98dd87ce15108cfe1c011da44ba32f97763776c8
[linux-2.6-block.git] / net / sched / sch_fq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52
53 struct fq_skb_cb {
54         u64             time_to_send;
55 };
56
57 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
58 {
59         qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60         return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
61 }
62
63 /*
64  * Per flow structure, dynamically allocated.
65  * If packets have monotically increasing time_to_send, they are placed in O(1)
66  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
67  */
68 struct fq_flow {
69         struct rb_root  t_root;
70         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
71         union {
72                 struct sk_buff *tail;   /* last skb in the list */
73                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
74         };
75         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
76         struct sock     *sk;
77         int             qlen;           /* number of packets in flow queue */
78         int             credit;
79         u32             socket_hash;    /* sk_hash */
80         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
81
82         struct rb_node  rate_node;      /* anchor in q->delayed tree */
83         u64             time_next_packet;
84 };
85
86 struct fq_flow_head {
87         struct fq_flow *first;
88         struct fq_flow *last;
89 };
90
91 struct fq_sched_data {
92         struct fq_flow_head new_flows;
93
94         struct fq_flow_head old_flows;
95
96         struct rb_root  delayed;        /* for rate limited flows */
97         u64             time_next_delayed_flow;
98         unsigned long   unthrottle_latency_ns;
99
100         struct fq_flow  internal;       /* for non classified or high prio packets */
101         u32             quantum;
102         u32             initial_quantum;
103         u32             flow_refill_delay;
104         u32             flow_plimit;    /* max packets per flow */
105         unsigned long   flow_max_rate;  /* optional max rate per flow */
106         u64             ce_threshold;
107         u32             orphan_mask;    /* mask for orphaned skb */
108         u32             low_rate_threshold;
109         struct rb_root  *fq_root;
110         u8              rate_enable;
111         u8              fq_trees_log;
112
113         u32             flows;
114         u32             inactive_flows;
115         u32             throttled_flows;
116
117         u64             stat_gc_flows;
118         u64             stat_internal_packets;
119         u64             stat_throttled;
120         u64             stat_ce_mark;
121         u64             stat_flows_plimit;
122         u64             stat_pkts_too_long;
123         u64             stat_allocation_errors;
124         struct qdisc_watchdog watchdog;
125 };
126
127 /* special value to mark a detached flow (not on old/new list) */
128 static struct fq_flow detached, throttled;
129
130 static void fq_flow_set_detached(struct fq_flow *f)
131 {
132         f->next = &detached;
133         f->age = jiffies;
134 }
135
136 static bool fq_flow_is_detached(const struct fq_flow *f)
137 {
138         return f->next == &detached;
139 }
140
141 static bool fq_flow_is_throttled(const struct fq_flow *f)
142 {
143         return f->next == &throttled;
144 }
145
146 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
147 {
148         if (head->first)
149                 head->last->next = flow;
150         else
151                 head->first = flow;
152         head->last = flow;
153         flow->next = NULL;
154 }
155
156 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
157 {
158         rb_erase(&f->rate_node, &q->delayed);
159         q->throttled_flows--;
160         fq_flow_add_tail(&q->old_flows, f);
161 }
162
163 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
164 {
165         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
166
167         while (*p) {
168                 struct fq_flow *aux;
169
170                 parent = *p;
171                 aux = rb_entry(parent, struct fq_flow, rate_node);
172                 if (f->time_next_packet >= aux->time_next_packet)
173                         p = &parent->rb_right;
174                 else
175                         p = &parent->rb_left;
176         }
