2825         case KVM_GET_MP_STATE: {
2826                 struct kvm_mp_state mp_state;
2827
2828                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2829                 if (r)
2830                         goto out;
2831                 r = -EFAULT;
2832                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2833                         goto out;
2834                 r = 0;
2835                 break;
2836         }
2837         case KVM_SET_MP_STATE: {
2838                 struct kvm_mp_state mp_state;
2839
2840                 r = -EFAULT;
2841                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2842                         goto out;
2843                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2844                 break;
2845         }
2846         case KVM_TRANSLATE: {
2847                 struct kvm_translation tr;
2848
2849                 r = -EFAULT;
2850                 if (copy_from_user(&tr, argp, sizeof(tr)))
2851                         goto out;
2852                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2853                 if (r)
2854                         goto out;
2855                 r = -EFAULT;
2856                 if (copy_to_user(argp, &tr, sizeof(tr)))
2857                         goto out;
2858                 r = 0;
2859                 break;
2860         }
2861         case KVM_SET_GUEST_DEBUG: {
2862                 struct kvm_guest_debug dbg;
2863
2864                 r = -EFAULT;
2865                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2866                         goto out;
2867                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2868                 break;
2869         }
2870         case KVM_SET_SIGNAL_MASK: {
2871                 struct kvm_signal_mask __user *sigmask_arg = argp;
2872                 struct kvm_signal_mask kvm_sigmask;
2873                 sigset_t sigset, *p;
2874
2875                 p = NULL;
2876                 if (argp) {
2877                         r = -EFAULT;
2878                         if (copy_from_user(&kvm_sigmask, argp,
2879                                            sizeof(kvm_sigmask)))
2880                                 goto out;
2881                         r = -EINVAL;
2882                         if (kvm_sigmask.len != sizeof(sigset))
2883                                 goto out;
2884                         r = -EFAULT;
2885                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2886                                            sizeof(sigset)))
2887                                 goto out;
2888                         p = &sigset;
2889                 }
2890                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2891                 break;
2892         }
2893         case KVM_GET_FPU: {
2894                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2895                 r = -ENOMEM;
2896                 if (!fpu)
2897                         goto out;
2898                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2899                 if (r)
2900                         goto out;
2901                 r = -EFAULT;
2902                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2903                         goto out;
2904                 r = 0;
2905                 break;
2906         }
2907         case KVM_SET_FPU: {
2908                 fpu = memdup_user(argp, sizeof(*fpu));
2909                 if (IS_ERR(fpu)) {
2910                         r = PTR_ERR(fpu);
2911                         fpu = NULL;
2912                         goto out;
2913                 }
2914                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2915                 break;
2916         }
2917         default:
2918                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2919         }
2920 out:
2921         mutex_unlock(&vcpu->mutex);
2922         kfree(fpu);
2923         kfree(kvm_sregs);
2924         return r;
2925 }
2926
2927 #ifdef CONFIG_KVM_COMPAT
2928 static long kvm_vcpu_compat_ioctl(struct file *filp,
2929                                   unsigned int ioctl, unsigned long arg)
2930 {
2931         struct kvm_vcpu *vcpu = filp->private_data;
2932         void __user *argp = compat_ptr(arg);
2933         int r;
2934
2935         if (vcpu->kvm->mm != current->mm)
2936                 return -EIO;
2937
2938         switch (ioctl) {
2939         case KVM_SET_SIGNAL_MASK: {
2940                 struct kvm_signal_mask __user *sigmask_arg = argp;
2941                 struct kvm_signal_mask kvm_sigmask;
2942                 sigset_t sigset;
2943
2944                 if (argp) {
2945                         r = -EFAULT;
2946                         if (copy_from_user(&kvm_sigmask, argp,
2947                                            sizeof(kvm_sigmask)))
2948                                 goto out;
2949                         r = -EINVAL;
2950                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2951                                 goto out;
2952                         r = -EFAULT;
2953                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2954                                 goto out;
2955                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2956                 } else
2957                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2958                 break;
2959         }
2960         default:
2961                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2962         }
2963
2964 out:
2965         return r;
2966 }
2967 #endif
2968
2969 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2970 {
2971         struct kvm_device *dev = filp->private_data;
2972
2973         if (dev->ops->mmap)
2974                 return dev->ops->mmap(dev, vma);
2975
2976         return -ENODEV;
2977 }
2978
2979 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2980                                  int (*accessor)(struct kvm_device *dev,
2981                                                  struct kvm_device_attr *attr),
2982                                  unsigned long arg)
2983 {
2984         struct kvm_device_attr attr;
2985
2986         if (!accessor)
2987                 return -EPERM;
2988
2989         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2990                 return -EFAULT;
2991
2992         return accessor(dev, &attr);
2993 }
2994
2995 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2996                              unsigned long arg)
2997 {
