KVM: arm64: vgic-its: Implement ITS command queue command handlers
[linux-2.6-block.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37  * Creates a new (reference to a) struct vgic_irq for a given LPI.
38  * If this LPI is already mapped on another ITS, we increase its refcount
39  * and return a pointer to the existing structure.
40  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41  * This function returns a pointer to the _unlocked_ structure.
42  */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45         struct vgic_dist *dist = &kvm->arch.vgic;
46         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48         /* In this case there is no put, since we keep the reference. */
49         if (irq)
50                 return irq;
51
52         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53         if (!irq)
54                 return NULL;
55
56         INIT_LIST_HEAD(&irq->lpi_list);
57         INIT_LIST_HEAD(&irq->ap_list);
58         spin_lock_init(&irq->irq_lock);
59
60         irq->config = VGIC_CONFIG_EDGE;
61         kref_init(&irq->refcount);
62         irq->intid = intid;
63
64         spin_lock(&dist->lpi_list_lock);
65
66         /*
67          * There could be a race with another vgic_add_lpi(), so we need to
68          * check that we don't add a second list entry with the same LPI.
69          */
70         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71                 if (oldirq->intid != intid)
72                         continue;
73
74                 /* Someone was faster with adding this LPI, lets use that. */
75                 kfree(irq);
76                 irq = oldirq;
77
78                 /*
79                  * This increases the refcount, the caller is expected to
80                  * call vgic_put_irq() on the returned pointer once it's
81                  * finished with the IRQ.
82                  */
83                 kref_get(&irq->refcount);
84
85                 goto out_unlock;
86         }
87
88         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89         dist->lpi_list_count++;
90
91 out_unlock:
92         spin_unlock(&dist->lpi_list_lock);
93
94         return irq;
95 }
96
97 struct its_device {
98         struct list_head dev_list;
99
100         /* the head for the list of ITTEs */
101         struct list_head itt_head;
102         u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108         struct list_head coll_list;
109
110         u32 collection_id;
111         u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_itte {
118         struct list_head itte_list;
119
120         struct vgic_irq *irq;
121         struct its_collection *collection;
122         u32 lpi;
123         u32 event_id;
124 };
125
126 /*
127  * Find and returns a device in the device table for an ITS.
128  * Must be called with the its_lock mutex held.
129  */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132         struct its_device *device;
133
134         list_for_each_entry(device, &its->device_list, dev_list)
135                 if (device_id == device->device_id)
136                         return device;
137
138         return NULL;
139 }
140
141 /*
142  * Find and returns an interrupt translation table entry (ITTE) for a given
143  * Device ID/Event ID pair on an ITS.
144  * Must be called with the its_lock mutex held.
145  */
146 static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
147                                   u32 event_id)
148 {
149         struct its_device *device;
150         struct its_itte *itte;
151
152         device = find_its_device(its, device_id);
153         if (device == NULL)
154                 return NULL;
155
156         list_for_each_entry(itte, &device->itt_head, itte_list)
157                 if (itte->event_id == event_id)
158                         return itte;
159
160         return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, itte, its) \
165         list_for_each_entry(dev, &(its)->device_list, dev_list) \
166                 list_for_each_entry(itte, &(dev)->itt_head, itte_list)
167
168 /*
169  * We only implement 48 bits of PA at the moment, although the ITS
170  * supports more. Let's be restrictive here.
171  */
172 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180  * Finds and returns a collection in the ITS collection table.
181  * Must be called with the its_lock mutex held.
182  */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185         struct its_collection *collection;
186
187         list_for_each_entry(collection, &its->collection_list, coll_list) {
188                 if (coll_id == collection->collection_id)
189                         return collection;
190         }
191
192         return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
197
198 /*
199  * Reads the configuration data for a given LPI from guest memory and
200  * updates the fields in struct vgic_irq.
201  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202  * VCPU. Unconditionally applies if filter_vcpu is NULL.
203  */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205                              struct kvm_vcpu *filter_vcpu)
206 {
207         u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208         u8 prop;
209         int ret;
210
211         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212                              &prop, 1);
213
214         if (ret)
215                 return ret;
216
217         spin_lock(&irq->irq_lock);
218
219         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220                 irq->priority = LPI_PROP_PRIORITY(prop);
221                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223                 vgic_queue_irq_unlock(kvm, irq);
224         } else {
225                 spin_unlock(&irq->irq_lock);
226         }
227
228         return 0;
229 }
230
231 /*
232  * Create a snapshot of the current LPI list, so that we can enumerate all
233  * LPIs without holding any lock.