177         rb_link_node(&f->rate_node, parent, p);
178         rb_insert_color(&f->rate_node, &q->delayed);
179         q->throttled_flows++;
180         q->stat_throttled++;
181
182         f->next = &throttled;
183         if (q->time_next_delayed_flow > f->time_next_packet)
184                 q->time_next_delayed_flow = f->time_next_packet;
185 }
186
187
188 static struct kmem_cache *fq_flow_cachep __read_mostly;
189
190
191 /* limit number of collected flows per round */
192 #define FQ_GC_MAX 8
193 #define FQ_GC_AGE (3*HZ)
194
195 static bool fq_gc_candidate(const struct fq_flow *f)
196 {
197         return fq_flow_is_detached(f) &&
198                time_after(jiffies, f->age + FQ_GC_AGE);
199 }
200
201 static void fq_gc(struct fq_sched_data *q,
202                   struct rb_root *root,
203                   struct sock *sk)
204 {
205         struct fq_flow *f, *tofree[FQ_GC_MAX];
206         struct rb_node **p, *parent;
207         int fcnt = 0;
208
209         p = &root->rb_node;
210         parent = NULL;
211         while (*p) {
212                 parent = *p;
213
214                 f = rb_entry(parent, struct fq_flow, fq_node);
215                 if (f->sk == sk)
216                         break;
217
218                 if (fq_gc_candidate(f)) {
219                         tofree[fcnt++] = f;
220                         if (fcnt == FQ_GC_MAX)
221                                 break;
222                 }
223
224                 if (f->sk > sk)
225                         p = &parent->rb_right;
226                 else
227                         p = &parent->rb_left;
228         }
229
230         q->flows -= fcnt;
231         q->inactive_flows -= fcnt;
232         q->stat_gc_flows += fcnt;
233         while (fcnt) {
234                 struct fq_flow *f = tofree[--fcnt];
235
236                 rb_erase(&f->fq_node, root);
237                 kmem_cache_free(fq_flow_cachep, f);
238         }
239 }
240
241 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
242 {
243         struct rb_node **p, *parent;
244         struct sock *sk = skb->sk;
245         struct rb_root *root;
246         struct fq_flow *f;
247
248         /* warning: no starvation prevention... */
249         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
250                 return &q->internal;
251
252         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
253          * or a listener (SYNCOOKIE mode)
254          * 1) request sockets are not full blown,
255          *    they do not contain sk_pacing_rate
256          * 2) They are not part of a 'flow' yet
257          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
258          *    especially if the listener set SO_MAX_PACING_RATE
259          * 4) We pretend they are orphaned
260          */
261         if (!sk || sk_listener(sk)) {
262                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
263
264                 /* By forcing low order bit to 1, we make sure to not
265                  * collide with a local flow (socket pointers are word aligned)
266                  */
267                 sk = (struct sock *)((hash << 1) | 1UL);
268                 skb_orphan(skb);
269         } else if (sk->sk_state == TCP_CLOSE) {
270                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
271                 /*
272                  * Sockets in TCP_CLOSE are non connected.
273                  * Typical use case is UDP sockets, they can send packets
274                  * with sendto() to many different destinations.
275                  * We probably could use a generic bit advertising
276                  * non connected sockets, instead of sk_state == TCP_CLOSE,
277                  * if we care enough.
278                  */
279                 sk = (struct sock *)((hash << 1) | 1UL);
280         }
281
282         root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
283
284         if (q->flows >= (2U << q->fq_trees_log) &&
285             q->inactive_flows > q->flows/2)
286                 fq_gc(q, root, sk);
287
288         p = &root->rb_node;
289         parent = NULL;
290         while (*p) {
291                 parent = *p;
292
293                 f = rb_entry(parent, struct fq_flow, fq_node);
294                 if (f->sk == sk) {
295                         /* socket might have been reallocated, so check
296                          * if its sk_hash is the same.
