Merge tag 'compat-ioctl-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd...
[linux-2.6-block.git] / net / rfkill / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL           (5 * HZ)
28
29 #define RFKILL_BLOCK_HW         BIT(0)
30 #define RFKILL_BLOCK_SW         BIT(1)
31 #define RFKILL_BLOCK_SW_PREV    BIT(2)
32 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
33                                  RFKILL_BLOCK_SW |\
34                                  RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38         spinlock_t              lock;
39
40         enum rfkill_type        type;
41
42         unsigned long           state;
43
44         u32                     idx;
45
46         bool                    registered;
47         bool                    persistent;
48         bool                    polling_paused;
49         bool                    suspended;
50
51         const struct rfkill_ops *ops;
52         void                    *data;
53
54 #ifdef CONFIG_RFKILL_LEDS
55         struct led_trigger      led_trigger;
56         const char              *ledtrigname;
57 #endif
58
59         struct device           dev;
60         struct list_head        node;
61
62         struct delayed_work     poll_work;
63         struct work_struct      uevent_work;
64         struct work_struct      sync_work;
65         char                    name[];
66 };
67 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
68
69 struct rfkill_int_event {
70         struct list_head        list;
71         struct rfkill_event     ev;
72 };
73
74 struct rfkill_data {
75         struct list_head        list;
76         struct list_head        events;
77         struct mutex            mtx;
78         wait_queue_head_t       read_wait;
79         bool                    input_handler;
80 };
81
82
83 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85 MODULE_DESCRIPTION("RF switch support");
86 MODULE_LICENSE("GPL");
87
88
89 /*
90  * The locking here should be made much smarter, we currently have
91  * a bit of a stupid situation because drivers might want to register
92  * the rfkill struct under their own lock, and take this lock during
93  * rfkill method calls -- which will cause an AB-BA deadlock situation.
94  *
95  * To fix that, we need to rework this code here to be mostly lock-free
96  * and only use the mutex for list manipulations, not to protect the
97  * various other global variables. Then we can avoid holding the mutex
98  * around driver operations, and all is happy.
99  */
100 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
101 static DEFINE_MUTEX(rfkill_global_mutex);
102 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
103
104 static unsigned int rfkill_default_state = 1;
105 module_param_named(default_state, rfkill_default_state, uint, 0444);
106 MODULE_PARM_DESC(default_state,
107                  "Default initial state for all radio types, 0 = radio off");
108
109 static struct {
110         bool cur, sav;
111 } rfkill_global_states[NUM_RFKILL_TYPES];
112
113 static bool rfkill_epo_lock_active;
114
115
116 #ifdef CONFIG_RFKILL_LEDS
117 static void rfkill_led_trigger_event(struct rfkill *rfkill)
118 {
119         struct led_trigger *trigger;
120
121         if (!rfkill->registered)
122                 return;
123
124         trigger = &rfkill->led_trigger;
125
126         if (rfkill->state & RFKILL_BLOCK_ANY)
127                 led_trigger_event(trigger, LED_OFF);
128         else
129                 led_trigger_event(trigger, LED_FULL);
130 }
131
132 static int rfkill_led_trigger_activate(struct led_classdev *led)
133 {
134         struct rfkill *rfkill;
135
136         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138         rfkill_led_trigger_event(rfkill);
139
140         return 0;
141 }
142
143 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144 {
145         return rfkill->led_trigger.name;
146 }
147 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
149 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150 {
151         BUG_ON(!rfkill);
152
153         rfkill->ledtrigname = name;
154 }
155 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
157 static int rfkill_led_trigger_register(struct rfkill *rfkill)
158 {
159         rfkill->led_trigger.name = rfkill->ledtrigname
160                                         ? : dev_name(&rfkill->dev);
161         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162         return led_trigger_register(&rfkill->led_trigger);
163 }
164
165 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166 {
167         led_trigger_unregister(&rfkill->led_trigger);
168 }
169
170 static struct led_trigger rfkill_any_led_trigger;
171 static struct led_trigger rfkill_none_led_trigger;
172 static struct work_struct rfkill_global_led_trigger_work;
173
174 static void rfkill_global_led_trigger_worker(struct work_struct *work)
175 {
176         enum led_brightness brightness = LED_OFF;
177         struct rfkill *rfkill;
178
179         mutex_lock(&rfkill_global_mutex);
180         list_for_each_entry(rfkill, &rfkill_list, node) {
181                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182                         brightness = LED_FULL;
183                         break;
184                 }
185         }
186         mutex_unlock(&rfkill_global_mutex);
187
188         led_trigger_event(&rfkill_any_led_trigger, brightness);
189         led_trigger_event(&rfkill_none_led_trigger,
190                           brightness == LED_OFF ? LED_FULL : LED_OFF);
191 }
192
193 static void rfkill_global_led_trigger_event(void)
194 {
195         schedule_work(&rfkill_global_led_trigger_work);
196 }
197
198 static int rfkill_global_led_trigger_register(void)
199 {
200         int ret;
201
202         INIT_WORK(&rfkill_global_led_trigger_work,
203                         rfkill_global_led_trigger_worker);
204
205         rfkill_any_led_trigger.name = "rfkill-any";