234  * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235  */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238         struct vgic_dist *dist = &kvm->arch.vgic;
239         struct vgic_irq *irq;
240         u32 *intids;
241         int irq_count = dist->lpi_list_count, i = 0;
242
243         /*
244          * We use the current value of the list length, which may change
245          * after the kmalloc. We don't care, because the guest shouldn't
246          * change anything while the command handling is still running,
247          * and in the worst case we would miss a new IRQ, which one wouldn't
248          * expect to be covered by this command anyway.
249          */
250         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251         if (!intids)
252                 return -ENOMEM;
253
254         spin_lock(&dist->lpi_list_lock);
255         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256                 /* We don't need to "get" the IRQ, as we hold the list lock. */
257                 intids[i] = irq->intid;
258                 if (++i == irq_count)
259                         break;
260         }
261         spin_unlock(&dist->lpi_list_lock);
262
263         *intid_ptr = intids;
264         return irq_count;
265 }
266
267 /*
268  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269  * is targeting) to the VGIC's view, which deals with target VCPUs.
270  * Needs to be called whenever either the collection for a LPIs has
271  * changed or the collection itself got retargeted.
272  */
273 static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
274 {
275         struct kvm_vcpu *vcpu;
276
277         if (!its_is_collection_mapped(itte->collection))
278                 return;
279
280         vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
281
282         spin_lock(&itte->irq->irq_lock);
283         itte->irq->target_vcpu = vcpu;
284         spin_unlock(&itte->irq->irq_lock);
285 }
286
287 /*
288  * Updates the target VCPU for every LPI targeting this collection.
289  * Must be called with the its_lock mutex held.
290  */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292                                        struct its_collection *coll)
293 {
294         struct its_device *device;
295         struct its_itte *itte;
296
297         for_each_lpi_its(device, itte, its) {
298                 if (!itte->collection || coll != itte->collection)
299                         continue;
300
301                 update_affinity_itte(kvm, itte);
302         }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307         int nr_idbits = (propbaser & 0x1f) + 1;
308
309         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313  * Scan the whole LPI pending table and sync the pending bit in there
314  * with our own data structures. This relies on the LPI being
315  * mapped before.
316  */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319         gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320         struct vgic_irq *irq;
321         int last_byte_offset = -1;
322         int ret = 0;
323         u32 *intids;
324         int nr_irqs, i;
325
326         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327         if (nr_irqs < 0)
328                 return nr_irqs;
329
330         for (i = 0; i < nr_irqs; i++) {
331                 int byte_offset, bit_nr;
332                 u8 pendmask;
333
334                 byte_offset = intids[i] / BITS_PER_BYTE;
335                 bit_nr = intids[i] % BITS_PER_BYTE;
336
337                 /*
338                  * For contiguously allocated LPIs chances are we just read
339                  * this very same byte in the last iteration. Reuse that.
340                  */
341                 if (byte_offset != last_byte_offset) {
342                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343                                              &pendmask, 1);
344                         if (ret) {
345                                 kfree(intids);
346                                 return ret;
347                         }
348                         last_byte_offset = byte_offset;
349                 }
350
351                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352                 spin_lock(&irq->irq_lock);
353                 irq->pending = pendmask & (1U << bit_nr);
354                 vgic_queue_irq_unlock(vcpu->kvm, irq);
355                 vgic_put_irq(vcpu->kvm, irq);
356         }
357
358         kfree(intids);
359
360         return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
364                                              struct vgic_its *its,
365                                              gpa_t addr, unsigned int len)
366 {
367         u32 reg = 0;
368
369         mutex_lock(&its->cmd_lock);
370         if (its->creadr == its->cwriter)
371                 reg |= GITS_CTLR_QUIESCENT;
372         if (its->enabled)
373                 reg |= GITS_CTLR_ENABLE;
374         mutex_unlock(&its->cmd_lock);
375
376         return reg;
377 }
378
379 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
380                                      gpa_t addr, unsigned int len,
381                                      unsigned long val)
382 {
383         its->enabled = !!(val & GITS_CTLR_ENABLE);
384 }
385
386 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
387                                               struct vgic_its *its,
388                                               gpa_t addr, unsigned int len)
389 {
390         u64 reg = GITS_TYPER_PLPIS;
391
392         /*
393          * We use linear CPU numbers for redistributor addressing,
394          * so GITS_TYPER.PTA is 0.
395          * Also we force all PROPBASER registers to be the same, so
396          * CommonLPIAff is 0 as well.
397          * To avoid memory waste in the guest, we keep the number of IDBits and
398          * DevBits low - as least for the time being.