297                          * It not, we need to refill credit with
298                          * initial quantum
299                          */
300                         if (unlikely(skb->sk == sk &&
301                                      f->socket_hash != sk->sk_hash)) {
302                                 f->credit = q->initial_quantum;
303                                 f->socket_hash = sk->sk_hash;
304                                 if (fq_flow_is_throttled(f))
305                                         fq_flow_unset_throttled(q, f);
306                                 f->time_next_packet = 0ULL;
307                         }
308                         return f;
309                 }
310                 if (f->sk > sk)
311                         p = &parent->rb_right;
312                 else
313                         p = &parent->rb_left;
314         }
315
316         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
317         if (unlikely(!f)) {
318                 q->stat_allocation_errors++;
319                 return &q->internal;
320         }
321         /* f->t_root is already zeroed after kmem_cache_zalloc() */
322
323         fq_flow_set_detached(f);
324         f->sk = sk;
325         if (skb->sk == sk)
326                 f->socket_hash = sk->sk_hash;
327         f->credit = q->initial_quantum;
328
329         rb_link_node(&f->fq_node, parent, p);
330         rb_insert_color(&f->fq_node, root);
331
332         q->flows++;
333         q->inactive_flows++;
334         return f;
335 }
336
337 static struct sk_buff *fq_peek(struct fq_flow *flow)
338 {
339         struct sk_buff *skb = skb_rb_first(&flow->t_root);
340         struct sk_buff *head = flow->head;
341
342         if (!skb)
343                 return head;
344
345         if (!head)
346                 return skb;
347
348         if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
349                 return skb;
350         return head;
351 }
352
353 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
354                           struct sk_buff *skb)
355 {
356         if (skb == flow->head) {
357                 flow->head = skb->next;
358         } else {
359                 rb_erase(&skb->rbnode, &flow->t_root);
360                 skb->dev = qdisc_dev(sch);
361         }
362 }
363
364 /* remove one skb from head of flow queue */
365 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
366 {
367         struct sk_buff *skb = fq_peek(flow);
368
369         if (skb) {
370                 fq_erase_head(sch, flow, skb);
371                 skb_mark_not_on_list(skb);
372                 flow->qlen--;
373                 qdisc_qstats_backlog_dec(sch, skb);
374                 sch->q.qlen--;
375         }
376         return skb;
377 }
378
379 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
380 {
381         struct rb_node **p, *parent;
382         struct sk_buff *head, *aux;
383
384         fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
385
386         head = flow->head;
387         if (!head ||
388             fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
389                 if (!head)
390                         flow->head = skb;
391                 else
392                         flow->tail->next = skb;
393                 flow->tail = skb;
394                 skb->next = NULL;
395                 return;
396         }
397
398         p = &flow->t_root.rb_node;
399         parent = NULL;
400
401         while (*p) {
402                 parent = *p;
403                 aux = rb_to_skb(parent);
404                 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
405                         p = &parent->rb_right;
406                 else
407                         p = &parent->rb_left;
408         }
409         rb_link_node(&skb->rbnode, parent, p);
410         rb_insert_color(&skb->rbnode, &flow->t_root);
411 }
412
413 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414                       struct sk_buff **to_free)
415 {
416         struct fq_sched_data *q = qdisc_priv(sch);
417         struct fq_flow *f;
418
419         if (unlikely(sch->q.qlen >= sch->limit))
420                 return qdisc_drop(skb, sch, to_free);
421
422         f = fq_classify(skb, q);
423         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
424                 q->stat_flows_plimit++;
425                 return qdisc_drop(skb, sch, to_free);
426         }
427
428         f->qlen++;
429         qdisc_qstats_backlog_inc(sch, skb);
430         if (fq_flow_is_detached(f)) {
431                 struct sock *sk = skb->sk;
432
433                 fq_flow_add_tail(&q->new_flows, f);
434                 if (time_after(jiffies, f->age + q->flow_refill_delay))
435                         f->credit = max_t(u32, f->credit, q->quantum);
436                 if (sk && q->rate_enable) {
437                         if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
438                                      SK_PACING_FQ))
439                                 smp_store_release(&sk->sk_pacing_status,
440                                                   SK_PACING_FQ);
441                 }
442                 q->inactive_flows--;
443         }
444
445         /* Note: this overwrites f->age */
446         flow_queue_add(f, skb);
447
448         if (unlikely(f == &q->internal)) {
449                 q->stat_internal_packets++;
450         }
451         sch->q.qlen++;
452
453         return NET_XMIT_SUCCESS;
454 }
455
456 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
457 {
458         unsigned long sample;
459         struct rb_node *p;
460
461         if (q->time_next_delayed_flow > now)
462                 return;
463
464         /* Update unthrottle latency EWMA.