2998         struct kvm_device *dev = filp->private_data;
2999
3000         if (dev->kvm->mm != current->mm)
3001                 return -EIO;
3002
3003         switch (ioctl) {
3004         case KVM_SET_DEVICE_ATTR:
3005                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3006         case KVM_GET_DEVICE_ATTR:
3007                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3008         case KVM_HAS_DEVICE_ATTR:
3009                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3010         default:
3011                 if (dev->ops->ioctl)
3012                         return dev->ops->ioctl(dev, ioctl, arg);
3013
3014                 return -ENOTTY;
3015         }
3016 }
3017
3018 static int kvm_device_release(struct inode *inode, struct file *filp)
3019 {
3020         struct kvm_device *dev = filp->private_data;
3021         struct kvm *kvm = dev->kvm;
3022
3023         if (dev->ops->release) {
3024                 mutex_lock(&kvm->lock);
3025                 list_del(&dev->vm_node);
3026                 dev->ops->release(dev);
3027                 mutex_unlock(&kvm->lock);
3028         }
3029
3030         kvm_put_kvm(kvm);
3031         return 0;
3032 }
3033
3034 static const struct file_operations kvm_device_fops = {
3035         .unlocked_ioctl = kvm_device_ioctl,
3036         .release = kvm_device_release,
3037         KVM_COMPAT(kvm_device_ioctl),
3038         .mmap = kvm_device_mmap,
3039 };
3040
3041 struct kvm_device *kvm_device_from_filp(struct file *filp)
3042 {
3043         if (filp->f_op != &kvm_device_fops)
3044                 return NULL;
3045
3046         return filp->private_data;
3047 }
3048
3049 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3050 #ifdef CONFIG_KVM_MPIC
3051         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3052         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3053 #endif
3054 };
3055
3056 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3057 {
3058         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3059                 return -ENOSPC;
3060
3061         if (kvm_device_ops_table[type] != NULL)
3062                 return -EEXIST;
3063
3064         kvm_device_ops_table[type] = ops;
3065         return 0;
3066 }
3067
3068 void kvm_unregister_device_ops(u32 type)
3069 {
3070         if (kvm_device_ops_table[type] != NULL)
3071                 kvm_device_ops_table[type] = NULL;
3072 }
3073
3074 static int kvm_ioctl_create_device(struct kvm *kvm,
3075                                    struct kvm_create_device *cd)
3076 {
3077         struct kvm_device_ops *ops = NULL;
3078         struct kvm_device *dev;
3079         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3080         int type;
3081         int ret;
3082
3083         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3084                 return -ENODEV;
3085
3086         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3087         ops = kvm_device_ops_table[type];
3088         if (ops == NULL)
3089                 return -ENODEV;
3090
3091         if (test)
3092                 return 0;
3093
3094         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3095         if (!dev)
3096                 return -ENOMEM;
3097
3098         dev->ops = ops;
3099         dev->kvm = kvm;
3100
3101         mutex_lock(&kvm->lock);
3102         ret = ops->create(dev, type);
3103         if (ret < 0) {
3104                 mutex_unlock(&kvm->lock);
3105                 kfree(dev);
3106                 return ret;
3107         }
3108         list_add(&dev->vm_node, &kvm->devices);
3109         mutex_unlock(&kvm->lock);
3110
3111         if (ops->init)
3112                 ops->init(dev);
3113
3114         kvm_get_kvm(kvm);
3115         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3116         if (ret < 0) {
3117                 kvm_put_kvm(kvm);
3118                 mutex_lock(&kvm->lock);
3119                 list_del(&dev->vm_node);
3120                 mutex_unlock(&kvm->lock);
3121                 ops->destroy(dev);
3122                 return ret;
3123         }
3124
3125         cd->fd = ret;
3126         return 0;
3127 }
3128
3129 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3130 {
3131         switch (arg) {
3132         case KVM_CAP_USER_MEMORY:
3133         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3134         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3135         case KVM_CAP_INTERNAL_ERROR_DATA:
3136 #ifdef CONFIG_HAVE_KVM_MSI
3137         case KVM_CAP_SIGNAL_MSI:
3138 #endif
3139 #ifdef CONFIG_HAVE_KVM_IRQFD
3140         case KVM_CAP_IRQFD:
3141         case KVM_CAP_IRQFD_RESAMPLE:
3142 #endif
3143         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3144         case KVM_CAP_CHECK_EXTENSION_VM:
3145         case KVM_CAP_ENABLE_CAP_VM:
3146 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3147         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3148 #endif
3149                 return 1;
3150 #ifdef CONFIG_KVM_MMIO
3151         case KVM_CAP_COALESCED_MMIO:
3152                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3153         case KVM_CAP_COALESCED_PIO:
3154                 return 1;
3155 #endif
3156 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3157         case KVM_CAP_IRQ_ROUTING:
3158                 return KVM_MAX_IRQ_ROUTES;
3159 #endif
3160 #if KVM_ADDRESS_SPACE_NUM > 1
3161         case KVM_CAP_MULTI_ADDRESS_SPACE:
3162                 return KVM_ADDRESS_SPACE_NUM;
3163 #endif
3164         case KVM_CAP_NR_MEMSLOTS:
3165                 return KVM_USER_MEM_SLOTS;
3166         default:
3167                 break;
3168         }
3169         return kvm_vm_ioctl_check_extension(kvm, arg);
3170 }
3171
3172 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3173                                                   struct kvm_enable_cap *cap)
3174 {
3175         return -EINVAL;
3176 }
3177
3178 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3179                                            struct kvm_enable_cap *cap)
3180 {
3181         switch (cap->cap) {
3182 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3183         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3184                 if (cap->flags || (cap->args[0] & ~1))
3185                         return -EINVAL;
3186                 kvm->manual_dirty_log_protect = cap->args[0];
3187                 return 0;
3188 #endif
3189         default:
3190                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3191         }
3192 }
3193