206         ret = led_trigger_register(&rfkill_any_led_trigger);
207         if (ret)
208                 return ret;
209
210         rfkill_none_led_trigger.name = "rfkill-none";
211         ret = led_trigger_register(&rfkill_none_led_trigger);
212         if (ret)
213                 led_trigger_unregister(&rfkill_any_led_trigger);
214         else
215                 /* Delay activation until all global triggers are registered */
216                 rfkill_global_led_trigger_event();
217
218         return ret;
219 }
220
221 static void rfkill_global_led_trigger_unregister(void)
222 {
223         led_trigger_unregister(&rfkill_none_led_trigger);
224         led_trigger_unregister(&rfkill_any_led_trigger);
225         cancel_work_sync(&rfkill_global_led_trigger_work);
226 }
227 #else
228 static void rfkill_led_trigger_event(struct rfkill *rfkill)
229 {
230 }
231
232 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233 {
234         return 0;
235 }
236
237 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238 {
239 }
240
241 static void rfkill_global_led_trigger_event(void)
242 {
243 }
244
245 static int rfkill_global_led_trigger_register(void)
246 {
247         return 0;
248 }
249
250 static void rfkill_global_led_trigger_unregister(void)
251 {
252 }
253 #endif /* CONFIG_RFKILL_LEDS */
254
255 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256                               enum rfkill_operation op)
257 {
258         unsigned long flags;
259
260         ev->idx = rfkill->idx;
261         ev->type = rfkill->type;
262         ev->op = op;
263
264         spin_lock_irqsave(&rfkill->lock, flags);
265         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267                                         RFKILL_BLOCK_SW_PREV));
268         spin_unlock_irqrestore(&rfkill->lock, flags);
269 }
270
271 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272 {
273         struct rfkill_data *data;
274         struct rfkill_int_event *ev;
275
276         list_for_each_entry(data, &rfkill_fds, list) {
277                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278                 if (!ev)
279                         continue;
280                 rfkill_fill_event(&ev->ev, rfkill, op);
281                 mutex_lock(&data->mtx);
282                 list_add_tail(&ev->list, &data->events);
283                 mutex_unlock(&data->mtx);
284                 wake_up_interruptible(&data->read_wait);
285         }
286 }
287
288 static void rfkill_event(struct rfkill *rfkill)
289 {
290         if (!rfkill->registered)
291                 return;
292
293         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295         /* also send event to /dev/rfkill */
296         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297 }
298
299 /**
300  * rfkill_set_block - wrapper for set_block method
301  *
302  * @rfkill: the rfkill struct to use
303  * @blocked: the new software state
304  *
305  * Calls the set_block method (when applicable) and handles notifications
306  * etc. as well.
307  */
308 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309 {
310         unsigned long flags;
311         bool prev, curr;
312         int err;
313
314         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315                 return;
316
317         /*
318          * Some platforms (...!) generate input events which affect the
319          * _hard_ kill state -- whenever something tries to change the
320          * current software state query the hardware state too.
321          */
322         if (rfkill->ops->query)
323                 rfkill->ops->query(rfkill, rfkill->data);
324
325         spin_lock_irqsave(&rfkill->lock, flags);
326         prev = rfkill->state & RFKILL_BLOCK_SW;
327
328         if (prev)
329                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330         else
331                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333         if (blocked)
334                 rfkill->state |= RFKILL_BLOCK_SW;
335         else
336                 rfkill->state &= ~RFKILL_BLOCK_SW;
337
338         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339         spin_unlock_irqrestore(&rfkill->lock, flags);
340
341         err = rfkill->ops->set_block(rfkill->data, blocked);
342
343         spin_lock_irqsave(&rfkill->lock, flags);
344         if (err) {
345                 /*
346                  * Failed -- reset status to _PREV, which may be different
347                  * from what we have set _PREV to earlier in this function
348                  * if rfkill_set_sw_state was invoked.
349                  */
350                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351                         rfkill->state |= RFKILL_BLOCK_SW;
352                 else
353                         rfkill->state &= ~RFKILL_BLOCK_SW;
354         }
355         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357         curr = rfkill->state & RFKILL_BLOCK_SW;
358         spin_unlock_irqrestore(&rfkill->lock, flags);
359
360         rfkill_led_trigger_event(rfkill);
361         rfkill_global_led_trigger_event();
362
363         if (prev != curr)
364                 rfkill_event(rfkill);
365 }
366
367 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368 {
369         int i;
370
371         if (type != RFKILL_TYPE_ALL) {
372                 rfkill_global_states[type].cur = blocked;
373                 return;
374         }
375
376         for (i = 0; i < NUM_RFKILL_TYPES; i++)
377                 rfkill_global_states[i].cur = blocked;
378 }
379
380 #ifdef CONFIG_RFKILL_INPUT
381 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383 /**
384  * __rfkill_switch_all - Toggle state of all switches of given type
385  * @type: type of interfaces to be affected
386  * @blocked: the new state
387  *
388  * This function sets the state of all switches of given type,
389  * unless a specific switch is suspended.