399          */
400         reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
401         reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
402
403         return extract_bytes(reg, addr & 7, len);
404 }
405
406 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
407                                              struct vgic_its *its,
408                                              gpa_t addr, unsigned int len)
409 {
410         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
411 }
412
413 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
414                                                struct vgic_its *its,
415                                                gpa_t addr, unsigned int len)
416 {
417         switch (addr & 0xffff) {
418         case GITS_PIDR0:
419                 return 0x92;    /* part number, bits[7:0] */
420         case GITS_PIDR1:
421                 return 0xb4;    /* part number, bits[11:8] */
422         case GITS_PIDR2:
423                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
424         case GITS_PIDR4:
425                 return 0x40;    /* This is a 64K software visible page */
426         /* The following are the ID registers for (any) GIC. */
427         case GITS_CIDR0:
428                 return 0x0d;
429         case GITS_CIDR1:
430                 return 0xf0;
431         case GITS_CIDR2:
432                 return 0x05;
433         case GITS_CIDR3:
434                 return 0xb1;
435         }
436
437         return 0;
438 }
439
440 /* Requires the its_lock to be held. */
441 static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
442 {
443         list_del(&itte->itte_list);
444
445         /* This put matches the get in vgic_add_lpi. */
446         vgic_put_irq(kvm, itte->irq);
447
448         kfree(itte);
449 }
450
451 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
452 {
453         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
454 }
455
456 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
457 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
458 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
459 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
460 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
461 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
462 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
463
464 /*
465  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
466  * Must be called with the its_lock mutex held.
467  */
468 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
469                                        u64 *its_cmd)
470 {
471         u32 device_id = its_cmd_get_deviceid(its_cmd);
472         u32 event_id = its_cmd_get_id(its_cmd);
473         struct its_itte *itte;
474
475
476         itte = find_itte(its, device_id, event_id);
477         if (itte && itte->collection) {
478                 /*
479                  * Though the spec talks about removing the pending state, we
480                  * don't bother here since we clear the ITTE anyway and the
481                  * pending state is a property of the ITTE struct.
482                  */
483                 its_free_itte(kvm, itte);
484                 return 0;
485         }
486
487         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
488 }
489
490 /*
491  * The MOVI command moves an ITTE to a different collection.
492  * Must be called with the its_lock mutex held.
493  */
494 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
495                                     u64 *its_cmd)
496 {
497         u32 device_id = its_cmd_get_deviceid(its_cmd);
498         u32 event_id = its_cmd_get_id(its_cmd);
499         u32 coll_id = its_cmd_get_collection(its_cmd);
500         struct kvm_vcpu *vcpu;
501         struct its_itte *itte;
502         struct its_collection *collection;
503
504         itte = find_itte(its, device_id, event_id);
505         if (!itte)
506                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
507
508         if (!its_is_collection_mapped(itte->collection))
509                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
510
511         collection = find_collection(its, coll_id);
512         if (!its_is_collection_mapped(collection))
513                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
514
515         itte->collection = collection;
516         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
517
518         spin_lock(&itte->irq->irq_lock);
519         itte->irq->target_vcpu = vcpu;
520         spin_unlock(&itte->irq->irq_lock);
521
522         return 0;
523 }
524
525 static void vgic_its_init_collection(struct vgic_its *its,
526                                      struct its_collection *collection,
527                                      u32 coll_id)
528 {
529         collection->collection_id = coll_id;
530         collection->target_addr = COLLECTION_NOT_MAPPED;
531
532         list_add_tail(&collection->coll_list, &its->collection_list);
533 }
534
535 /*
536  * The MAPTI and MAPI commands map LPIs to ITTEs.
537  * Must be called with its_lock mutex held.
538  */
539 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
540                                     u64 *its_cmd, u8 subcmd)
541 {
542         u32 device_id = its_cmd_get_deviceid(its_cmd);
543         u32 event_id = its_cmd_get_id(its_cmd);
544         u32 coll_id = its_cmd_get_collection(its_cmd);
545         struct its_itte *itte;
546         struct its_device *device;
547         struct its_collection *collection, *new_coll = NULL;
548         int lpi_nr;
549
550         device = find_its_device(its, device_id);
551         if (!device)
552                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
553
554         collection = find_collection(its, coll_id);
555         if (!collection) {
556                 new_coll = kzalloc(sizeof(struct its_collection), GFP_KERNEL);
557                 if (!new_coll)
558                         return -ENOMEM;
559         }
560
561         if (subcmd == GITS_CMD_MAPTI)
562                 lpi_nr = its_cmd_get_physical_id(its_cmd);
563         else
564                 lpi_nr = event_id;
565         if (lpi_nr < GIC_LPI_OFFSET ||
566             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) {
567                 kfree(new_coll);
568                 return E_ITS_MAPTI_PHYSICALID_OOR;
569         }
570
571         itte = find_itte(its, device_id, event_id);
572         if (!itte) {
573                 itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
574                 if (!itte) {
575                         kfree(new_coll);
576                         return -ENOMEM;
577                 }
578
579                 itte->event_id  = event_id;
580                 list_add_tail(&itte->itte_list, &device->itt_head);
581         }
582
583         if (!collection) {
584                 collection = new_coll;
585                 vgic_its_init_collection(its, collection, coll_id);
586         }
587
588         itte->collection = collection;
589         itte->lpi = lpi_nr;
590         itte->irq = vgic_add_lpi(kvm, lpi_nr);
591         update_affinity_itte(kvm, itte);
592
593         /*
594          * We "cache" the configuration table entries in out struct vgic_irq's.
