c680225e0da844bbbd66c9044851880fa7885117
[linux-2.6-block.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232                                                        const char *name)
233 {
234         struct netdev_name_node *name_node;
235
236         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237         if (!name_node)
238                 return NULL;
239         INIT_HLIST_NODE(&name_node->hlist);
240         name_node->dev = dev;
241         name_node->name = name;
242         return name_node;
243 }
244
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248         struct netdev_name_node *name_node;
249
250         name_node = netdev_name_node_alloc(dev, dev->name);
251         if (!name_node)
252                 return NULL;
253         INIT_LIST_HEAD(&name_node->list);
254         return name_node;
255 }
256
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259         kfree(name_node);
260 }
261
262 static void netdev_name_node_add(struct net *net,
263                                  struct netdev_name_node *name_node)
264 {
265         hlist_add_head_rcu(&name_node->hlist,
266                            dev_name_hash(net, name_node->name));
267 }
268
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271         hlist_del_rcu(&name_node->hlist);
272 }
273
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275                                                         const char *name)
276 {
277         struct hlist_head *head = dev_name_hash(net, name);
278         struct netdev_name_node *name_node;
279
280         hlist_for_each_entry(name_node, head, hlist)
281                 if (!strcmp(name_node->name, name))
282                         return name_node;
283         return NULL;
284 }
285
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287                                                             const char *name)
288 {
289         struct hlist_head *head = dev_name_hash(net, name);
290         struct netdev_name_node *name_node;
291
292         hlist_for_each_entry_rcu(name_node, head, hlist)
293                 if (!strcmp(name_node->name, name))
294                         return name_node;
295         return NULL;
296 }
297
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300         struct netdev_name_node *name_node;
301         struct net *net = dev_net(dev);
302
303         name_node = netdev_name_node_lookup(net, name);
304         if (name_node)
305                 return -EEXIST;
306         name_node = netdev_name_node_alloc(dev, name);
307         if (!name_node)
308                 return -ENOMEM;
309         netdev_name_node_add(net, name_node);
310         /* The node that holds dev->name acts as a head of per-device list. */
311         list_add_tail(&name_node->list, &dev->name_node->list);
312
313         return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319         list_del(&name_node->list);
320         netdev_name_node_del(name_node);
321         kfree(name_node->name);
322         netdev_name_node_free(name_node);
323 }
324
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (!name_node)
332                 return -ENOENT;
333         __netdev_name_node_alt_destroy(name_node);
334
335         return 0;
336 }
337 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
338
339 static void netdev_name_node_alt_flush(struct net_device *dev)
340 {
341         struct netdev_name_node *name_node, *tmp;
342
343         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
344                 __netdev_name_node_alt_destroy(name_node);
345 }
346
347 /* Device list insertion */
348 static void list_netdevice(struct net_device *dev)
349 {
350         struct net *net = dev_net(dev);
351
352         ASSERT_RTNL();
353
354         write_lock_bh(&dev_base_lock);
355         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
356         netdev_name_node_add(net, dev->name_node);
357         hlist_add_head_rcu(&dev->index_hlist,
358                            dev_index_hash(net, dev->ifindex));
359         write_unlock_bh(&dev_base_lock);
360
361         dev_base_seq_inc(net);
362 }
363
364 /* Device list removal
365  * caller must respect a RCU grace period before freeing/reusing dev
366  */
367 static void unlist_netdevice(struct net_device *dev)
368 {
369         ASSERT_RTNL();
370
371         /* Unlink dev from the device chain */
372         write_lock_bh(&dev_base_lock);
373         list_del_rcu(&dev->dev_list);
374         netdev_name_node_del(dev->name_node);
375         hlist_del_rcu(&dev->index_hlist);
376         write_unlock_bh(&dev_base_lock);
377
378         dev_base_seq_inc(dev_net(dev));
379 }
380
381 /*
382  *      Our notifier list
383  */
384
385 static RAW_NOTIFIER_HEAD(netdev_chain);
386
387 /*
388  *      Device drivers call our routines to queue packets here. We empty the
389  *      queue in the local softnet handler.
390  */
391
392 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
393 EXPORT_PER_CPU_SYMBOL(softnet_data);
394
395 #ifdef CONFIG_LOCKDEP
396 /*
397  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
398  * according to dev->type
399  */
400 static const unsigned short netdev_lock_type[] = {
401          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
402          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
403          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
404          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
405          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
406          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
407          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
408          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
409          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
410          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
411          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
412          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
413          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
414          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
415          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
416
417 static const char *const netdev_lock_name[] = {
418         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
419         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
420         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
421         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
422         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
423         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
424         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
425         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
426         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
427         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
428         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
429         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
430         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
431         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
432         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
433
434 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
435 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
436
437 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
438 {
439         int i;
440
441         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
442                 if (netdev_lock_type[i] == dev_type)
443                         return i;
444         /* the last key is used by default */
445         return ARRAY_SIZE(netdev_lock_type) - 1;
446 }
447
448 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
449                                                  unsigned short dev_type)
450 {
451         int i;
452
453         i = netdev_lock_pos(dev_type);
454         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
455                                    netdev_lock_name[i]);
456 }
457
458 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
459 {
460         int i;
461
462         i = netdev_lock_pos(dev->type);
463         lockdep_set_class_and_name(&dev->addr_list_lock,
464                                    &netdev_addr_lock_key[i],
465                                    netdev_lock_name[i]);
466 }
467 #else
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469                                                  unsigned short dev_type)
470 {
471 }
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 }
475 #endif
476
477 /*******************************************************************************
478  *
479  *              Protocol management and registration routines
480  *
481  *******************************************************************************/
482
483
484 /*
485  *      Add a protocol ID to the list. Now that the input handler is
486  *      smarter we can dispense with all the messy stuff that used to be
487  *      here.
488  *
489  *      BEWARE!!! Protocol handlers, mangling input packets,
490  *      MUST BE last in hash buckets and checking protocol handlers
491  *      MUST start from promiscuous ptype_all chain in net_bh.
492  *      It is true now, do not change it.