390  *
391  * Caller must have acquired rfkill_global_mutex.
392  */
393 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394 {
395         struct rfkill *rfkill;
396
397         rfkill_update_global_state(type, blocked);
398         list_for_each_entry(rfkill, &rfkill_list, node) {
399                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400                         continue;
401
402                 rfkill_set_block(rfkill, blocked);
403         }
404 }
405
406 /**
407  * rfkill_switch_all - Toggle state of all switches of given type
408  * @type: type of interfaces to be affected
409  * @blocked: the new state
410  *
411  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412  * Please refer to __rfkill_switch_all() for details.
413  *
414  * Does nothing if the EPO lock is active.
415  */
416 void rfkill_switch_all(enum rfkill_type type, bool blocked)
417 {
418         if (atomic_read(&rfkill_input_disabled))
419                 return;
420
421         mutex_lock(&rfkill_global_mutex);
422
423         if (!rfkill_epo_lock_active)
424                 __rfkill_switch_all(type, blocked);
425
426         mutex_unlock(&rfkill_global_mutex);
427 }
428
429 /**
430  * rfkill_epo - emergency power off all transmitters
431  *
432  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434  *
435  * The global state before the EPO is saved and can be restored later
436  * using rfkill_restore_states().
437  */
438 void rfkill_epo(void)
439 {
440         struct rfkill *rfkill;
441         int i;
442
443         if (atomic_read(&rfkill_input_disabled))
444                 return;
445
446         mutex_lock(&rfkill_global_mutex);
447
448         rfkill_epo_lock_active = true;
449         list_for_each_entry(rfkill, &rfkill_list, node)
450                 rfkill_set_block(rfkill, true);
451
452         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454                 rfkill_global_states[i].cur = true;
455         }
456
457         mutex_unlock(&rfkill_global_mutex);
458 }
459
460 /**
461  * rfkill_restore_states - restore global states
462  *
463  * Restore (and sync switches to) the global state from the
464  * states in rfkill_default_states.  This can undo the effects of
465  * a call to rfkill_epo().
466  */
467 void rfkill_restore_states(void)
468 {
469         int i;
470
471         if (atomic_read(&rfkill_input_disabled))
472                 return;
473
474         mutex_lock(&rfkill_global_mutex);
475
476         rfkill_epo_lock_active = false;
477         for (i = 0; i < NUM_RFKILL_TYPES; i++)
478                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479         mutex_unlock(&rfkill_global_mutex);
480 }
481
482 /**
483  * rfkill_remove_epo_lock - unlock state changes
484  *
485  * Used by rfkill-input manually unlock state changes, when
486  * the EPO switch is deactivated.
487  */
488 void rfkill_remove_epo_lock(void)
489 {
490         if (atomic_read(&rfkill_input_disabled))
491                 return;
492
493         mutex_lock(&rfkill_global_mutex);
494         rfkill_epo_lock_active = false;
495         mutex_unlock(&rfkill_global_mutex);
496 }
497
498 /**
499  * rfkill_is_epo_lock_active - returns true EPO is active
500  *
501  * Returns 0 (false) if there is NOT an active EPO condition,
502  * and 1 (true) if there is an active EPO condition, which
503  * locks all radios in one of the BLOCKED states.
504  *
505  * Can be called in atomic context.
506  */
507 bool rfkill_is_epo_lock_active(void)
508 {
509         return rfkill_epo_lock_active;
510 }
511
512 /**
513  * rfkill_get_global_sw_state - returns global state for a type
514  * @type: the type to get the global state of
515  *
516  * Returns the current global state for a given wireless
517  * device type.