595          * However we only have those structs for mapped IRQs, so we read in
596          * the respective config data from memory here upon mapping the LPI.
597          */
598         update_lpi_config(kvm, itte->irq, NULL);
599
600         return 0;
601 }
602
603 /* Requires the its_lock to be held. */
604 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
605 {
606         struct its_itte *itte, *temp;
607
608         /*
609          * The spec says that unmapping a device with still valid
610          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
611          * since we cannot leave the memory unreferenced.
612          */
613         list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
614                 its_free_itte(kvm, itte);
615
616         list_del(&device->dev_list);
617         kfree(device);
618 }
619
620 /*
621  * Check whether a device ID can be stored into the guest device tables.
622  * For a direct table this is pretty easy, but gets a bit nasty for
623  * indirect tables. We check whether the resulting guest physical address
624  * is actually valid (covered by a memslot and guest accessbible).
625  * For this we have to read the respective first level entry.
626  */
627 static bool vgic_its_check_device_id(struct kvm *kvm, struct vgic_its *its,
628                                      int device_id)
629 {
630         u64 r = its->baser_device_table;
631         int nr_entries = GITS_BASER_NR_PAGES(r) * SZ_64K;
632         int index;
633         u64 indirect_ptr;
634         gfn_t gfn;
635
636
637         if (!(r & GITS_BASER_INDIRECT))
638                 return device_id < (nr_entries / GITS_BASER_ENTRY_SIZE(r));
639
640         /* calculate and check the index into the 1st level */
641         index = device_id / (SZ_64K / GITS_BASER_ENTRY_SIZE(r));
642         if (index >= (nr_entries / sizeof(u64)))
643                 return false;
644
645         /* Each 1st level entry is represented by a 64-bit value. */
646         if (!kvm_read_guest(kvm,
647                             BASER_ADDRESS(r) + index * sizeof(indirect_ptr),
648                             &indirect_ptr, sizeof(indirect_ptr)))
649                 return false;
650
651         /* check the valid bit of the first level entry */
652         if (!(indirect_ptr & BIT_ULL(63)))
653                 return false;
654
655         /*
656          * Mask the guest physical address and calculate the frame number.
657          * Any address beyond our supported 48 bits of PA will be caught
658          * by the actual check in the final step.
659          */
660         gfn = (indirect_ptr & GENMASK_ULL(51, 16)) >> PAGE_SHIFT;
661
662         return kvm_is_visible_gfn(kvm, gfn);
663 }
664
665 /*
666  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
667  * Must be called with the its_lock mutex held.
668  */
669 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
670                                     u64 *its_cmd)
671 {
672         u32 device_id = its_cmd_get_deviceid(its_cmd);
673         bool valid = its_cmd_get_validbit(its_cmd);
674         struct its_device *device;
675
676         if (!vgic_its_check_device_id(kvm, its, device_id))
677                 return E_ITS_MAPD_DEVICE_OOR;
678
679         device = find_its_device(its, device_id);
680
681         /*
682          * The spec says that calling MAPD on an already mapped device
683          * invalidates all cached data for this device. We implement this
684          * by removing the mapping and re-establishing it.
685          */
686         if (device)
687                 vgic_its_unmap_device(kvm, device);
688
689         /*
690          * The spec does not say whether unmapping a not-mapped device
691          * is an error, so we are done in any case.
692          */
693         if (!valid)
694                 return 0;
695
696         device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
697         if (!device)
698                 return -ENOMEM;
699
700         device->device_id = device_id;
701         INIT_LIST_HEAD(&device->itt_head);
702
703         list_add_tail(&device->dev_list, &its->device_list);
704
705         return 0;
706 }
707
708 static int vgic_its_nr_collection_ids(struct vgic_its *its)
709 {
710         u64 r = its->baser_coll_table;
711
712         return (GITS_BASER_NR_PAGES(r) * SZ_64K) / GITS_BASER_ENTRY_SIZE(r);
713 }
714
715 /*
716  * The MAPC command maps collection IDs to redistributors.
717  * Must be called with the its_lock mutex held.