493  *      Explanation follows: if protocol handler, mangling packet, will
494  *      be the first on list, it is not able to sense, that packet
495  *      is cloned and should be copied-on-write, so that it will
496  *      change it and subsequent readers will get broken packet.
497  *                                                      --ANK (980803)
498  */
499
500 static inline struct list_head *ptype_head(const struct packet_type *pt)
501 {
502         if (pt->type == htons(ETH_P_ALL))
503                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
504         else
505                 return pt->dev ? &pt->dev->ptype_specific :
506                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
507 }
508
509 /**
510  *      dev_add_pack - add packet handler
511  *      @pt: packet type declaration
512  *
513  *      Add a protocol handler to the networking stack. The passed &packet_type
514  *      is linked into kernel lists and may not be freed until it has been
515  *      removed from the kernel lists.
516  *
517  *      This call does not sleep therefore it can not
518  *      guarantee all CPU's that are in middle of receiving packets
519  *      will see the new packet type (until the next received packet).
520  */
521
522 void dev_add_pack(struct packet_type *pt)
523 {
524         struct list_head *head = ptype_head(pt);
525
526         spin_lock(&ptype_lock);
527         list_add_rcu(&pt->list, head);
528         spin_unlock(&ptype_lock);
529 }
530 EXPORT_SYMBOL(dev_add_pack);
531
532 /**
533  *      __dev_remove_pack        - remove packet handler
534  *      @pt: packet type declaration
535  *
536  *      Remove a protocol handler that was previously added to the kernel
537  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
538  *      from the kernel lists and can be freed or reused once this function
539  *      returns.
540  *
541  *      The packet type might still be in use by receivers
542  *      and must not be freed until after all the CPU's have gone
543  *      through a quiescent state.
544  */
545 void __dev_remove_pack(struct packet_type *pt)
546 {
547         struct list_head *head = ptype_head(pt);
548         struct packet_type *pt1;
549
550         spin_lock(&ptype_lock);
551
552         list_for_each_entry(pt1, head, list) {
553                 if (pt == pt1) {
554                         list_del_rcu(&pt->list);
555                         goto out;
556                 }
557         }
558
559         pr_warn("dev_remove_pack: %p not found\n", pt);
560 out:
561         spin_unlock(&ptype_lock);
562 }
563 EXPORT_SYMBOL(__dev_remove_pack);
564
565 /**
566  *      dev_remove_pack  - remove packet handler
567  *      @pt: packet type declaration
568  *
569  *      Remove a protocol handler that was previously added to the kernel
570  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
571  *      from the kernel lists and can be freed or reused once this function
572  *      returns.
573  *
574  *      This call sleeps to guarantee that no CPU is looking at the packet
575  *      type after return.
576  */
577 void dev_remove_pack(struct packet_type *pt)
578 {
579         __dev_remove_pack(pt);
580
581         synchronize_net();
582 }
583 EXPORT_SYMBOL(dev_remove_pack);
584
585
586 /**
587  *      dev_add_offload - register offload handlers
588  *      @po: protocol offload declaration
589  *
590  *      Add protocol offload handlers to the networking stack. The passed
591  *      &proto_offload is linked into kernel lists and may not be freed until
592  *      it has been removed from the kernel lists.
593  *
594  *      This call does not sleep therefore it can not
595  *      guarantee all CPU's that are in middle of receiving packets
596  *      will see the new offload handlers (until the next received packet).
597  */
598 void dev_add_offload(struct packet_offload *po)
599 {
600         struct packet_offload *elem;
601
602         spin_lock(&offload_lock);
603         list_for_each_entry(elem, &offload_base, list) {
604                 if (po->priority < elem->priority)
605                         break;
606         }
607         list_add_rcu(&po->list, elem->list.prev);
608         spin_unlock(&offload_lock);
609 }
610 EXPORT_SYMBOL(dev_add_offload);
611
612 /**
613  *      __dev_remove_offload     - remove offload handler
614  *      @po: packet offload declaration
615  *
616  *      Remove a protocol offload handler that was previously added to the
617  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
618  *      is removed from the kernel lists and can be freed or reused once this
619  *      function returns.
620  *
621  *      The packet type might still be in use by receivers
622  *      and must not be freed until after all the CPU's have gone
623  *      through a quiescent state.
624  */
625 static void __dev_remove_offload(struct packet_offload *po)
626 {
627         struct list_head *head = &offload_base;
628         struct packet_offload *po1;
629
630         spin_lock(&offload_lock);
631
632         list_for_each_entry(po1, head, list) {
633                 if (po == po1) {
634                         list_del_rcu(&po->list);
635                         goto out;
636                 }
637         }
638
639         pr_warn("dev_remove_offload: %p not found\n", po);
640 out:
641         spin_unlock(&offload_lock);
642 }
643
644 /**
645  *      dev_remove_offload       - remove packet offload handler
646  *      @po: packet offload declaration
647  *
648  *      Remove a packet offload handler that was previously added to the kernel
649  *      offload handlers by dev_add_offload(). The passed &offload_type is
650  *      removed from the kernel lists and can be freed or reused once this
651  *      function returns.
652  *
653  *      This call sleeps to guarantee that no CPU is looking at the packet
654  *      type after return.
655  */
656 void dev_remove_offload(struct packet_offload *po)
657 {
658         __dev_remove_offload(po);
659
660         synchronize_net();
661 }
662 EXPORT_SYMBOL(dev_remove_offload);
663
664 /******************************************************************************
665  *
666  *                    Device Boot-time Settings Routines
667  *
668  ******************************************************************************/
669
670 /* Boot time configuration table */
671 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
672
673 /**
674  *      netdev_boot_setup_add   - add new setup entry
675  *      @name: name of the device
676  *      @map: configured settings for the device
677  *
678  *      Adds new setup entry to the dev_boot_setup list.  The function
679  *      returns 0 on error and 1 on success.  This is a generic routine to
680  *      all netdevices.