465          * This is cheap and can help diagnosing timer/latency problems.
466          */
467         sample = (unsigned long)(now - q->time_next_delayed_flow);
468         q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
469         q->unthrottle_latency_ns += sample >> 3;
470
471         q->time_next_delayed_flow = ~0ULL;
472         while ((p = rb_first(&q->delayed)) != NULL) {
473                 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
474
475                 if (f->time_next_packet > now) {
476                         q->time_next_delayed_flow = f->time_next_packet;
477                         break;
478                 }
479                 fq_flow_unset_throttled(q, f);
480         }
481 }
482
483 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
484 {
485         struct fq_sched_data *q = qdisc_priv(sch);
486         struct fq_flow_head *head;
487         struct sk_buff *skb;
488         struct fq_flow *f;
489         unsigned long rate;
490         u32 plen;
491         u64 now;
492
493         if (!sch->q.qlen)
494                 return NULL;
495
496         skb = fq_dequeue_head(sch, &q->internal);
497         if (skb)
498                 goto out;
499
500         now = ktime_get_ns();
501         fq_check_throttled(q, now);
502 begin:
503         head = &q->new_flows;
504         if (!head->first) {
505                 head = &q->old_flows;
506                 if (!head->first) {
507                         if (q->time_next_delayed_flow != ~0ULL)
508                                 qdisc_watchdog_schedule_ns(&q->watchdog,
509                                                            q->time_next_delayed_flow);
510                         return NULL;
511                 }
512         }
513         f = head->first;
514
515         if (f->credit <= 0) {
516                 f->credit += q->quantum;
517                 head->first = f->next;
518                 fq_flow_add_tail(&q->old_flows, f);
519                 goto begin;
520         }
521
522         skb = fq_peek(f);
523         if (skb) {
524                 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
525                                              f->time_next_packet);
526
527                 if (now < time_next_packet) {
528                         head->first = f->next;
529                         f->time_next_packet = time_next_packet;
530                         fq_flow_set_throttled(q, f);
531                         goto begin;
532                 }
533                 if (time_next_packet &&
534                     (s64)(now - time_next_packet - q->ce_threshold) > 0) {
535                         INET_ECN_set_ce(skb);
536                         q->stat_ce_mark++;
537                 }
538         }
539
540         skb = fq_dequeue_head(sch, f);
541         if (!skb) {
542                 head->first = f->next;
543                 /* force a pass through old_flows to prevent starvation */
544                 if ((head == &q->new_flows) && q->old_flows.first) {
545                         fq_flow_add_tail(&q->old_flows, f);
546                 } else {
547                         fq_flow_set_detached(f);
548                         q->inactive_flows++;
549                 }
550                 goto begin;
551         }
552         prefetch(&skb->end);
553         plen = qdisc_pkt_len(skb);
554         f->credit -= plen;
555
556         if (!q->rate_enable)
557                 goto out;
558
559         rate = q->flow_max_rate;
560
561         /* If EDT time was provided for this skb, we need to
562          * update f->time_next_packet only if this qdisc enforces
563          * a flow max rate.
564          */
565         if (!skb->tstamp) {
566                 if (skb->sk)
567                         rate = min(skb->sk->sk_pacing_rate, rate);
568
569                 if (rate <= q->low_rate_threshold) {
570                         f->credit = 0;
571                 } else {
572                         plen = max(plen, q->quantum);
573                         if (f->credit > 0)
574                                 goto out;
575                 }
576         }
577         if (rate != ~0UL) {
578                 u64 len = (u64)plen * NSEC_PER_SEC;
579
580                 if (likely(rate))
581                         len = div64_ul(len, rate);
582                 /* Since socket rate can change later,
583                  * clamp the delay to 1 second.
584                  * Really, providers of too big packets should be fixed !
585                  */
586                 if (unlikely(len > NSEC_PER_SEC)) {
587                         len = NSEC_PER_SEC;
588                         q->stat_pkts_too_long++;
589                 }
590                 /* Account for schedule/timers drifts.