718  */
719 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
720                                     u64 *its_cmd)
721 {
722         u16 coll_id;
723         u32 target_addr;
724         struct its_collection *collection;
725         bool valid;
726
727         valid = its_cmd_get_validbit(its_cmd);
728         coll_id = its_cmd_get_collection(its_cmd);
729         target_addr = its_cmd_get_target_addr(its_cmd);
730
731         if (target_addr >= atomic_read(&kvm->online_vcpus))
732                 return E_ITS_MAPC_PROCNUM_OOR;
733
734         if (coll_id >= vgic_its_nr_collection_ids(its))
735                 return E_ITS_MAPC_COLLECTION_OOR;
736
737         collection = find_collection(its, coll_id);
738
739         if (!valid) {
740                 struct its_device *device;
741                 struct its_itte *itte;
742                 /*
743                  * Clearing the mapping for that collection ID removes the
744                  * entry from the list. If there wasn't any before, we can
745                  * go home early.
746                  */
747                 if (!collection)
748                         return 0;
749
750                 for_each_lpi_its(device, itte, its)
751                         if (itte->collection &&
752                             itte->collection->collection_id == coll_id)
753                                 itte->collection = NULL;
754
755                 list_del(&collection->coll_list);
756                 kfree(collection);
757         } else {
758                 if (!collection) {
759                         collection = kzalloc(sizeof(struct its_collection),
760                                              GFP_KERNEL);
761                         if (!collection)
762                                 return -ENOMEM;
763
764                         vgic_its_init_collection(its, collection, coll_id);
765                         collection->target_addr = target_addr;
766                 } else {
767                         collection->target_addr = target_addr;
768                         update_affinity_collection(kvm, its, collection);
769                 }
770         }
771
772         return 0;
773 }
774
775 /*
776  * The CLEAR command removes the pending state for a particular LPI.
777  * Must be called with the its_lock mutex held.
778  */
779 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
780                                      u64 *its_cmd)
781 {
782         u32 device_id = its_cmd_get_deviceid(its_cmd);
783         u32 event_id = its_cmd_get_id(its_cmd);
784         struct its_itte *itte;
785
786
787         itte = find_itte(its, device_id, event_id);
788         if (!itte)
789                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
790
791         itte->irq->pending = false;
792
793         return 0;
794 }
795
796 /*
797  * The INV command syncs the configuration bits from the memory table.
798  * Must be called with the its_lock mutex held.
799  */
800 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
801                                    u64 *its_cmd)
802 {
803         u32 device_id = its_cmd_get_deviceid(its_cmd);
804         u32 event_id = its_cmd_get_id(its_cmd);
805         struct its_itte *itte;
806
807
808         itte = find_itte(its, device_id, event_id);
809         if (!itte)
810                 return E_ITS_INV_UNMAPPED_INTERRUPT;
811
812         return update_lpi_config(kvm, itte->irq, NULL);
813 }
814
815 /*
816  * The INVALL command requests flushing of all IRQ data in this collection.
817  * Find the VCPU mapped to that collection, then iterate over the VM's list
818  * of mapped LPIs and update the configuration for each IRQ which targets
819  * the specified vcpu. The configuration will be read from the in-memory
820  * configuration table.
821  * Must be called with the its_lock mutex held.
822  */
823 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
824                                       u64 *its_cmd)
825 {
826         u32 coll_id = its_cmd_get_collection(its_cmd);
827         struct its_collection *collection;
828         struct kvm_vcpu *vcpu;
829         struct vgic_irq *irq;
830         u32 *intids;
831         int irq_count, i;
832
833         collection = find_collection(its, coll_id);
834         if (!its_is_collection_mapped(collection))
835                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
836
837         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
838
839         irq_count = vgic_copy_lpi_list(kvm, &intids);
840         if (irq_count < 0)
841                 return irq_count;
842
843         for (i = 0; i < irq_count; i++) {
844                 irq = vgic_get_irq(kvm, NULL, intids[i]);
845                 if (!irq)
846                         continue;
847                 update_lpi_config(kvm, irq, vcpu);
848                 vgic_put_irq(kvm, irq);
849         }
850
851         kfree(intids);
852
853         return 0;
854 }
855
856 /*
857  * The MOVALL command moves the pending state of all IRQs targeting one
858  * redistributor to another. We don't hold the pending state in the VCPUs,
859  * but in the IRQs instead, so there is really not much to do for us here.
860  * However the spec says that no IRQ must target the old redistributor
861  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
862  * This command affects all LPIs in the system that target that redistributor.
863  */
864 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
865                                       u64 *its_cmd)
866 {
867         struct vgic_dist *dist = &kvm->arch.vgic;
868         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
869         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
870         struct kvm_vcpu *vcpu1, *vcpu2;
871         struct vgic_irq *irq;
872
873         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
874             target2_addr >= atomic_read(&kvm->online_vcpus))
875                 return E_ITS_MOVALL_PROCNUM_OOR;
876
877         if (target1_addr == target2_addr)
878                 return 0;
879
880         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
881         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
882
883         spin_lock(&dist->lpi_list_lock);
884
885         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
886                 spin_lock(&irq->irq_lock);
887
888                 if (irq->target_vcpu == vcpu1)
889                         irq->target_vcpu = vcpu2;
890
891                 spin_unlock(&irq->irq_lock);
892         }
893
894         spin_unlock(&dist->lpi_list_lock);
895
896         return 0;
897 }
898
899 /*
900  * This function is called with the its_cmd lock held, but the ITS data
901  * structure lock dropped.