518  */
519 bool rfkill_get_global_sw_state(const enum rfkill_type type)
520 {
521         return rfkill_global_states[type].cur;
522 }
523 #endif
524
525 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526 {
527         unsigned long flags;
528         bool ret, prev;
529
530         BUG_ON(!rfkill);
531
532         spin_lock_irqsave(&rfkill->lock, flags);
533         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534         if (blocked)
535                 rfkill->state |= RFKILL_BLOCK_HW;
536         else
537                 rfkill->state &= ~RFKILL_BLOCK_HW;
538         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539         spin_unlock_irqrestore(&rfkill->lock, flags);
540
541         rfkill_led_trigger_event(rfkill);
542         rfkill_global_led_trigger_event();
543
544         if (rfkill->registered && prev != blocked)
545                 schedule_work(&rfkill->uevent_work);
546
547         return ret;
548 }
549 EXPORT_SYMBOL(rfkill_set_hw_state);
550
551 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552 {
553         u32 bit = RFKILL_BLOCK_SW;
554
555         /* if in a ops->set_block right now, use other bit */
556         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557                 bit = RFKILL_BLOCK_SW_PREV;
558
559         if (blocked)
560                 rfkill->state |= bit;
561         else
562                 rfkill->state &= ~bit;
563 }
564
565 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567         unsigned long flags;
568         bool prev, hwblock;
569
570         BUG_ON(!rfkill);
571
572         spin_lock_irqsave(&rfkill->lock, flags);
573         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574         __rfkill_set_sw_state(rfkill, blocked);
575         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576         blocked = blocked || hwblock;
577         spin_unlock_irqrestore(&rfkill->lock, flags);
578
579         if (!rfkill->registered)
580                 return blocked;
581
582         if (prev != blocked && !hwblock)
583                 schedule_work(&rfkill->uevent_work);
584
585         rfkill_led_trigger_event(rfkill);
586         rfkill_global_led_trigger_event();
587
588         return blocked;
589 }
590 EXPORT_SYMBOL(rfkill_set_sw_state);
591
592 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593 {
594         unsigned long flags;
595
596         BUG_ON(!rfkill);
597         BUG_ON(rfkill->registered);
598
599         spin_lock_irqsave(&rfkill->lock, flags);
600         __rfkill_set_sw_state(rfkill, blocked);
601         rfkill->persistent = true;
602         spin_unlock_irqrestore(&rfkill->lock, flags);
603 }
604 EXPORT_SYMBOL(rfkill_init_sw_state);
605
606 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607 {
608         unsigned long flags;
609         bool swprev, hwprev;
610
611         BUG_ON(!rfkill);
612
613         spin_lock_irqsave(&rfkill->lock, flags);
614
615         /*
616          * No need to care about prev/setblock ... this is for uevent only
617          * and that will get triggered by rfkill_set_block anyway.
618          */
619         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621         __rfkill_set_sw_state(rfkill, sw);
622         if (hw)
623                 rfkill->state |= RFKILL_BLOCK_HW;
624         else
625                 rfkill->state &= ~RFKILL_BLOCK_HW;
626
627         spin_unlock_irqrestore(&rfkill->lock, flags);
628
629         if (!rfkill->registered) {
630                 rfkill->persistent = true;
631         } else {
632                 if (swprev != sw || hwprev != hw)
633                         schedule_work(&rfkill->uevent_work);
634
635                 rfkill_led_trigger_event(rfkill);
636                 rfkill_global_led_trigger_event();
637         }
638 }
639 EXPORT_SYMBOL(rfkill_set_states);
640
641 static const char * const rfkill_types[] = {
642         NULL, /* RFKILL_TYPE_ALL */
643         "wlan",
644         "bluetooth",
645         "ultrawideband",
646         "wimax",
647         "wwan",
648         "gps",
649         "fm",
650         "nfc",
651 };
652
653 enum rfkill_type rfkill_find_type(const char *name)
654 {
655         int i;
656
657         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659         if (!name)
660                 return RFKILL_TYPE_ALL;
661
662         for (i = 1; i < NUM_RFKILL_TYPES; i++)
663                 if (!strcmp(name, rfkill_types[i]))
664                         return i;
665         return RFKILL_TYPE_ALL;
666 }
667 EXPORT_SYMBOL(rfkill_find_type);
668
669 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670                          char *buf)
671 {
672         struct rfkill *rfkill = to_rfkill(dev);
673
674         return sprintf(buf, "%s\n", rfkill->name);
675 }
676 static DEVICE_ATTR_RO(name);
677
678 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679                          char *buf)
680 {
681         struct rfkill *rfkill = to_rfkill(dev);
682
683         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684 }
685 static DEVICE_ATTR_RO(type);
686
687 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688                           char *buf)
689 {
690         struct rfkill *rfkill = to_rfkill(dev);
691
692         return sprintf(buf, "%d\n", rfkill->idx);
693 }
694 static DEVICE_ATTR_RO(index);
695
696 static ssize_t persistent_show(struct device *dev,
697                                struct device_attribute *attr, char *buf)
698 {