591                  * f->time_next_packet was set when prior packet was sent,
592                  * and current time (@now) can be too late by tens of us.
593                  */
594                 if (f->time_next_packet)
595                         len -= min(len/2, now - f->time_next_packet);
596                 f->time_next_packet = now + len;
597         }
598 out:
599         qdisc_bstats_update(sch, skb);
600         return skb;
601 }
602
603 static void fq_flow_purge(struct fq_flow *flow)
604 {
605         struct rb_node *p = rb_first(&flow->t_root);
606
607         while (p) {
608                 struct sk_buff *skb = rb_to_skb(p);
609
610                 p = rb_next(p);
611                 rb_erase(&skb->rbnode, &flow->t_root);
612                 rtnl_kfree_skbs(skb, skb);
613         }
614         rtnl_kfree_skbs(flow->head, flow->tail);
615         flow->head = NULL;
616         flow->qlen = 0;
617 }
618
619 static void fq_reset(struct Qdisc *sch)
620 {
621         struct fq_sched_data *q = qdisc_priv(sch);
622         struct rb_root *root;
623         struct rb_node *p;
624         struct fq_flow *f;
625         unsigned int idx;
626
627         sch->q.qlen = 0;
628         sch->qstats.backlog = 0;
629
630         fq_flow_purge(&q->internal);
631
632         if (!q->fq_root)
633                 return;
634
635         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
636                 root = &q->fq_root[idx];
637                 while ((p = rb_first(root)) != NULL) {
638                         f = rb_entry(p, struct fq_flow, fq_node);
639                         rb_erase(p, root);
640
641                         fq_flow_purge(f);
642
643                         kmem_cache_free(fq_flow_cachep, f);
644                 }
645         }
646         q->new_flows.first      = NULL;
647         q->old_flows.first      = NULL;
648         q->delayed              = RB_ROOT;
649         q->flows                = 0;
650         q->inactive_flows       = 0;
651         q->throttled_flows      = 0;
652 }
653
654 static void fq_rehash(struct fq_sched_data *q,
655                       struct rb_root *old_array, u32 old_log,
656                       struct rb_root *new_array, u32 new_log)
657 {
658         struct rb_node *op, **np, *parent;
659         struct rb_root *oroot, *nroot;
660         struct fq_flow *of, *nf;
661         int fcnt = 0;
662         u32 idx;
663
664         for (idx = 0; idx < (1U << old_log); idx++) {
665                 oroot = &old_array[idx];
666                 while ((op = rb_first(oroot)) != NULL) {
667                         rb_erase(op, oroot);
668                         of = rb_entry(op, struct fq_flow, fq_node);
669                         if (fq_gc_candidate(of)) {
670                                 fcnt++;
671                                 kmem_cache_free(fq_flow_cachep, of);
672                                 continue;
673                         }
674                         nroot = &new_array[hash_ptr(of->sk, new_log)];
675
676                         np = &nroot->rb_node;
677                         parent = NULL;
678                         while (*np) {
679                                 parent = *np;
680
681                                 nf = rb_entry(parent, struct fq_flow, fq_node);
682                                 BUG_ON(nf->sk == of->sk);
683
684                                 if (nf->sk > of->sk)
685                                         np = &parent->rb_right;
686                                 else
687                                         np = &parent->rb_left;
688                         }
689
690                         rb_link_node(&of->fq_node, parent, np);
691                         rb_insert_color(&of->fq_node, nroot);
692                 }
693         }
694         q->flows -= fcnt;
695         q->inactive_flows -= fcnt;
696         q->stat_gc_flows += fcnt;
697 }
698
699 static void fq_free(void *addr)
700 {
701         kvfree(addr);
702 }
703
704 static int fq_resize(struct Qdisc *sch, u32 log)
705 {
706         struct fq_sched_data *q = qdisc_priv(sch);
707         struct rb_root *array;
708         void *old_fq_root;
709         u32 idx;
710
711         if (q->fq_root && log == q->fq_trees_log)
712                 return 0;
713
714         /* If XPS was setup, we can allocate memory on right NUMA node */
715         array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
716                               netdev_queue_numa_node_read(sch->dev_queue));
717         if (!array)
718                 return -ENOMEM;
719
720         for (idx = 0; idx < (1U << log); idx++)
721                 array[idx] = RB_ROOT;
722
723         sch_tree_lock(sch);
724
725         old_fq_root = q->fq_root;
726         if (old_fq_root)
727                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
728
729         q->fq_root = array;
730         q->fq_trees_log = log;
731
732         sch_tree_unlock(sch);
733
734         fq_free(old_fq_root);
735
736         return 0;
737 }
738
739 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