681  */
682 static int netdev_boot_setup_add(char *name, struct ifmap *map)
683 {
684         struct netdev_boot_setup *s;
685         int i;
686
687         s = dev_boot_setup;
688         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
689                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
690                         memset(s[i].name, 0, sizeof(s[i].name));
691                         strlcpy(s[i].name, name, IFNAMSIZ);
692                         memcpy(&s[i].map, map, sizeof(s[i].map));
693                         break;
694                 }
695         }
696
697         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
698 }
699
700 /**
701  * netdev_boot_setup_check      - check boot time settings
702  * @dev: the netdevice
703  *
704  * Check boot time settings for the device.
705  * The found settings are set for the device to be used
706  * later in the device probing.
707  * Returns 0 if no settings found, 1 if they are.
708  */
709 int netdev_boot_setup_check(struct net_device *dev)
710 {
711         struct netdev_boot_setup *s = dev_boot_setup;
712         int i;
713
714         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
715                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
716                     !strcmp(dev->name, s[i].name)) {
717                         dev->irq = s[i].map.irq;
718                         dev->base_addr = s[i].map.base_addr;
719                         dev->mem_start = s[i].map.mem_start;
720                         dev->mem_end = s[i].map.mem_end;
721                         return 1;
722                 }
723         }
724         return 0;
725 }
726 EXPORT_SYMBOL(netdev_boot_setup_check);
727
728
729 /**
730  * netdev_boot_base     - get address from boot time settings
731  * @prefix: prefix for network device
732  * @unit: id for network device
733  *
734  * Check boot time settings for the base address of device.
735  * The found settings are set for the device to be used
736  * later in the device probing.
737  * Returns 0 if no settings found.
738  */
739 unsigned long netdev_boot_base(const char *prefix, int unit)
740 {
741         const struct netdev_boot_setup *s = dev_boot_setup;
742         char name[IFNAMSIZ];
743         int i;
744
745         sprintf(name, "%s%d", prefix, unit);
746
747         /*
748          * If device already registered then return base of 1
749          * to indicate not to probe for this interface
750          */
751         if (__dev_get_by_name(&init_net, name))
752                 return 1;
753
754         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
755                 if (!strcmp(name, s[i].name))
756                         return s[i].map.base_addr;
757         return 0;
758 }
759
760 /*
761  * Saves at boot time configured settings for any netdevice.
762  */
763 int __init netdev_boot_setup(char *str)
764 {
765         int ints[5];
766         struct ifmap map;
767
768         str = get_options(str, ARRAY_SIZE(ints), ints);
769         if (!str || !*str)
770                 return 0;
771
772         /* Save settings */
773         memset(&map, 0, sizeof(map));
774         if (ints[0] > 0)
775                 map.irq = ints[1];
776         if (ints[0] > 1)
777                 map.base_addr = ints[2];
778         if (ints[0] > 2)
779                 map.mem_start = ints[3];
780         if (ints[0] > 3)
781                 map.mem_end = ints[4];
782
783         /* Add new entry to the list */
784         return netdev_boot_setup_add(str, &map);
785 }
786
787 __setup("netdev=", netdev_boot_setup);
788
789 /*******************************************************************************
790  *
791  *                          Device Interface Subroutines
792  *
793  *******************************************************************************/
794
795 /**
796  *      dev_get_iflink  - get 'iflink' value of a interface
797  *      @dev: targeted interface
798  *
799  *      Indicates the ifindex the interface is linked to.
800  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
801  */
802
803 int dev_get_iflink(const struct net_device *dev)
804 {
805         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
806                 return dev->netdev_ops->ndo_get_iflink(dev);
807
808         return dev->ifindex;
809 }
810 EXPORT_SYMBOL(dev_get_iflink);
811
812 /**
813  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
814  *      @dev: targeted interface
815  *      @skb: The packet.
816  *
817  *      For better visibility of tunnel traffic OVS needs to retrieve
818  *      egress tunnel information for a packet. Following API allows
819  *      user to get this info.
820  */
821 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
822 {
823         struct ip_tunnel_info *info;
824
825         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
826                 return -EINVAL;
827
828         info = skb_tunnel_info_unclone(skb);
829         if (!info)
830                 return -ENOMEM;
831         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
832                 return -EINVAL;
833
834         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
835 }
836 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
837
838 /**
839  *      __dev_get_by_name       - find a device by its name
840  *      @net: the applicable net namespace
841  *      @name: name to find
842  *
843  *      Find an interface by name. Must be called under RTNL semaphore
844  *      or @dev_base_lock. If the name is found a pointer to the device
845  *      is returned. If the name is not found then %NULL is returned. The
846  *      reference counters are not incremented so the caller must be
847  *      careful with locks.
848  */
849
850 struct net_device *__dev_get_by_name(struct net *net, const char *name)
851 {
852         struct netdev_name_node *node_name;
853
854         node_name = netdev_name_node_lookup(net, name);
855         return node_name ? node_name->dev : NULL;
856 }
857 EXPORT_SYMBOL(__dev_get_by_name);
858
859 /**
860  * dev_get_by_name_rcu  - find a device by its name
861  * @net: the applicable net namespace
862  * @name: name to find
863  *
864  * Find an interface by name.
865  * If the name is found a pointer to the device is returned.
866  * If the name is not found then %NULL is returned.
867  * The reference counters are not incremented so the caller must be
868  * careful with locks. The caller must hold RCU lock.
869  */
870
871 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
872 {
873         struct netdev_name_node *node_name;
874
875         node_name = netdev_name_node_lookup_rcu(net, name);
876         return node_name ? node_name->dev : NULL;
877 }
878 EXPORT_SYMBOL(dev_get_by_name_rcu);
879
880 /**
881  *      dev_get_by_name         - find a device by its name
882  *      @net: the applicable net namespace
883  *      @name: name to find
884  *
885  *      Find an interface by name. This can be called from any
886  *      context and does its own locking. The returned handle has
887  *      the usage count incremented and the caller must use dev_put() to
888  *      release it when it is no longer needed. %NULL is returned if no
889  *      matching device is found.