902  */
903 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
904                                    u64 *its_cmd)
905 {
906         u8 cmd = its_cmd_get_command(its_cmd);
907         int ret = -ENODEV;
908
909         mutex_lock(&its->its_lock);
910         switch (cmd) {
911         case GITS_CMD_MAPD:
912                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
913                 break;
914         case GITS_CMD_MAPC:
915                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
916                 break;
917         case GITS_CMD_MAPI:
918                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
919                 break;
920         case GITS_CMD_MAPTI:
921                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd, cmd);
922                 break;
923         case GITS_CMD_MOVI:
924                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
925                 break;
926         case GITS_CMD_DISCARD:
927                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
928                 break;
929         case GITS_CMD_CLEAR:
930                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
931                 break;
932         case GITS_CMD_MOVALL:
933                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
934                 break;
935         case GITS_CMD_INV:
936                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
937                 break;
938         case GITS_CMD_INVALL:
939                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
940                 break;
941         case GITS_CMD_SYNC:
942                 /* we ignore this command: we are in sync all of the time */
943                 ret = 0;
944                 break;
945         }
946         mutex_unlock(&its->its_lock);
947
948         return ret;
949 }
950
951 static u64 vgic_sanitise_its_baser(u64 reg)
952 {
953         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
954                                   GITS_BASER_SHAREABILITY_SHIFT,
955                                   vgic_sanitise_shareability);
956         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
957                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
958                                   vgic_sanitise_inner_cacheability);
959         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
960                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
961                                   vgic_sanitise_outer_cacheability);
962
963         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
964         reg &= ~GENMASK_ULL(15, 12);
965
966         /* We support only one (ITS) page size: 64K */
967         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
968
969         return reg;
970 }
971
972 static u64 vgic_sanitise_its_cbaser(u64 reg)
973 {
974         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
975                                   GITS_CBASER_SHAREABILITY_SHIFT,
976                                   vgic_sanitise_shareability);
977         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
978                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
979                                   vgic_sanitise_inner_cacheability);
980         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
981                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
982                                   vgic_sanitise_outer_cacheability);
983
984         /*
985          * Sanitise the physical address to be 64k aligned.
986          * Also limit the physical addresses to 48 bits.
987          */
988         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
989
990         return reg;
991 }
992
993 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
994                                                struct vgic_its *its,
995                                                gpa_t addr, unsigned int len)
996 {
997         return extract_bytes(its->cbaser, addr & 7, len);
998 }
999
1000 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1001                                        gpa_t addr, unsigned int len,
1002                                        unsigned long val)
1003 {
1004         /* When GITS_CTLR.Enable is 1, this register is RO. */
1005         if (its->enabled)
1006                 return;
1007
1008         mutex_lock(&its->cmd_lock);
1009         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1010         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1011         its->creadr = 0;
1012         /*
1013          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1014          * it to CREADR to make sure we start with an empty command buffer.
1015          */
1016         its->cwriter = its->creadr;
1017         mutex_unlock(&its->cmd_lock);
1018 }
1019
1020 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1021 #define ITS_CMD_SIZE                    32
1022 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1023
1024 /*
1025  * By writing to CWRITER the guest announces new commands to be processed.
1026  * To avoid any races in the first place, we take the its_cmd lock, which
1027  * protects our ring buffer variables, so that there is only one user
1028  * per ITS handling commands at a given time.
1029  */
1030 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1031                                         gpa_t addr, unsigned int len,
1032                                         unsigned long val)
1033 {
1034         gpa_t cbaser;
1035         u64 cmd_buf[4];
1036         u32 reg;
1037
1038         if (!its)
1039                 return;
1040
1041         mutex_lock(&its->cmd_lock);
1042
1043         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1044         reg = ITS_CMD_OFFSET(reg);
1045         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1046                 mutex_unlock(&its->cmd_lock);
1047                 return;
1048         }
1049
1050         its->cwriter = reg;
1051         cbaser = CBASER_ADDRESS(its->cbaser);
1052
1053         while (its->cwriter != its->creadr) {
1054                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1055                                          cmd_buf, ITS_CMD_SIZE);
1056                 /*
1057                  * If kvm_read_guest() fails, this could be due to the guest
1058                  * programming a bogus value in CBASER or something else going
1059                  * wrong from which we cannot easily recover.
1060                  * According to section 6.3.2 in the GICv3 spec we can just
1061                  * ignore that command then.