699         struct rfkill *rfkill = to_rfkill(dev);
700
701         return sprintf(buf, "%d\n", rfkill->persistent);
702 }
703 static DEVICE_ATTR_RO(persistent);
704
705 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706                          char *buf)
707 {
708         struct rfkill *rfkill = to_rfkill(dev);
709
710         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711 }
712 static DEVICE_ATTR_RO(hard);
713
714 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715                          char *buf)
716 {
717         struct rfkill *rfkill = to_rfkill(dev);
718
719         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720 }
721
722 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723                           const char *buf, size_t count)
724 {
725         struct rfkill *rfkill = to_rfkill(dev);
726         unsigned long state;
727         int err;
728
729         if (!capable(CAP_NET_ADMIN))
730                 return -EPERM;
731
732         err = kstrtoul(buf, 0, &state);
733         if (err)
734                 return err;
735
736         if (state > 1 )
737                 return -EINVAL;
738
739         mutex_lock(&rfkill_global_mutex);
740         rfkill_set_block(rfkill, state);
741         mutex_unlock(&rfkill_global_mutex);
742
743         return count;
744 }
745 static DEVICE_ATTR_RW(soft);
746
747 static u8 user_state_from_blocked(unsigned long state)
748 {
749         if (state & RFKILL_BLOCK_HW)
750                 return RFKILL_USER_STATE_HARD_BLOCKED;
751         if (state & RFKILL_BLOCK_SW)
752                 return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754         return RFKILL_USER_STATE_UNBLOCKED;
755 }
756
757 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758                           char *buf)
759 {
760         struct rfkill *rfkill = to_rfkill(dev);
761
762         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763 }
764
765 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766                            const char *buf, size_t count)
767 {
768         struct rfkill *rfkill = to_rfkill(dev);
769         unsigned long state;
770         int err;
771
772         if (!capable(CAP_NET_ADMIN))
773                 return -EPERM;
774
775         err = kstrtoul(buf, 0, &state);
776         if (err)
777                 return err;
778
779         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780             state != RFKILL_USER_STATE_UNBLOCKED)
781                 return -EINVAL;
782
783         mutex_lock(&rfkill_global_mutex);
784         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785         mutex_unlock(&rfkill_global_mutex);
786
787         return count;
788 }
789 static DEVICE_ATTR_RW(state);
790
791 static struct attribute *rfkill_dev_attrs[] = {
792         &dev_attr_name.attr,
793         &dev_attr_type.attr,
794         &dev_attr_index.attr,
795         &dev_attr_persistent.attr,
796         &dev_attr_state.attr,
797         &dev_attr_soft.attr,
798         &dev_attr_hard.attr,
799         NULL,
800 };
801 ATTRIBUTE_GROUPS(rfkill_dev);
802
803 static void rfkill_release(struct device *dev)
804 {
805         struct rfkill *rfkill = to_rfkill(dev);
806
807         kfree(rfkill);
808 }
809
810 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811 {
812         struct rfkill *rfkill = to_rfkill(dev);
813         unsigned long flags;
814         u32 state;
815         int error;
816
817         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818         if (error)
819                 return error;
820         error = add_uevent_var(env, "RFKILL_TYPE=%s",
821                                rfkill_types[rfkill->type]);
822         if (error)
823                 return error;
824         spin_lock_irqsave(&rfkill->lock, flags);
825         state = rfkill->state;
826         spin_unlock_irqrestore(&rfkill->lock, flags);
827         error = add_uevent_var(env, "RFKILL_STATE=%d",
828                                user_state_from_blocked(state));
829         return error;
830 }
831
832 void rfkill_pause_polling(struct rfkill *rfkill)
833 {
834         BUG_ON(!rfkill);
835
836         if (!rfkill->ops->poll)
837                 return;
838
839         rfkill->polling_paused = true;
840         cancel_delayed_work_sync(&rfkill->poll_work);
841 }
842 EXPORT_SYMBOL(rfkill_pause_polling);
843
844 void rfkill_resume_polling(struct rfkill *rfkill)
845 {
846         BUG_ON(!rfkill);
847
848         if (!rfkill->ops->poll)
849                 return;
850
851         rfkill->polling_paused = false;
852
853         if (rfkill->suspended)
854                 return;
855
856         queue_delayed_work(system_power_efficient_wq,
857                            &rfkill->poll_work, 0);
858 }
859 EXPORT_SYMBOL(rfkill_resume_polling);
860
861 #ifdef CONFIG_PM_SLEEP
862 static int rfkill_suspend(struct device *dev)
863 {
864         struct rfkill *rfkill = to_rfkill(dev);
865
866         rfkill->suspended = true;
867         cancel_delayed_work_sync(&rfkill->poll_work);
868
869         return 0;
870 }
871
872 static int rfkill_resume(struct device *dev)
873 {
874         struct rfkill *rfkill = to_rfkill(dev);
875         bool cur;
876
877         rfkill->suspended = false;
878
879         if (!rfkill->persistent) {
880                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
881                 rfkill_set_block(rfkill, cur);
882         }
883
884         if (rfkill->ops->poll && !rfkill->polling_paused)