890  */
891
892 struct net_device *dev_get_by_name(struct net *net, const char *name)
893 {
894         struct net_device *dev;
895
896         rcu_read_lock();
897         dev = dev_get_by_name_rcu(net, name);
898         if (dev)
899                 dev_hold(dev);
900         rcu_read_unlock();
901         return dev;
902 }
903 EXPORT_SYMBOL(dev_get_by_name);
904
905 /**
906  *      __dev_get_by_index - find a device by its ifindex
907  *      @net: the applicable net namespace
908  *      @ifindex: index of device
909  *
910  *      Search for an interface by index. Returns %NULL if the device
911  *      is not found or a pointer to the device. The device has not
912  *      had its reference counter increased so the caller must be careful
913  *      about locking. The caller must hold either the RTNL semaphore
914  *      or @dev_base_lock.
915  */
916
917 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
918 {
919         struct net_device *dev;
920         struct hlist_head *head = dev_index_hash(net, ifindex);
921
922         hlist_for_each_entry(dev, head, index_hlist)
923                 if (dev->ifindex == ifindex)
924                         return dev;
925
926         return NULL;
927 }
928 EXPORT_SYMBOL(__dev_get_by_index);
929
930 /**
931  *      dev_get_by_index_rcu - find a device by its ifindex
932  *      @net: the applicable net namespace
933  *      @ifindex: index of device
934  *
935  *      Search for an interface by index. Returns %NULL if the device
936  *      is not found or a pointer to the device. The device has not
937  *      had its reference counter increased so the caller must be careful
938  *      about locking. The caller must hold RCU lock.
939  */
940
941 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
942 {
943         struct net_device *dev;
944         struct hlist_head *head = dev_index_hash(net, ifindex);
945
946         hlist_for_each_entry_rcu(dev, head, index_hlist)
947                 if (dev->ifindex == ifindex)
948                         return dev;
949
950         return NULL;
951 }
952 EXPORT_SYMBOL(dev_get_by_index_rcu);
953
954
955 /**
956  *      dev_get_by_index - find a device by its ifindex
957  *      @net: the applicable net namespace
958  *      @ifindex: index of device
959  *
960  *      Search for an interface by index. Returns NULL if the device
961  *      is not found or a pointer to the device. The device returned has
962  *      had a reference added and the pointer is safe until the user calls
963  *      dev_put to indicate they have finished with it.
964  */
965
966 struct net_device *dev_get_by_index(struct net *net, int ifindex)
967 {
968         struct net_device *dev;
969
970         rcu_read_lock();
971         dev = dev_get_by_index_rcu(net, ifindex);
972         if (dev)
973                 dev_hold(dev);
974         rcu_read_unlock();
975         return dev;
976 }
977 EXPORT_SYMBOL(dev_get_by_index);
978
979 /**
980  *      dev_get_by_napi_id - find a device by napi_id
981  *      @napi_id: ID of the NAPI struct
982  *
983  *      Search for an interface by NAPI ID. Returns %NULL if the device
984  *      is not found or a pointer to the device. The device has not had
985  *      its reference counter increased so the caller must be careful
986  *      about locking. The caller must hold RCU lock.
987  */
988
989 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
990 {
991         struct napi_struct *napi;
992
993         WARN_ON_ONCE(!rcu_read_lock_held());
994
995         if (napi_id < MIN_NAPI_ID)
996                 return NULL;
997
998         napi = napi_by_id(napi_id);
999
1000         return napi ? napi->dev : NULL;
1001 }
1002 EXPORT_SYMBOL(dev_get_by_napi_id);
1003
1004 /**
1005  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1006  *      @net: network namespace
1007  *      @name: a pointer to the buffer where the name will be stored.
1008  *      @ifindex: the ifindex of the interface to get the name from.
1009  *
1010  *      The use of raw_seqcount_begin() and cond_resched() before
1011  *      retrying is required as we want to give the writers a chance
1012  *      to complete when CONFIG_PREEMPT is not set.
1013  */
1014 int netdev_get_name(struct net *net, char *name, int ifindex)
1015 {
1016         struct net_device *dev;
1017         unsigned int seq;
1018
1019 retry:
1020         seq = raw_seqcount_begin(&devnet_rename_seq);
1021         rcu_read_lock();
1022         dev = dev_get_by_index_rcu(net, ifindex);
1023         if (!dev) {
1024                 rcu_read_unlock();
1025                 return -ENODEV;
1026         }
1027
1028         strcpy(name, dev->name);
1029         rcu_read_unlock();
1030         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
1031                 cond_resched();
1032                 goto retry;
1033         }
1034
1035         return 0;
1036 }
1037
1038 /**
1039  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1040  *      @net: the applicable net namespace
1041  *      @type: media type of device
1042  *      @ha: hardware address
1043  *
1044  *      Search for an interface by MAC address. Returns NULL if the device
1045  *      is not found or a pointer to the device.
1046  *      The caller must hold RCU or RTNL.
1047  *      The returned device has not had its ref count increased
1048  *      and the caller must therefore be careful about locking
1049  *
1050  */
1051
1052 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1053                                        const char *ha)
1054 {
1055         struct net_device *dev;
1056
1057         for_each_netdev_rcu(net, dev)
1058                 if (dev->type == type &&
1059                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1060                         return dev;
1061
1062         return NULL;
1063 }
1064 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1065
1066 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1067 {
1068         struct net_device *dev;
1069
1070         ASSERT_RTNL();
1071         for_each_netdev(net, dev)
1072                 if (dev->type == type)
1073                         return dev;
1074
1075         return NULL;
1076 }
1077 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1078
1079 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1080 {
1081         struct net_device *dev, *ret = NULL;
1082
1083         rcu_read_lock();
1084         for_each_netdev_rcu(net, dev)
1085                 if (dev->type == type) {
1086                         dev_hold(dev);
1087                         ret = dev;
1088                         break;
1089                 }
1090         rcu_read_unlock();
1091         return ret;
1092 }
1093 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1094
1095 /**
1096  *      __dev_get_by_flags - find any device with given flags
1097  *      @net: the applicable net namespace
1098  *      @if_flags: IFF_* values
1099  *      @mask: bitmask of bits in if_flags to check
1100  *
1101  *      Search for any interface with the given flags. Returns NULL if a device
1102  *      is not found or a pointer to the device. Must be called inside
1103  *      rtnl_lock(), and result refcount is unchanged.