3194 static long kvm_vm_ioctl(struct file *filp,
3195                            unsigned int ioctl, unsigned long arg)
3196 {
3197         struct kvm *kvm = filp->private_data;
3198         void __user *argp = (void __user *)arg;
3199         int r;
3200
3201         if (kvm->mm != current->mm)
3202                 return -EIO;
3203         switch (ioctl) {
3204         case KVM_CREATE_VCPU:
3205                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3206                 break;
3207         case KVM_ENABLE_CAP: {
3208                 struct kvm_enable_cap cap;
3209
3210                 r = -EFAULT;
3211                 if (copy_from_user(&cap, argp, sizeof(cap)))
3212                         goto out;
3213                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3214                 break;
3215         }
3216         case KVM_SET_USER_MEMORY_REGION: {
3217                 struct kvm_userspace_memory_region kvm_userspace_mem;
3218
3219                 r = -EFAULT;
3220                 if (copy_from_user(&kvm_userspace_mem, argp,
3221                                                 sizeof(kvm_userspace_mem)))
3222                         goto out;
3223
3224                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3225                 break;
3226         }
3227         case KVM_GET_DIRTY_LOG: {
3228                 struct kvm_dirty_log log;
3229
3230                 r = -EFAULT;
3231                 if (copy_from_user(&log, argp, sizeof(log)))
3232                         goto out;
3233                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3234                 break;
3235         }
3236 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3237         case KVM_CLEAR_DIRTY_LOG: {
3238                 struct kvm_clear_dirty_log log;
3239
3240                 r = -EFAULT;
3241                 if (copy_from_user(&log, argp, sizeof(log)))
3242                         goto out;
3243                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3244                 break;
3245         }
3246 #endif
3247 #ifdef CONFIG_KVM_MMIO
3248         case KVM_REGISTER_COALESCED_MMIO: {
3249                 struct kvm_coalesced_mmio_zone zone;
3250
3251                 r = -EFAULT;
3252                 if (copy_from_user(&zone, argp, sizeof(zone)))
3253                         goto out;
3254                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3255                 break;
3256         }
3257         case KVM_UNREGISTER_COALESCED_MMIO: {
3258                 struct kvm_coalesced_mmio_zone zone;
3259
3260                 r = -EFAULT;
3261                 if (copy_from_user(&zone, argp, sizeof(zone)))
3262                         goto out;
3263                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3264                 break;
3265         }
3266 #endif
3267         case KVM_IRQFD: {
3268                 struct kvm_irqfd data;
3269
3270                 r = -EFAULT;
3271                 if (copy_from_user(&data, argp, sizeof(data)))
3272                         goto out;
3273                 r = kvm_irqfd(kvm, &data);
3274                 break;
3275         }
3276         case KVM_IOEVENTFD: {
3277                 struct kvm_ioeventfd data;
3278
3279                 r = -EFAULT;
3280                 if (copy_from_user(&data, argp, sizeof(data)))
3281                         goto out;
3282                 r = kvm_ioeventfd(kvm, &data);
3283                 break;
3284         }
3285 #ifdef CONFIG_HAVE_KVM_MSI
3286         case KVM_SIGNAL_MSI: {
3287                 struct kvm_msi msi;
3288
3289                 r = -EFAULT;
3290                 if (copy_from_user(&msi, argp, sizeof(msi)))
3291                         goto out;
3292                 r = kvm_send_userspace_msi(kvm, &msi);
3293                 break;
3294         }
3295 #endif
3296 #ifdef __KVM_HAVE_IRQ_LINE
3297         case KVM_IRQ_LINE_STATUS:
3298         case KVM_IRQ_LINE: {
3299                 struct kvm_irq_level irq_event;
3300
3301                 r = -EFAULT;
3302                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3303                         goto out;
3304
3305                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3306                                         ioctl == KVM_IRQ_LINE_STATUS);
3307                 if (r)
3308                         goto out;
3309
3310                 r = -EFAULT;
3311                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3312                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3313                                 goto out;
3314                 }
3315
3316                 r = 0;
3317                 break;
3318         }
3319 #endif
3320 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3321         case KVM_SET_GSI_ROUTING: {
3322                 struct kvm_irq_routing routing;
3323                 struct kvm_irq_routing __user *urouting;
3324                 struct kvm_irq_routing_entry *entries = NULL;
3325
3326                 r = -EFAULT;
3327                 if (copy_from_user(&routing, argp, sizeof(routing)))
3328                         goto out;
3329                 r = -EINVAL;
3330                 if (!kvm_arch_can_set_irq_routing(kvm))
3331                         goto out;
3332                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3333                         goto out;
3334                 if (routing.flags)
3335                         goto out;
3336                 if (routing.nr) {
3337                         r = -ENOMEM;
3338                         entries = vmalloc(array_size(sizeof(*entries),
3339                                                      routing.nr));
3340                         if (!entries)
3341                                 goto out;
3342                         r = -EFAULT;
3343                         urouting = argp;
3344                         if (copy_from_user(entries, urouting->entries,
3345                                            routing.nr * sizeof(*entries)))
3346                                 goto out_free_irq_routing;
3347                 }
3348                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3349                                         routing.flags);
3350 out_free_irq_routing:
3351                 vfree(entries);
3352                 break;
3353         }
3354 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3355         case KVM_CREATE_DEVICE: {
3356                 struct kvm_create_device cd;
3357
3358                 r = -EFAULT;
3359                 if (copy_from_user(&cd, argp, sizeof(cd)))