1062                  */
1063                 if (!ret)
1064                         vgic_its_handle_command(kvm, its, cmd_buf);
1065
1066                 its->creadr += ITS_CMD_SIZE;
1067                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1068                         its->creadr = 0;
1069         }
1070
1071         mutex_unlock(&its->cmd_lock);
1072 }
1073
1074 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1075                                                 struct vgic_its *its,
1076                                                 gpa_t addr, unsigned int len)
1077 {
1078         return extract_bytes(its->cwriter, addr & 0x7, len);
1079 }
1080
1081 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1082                                                struct vgic_its *its,
1083                                                gpa_t addr, unsigned int len)
1084 {
1085         return extract_bytes(its->creadr, addr & 0x7, len);
1086 }
1087
1088 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1089 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1090                                               struct vgic_its *its,
1091                                               gpa_t addr, unsigned int len)
1092 {
1093         u64 reg;
1094
1095         switch (BASER_INDEX(addr)) {
1096         case 0:
1097                 reg = its->baser_device_table;
1098                 break;
1099         case 1:
1100                 reg = its->baser_coll_table;
1101                 break;
1102         default:
1103                 reg = 0;
1104                 break;
1105         }
1106
1107         return extract_bytes(reg, addr & 7, len);
1108 }
1109
1110 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1111 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1112                                       struct vgic_its *its,
1113                                       gpa_t addr, unsigned int len,
1114                                       unsigned long val)
1115 {
1116         u64 entry_size, device_type;
1117         u64 reg, *regptr, clearbits = 0;
1118
1119         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1120         if (its->enabled)
1121                 return;
1122
1123         switch (BASER_INDEX(addr)) {
1124         case 0:
1125                 regptr = &its->baser_device_table;
1126                 entry_size = 8;
1127                 device_type = GITS_BASER_TYPE_DEVICE;
1128                 break;
1129         case 1:
1130                 regptr = &its->baser_coll_table;
1131                 entry_size = 8;
1132                 device_type = GITS_BASER_TYPE_COLLECTION;
1133                 clearbits = GITS_BASER_INDIRECT;
1134                 break;
1135         default:
1136                 return;
1137         }
1138
1139         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1140         reg &= ~GITS_BASER_RO_MASK;
1141         reg &= ~clearbits;
1142
1143         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1144         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1145         reg = vgic_sanitise_its_baser(reg);
1146
1147         *regptr = reg;
1148 }
1149
1150 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1151 {                                                               \
1152         .reg_offset = off,                                      \
1153         .len = length,                                          \
1154         .access_flags = acc,                                    \
1155         .its_read = rd,                                         \
1156         .its_write = wr,                                        \
1157 }
1158
1159 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1160                               gpa_t addr, unsigned int len, unsigned long val)
1161 {
1162         /* Ignore */
1163 }
1164
1165 static struct vgic_register_region its_registers[] = {
1166         REGISTER_ITS_DESC(GITS_CTLR,
1167                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1168                 VGIC_ACCESS_32bit),
1169         REGISTER_ITS_DESC(GITS_IIDR,
1170                 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1171                 VGIC_ACCESS_32bit),
1172         REGISTER_ITS_DESC(GITS_TYPER,
1173                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1174                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1175         REGISTER_ITS_DESC(GITS_CBASER,
1176                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1177                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1178         REGISTER_ITS_DESC(GITS_CWRITER,
1179                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1180                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1181         REGISTER_ITS_DESC(GITS_CREADR,
1182                 vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
1183                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1184         REGISTER_ITS_DESC(GITS_BASER,
1185                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1186                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1187         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1188                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1189                 VGIC_ACCESS_32bit),
1190 };
1191
1192 /* This is called on setting the LPI enable bit in the redistributor. */
1193 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1194 {
1195         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1196                 its_sync_lpi_pending_table(vcpu);
1197 }
1198
1199 static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
1200 {
1201         struct vgic_io_device *iodev = &its->iodev;
1202         int ret;
1203
1204         if (its->initialized)
1205                 return 0;
1206
1207         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1208                 return -ENXIO;
1209
1210         iodev->regions = its_registers;
1211         iodev->nr_regions = ARRAY_SIZE(its_registers);
1212         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1213
1214         iodev->base_addr = its->vgic_its_base;
1215         iodev->iodev_type = IODEV_ITS;
1216         iodev->its = its;
1217         mutex_lock(&kvm->slots_lock);
1218         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1219                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1220         mutex_unlock(&kvm->slots_lock);
1221
1222         if (!ret)
1223                 its->initialized = true;
1224
1225         return ret;
1226 }
1227
1228 #define INITIAL_BASER_VALUE                                               \
1229         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1230          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1231          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1232          ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)                    | \
1233          GITS_BASER_PAGE_SIZE_64K)
1234
1235 #define INITIAL_PROPBASER_VALUE                                           \
1236         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1237          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1238          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1239
1240 static int vgic_its_create(struct kvm_device *dev, u32 type)
1241 {
1242         struct vgic_its *its;
1243
1244         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1245                 return -ENODEV;
1246
1247         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1248         if (!its)
1249                 return -ENOMEM;
1250
1251         mutex_init(&its->its_lock);
1252         mutex_init(&its->cmd_lock);
1253
1254         its->vgic_its_base = VGIC_ADDR_UNDEF;
1255
1256         INIT_LIST_HEAD(&its->device_list);
1257         INIT_LIST_HEAD(&its->collection_list);
1258
1259         dev->kvm->arch.vgic.has_its = true;
1260         its->initialized = false;
1261         its->enabled = false;
1262
1263         its->baser_device_table = INITIAL_BASER_VALUE                   |
1264                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1265         its->baser_coll_table = INITIAL_BASER_VALUE |
1266                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1267         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1268
1269         dev->private = its;
1270
1271         return 0;
1272 }
1273
1274 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1275 {
1276         struct kvm *kvm = kvm_dev->kvm;
1277         struct vgic_its *its = kvm_dev->private;
1278         struct its_device *dev;
1279         struct its_itte *itte;
1280         struct list_head *dev_cur, *dev_temp;
1281         struct list_head *cur, *temp;
1282
1283         /*
1284          * We may end up here without the lists ever having been initialized.