1104  */
1105
1106 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1107                                       unsigned short mask)
1108 {
1109         struct net_device *dev, *ret;
1110
1111         ASSERT_RTNL();
1112
1113         ret = NULL;
1114         for_each_netdev(net, dev) {
1115                 if (((dev->flags ^ if_flags) & mask) == 0) {
1116                         ret = dev;
1117                         break;
1118                 }
1119         }
1120         return ret;
1121 }
1122 EXPORT_SYMBOL(__dev_get_by_flags);
1123
1124 /**
1125  *      dev_valid_name - check if name is okay for network device
1126  *      @name: name string
1127  *
1128  *      Network device names need to be valid file names to
1129  *      to allow sysfs to work.  We also disallow any kind of
1130  *      whitespace.
1131  */
1132 bool dev_valid_name(const char *name)
1133 {
1134         if (*name == '\0')
1135                 return false;
1136         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1137                 return false;
1138         if (!strcmp(name, ".") || !strcmp(name, ".."))
1139                 return false;
1140
1141         while (*name) {
1142                 if (*name == '/' || *name == ':' || isspace(*name))
1143                         return false;
1144                 name++;
1145         }
1146         return true;
1147 }
1148 EXPORT_SYMBOL(dev_valid_name);
1149
1150 /**
1151  *      __dev_alloc_name - allocate a name for a device
1152  *      @net: network namespace to allocate the device name in
1153  *      @name: name format string
1154  *      @buf:  scratch buffer and result name string
1155  *
1156  *      Passed a format string - eg "lt%d" it will try and find a suitable
1157  *      id. It scans list of devices to build up a free map, then chooses
1158  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *      while allocating the name and adding the device in order to avoid
1160  *      duplicates.
1161  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *      Returns the number of the unit assigned or a negative errno code.
1163  */
1164
1165 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1166 {
1167         int i = 0;
1168         const char *p;
1169         const int max_netdevices = 8*PAGE_SIZE;
1170         unsigned long *inuse;
1171         struct net_device *d;
1172
1173         if (!dev_valid_name(name))
1174                 return -EINVAL;
1175
1176         p = strchr(name, '%');
1177         if (p) {
1178                 /*
1179                  * Verify the string as this thing may have come from
1180                  * the user.  There must be either one "%d" and no other "%"
1181                  * characters.
1182                  */
1183                 if (p[1] != 'd' || strchr(p + 2, '%'))
1184                         return -EINVAL;
1185
1186                 /* Use one page as a bit array of possible slots */
1187                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1188                 if (!inuse)
1189                         return -ENOMEM;
1190
1191                 for_each_netdev(net, d) {
1192                         if (!sscanf(d->name, name, &i))
1193                                 continue;
1194                         if (i < 0 || i >= max_netdevices)
1195                                 continue;
1196
1197                         /*  avoid cases where sscanf is not exact inverse of printf */
1198                         snprintf(buf, IFNAMSIZ, name, i);
1199                         if (!strncmp(buf, d->name, IFNAMSIZ))
1200                                 set_bit(i, inuse);
1201                 }
1202
1203                 i = find_first_zero_bit(inuse, max_netdevices);
1204                 free_page((unsigned long) inuse);
1205         }
1206
1207         snprintf(buf, IFNAMSIZ, name, i);
1208         if (!__dev_get_by_name(net, buf))
1209                 return i;
1210
1211         /* It is possible to run out of possible slots
1212          * when the name is long and there isn't enough space left
1213          * for the digits, or if all bits are used.
1214          */
1215         return -ENFILE;
1216 }
1217
1218 static int dev_alloc_name_ns(struct net *net,
1219                              struct net_device *dev,
1220                              const char *name)
1221 {
1222         char buf[IFNAMSIZ];
1223         int ret;
1224
1225         BUG_ON(!net);
1226         ret = __dev_alloc_name(net, name, buf);
1227         if (ret >= 0)
1228                 strlcpy(dev->name, buf, IFNAMSIZ);
1229         return ret;
1230 }
1231
1232 /**
1233  *      dev_alloc_name - allocate a name for a device
1234  *      @dev: device
1235  *      @name: name format string
1236  *
1237  *      Passed a format string - eg "lt%d" it will try and find a suitable
1238  *      id. It scans list of devices to build up a free map, then chooses
1239  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1240  *      while allocating the name and adding the device in order to avoid
1241  *      duplicates.
1242  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1243  *      Returns the number of the unit assigned or a negative errno code.
1244  */
1245
1246 int dev_alloc_name(struct net_device *dev, const char *name)
1247 {
1248         return dev_alloc_name_ns(dev_net(dev), dev, name);
1249 }
1250 EXPORT_SYMBOL(dev_alloc_name);
1251
1252 int dev_get_valid_name(struct net *net, struct net_device *dev,
1253                        const char *name)
1254 {
1255         BUG_ON(!net);
1256
1257         if (!dev_valid_name(name))
1258                 return -EINVAL;
1259
1260         if (strchr(name, '%'))
1261                 return dev_alloc_name_ns(net, dev, name);
1262         else if (__dev_get_by_name(net, name))
1263                 return -EEXIST;
1264         else if (dev->name != name)
1265                 strlcpy(dev->name, name, IFNAMSIZ);
1266
1267         return 0;
1268 }
1269 EXPORT_SYMBOL(dev_get_valid_name);
1270
1271 /**
1272  *      dev_change_name - change name of a device
1273  *      @dev: device
1274  *      @newname: name (or format string) must be at least IFNAMSIZ
1275  *
1276  *      Change name of a device, can pass format strings "eth%d".
1277  *      for wildcarding.