3360                         goto out;
3361
3362                 r = kvm_ioctl_create_device(kvm, &cd);
3363                 if (r)
3364                         goto out;
3365
3366                 r = -EFAULT;
3367                 if (copy_to_user(argp, &cd, sizeof(cd)))
3368                         goto out;
3369
3370                 r = 0;
3371                 break;
3372         }
3373         case KVM_CHECK_EXTENSION:
3374                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3375                 break;
3376         default:
3377                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3378         }
3379 out:
3380         return r;
3381 }
3382
3383 #ifdef CONFIG_KVM_COMPAT
3384 struct compat_kvm_dirty_log {
3385         __u32 slot;
3386         __u32 padding1;
3387         union {
3388                 compat_uptr_t dirty_bitmap; /* one bit per page */
3389                 __u64 padding2;
3390         };
3391 };
3392
3393 static long kvm_vm_compat_ioctl(struct file *filp,
3394                            unsigned int ioctl, unsigned long arg)
3395 {
3396         struct kvm *kvm = filp->private_data;
3397         int r;
3398
3399         if (kvm->mm != current->mm)
3400                 return -EIO;
3401         switch (ioctl) {
3402         case KVM_GET_DIRTY_LOG: {
3403                 struct compat_kvm_dirty_log compat_log;
3404                 struct kvm_dirty_log log;
3405
3406                 if (copy_from_user(&compat_log, (void __user *)arg,
3407                                    sizeof(compat_log)))
3408                         return -EFAULT;
3409                 log.slot         = compat_log.slot;
3410                 log.padding1     = compat_log.padding1;
3411                 log.padding2     = compat_log.padding2;
3412                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3413
3414                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3415                 break;
3416         }
3417         default:
3418                 r = kvm_vm_ioctl(filp, ioctl, arg);
3419         }
3420         return r;
3421 }
3422 #endif
3423
3424 static struct file_operations kvm_vm_fops = {
3425         .release        = kvm_vm_release,
3426         .unlocked_ioctl = kvm_vm_ioctl,
3427         .llseek         = noop_llseek,
3428         KVM_COMPAT(kvm_vm_compat_ioctl),
3429 };
3430
3431 static int kvm_dev_ioctl_create_vm(unsigned long type)
3432 {
3433         int r;
3434         struct kvm *kvm;
3435         struct file *file;
3436
3437         kvm = kvm_create_vm(type);
3438         if (IS_ERR(kvm))
3439                 return PTR_ERR(kvm);
3440 #ifdef CONFIG_KVM_MMIO
3441         r = kvm_coalesced_mmio_init(kvm);
3442         if (r < 0)
3443                 goto put_kvm;
3444 #endif
3445         r = get_unused_fd_flags(O_CLOEXEC);
3446         if (r < 0)
3447                 goto put_kvm;
3448
3449         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3450         if (IS_ERR(file)) {
3451                 put_unused_fd(r);
3452                 r = PTR_ERR(file);
3453                 goto put_kvm;
3454         }
3455
3456         /*
3457          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3458          * already set, with ->release() being kvm_vm_release().  In error
3459          * cases it will be called by the final fput(file) and will take
3460          * care of doing kvm_put_kvm(kvm).
3461          */
3462         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3463                 put_unused_fd(r);
3464                 fput(file);
3465                 return -ENOMEM;
3466         }
3467         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3468
3469         fd_install(r, file);
3470         return r;
3471
3472 put_kvm:
3473         kvm_put_kvm(kvm);
3474         return r;
3475 }
3476
3477 static long kvm_dev_ioctl(struct file *filp,
3478                           unsigned int ioctl, unsigned long arg)
3479 {
3480         long r = -EINVAL;
3481
3482         switch (ioctl) {
3483         case KVM_GET_API_VERSION:
3484                 if (arg)
3485                         goto out;
3486                 r = KVM_API_VERSION;
3487                 break;
3488         case KVM_CREATE_VM:
3489                 r = kvm_dev_ioctl_create_vm(arg);
3490                 break;
3491         case KVM_CHECK_EXTENSION:
3492                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3493                 break;
3494         case KVM_GET_VCPU_MMAP_SIZE:
3495                 if (arg)
3496                         goto out;
3497                 r = PAGE_SIZE;     /* struct kvm_run */
3498 #ifdef CONFIG_X86
3499                 r += PAGE_SIZE;    /* pio data page */
3500 #endif
3501 #ifdef CONFIG_KVM_MMIO
3502                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3503 #endif
3504                 break;
3505         case KVM_TRACE_ENABLE:
3506         case KVM_TRACE_PAUSE:
3507         case KVM_TRACE_DISABLE:
3508                 r = -EOPNOTSUPP;
3509                 break;
3510         default:
3511                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3512         }
3513 out:
3514         return r;
3515 }
3516
3517 static struct file_operations kvm_chardev_ops = {
3518         .unlocked_ioctl = kvm_dev_ioctl,
3519         .llseek         = noop_llseek,
3520         KVM_COMPAT(kvm_dev_ioctl),
3521 };
3522
3523 static struct miscdevice kvm_dev = {
3524         KVM_MINOR,
3525         "kvm",
3526         &kvm_chardev_ops,
3527 };
3528
3529 static void hardware_enable_nolock(void *junk)
3530 {
3531         int cpu = raw_smp_processor_id();
3532         int r;
3533
3534         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3535                 return;
3536
3537         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3538
3539         r = kvm_arch_hardware_enable();
3540
3541         if (r) {
3542                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3543                 atomic_inc(&hardware_enable_failed);
3544                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3545         }
3546 }
3547
3548 static int kvm_starting_cpu(unsigned int cpu)
3549 {
3550         raw_spin_lock(&kvm_count_lock);
3551         if (kvm_usage_count)
3552                 hardware_enable_nolock(NULL);
3553         raw_spin_unlock(&kvm_count_lock);
3554         return 0;
3555 }
3556
3557 static void hardware_disable_nolock(void *junk)
3558 {
3559         int cpu = raw_smp_processor_id();
3560
3561         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3562                 return;