740         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
741         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
742         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
743         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
744         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
745         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
746         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
747         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
748         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
749         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
750         [TCA_FQ_CE_THRESHOLD]           = { .type = NLA_U32 },
751 };
752
753 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
754                      struct netlink_ext_ack *extack)
755 {
756         struct fq_sched_data *q = qdisc_priv(sch);
757         struct nlattr *tb[TCA_FQ_MAX + 1];
758         int err, drop_count = 0;
759         unsigned drop_len = 0;
760         u32 fq_log;
761
762         if (!opt)
763                 return -EINVAL;
764
765         err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
766                                           NULL);
767         if (err < 0)
768                 return err;
769
770         sch_tree_lock(sch);
771
772         fq_log = q->fq_trees_log;
773
774         if (tb[TCA_FQ_BUCKETS_LOG]) {
775                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
776
777                 if (nval >= 1 && nval <= ilog2(256*1024))
778                         fq_log = nval;
779                 else
780                         err = -EINVAL;
781         }
782         if (tb[TCA_FQ_PLIMIT])
783                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
784
785         if (tb[TCA_FQ_FLOW_PLIMIT])
786                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
787
788         if (tb[TCA_FQ_QUANTUM]) {
789                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
790
791                 if (quantum > 0)
792                         q->quantum = quantum;
793                 else
794                         err = -EINVAL;
795         }
796
797         if (tb[TCA_FQ_INITIAL_QUANTUM])
798                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
799
800         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
801                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
802                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
803
804         if (tb[TCA_FQ_FLOW_MAX_RATE]) {
805                 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
806
807                 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
808         }
809         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
810                 q->low_rate_threshold =
811                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
812
813         if (tb[TCA_FQ_RATE_ENABLE]) {
814                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
815
816                 if (enable <= 1)
817                         q->rate_enable = enable;
818                 else
819                         err = -EINVAL;
820         }
821
822         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
823                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
824
825                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
826         }
827
828         if (tb[TCA_FQ_ORPHAN_MASK])
829                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
830
831         if (tb[TCA_FQ_CE_THRESHOLD])
832                 q->ce_threshold = (u64)NSEC_PER_USEC *
833                                   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
834
835         if (!err) {
836                 sch_tree_unlock(sch);
837                 err = fq_resize(sch, fq_log);
838                 sch_tree_lock(sch);
839         }
840         while (sch->q.qlen > sch->limit) {
841                 struct sk_buff *skb = fq_dequeue(sch);
842
843                 if (!skb)
844                         break;
845                 drop_len += qdisc_pkt_len(skb);
846                 rtnl_kfree_skbs(skb, skb);
847                 drop_count++;
848         }
849         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
850
851         sch_tree_unlock(sch);
852         return err;
853 }
854
855 static void fq_destroy(struct Qdisc *sch)
856 {
857         struct fq_sched_data *q = qdisc_priv(sch);
858
859         fq_reset(sch);
860         fq_free(q->fq_root);
861         qdisc_watchdog_cancel(&q->watchdog);
862 }
863
864 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
865                    struct netlink_ext_ack *extack)
866 {
867         struct fq_sched_data *q = qdisc_priv(sch);
868         int err;
869
870         sch->limit              = 10000;
871         q->flow_plimit          = 100;
872         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
873         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