1278  */
1279 int dev_change_name(struct net_device *dev, const char *newname)
1280 {
1281         unsigned char old_assign_type;
1282         char oldname[IFNAMSIZ];
1283         int err = 0;
1284         int ret;
1285         struct net *net;
1286
1287         ASSERT_RTNL();
1288         BUG_ON(!dev_net(dev));
1289
1290         net = dev_net(dev);
1291
1292         /* Some auto-enslaved devices e.g. failover slaves are
1293          * special, as userspace might rename the device after
1294          * the interface had been brought up and running since
1295          * the point kernel initiated auto-enslavement. Allow
1296          * live name change even when these slave devices are
1297          * up and running.
1298          *
1299          * Typically, users of these auto-enslaving devices
1300          * don't actually care about slave name change, as
1301          * they are supposed to operate on master interface
1302          * directly.
1303          */
1304         if (dev->flags & IFF_UP &&
1305             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1306                 return -EBUSY;
1307
1308         write_seqcount_begin(&devnet_rename_seq);
1309
1310         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1311                 write_seqcount_end(&devnet_rename_seq);
1312                 return 0;
1313         }
1314
1315         memcpy(oldname, dev->name, IFNAMSIZ);
1316
1317         err = dev_get_valid_name(net, dev, newname);
1318         if (err < 0) {
1319                 write_seqcount_end(&devnet_rename_seq);
1320                 return err;
1321         }
1322
1323         if (oldname[0] && !strchr(oldname, '%'))
1324                 netdev_info(dev, "renamed from %s\n", oldname);
1325
1326         old_assign_type = dev->name_assign_type;
1327         dev->name_assign_type = NET_NAME_RENAMED;
1328
1329 rollback:
1330         ret = device_rename(&dev->dev, dev->name);
1331         if (ret) {
1332                 memcpy(dev->name, oldname, IFNAMSIZ);
1333                 dev->name_assign_type = old_assign_type;
1334                 write_seqcount_end(&devnet_rename_seq);
1335                 return ret;
1336         }
1337
1338         write_seqcount_end(&devnet_rename_seq);
1339
1340         netdev_adjacent_rename_links(dev, oldname);
1341
1342         write_lock_bh(&dev_base_lock);
1343         netdev_name_node_del(dev->name_node);
1344         write_unlock_bh(&dev_base_lock);
1345
1346         synchronize_rcu();
1347
1348         write_lock_bh(&dev_base_lock);
1349         netdev_name_node_add(net, dev->name_node);
1350         write_unlock_bh(&dev_base_lock);
1351
1352         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1353         ret = notifier_to_errno(ret);
1354
1355         if (ret) {
1356                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1357                 if (err >= 0) {
1358                         err = ret;
1359                         write_seqcount_begin(&devnet_rename_seq);
1360                         memcpy(dev->name, oldname, IFNAMSIZ);
1361                         memcpy(oldname, newname, IFNAMSIZ);
1362                         dev->name_assign_type = old_assign_type;
1363                         old_assign_type = NET_NAME_RENAMED;
1364                         goto rollback;
1365                 } else {
1366                         pr_err("%s: name change rollback failed: %d\n",
1367                                dev->name, ret);
1368                 }
1369         }
1370
1371         return err;
1372 }
1373
1374 /**
1375  *      dev_set_alias - change ifalias of a device
1376  *      @dev: device
1377  *      @alias: name up to IFALIASZ
1378  *      @len: limit of bytes to copy from info
1379  *
1380  *      Set ifalias for a device,
1381  */
1382 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1383 {
1384         struct dev_ifalias *new_alias = NULL;
1385
1386         if (len >= IFALIASZ)
1387                 return -EINVAL;
1388
1389         if (len) {
1390                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1391                 if (!new_alias)
1392                         return -ENOMEM;
1393
1394                 memcpy(new_alias->ifalias, alias, len);
1395                 new_alias->ifalias[len] = 0;
1396         }
1397
1398         mutex_lock(&ifalias_mutex);
1399         rcu_swap_protected(dev->ifalias, new_alias,
1400                            mutex_is_locked(&ifalias_mutex));
1401         mutex_unlock(&ifalias_mutex);
1402
1403         if (new_alias)
1404                 kfree_rcu(new_alias, rcuhead);
1405
1406         return len;
1407 }
1408 EXPORT_SYMBOL(dev_set_alias);
1409
1410 /**
1411  *      dev_get_alias - get ifalias of a device
1412  *      @dev: device
1413  *      @name: buffer to store name of ifalias
1414  *      @len: size of buffer
1415  *
1416  *      get ifalias for a device.  Caller must make sure dev cannot go
1417  *      away,  e.g. rcu read lock or own a reference count to device.
1418  */
1419 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1420 {
1421         const struct dev_ifalias *alias;
1422         int ret = 0;
1423
1424         rcu_read_lock();
1425         alias = rcu_dereference(dev->ifalias);
1426         if (alias)
1427                 ret = snprintf(name, len, "%s", alias->ifalias);
1428         rcu_read_unlock();
1429
1430         return ret;
1431 }
1432
1433 /**
1434  *      netdev_features_change - device changes features
1435  *      @dev: device to cause notification
1436  *
1437  *      Called to indicate a device has changed features.
1438  */
1439 void netdev_features_change(struct net_device *dev)
1440 {
1441         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1442 }
1443 EXPORT_SYMBOL(netdev_features_change);
1444
1445 /**
1446  *      netdev_state_change - device changes state
1447  *      @dev: device to cause notification
1448  *
1449  *      Called to indicate a device has changed state. This function calls
1450  *      the notifier chains for netdev_chain and sends a NEWLINK message
1451  *      to the routing socket.
1452  */
1453 void netdev_state_change(struct net_device *dev)
1454 {
1455         if (dev->flags & IFF_UP) {
1456                 struct netdev_notifier_change_info change_info = {
1457                         .info.dev = dev,
1458                 };
1459
1460                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1461                                               &change_info.info);
1462                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1463         }
1464 }
1465 EXPORT_SYMBOL(netdev_state_change);
1466
1467 /**
1468  * netdev_notify_peers - notify network peers about existence of @dev
1469  * @dev: network device
1470  *
1471  * Generate traffic such that interested network peers are aware of
1472  * @dev, such as by generating a gratuitous ARP. This may be used when
1473  * a device wants to inform the rest of the network about some sort of
1474  * reconfiguration such as a failover event or virtual machine
1475  * migration.