3563         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3564         kvm_arch_hardware_disable();
3565 }
3566
3567 static int kvm_dying_cpu(unsigned int cpu)
3568 {
3569         raw_spin_lock(&kvm_count_lock);
3570         if (kvm_usage_count)
3571                 hardware_disable_nolock(NULL);
3572         raw_spin_unlock(&kvm_count_lock);
3573         return 0;
3574 }
3575
3576 static void hardware_disable_all_nolock(void)
3577 {
3578         BUG_ON(!kvm_usage_count);
3579
3580         kvm_usage_count--;
3581         if (!kvm_usage_count)
3582                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3583 }
3584
3585 static void hardware_disable_all(void)
3586 {
3587         raw_spin_lock(&kvm_count_lock);
3588         hardware_disable_all_nolock();
3589         raw_spin_unlock(&kvm_count_lock);
3590 }
3591
3592 static int hardware_enable_all(void)
3593 {
3594         int r = 0;
3595
3596         raw_spin_lock(&kvm_count_lock);
3597
3598         kvm_usage_count++;
3599         if (kvm_usage_count == 1) {
3600                 atomic_set(&hardware_enable_failed, 0);
3601                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3602
3603                 if (atomic_read(&hardware_enable_failed)) {
3604                         hardware_disable_all_nolock();
3605                         r = -EBUSY;
3606                 }
3607         }
3608
3609         raw_spin_unlock(&kvm_count_lock);
3610
3611         return r;
3612 }
3613
3614 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3615                       void *v)
3616 {
3617         /*
3618          * Some (well, at least mine) BIOSes hang on reboot if
3619          * in vmx root mode.
3620          *
3621          * And Intel TXT required VMX off for all cpu when system shutdown.
3622          */
3623         pr_info("kvm: exiting hardware virtualization\n");
3624         kvm_rebooting = true;
3625         on_each_cpu(hardware_disable_nolock, NULL, 1);
3626         return NOTIFY_OK;
3627 }
3628
3629 static struct notifier_block kvm_reboot_notifier = {
3630         .notifier_call = kvm_reboot,
3631         .priority = 0,
3632 };
3633
3634 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3635 {
3636         int i;
3637
3638         for (i = 0; i < bus->dev_count; i++) {
3639                 struct kvm_io_device *pos = bus->range[i].dev;
3640
3641                 kvm_iodevice_destructor(pos);
3642         }
3643         kfree(bus);
3644 }
3645
3646 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3647                                  const struct kvm_io_range *r2)
3648 {
3649         gpa_t addr1 = r1->addr;
3650         gpa_t addr2 = r2->addr;
3651
3652         if (addr1 < addr2)
3653                 return -1;
3654
3655         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3656          * accept any overlapping write.  Any order is acceptable for
3657          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3658          * we process all of them.
3659          */
3660         if (r2->len) {
3661                 addr1 += r1->len;
3662                 addr2 += r2->len;
3663         }
3664
3665         if (addr1 > addr2)
3666                 return 1;
3667
3668         return 0;
3669 }
3670
3671 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3672 {
3673         return kvm_io_bus_cmp(p1, p2);
3674 }
3675
3676 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3677                              gpa_t addr, int len)
3678 {
3679         struct kvm_io_range *range, key;
3680         int off;
3681
3682         key = (struct kvm_io_range) {
3683                 .addr = addr,
3684                 .len = len,
3685         };
3686
3687         range = bsearch(&key, bus->range, bus->dev_count,
3688                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3689         if (range == NULL)
3690                 return -ENOENT;
3691
3692         off = range - bus->range;
3693
3694         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3695                 off--;
3696
3697         return off;
3698 }
3699
3700 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3701                               struct kvm_io_range *range, const void *val)
3702 {
3703         int idx;
3704
3705         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3706         if (idx < 0)
3707                 return -EOPNOTSUPP;
3708
3709         while (idx < bus->dev_count &&
3710                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3711                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3712                                         range->len, val))
3713                         return idx;
3714                 idx++;
3715         }
3716
3717         return -EOPNOTSUPP;
3718 }
3719
3720 /* kvm_io_bus_write - called under kvm->slots_lock */
3721 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3722                      int len, const void *val)
3723 {
3724         struct kvm_io_bus *bus;
3725         struct kvm_io_range range;
3726         int r;
3727
3728         range = (struct kvm_io_range) {
3729                 .addr = addr,
3730                 .len = len,
3731         };
3732
3733         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3734         if (!bus)
3735                 return -ENOMEM;
3736         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3737         return r < 0 ? r : 0;
3738 }
3739 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3740
3741 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3742 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3743                             gpa_t addr, int len, const void *val, long cookie)
3744 {
3745         struct kvm_io_bus *bus;
3746         struct kvm_io_range range;
3747
3748         range = (struct kvm_io_range) {
3749                 .addr = addr,
3750                 .len = len,
3751         };
3752
3753         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3754         if (!bus)
3755                 return -ENOMEM;
3756
3757         /* First try the device referenced by cookie. */
3758         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3759             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3760                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3761                                         val))
3762                         return cookie;
3763
3764         /*
3765          * cookie contained garbage; fall back to search and return the
3766          * correct cookie value.