885                 queue_delayed_work(system_power_efficient_wq,
886                                    &rfkill->poll_work, 0);
887
888         return 0;
889 }
890
891 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
892 #define RFKILL_PM_OPS (&rfkill_pm_ops)
893 #else
894 #define RFKILL_PM_OPS NULL
895 #endif
896
897 static struct class rfkill_class = {
898         .name           = "rfkill",
899         .dev_release    = rfkill_release,
900         .dev_groups     = rfkill_dev_groups,
901         .dev_uevent     = rfkill_dev_uevent,
902         .pm             = RFKILL_PM_OPS,
903 };
904
905 bool rfkill_blocked(struct rfkill *rfkill)
906 {
907         unsigned long flags;
908         u32 state;
909
910         spin_lock_irqsave(&rfkill->lock, flags);
911         state = rfkill->state;
912         spin_unlock_irqrestore(&rfkill->lock, flags);
913
914         return !!(state & RFKILL_BLOCK_ANY);
915 }
916 EXPORT_SYMBOL(rfkill_blocked);
917
918
919 struct rfkill * __must_check rfkill_alloc(const char *name,
920                                           struct device *parent,
921                                           const enum rfkill_type type,
922                                           const struct rfkill_ops *ops,
923                                           void *ops_data)
924 {
925         struct rfkill *rfkill;
926         struct device *dev;
927
928         if (WARN_ON(!ops))
929                 return NULL;
930
931         if (WARN_ON(!ops->set_block))
932                 return NULL;
933
934         if (WARN_ON(!name))
935                 return NULL;
936
937         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
938                 return NULL;
939
940         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
941         if (!rfkill)
942                 return NULL;
943
944         spin_lock_init(&rfkill->lock);
945         INIT_LIST_HEAD(&rfkill->node);
946         rfkill->type = type;
947         strcpy(rfkill->name, name);
948         rfkill->ops = ops;
949         rfkill->data = ops_data;
950
951         dev = &rfkill->dev;
952         dev->class = &rfkill_class;
953         dev->parent = parent;
954         device_initialize(dev);
955
956         return rfkill;
957 }
958 EXPORT_SYMBOL(rfkill_alloc);
959
960 static void rfkill_poll(struct work_struct *work)
961 {
962         struct rfkill *rfkill;
963
964         rfkill = container_of(work, struct rfkill, poll_work.work);
965
966         /*
967          * Poll hardware state -- driver will use one of the
968          * rfkill_set{,_hw,_sw}_state functions and use its
969          * return value to update the current status.
970          */
971         rfkill->ops->poll(rfkill, rfkill->data);
972
973         queue_delayed_work(system_power_efficient_wq,
974                 &rfkill->poll_work,
975                 round_jiffies_relative(POLL_INTERVAL));
976 }
977
978 static void rfkill_uevent_work(struct work_struct *work)
979 {
980         struct rfkill *rfkill;
981
982         rfkill = container_of(work, struct rfkill, uevent_work);
983
984         mutex_lock(&rfkill_global_mutex);
985         rfkill_event(rfkill);
986         mutex_unlock(&rfkill_global_mutex);
987 }
988
989 static void rfkill_sync_work(struct work_struct *work)
990 {
991         struct rfkill *rfkill;
992         bool cur;
993
994         rfkill = container_of(work, struct rfkill, sync_work);
995
996         mutex_lock(&rfkill_global_mutex);
997         cur = rfkill_global_states[rfkill->type].cur;
998         rfkill_set_block(rfkill, cur);
999         mutex_unlock(&rfkill_global_mutex);
1000 }
1001
1002 int __must_check rfkill_register(struct rfkill *rfkill)
1003 {
1004         static unsigned long rfkill_no;
1005         struct device *dev = &rfkill->dev;
1006         int error;
1007
1008         BUG_ON(!rfkill);
1009
1010         mutex_lock(&rfkill_global_mutex);
1011
1012         if (rfkill->registered) {
1013                 error = -EALREADY;
1014                 goto unlock;
1015         }
1016
1017         rfkill->idx = rfkill_no;
1018         dev_set_name(dev, "rfkill%lu", rfkill_no);
1019         rfkill_no++;
1020
1021         list_add_tail(&rfkill->node, &rfkill_list);
1022
1023         error = device_add(dev);
1024         if (error)
1025                 goto remove;
1026
1027         error = rfkill_led_trigger_register(rfkill);
1028         if (error)
1029                 goto devdel;
1030
1031         rfkill->registered = true;
1032
1033         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1034         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1035         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1036
1037         if (rfkill->ops->poll)
1038                 queue_delayed_work(system_power_efficient_wq,
1039                         &rfkill->poll_work,
1040                         round_jiffies_relative(POLL_INTERVAL));
1041
1042         if (!rfkill->persistent || rfkill_epo_lock_active) {
1043                 schedule_work(&rfkill->sync_work);
1044         } else {
1045 #ifdef CONFIG_RFKILL_INPUT
1046                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1047
1048                 if (!atomic_read(&rfkill_input_disabled))
1049                         __rfkill_switch_all(rfkill->type, soft_blocked);
1050 #endif
1051         }
1052
1053         rfkill_global_led_trigger_event();
1054         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1055