1476  */
1477 void netdev_notify_peers(struct net_device *dev)
1478 {
1479         rtnl_lock();
1480         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1481         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1482         rtnl_unlock();
1483 }
1484 EXPORT_SYMBOL(netdev_notify_peers);
1485
1486 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1487 {
1488         const struct net_device_ops *ops = dev->netdev_ops;
1489         int ret;
1490
1491         ASSERT_RTNL();
1492
1493         if (!netif_device_present(dev))
1494                 return -ENODEV;
1495
1496         /* Block netpoll from trying to do any rx path servicing.
1497          * If we don't do this there is a chance ndo_poll_controller
1498          * or ndo_poll may be running while we open the device
1499          */
1500         netpoll_poll_disable(dev);
1501
1502         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1503         ret = notifier_to_errno(ret);
1504         if (ret)
1505                 return ret;
1506
1507         set_bit(__LINK_STATE_START, &dev->state);
1508
1509         if (ops->ndo_validate_addr)
1510                 ret = ops->ndo_validate_addr(dev);
1511
1512         if (!ret && ops->ndo_open)
1513                 ret = ops->ndo_open(dev);
1514
1515         netpoll_poll_enable(dev);
1516
1517         if (ret)
1518                 clear_bit(__LINK_STATE_START, &dev->state);
1519         else {
1520                 dev->flags |= IFF_UP;
1521                 dev_set_rx_mode(dev);
1522                 dev_activate(dev);
1523                 add_device_randomness(dev->dev_addr, dev->addr_len);
1524         }
1525
1526         return ret;
1527 }
1528
1529 /**
1530  *      dev_open        - prepare an interface for use.
1531  *      @dev: device to open
1532  *      @extack: netlink extended ack
1533  *
1534  *      Takes a device from down to up state. The device's private open
1535  *      function is invoked and then the multicast lists are loaded. Finally
1536  *      the device is moved into the up state and a %NETDEV_UP message is
1537  *      sent to the netdev notifier chain.
1538  *
1539  *      Calling this function on an active interface is a nop. On a failure
1540  *      a negative errno code is returned.
1541  */
1542 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1543 {
1544         int ret;
1545
1546         if (dev->flags & IFF_UP)
1547                 return 0;
1548
1549         ret = __dev_open(dev, extack);
1550         if (ret < 0)
1551                 return ret;
1552
1553         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1554         call_netdevice_notifiers(NETDEV_UP, dev);
1555
1556         return ret;
1557 }
1558 EXPORT_SYMBOL(dev_open);
1559
1560 static void __dev_close_many(struct list_head *head)
1561 {
1562         struct net_device *dev;
1563
1564         ASSERT_RTNL();
1565         might_sleep();
1566
1567         list_for_each_entry(dev, head, close_list) {
1568                 /* Temporarily disable netpoll until the interface is down */
1569                 netpoll_poll_disable(dev);
1570
1571                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1572
1573                 clear_bit(__LINK_STATE_START, &dev->state);
1574
1575                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1576                  * can be even on different cpu. So just clear netif_running().
1577                  *
1578                  * dev->stop() will invoke napi_disable() on all of it's
1579                  * napi_struct instances on this device.
1580                  */
1581                 smp_mb__after_atomic(); /* Commit netif_running(). */
1582         }
1583
1584         dev_deactivate_many(head);
1585
1586         list_for_each_entry(dev, head, close_list) {
1587                 const struct net_device_ops *ops = dev->netdev_ops;
1588
1589                 /*
1590                  *      Call the device specific close. This cannot fail.
1591                  *      Only if device is UP
1592                  *
1593                  *      We allow it to be called even after a DETACH hot-plug
1594                  *      event.
1595                  */
1596                 if (ops->ndo_stop)
1597                         ops->ndo_stop(dev);
1598
1599                 dev->flags &= ~IFF_UP;
1600                 netpoll_poll_enable(dev);
1601         }
1602 }
1603
1604 static void __dev_close(struct net_device *dev)
1605 {
1606         LIST_HEAD(single);
1607
1608         list_add(&dev->close_list, &single);
1609         __dev_close_many(&single);
1610         list_del(&single);
1611 }
1612
1613 void dev_close_many(struct list_head *head, bool unlink)
1614 {
1615         struct net_device *dev, *tmp;
1616
1617         /* Remove the devices that don't need to be closed */
1618         list_for_each_entry_safe(dev, tmp, head, close_list)
1619                 if (!(dev->flags & IFF_UP))
1620                         list_del_init(&dev->close_list);
1621
1622         __dev_close_many(head);
1623
1624         list_for_each_entry_safe(dev, tmp, head, close_list) {
1625                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1626                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1627                 if (unlink)
1628                         list_del_init(&dev->close_list);
1629         }
1630 }
1631 EXPORT_SYMBOL(dev_close_many);
1632
1633 /**
1634  *      dev_close - shutdown an interface.
1635  *      @dev: device to shutdown
1636  *
1637  *      This function moves an active device into down state. A
1638  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1639  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1640  *      chain.
1641  */
1642 void dev_close(struct net_device *dev)
1643 {
1644         if (dev->flags & IFF_UP) {
1645                 LIST_HEAD(single);
1646
1647                 list_add(&dev->close_list, &single);
1648                 dev_close_many(&single, true);
1649                 list_del(&single);
1650         }
1651 }
1652 EXPORT_SYMBOL(dev_close);
1653
1654
1655 /**
1656  *      dev_disable_lro - disable Large Receive Offload on a device
1657  *      @dev: device
1658  *
1659  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1660  *      called under RTNL.  This is needed if received packets may be
1661  *      forwarded to another interface.