3767          */
3768         return __kvm_io_bus_write(vcpu, bus, &range, val);
3769 }
3770
3771 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3772                              struct kvm_io_range *range, void *val)
3773 {
3774         int idx;
3775
3776         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3777         if (idx < 0)
3778                 return -EOPNOTSUPP;
3779
3780         while (idx < bus->dev_count &&
3781                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3782                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3783                                        range->len, val))
3784                         return idx;
3785                 idx++;
3786         }
3787
3788         return -EOPNOTSUPP;
3789 }
3790
3791 /* kvm_io_bus_read - called under kvm->slots_lock */
3792 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3793                     int len, void *val)
3794 {
3795         struct kvm_io_bus *bus;
3796         struct kvm_io_range range;
3797         int r;
3798
3799         range = (struct kvm_io_range) {
3800                 .addr = addr,
3801                 .len = len,
3802         };
3803
3804         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3805         if (!bus)
3806                 return -ENOMEM;
3807         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3808         return r < 0 ? r : 0;
3809 }
3810
3811 /* Caller must hold slots_lock. */
3812 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3813                             int len, struct kvm_io_device *dev)
3814 {
3815         int i;
3816         struct kvm_io_bus *new_bus, *bus;
3817         struct kvm_io_range range;
3818
3819         bus = kvm_get_bus(kvm, bus_idx);
3820         if (!bus)
3821                 return -ENOMEM;
3822
3823         /* exclude ioeventfd which is limited by maximum fd */
3824         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3825                 return -ENOSPC;
3826
3827         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3828                           GFP_KERNEL_ACCOUNT);
3829         if (!new_bus)
3830                 return -ENOMEM;
3831
3832         range = (struct kvm_io_range) {
3833                 .addr = addr,
3834                 .len = len,
3835                 .dev = dev,
3836         };
3837
3838         for (i = 0; i < bus->dev_count; i++)
3839                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3840                         break;
3841
3842         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3843         new_bus->dev_count++;
3844         new_bus->range[i] = range;
3845         memcpy(new_bus->range + i + 1, bus->range + i,
3846                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3847         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3848         synchronize_srcu_expedited(&kvm->srcu);
3849         kfree(bus);
3850
3851         return 0;
3852 }
3853
3854 /* Caller must hold slots_lock. */
3855 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3856                                struct kvm_io_device *dev)
3857 {
3858         int i;
3859         struct kvm_io_bus *new_bus, *bus;
3860
3861         bus = kvm_get_bus(kvm, bus_idx);
3862         if (!bus)
3863                 return;
3864
3865         for (i = 0; i < bus->dev_count; i++)
3866                 if (bus->range[i].dev == dev) {
3867                         break;
3868                 }
3869
3870         if (i == bus->dev_count)
3871                 return;
3872
3873         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3874                           GFP_KERNEL_ACCOUNT);
3875         if (!new_bus)  {
3876                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3877                 goto broken;
3878         }
3879
3880         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3881         new_bus->dev_count--;
3882         memcpy(new_bus->range + i, bus->range + i + 1,
3883                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3884
3885 broken:
3886         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3887         synchronize_srcu_expedited(&kvm->srcu);
3888         kfree(bus);
3889         return;
3890 }
3891
3892 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3893                                          gpa_t addr)
3894 {
3895         struct kvm_io_bus *bus;
3896         int dev_idx, srcu_idx;
3897         struct kvm_io_device *iodev = NULL;
3898
3899         srcu_idx = srcu_read_lock(&kvm->srcu);
3900
3901         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3902         if (!bus)
3903                 goto out_unlock;
3904
3905         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3906         if (dev_idx < 0)
3907                 goto out_unlock;
3908
3909         iodev = bus->range[dev_idx].dev;
3910
3911 out_unlock:
3912         srcu_read_unlock(&kvm->srcu, srcu_idx);
3913
3914         return iodev;
3915 }
3916 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3917
3918 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3919                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3920                            const char *fmt)
3921 {
3922         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3923                                           inode->i_private;
3924
3925         /* The debugfs files are a reference to the kvm struct which
3926          * is still valid when kvm_destroy_vm is called.
3927          * To avoid the race between open and the removal of the debugfs
3928          * directory we test against the users count.