1056         mutex_unlock(&rfkill_global_mutex);
1057         return 0;
1058
1059  devdel:
1060         device_del(&rfkill->dev);
1061  remove:
1062         list_del_init(&rfkill->node);
1063  unlock:
1064         mutex_unlock(&rfkill_global_mutex);
1065         return error;
1066 }
1067 EXPORT_SYMBOL(rfkill_register);
1068
1069 void rfkill_unregister(struct rfkill *rfkill)
1070 {
1071         BUG_ON(!rfkill);
1072
1073         if (rfkill->ops->poll)
1074                 cancel_delayed_work_sync(&rfkill->poll_work);
1075
1076         cancel_work_sync(&rfkill->uevent_work);
1077         cancel_work_sync(&rfkill->sync_work);
1078
1079         rfkill->registered = false;
1080
1081         device_del(&rfkill->dev);
1082
1083         mutex_lock(&rfkill_global_mutex);
1084         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1085         list_del_init(&rfkill->node);
1086         rfkill_global_led_trigger_event();
1087         mutex_unlock(&rfkill_global_mutex);
1088
1089         rfkill_led_trigger_unregister(rfkill);
1090 }
1091 EXPORT_SYMBOL(rfkill_unregister);
1092
1093 void rfkill_destroy(struct rfkill *rfkill)
1094 {
1095         if (rfkill)
1096                 put_device(&rfkill->dev);
1097 }
1098 EXPORT_SYMBOL(rfkill_destroy);
1099
1100 static int rfkill_fop_open(struct inode *inode, struct file *file)
1101 {
1102         struct rfkill_data *data;
1103         struct rfkill *rfkill;
1104         struct rfkill_int_event *ev, *tmp;
1105
1106         data = kzalloc(sizeof(*data), GFP_KERNEL);
1107         if (!data)
1108                 return -ENOMEM;
1109
1110         INIT_LIST_HEAD(&data->events);
1111         mutex_init(&data->mtx);
1112         init_waitqueue_head(&data->read_wait);
1113
1114         mutex_lock(&rfkill_global_mutex);
1115         mutex_lock(&data->mtx);
1116         /*
1117          * start getting events from elsewhere but hold mtx to get
1118          * startup events added first
1119          */
1120
1121         list_for_each_entry(rfkill, &rfkill_list, node) {
1122                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1123                 if (!ev)
1124                         goto free;
1125                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1126                 list_add_tail(&ev->list, &data->events);
1127         }
1128         list_add(&data->list, &rfkill_fds);
1129         mutex_unlock(&data->mtx);
1130         mutex_unlock(&rfkill_global_mutex);
1131
1132         file->private_data = data;
1133
1134         return stream_open(inode, file);
1135
1136  free:
1137         mutex_unlock(&data->mtx);
1138         mutex_unlock(&rfkill_global_mutex);
1139         mutex_destroy(&data->mtx);
1140         list_for_each_entry_safe(ev, tmp, &data->events, list)
1141                 kfree(ev);
1142         kfree(data);
1143         return -ENOMEM;
1144 }
1145
1146 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1147 {
1148         struct rfkill_data *data = file->private_data;
1149         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1150
1151         poll_wait(file, &data->read_wait, wait);
1152
1153         mutex_lock(&data->mtx);
1154         if (!list_empty(&data->events))
1155                 res = EPOLLIN | EPOLLRDNORM;
1156         mutex_unlock(&data->mtx);
1157
1158         return res;
1159 }
1160
1161 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1162                                size_t count, loff_t *pos)
1163 {
1164         struct rfkill_data *data = file->private_data;
1165         struct rfkill_int_event *ev;
1166         unsigned long sz;
1167         int ret;
1168
1169         mutex_lock(&data->mtx);
1170
1171         while (list_empty(&data->events)) {
1172                 if (file->f_flags & O_NONBLOCK) {
1173                         ret = -EAGAIN;
1174                         goto out;
1175                 }
1176                 mutex_unlock(&data->mtx);
1177                 /* since we re-check and it just compares pointers,
1178                  * using !list_empty() without locking isn't a problem
1179                  */
1180                 ret = wait_event_interruptible(data->read_wait,
1181                                                !list_empty(&data->events));
1182                 mutex_lock(&data->mtx);
1183
1184                 if (ret)
1185                         goto out;
1186         }
1187
1188         ev = list_first_entry(&data->events, struct rfkill_int_event,
1189                                 list);
1190
1191         sz = min_t(unsigned long, sizeof(ev->ev), count);
1192         ret = sz;
1193         if (copy_to_user(buf, &ev->ev, sz))
1194                 ret = -EFAULT;
1195
1196         list_del(&ev->list);
1197         kfree(ev);
1198  out:
1199         mutex_unlock(&data->mtx);
1200         return ret;
1201 }
1202
1203 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1204                                 size_t count, loff_t *pos)
1205 {
1206         struct rfkill *rfkill;
1207         struct rfkill_event ev;
1208         int ret;
1209
1210         /* we don't need the 'hard' variable but accept it */
1211         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1212                 return -EINVAL;
1213
1214         /*
1215          * Copy as much data as we can accept into our 'ev' buffer,
1216          * but tell userspace how much we've copied so it can determine
1217          * our API version even in a write() call, if it cares.