874         q->flow_refill_delay    = msecs_to_jiffies(40);
875         q->flow_max_rate        = ~0UL;
876         q->time_next_delayed_flow = ~0ULL;
877         q->rate_enable          = 1;
878         q->new_flows.first      = NULL;
879         q->old_flows.first      = NULL;
880         q->delayed              = RB_ROOT;
881         q->fq_root              = NULL;
882         q->fq_trees_log         = ilog2(1024);
883         q->orphan_mask          = 1024 - 1;
884         q->low_rate_threshold   = 550000 / 8;
885
886         /* Default ce_threshold of 4294 seconds */
887         q->ce_threshold         = (u64)NSEC_PER_USEC * ~0U;
888
889         qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
890
891         if (opt)
892                 err = fq_change(sch, opt, extack);
893         else
894                 err = fq_resize(sch, q->fq_trees_log);
895
896         return err;
897 }
898
899 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
900 {
901         struct fq_sched_data *q = qdisc_priv(sch);
902         u64 ce_threshold = q->ce_threshold;
903         struct nlattr *opts;
904
905         opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
906         if (opts == NULL)
907                 goto nla_put_failure;
908
909         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
910
911         do_div(ce_threshold, NSEC_PER_USEC);
912
913         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
914             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
915             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
916             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
917             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
918             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
919                         min_t(unsigned long, q->flow_max_rate, ~0U)) ||
920             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
921                         jiffies_to_usecs(q->flow_refill_delay)) ||
922             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
923             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
924                         q->low_rate_threshold) ||
925             nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
926             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
927                 goto nla_put_failure;
928
929         return nla_nest_end(skb, opts);
930
931 nla_put_failure:
932         return -1;
933 }
934
935 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
936 {
937         struct fq_sched_data *q = qdisc_priv(sch);
938         struct tc_fq_qd_stats st;
939
940         sch_tree_lock(sch);
941
942         st.gc_flows               = q->stat_gc_flows;
943         st.highprio_packets       = q->stat_internal_packets;
944         st.tcp_retrans            = 0;
945         st.throttled              = q->stat_throttled;
946         st.flows_plimit           = q->stat_flows_plimit;
947         st.pkts_too_long          = q->stat_pkts_too_long;
948         st.allocation_errors      = q->stat_allocation_errors;
949         st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
950         st.flows                  = q->flows;
951         st.inactive_flows         = q->inactive_flows;
952         st.throttled_flows        = q->throttled_flows;
953         st.unthrottle_latency_ns  = min_t(unsigned long,
954                                           q->unthrottle_latency_ns, ~0U);
955         st.ce_mark                = q->stat_ce_mark;
956         sch_tree_unlock(sch);
957
958         return gnet_stats_copy_app(d, &st, sizeof(st));
959 }
960
961 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
962         .id             =       "fq",
963         .priv_size      =       sizeof(struct fq_sched_data),
964
965         .enqueue        =       fq_enqueue,
966         .dequeue        =       fq_dequeue,
967         .peek           =       qdisc_peek_dequeued,
968         .init           =       fq_init,
969         .reset          =       fq_reset,
970         .destroy        =       fq_destroy,
971         .change         =       fq_change,
972         .dump           =       fq_dump,
973         .dump_stats     =       fq_dump_stats,
974         .owner          =       THIS_MODULE,
975 };
976
977 static int __init fq_module_init(void)
978 {
979         int ret;
980
981         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
982                                            sizeof(struct fq_flow),
983                                            0, 0, NULL);
984         if (!fq_flow_cachep)
985                 return -ENOMEM;
986
987         ret = register_qdisc(&fq_qdisc_ops);
988         if (ret)
989                 kmem_cache_destroy(fq_flow_cachep);
990         return ret;
991 }
992
993 static void __exit fq_module_exit(void)
994 {
995         unregister_qdisc(&fq_qdisc_ops);
996         kmem_cache_destroy(fq_flow_cachep);
997 }
998
999 module_init(fq_module_init)
1000 module_exit(fq_module_exit)
1001 MODULE_AUTHOR("Eric Dumazet");
1002 MODULE_LICENSE("GPL");