3929          */
3930         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3931                 return -ENOENT;
3932
3933         if (simple_attr_open(inode, file, get,
3934                              stat_data->mode & S_IWUGO ? set : NULL,
3935                              fmt)) {
3936                 kvm_put_kvm(stat_data->kvm);
3937                 return -ENOMEM;
3938         }
3939
3940         return 0;
3941 }
3942
3943 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3944 {
3945         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3946                                           inode->i_private;
3947
3948         simple_attr_release(inode, file);
3949         kvm_put_kvm(stat_data->kvm);
3950
3951         return 0;
3952 }
3953
3954 static int vm_stat_get_per_vm(void *data, u64 *val)
3955 {
3956         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3957
3958         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3959
3960         return 0;
3961 }
3962
3963 static int vm_stat_clear_per_vm(void *data, u64 val)
3964 {
3965         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3966
3967         if (val)
3968                 return -EINVAL;
3969
3970         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3971
3972         return 0;
3973 }
3974
3975 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3976 {
3977         __simple_attr_check_format("%llu\n", 0ull);
3978         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3979                                 vm_stat_clear_per_vm, "%llu\n");
3980 }
3981
3982 static const struct file_operations vm_stat_get_per_vm_fops = {
3983         .owner   = THIS_MODULE,
3984         .open    = vm_stat_get_per_vm_open,
3985         .release = kvm_debugfs_release,
3986         .read    = simple_attr_read,
3987         .write   = simple_attr_write,
3988         .llseek  = no_llseek,
3989 };
3990
3991 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3992 {
3993         int i;
3994         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3995         struct kvm_vcpu *vcpu;
3996
3997         *val = 0;
3998
3999         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4001
4002         return 0;
4003 }
4004
4005 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4006 {
4007         int i;
4008         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4009         struct kvm_vcpu *vcpu;
4010
4011         if (val)
4012                 return -EINVAL;
4013
4014         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4015                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4016
4017         return 0;
4018 }
4019
4020 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4021 {
4022         __simple_attr_check_format("%llu\n", 0ull);
4023         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4024                                  vcpu_stat_clear_per_vm, "%llu\n");
4025 }
4026
4027 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4028         .owner   = THIS_MODULE,
4029         .open    = vcpu_stat_get_per_vm_open,
4030         .release = kvm_debugfs_release,
4031         .read    = simple_attr_read,
4032         .write   = simple_attr_write,
4033         .llseek  = no_llseek,
4034 };
4035
4036 static const struct file_operations *stat_fops_per_vm[] = {
4037         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4038         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4039 };
4040
4041 static int vm_stat_get(void *_offset, u64 *val)
4042 {
4043         unsigned offset = (long)_offset;
4044         struct kvm *kvm;
4045         struct kvm_stat_data stat_tmp = {.offset = offset};
4046         u64 tmp_val;
4047
4048         *val = 0;
4049         mutex_lock(&kvm_lock);
4050         list_for_each_entry(kvm, &vm_list, vm_list) {
4051                 stat_tmp.kvm = kvm;
4052                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4053                 *val += tmp_val;
4054         }
4055         mutex_unlock(&kvm_lock);
4056         return 0;
4057 }
4058
4059 static int vm_stat_clear(void *_offset, u64 val)
4060 {
4061         unsigned offset = (long)_offset;
4062         struct kvm *kvm;
4063         struct kvm_stat_data stat_tmp = {.offset = offset};
4064
4065         if (val)
4066                 return -EINVAL;
4067
4068         mutex_lock(&kvm_lock);
4069         list_for_each_entry(kvm, &vm_list, vm_list) {
4070                 stat_tmp.kvm = kvm;
4071                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4072         }
4073         mutex_unlock(&kvm_lock);
4074
4075         return 0;
4076 }
4077
4078 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4079
4080 static int vcpu_stat_get(void *_offset, u64 *val)
4081 {
4082         unsigned offset = (long)_offset;
4083         struct kvm *kvm;
4084         struct kvm_stat_data stat_tmp = {.offset = offset};
4085         u64 tmp_val;
4086
4087         *val = 0;
4088         mutex_lock(&kvm_lock);
4089         list_for_each_entry(kvm, &vm_list, vm_list) {
4090                 stat_tmp.kvm = kvm;
4091                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4092                 *val += tmp_val;
4093         }
4094         mutex_unlock(&kvm_lock);
4095         return 0;
4096 }
4097
4098 static int vcpu_stat_clear(void *_offset, u64 val)
4099 {
4100         unsigned offset = (long)_offset;
4101         struct kvm *kvm;
4102         struct kvm_stat_data stat_tmp = {.offset = offset};
4103
4104         if (val)
4105                 return -EINVAL;
4106
4107         mutex_lock(&kvm_lock);
4108         list_for_each_entry(kvm, &vm_list, vm_list) {
4109                 stat_tmp.kvm = kvm;
4110                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4111         }
4112         mutex_unlock(&kvm_lock);
4113
4114         return 0;
4115 }
4116
4117 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4118                         "%llu\n");
4119
4120 static const struct file_operations *stat_fops[] = {
4121         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4122         [KVM_STAT_VM]   = &vm_stat_fops,
4123 };
4124
4125 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4126 {
4127         struct kobj_uevent_env *env;
4128         unsigned long long created, active;
4129
4130         if (!kvm_dev.this_device || !kvm)
4131                 return;
4132
4133         mutex_lock(&kvm_lock);
4134         if (type == KVM_EVENT_CREATE_VM) {
4135                 kvm_createvm_count++;
4136                 kvm_active_vms++;
4137         } else if (type == KVM_EVENT_DESTROY_VM) {
4138                 kvm_active_vms--;
4139         }
4140         created = kvm_createvm_count;
4141         active = kvm_active_vms;
4142         mutex_unlock(&kvm_lock);
4143
4144         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4145         if (!env)
4146                 return;
4147
4148         add_uevent_var(env, "CREATED=%llu", created);
4149         add_uevent_var(env, "COUNT=%llu", active);
4150
4151         if (type == KVM_EVENT_CREATE_VM) {
4152                 add_uevent_var(env, "EVENT=create");
4153                 kvm->userspace_pid = task_pid_nr(current);