1218          */
1219         count = min(count, sizeof(ev));
1220         if (copy_from_user(&ev, buf, count))
1221                 return -EFAULT;
1222
1223         if (ev.type >= NUM_RFKILL_TYPES)
1224                 return -EINVAL;
1225
1226         mutex_lock(&rfkill_global_mutex);
1227
1228         switch (ev.op) {
1229         case RFKILL_OP_CHANGE_ALL:
1230                 rfkill_update_global_state(ev.type, ev.soft);
1231                 list_for_each_entry(rfkill, &rfkill_list, node)
1232                         if (rfkill->type == ev.type ||
1233                             ev.type == RFKILL_TYPE_ALL)
1234                                 rfkill_set_block(rfkill, ev.soft);
1235                 ret = 0;
1236                 break;
1237         case RFKILL_OP_CHANGE:
1238                 list_for_each_entry(rfkill, &rfkill_list, node)
1239                         if (rfkill->idx == ev.idx &&
1240                             (rfkill->type == ev.type ||
1241                              ev.type == RFKILL_TYPE_ALL))
1242                                 rfkill_set_block(rfkill, ev.soft);
1243                 ret = 0;
1244                 break;
1245         default:
1246                 ret = -EINVAL;
1247                 break;
1248         }
1249
1250         mutex_unlock(&rfkill_global_mutex);
1251
1252         return ret ?: count;
1253 }
1254
1255 static int rfkill_fop_release(struct inode *inode, struct file *file)
1256 {
1257         struct rfkill_data *data = file->private_data;
1258         struct rfkill_int_event *ev, *tmp;
1259
1260         mutex_lock(&rfkill_global_mutex);
1261         list_del(&data->list);
1262         mutex_unlock(&rfkill_global_mutex);
1263
1264         mutex_destroy(&data->mtx);
1265         list_for_each_entry_safe(ev, tmp, &data->events, list)
1266                 kfree(ev);
1267
1268 #ifdef CONFIG_RFKILL_INPUT
1269         if (data->input_handler)
1270                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1271                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1272 #endif
1273
1274         kfree(data);
1275
1276         return 0;
1277 }
1278
1279 #ifdef CONFIG_RFKILL_INPUT
1280 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1281                              unsigned long arg)
1282 {
1283         struct rfkill_data *data = file->private_data;
1284
1285         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1286                 return -ENOSYS;
1287
1288         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1289                 return -ENOSYS;
1290
1291         mutex_lock(&data->mtx);
1292
1293         if (!data->input_handler) {
1294                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1295                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1296                 data->input_handler = true;
1297         }
1298
1299         mutex_unlock(&data->mtx);
1300
1301         return 0;
1302 }
1303 #endif
1304
1305 static const struct file_operations rfkill_fops = {
1306         .owner          = THIS_MODULE,
1307         .open           = rfkill_fop_open,
1308         .read           = rfkill_fop_read,
1309         .write          = rfkill_fop_write,
1310         .poll           = rfkill_fop_poll,
1311         .release        = rfkill_fop_release,
1312 #ifdef CONFIG_RFKILL_INPUT
1313         .unlocked_ioctl = rfkill_fop_ioctl,
1314         .compat_ioctl   = compat_ptr_ioctl,
1315 #endif
1316         .llseek         = no_llseek,
1317 };
1318
1319 #define RFKILL_NAME "rfkill"
1320
1321 static struct miscdevice rfkill_miscdev = {
1322         .fops   = &rfkill_fops,
1323         .name   = RFKILL_NAME,
1324         .minor  = RFKILL_MINOR,
1325 };
1326
1327 static int __init rfkill_init(void)
1328 {
1329         int error;
1330
1331         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1332
1333         error = class_register(&rfkill_class);
1334         if (error)
1335                 goto error_class;
1336
1337         error = misc_register(&rfkill_miscdev);
1338         if (error)
1339                 goto error_misc;
1340
1341         error = rfkill_global_led_trigger_register();
1342         if (error)
1343                 goto error_led_trigger;
1344
1345 #ifdef CONFIG_RFKILL_INPUT
1346         error = rfkill_handler_init();
1347         if (error)
1348                 goto error_input;
1349 #endif
1350
1351         return 0;
1352
1353 #ifdef CONFIG_RFKILL_INPUT
1354 error_input:
1355         rfkill_global_led_trigger_unregister();
1356 #endif
1357 error_led_trigger:
1358         misc_deregister(&rfkill_miscdev);
1359 error_misc:
1360         class_unregister(&rfkill_class);
1361 error_class:
1362         return error;
1363 }
1364 subsys_initcall(rfkill_init);
1365
1366 static void __exit rfkill_exit(void)
1367 {
1368 #ifdef CONFIG_RFKILL_INPUT
1369         rfkill_handler_exit();
1370 #endif
1371         rfkill_global_led_trigger_unregister();
1372         misc_deregister(&rfkill_miscdev);
1373         class_unregister(&rfkill_class);
1374 }
1375 module_exit(rfkill_exit);
1376
1377 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1378 MODULE_ALIAS("devname:" RFKILL_NAME);