1285          * Check this and bail out early to avoid dereferencing a NULL pointer.
1286          */
1287         if (!its->device_list.next)
1288                 return;
1289
1290         mutex_lock(&its->its_lock);
1291         list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1292                 dev = container_of(dev_cur, struct its_device, dev_list);
1293                 list_for_each_safe(cur, temp, &dev->itt_head) {
1294                         itte = (container_of(cur, struct its_itte, itte_list));
1295                         its_free_itte(kvm, itte);
1296                 }
1297                 list_del(dev_cur);
1298                 kfree(dev);
1299         }
1300
1301         list_for_each_safe(cur, temp, &its->collection_list) {
1302                 list_del(cur);
1303                 kfree(container_of(cur, struct its_collection, coll_list));
1304         }
1305         mutex_unlock(&its->its_lock);
1306
1307         kfree(its);
1308 }
1309
1310 static int vgic_its_has_attr(struct kvm_device *dev,
1311                              struct kvm_device_attr *attr)
1312 {
1313         switch (attr->group) {
1314         case KVM_DEV_ARM_VGIC_GRP_ADDR:
1315                 switch (attr->attr) {
1316                 case KVM_VGIC_ITS_ADDR_TYPE:
1317                         return 0;
1318                 }
1319                 break;
1320         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1321                 switch (attr->attr) {
1322                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1323                         return 0;
1324                 }
1325                 break;
1326         }
1327         return -ENXIO;
1328 }
1329
1330 static int vgic_its_set_attr(struct kvm_device *dev,
1331                              struct kvm_device_attr *attr)
1332 {
1333         struct vgic_its *its = dev->private;
1334         int ret;
1335
1336         switch (attr->group) {
1337         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1338                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1339                 unsigned long type = (unsigned long)attr->attr;
1340                 u64 addr;
1341
1342                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1343                         return -ENODEV;
1344
1345                 if (its->initialized)
1346                         return -EBUSY;
1347
1348                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1349                         return -EFAULT;
1350
1351                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1352                                         addr, SZ_64K);
1353                 if (ret)
1354                         return ret;
1355
1356                 its->vgic_its_base = addr;
1357
1358                 return 0;
1359         }
1360         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1361                 switch (attr->attr) {
1362                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1363                         return vgic_its_init_its(dev->kvm, its);
1364                 }
1365                 break;
1366         }
1367         return -ENXIO;
1368 }
1369
1370 static int vgic_its_get_attr(struct kvm_device *dev,
1371                              struct kvm_device_attr *attr)
1372 {
1373         switch (attr->group) {
1374         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1375                 struct vgic_its *its = dev->private;
1376                 u64 addr = its->vgic_its_base;
1377                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1378                 unsigned long type = (unsigned long)attr->attr;
1379
1380                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1381                         return -ENODEV;
1382
1383                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1384                         return -EFAULT;
1385                 break;
1386         default:
1387                 return -ENXIO;
1388         }
1389         }
1390
1391         return 0;
1392 }
1393
1394 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1395         .name = "kvm-arm-vgic-its",
1396         .create = vgic_its_create,
1397         .destroy = vgic_its_destroy,
1398         .set_attr = vgic_its_set_attr,
1399         .get_attr = vgic_its_get_attr,
1400         .has_attr = vgic_its_has_attr,
1401 };
1402
1403 int kvm_vgic_register_its_device(void)
1404 {
1405         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1406                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
1407 }