4154         } else if (type == KVM_EVENT_DESTROY_VM) {
4155                 add_uevent_var(env, "EVENT=destroy");
4156         }
4157         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4158
4159         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4160                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4161
4162                 if (p) {
4163                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4164                         if (!IS_ERR(tmp))
4165                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4166                         kfree(p);
4167                 }
4168         }
4169         /* no need for checks, since we are adding at most only 5 keys */
4170         env->envp[env->envp_idx++] = NULL;
4171         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4172         kfree(env);
4173 }
4174
4175 static void kvm_init_debug(void)
4176 {
4177         struct kvm_stats_debugfs_item *p;
4178
4179         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4180
4181         kvm_debugfs_num_entries = 0;
4182         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4183                 int mode = p->mode ? p->mode : 0644;
4184                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4185                                     (void *)(long)p->offset,
4186                                     stat_fops[p->kind]);
4187         }
4188 }
4189
4190 static int kvm_suspend(void)
4191 {
4192         if (kvm_usage_count)
4193                 hardware_disable_nolock(NULL);
4194         return 0;
4195 }
4196
4197 static void kvm_resume(void)
4198 {
4199         if (kvm_usage_count) {
4200 #ifdef CONFIG_LOCKDEP
4201                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4202 #endif
4203                 hardware_enable_nolock(NULL);
4204         }
4205 }
4206
4207 static struct syscore_ops kvm_syscore_ops = {
4208         .suspend = kvm_suspend,
4209         .resume = kvm_resume,
4210 };
4211
4212 static inline
4213 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4214 {
4215         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4216 }
4217
4218 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4219 {
4220         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4221
4222         WRITE_ONCE(vcpu->preempted, false);
4223         WRITE_ONCE(vcpu->ready, false);
4224
4225         kvm_arch_sched_in(vcpu, cpu);
4226
4227         kvm_arch_vcpu_load(vcpu, cpu);
4228 }
4229
4230 static void kvm_sched_out(struct preempt_notifier *pn,
4231                           struct task_struct *next)
4232 {
4233         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4234
4235         if (current->state == TASK_RUNNING) {
4236                 WRITE_ONCE(vcpu->preempted, true);
4237                 WRITE_ONCE(vcpu->ready, true);
4238         }
4239         kvm_arch_vcpu_put(vcpu);
4240 }
4241
4242 static void check_processor_compat(void *rtn)
4243 {
4244         *(int *)rtn = kvm_arch_check_processor_compat();
4245 }
4246
4247 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4248                   struct module *module)
4249 {
4250         int r;
4251         int cpu;
4252
4253         r = kvm_arch_init(opaque);
4254         if (r)
4255                 goto out_fail;
4256
4257         /*
4258          * kvm_arch_init makes sure there's at most one caller
4259          * for architectures that support multiple implementations,
4260          * like intel and amd on x86.
4261          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4262          * conflicts in case kvm is already setup for another implementation.
4263          */
4264         r = kvm_irqfd_init();
4265         if (r)
4266                 goto out_irqfd;
4267
4268         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4269                 r = -ENOMEM;
4270                 goto out_free_0;
4271         }
4272
4273         r = kvm_arch_hardware_setup();
4274         if (r < 0)
4275                 goto out_free_0a;
4276
4277         for_each_online_cpu(cpu) {
4278                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4279                 if (r < 0)
4280                         goto out_free_1;
4281         }
4282
4283         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4284                                       kvm_starting_cpu, kvm_dying_cpu);
4285         if (r)
4286                 goto out_free_2;
4287         register_reboot_notifier(&kvm_reboot_notifier);
4288
4289         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4290         if (!vcpu_align)
4291                 vcpu_align = __alignof__(struct kvm_vcpu);
4292         kvm_vcpu_cache =
4293                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4294                                            SLAB_ACCOUNT,
4295                                            offsetof(struct kvm_vcpu, arch),
4296                                            sizeof_field(struct kvm_vcpu, arch),
4297                                            NULL);
4298         if (!kvm_vcpu_cache) {
4299                 r = -ENOMEM;
4300                 goto out_free_3;
4301         }
4302
4303         r = kvm_async_pf_init();
4304         if (r)
4305                 goto out_free;
4306
4307         kvm_chardev_ops.owner = module;
4308         kvm_vm_fops.owner = module;
4309         kvm_vcpu_fops.owner = module;
4310
4311         r = misc_register(&kvm_dev);
4312         if (r) {
4313                 pr_err("kvm: misc device register failed\n");
4314                 goto out_unreg;
4315         }
4316
4317         register_syscore_ops(&kvm_syscore_ops);
4318
4319         kvm_preempt_ops.sched_in = kvm_sched_in;
4320         kvm_preempt_ops.sched_out = kvm_sched_out;
4321
4322         kvm_init_debug();
4323
4324         r = kvm_vfio_ops_init();
4325         WARN_ON(r);
4326
4327         return 0;
4328
4329 out_unreg:
4330         kvm_async_pf_deinit();
4331 out_free:
4332         kmem_cache_destroy(kvm_vcpu_cache);
4333 out_free_3:
4334         unregister_reboot_notifier(&kvm_reboot_notifier);
4335         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4336 out_free_2:
4337 out_free_1:
4338         kvm_arch_hardware_unsetup();
4339 out_free_0a:
4340         free_cpumask_var(cpus_hardware_enabled);
4341 out_free_0:
4342         kvm_irqfd_exit();
4343 out_irqfd:
4344         kvm_arch_exit();
4345 out_fail:
4346         return r;
4347 }
4348 EXPORT_SYMBOL_GPL(kvm_init);
4349
4350 void kvm_exit(void)
4351 {
4352         debugfs_remove_recursive(kvm_debugfs_dir);
4353         misc_deregister(&kvm_dev);
4354         kmem_cache_destroy(kvm_vcpu_cache);
4355         kvm_async_pf_deinit();
4356         unregister_syscore_ops(&kvm_syscore_ops);
4357         unregister_reboot_notifier(&kvm_reboot_notifier);
4358         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4359         on_each_cpu(hardware_disable_nolock, NULL, 1);
4360         kvm_arch_hardware_unsetup();
4361         kvm_arch_exit();
4362         kvm_irqfd_exit();
4363         free_cpumask_var(cpus_hardware_enabled);
4364         kvm_vfio_ops_exit();
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_exit);