1662  */
1663 void dev_disable_lro(struct net_device *dev)
1664 {
1665         struct net_device *lower_dev;
1666         struct list_head *iter;
1667
1668         dev->wanted_features &= ~NETIF_F_LRO;
1669         netdev_update_features(dev);
1670
1671         if (unlikely(dev->features & NETIF_F_LRO))
1672                 netdev_WARN(dev, "failed to disable LRO!\n");
1673
1674         netdev_for_each_lower_dev(dev, lower_dev, iter)
1675                 dev_disable_lro(lower_dev);
1676 }
1677 EXPORT_SYMBOL(dev_disable_lro);
1678
1679 /**
1680  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1681  *      @dev: device
1682  *
1683  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1684  *      called under RTNL.  This is needed if Generic XDP is installed on
1685  *      the device.
1686  */
1687 static void dev_disable_gro_hw(struct net_device *dev)
1688 {
1689         dev->wanted_features &= ~NETIF_F_GRO_HW;
1690         netdev_update_features(dev);
1691
1692         if (unlikely(dev->features & NETIF_F_GRO_HW))
1693                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1694 }
1695
1696 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1697 {
1698 #define N(val)                                          \
1699         case NETDEV_##val:                              \
1700                 return "NETDEV_" __stringify(val);
1701         switch (cmd) {
1702         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1703         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1704         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1705         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1706         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1707         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1708         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1709         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1710         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1711         N(PRE_CHANGEADDR)
1712         }
1713 #undef N
1714         return "UNKNOWN_NETDEV_EVENT";
1715 }
1716 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1717
1718 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1719                                    struct net_device *dev)
1720 {
1721         struct netdev_notifier_info info = {
1722                 .dev = dev,
1723         };
1724
1725         return nb->notifier_call(nb, val, &info);
1726 }
1727
1728 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1729                                              struct net_device *dev)
1730 {
1731         int err;
1732
1733         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1734         err = notifier_to_errno(err);
1735         if (err)
1736                 return err;
1737
1738         if (!(dev->flags & IFF_UP))
1739                 return 0;
1740
1741         call_netdevice_notifier(nb, NETDEV_UP, dev);
1742         return 0;
1743 }
1744
1745 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1746                                                 struct net_device *dev)
1747 {
1748         if (dev->flags & IFF_UP) {
1749                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1750                                         dev);
1751                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1752         }
1753         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1754 }
1755
1756 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1757                                                  struct net *net)
1758 {
1759         struct net_device *dev;
1760         int err;
1761
1762         for_each_netdev(net, dev) {
1763                 err = call_netdevice_register_notifiers(nb, dev);
1764                 if (err)
1765                         goto rollback;
1766         }
1767         return 0;
1768
1769 rollback:
1770         for_each_netdev_continue_reverse(net, dev)
1771                 call_netdevice_unregister_notifiers(nb, dev);
1772         return err;
1773 }
1774
1775 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1776                                                     struct net *net)
1777 {
1778         struct net_device *dev;
1779
1780         for_each_netdev(net, dev)
1781                 call_netdevice_unregister_notifiers(nb, dev);
1782 }
1783
1784 static int dev_boot_phase = 1;
1785
1786 /**
1787  * register_netdevice_notifier - register a network notifier block
1788  * @nb: notifier
1789  *
1790  * Register a notifier to be called when network device events occur.
1791  * The notifier passed is linked into the kernel structures and must
1792  * not be reused until it has been unregistered. A negative errno code
1793  * is returned on a failure.
1794  *
1795  * When registered all registration and up events are replayed
1796  * to the new notifier to allow device to have a race free
1797  * view of the network device list.
1798  */
1799
1800 int register_netdevice_notifier(struct notifier_block *nb)
1801 {
1802         struct net *net;
1803         int err;
1804
1805         /* Close race with setup_net() and cleanup_net() */
1806         down_write(&pernet_ops_rwsem);
1807         rtnl_lock();
1808         err = raw_notifier_chain_register(&netdev_chain, nb);
1809         if (err)
1810                 goto unlock;
1811         if (dev_boot_phase)
1812                 goto unlock;
1813         for_each_net(net) {
1814                 err = call_netdevice_register_net_notifiers(nb, net);
1815                 if (err)
1816                         goto rollback;
1817         }
1818
1819 unlock:
1820         rtnl_unlock();
1821         up_write(&pernet_ops_rwsem);
1822         return err;
1823
1824 rollback:
1825         for_each_net_continue_reverse(net)
1826                 call_netdevice_unregister_net_notifiers(nb, net);
1827
1828         raw_notifier_chain_unregister(&netdev_chain, nb);
1829         goto unlock;
1830 }
1831 EXPORT_SYMBOL(register_netdevice_notifier);
1832
1833 /**
1834  * unregister_netdevice_notifier - unregister a network notifier block
1835  * @nb: notifier
1836  *
1837  * Unregister a notifier previously registered by
1838  * register_netdevice_notifier(). The notifier is unlinked into the
1839  * kernel structures and may then be reused. A negative errno code
1840  * is returned on a failure.
1841  *
1842  * After unregistering unregister and down device events are synthesized
1843  * for all devices on the device list to the removed notifier to remove
1844  * the need for special case cleanup code.
1845  */
1846
1847 int unregister_netdevice_notifier(struct notifier_block *nb)
1848 {
1849         struct net_device *dev;
1850         struct net *net;
1851         int err;
1852
1853         /* Close race with setup_net() and cleanup_net() */
1854         down_write(&pernet_ops_rwsem);
1855         rtnl_lock();
1856         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1857         if (err)
1858                 goto unlock;
1859
1860         for_each_net(net) {
1861                 for_each_netdev(net, dev) {
1862                         if (dev->flags & IFF_UP) {
1863                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1864                                                         dev);
1865                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1866                         }
1867                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1868                 }
1869         }
1870 unlock:
1871         rtnl_unlock();
1872         up_write(&pernet_ops_rwsem);
1873         return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877 /**
1878  * register_netdevice_notifier_net - register a per-netns network notifier block
1879  * @net: network namespace
1880  * @nb: notifier
1881  *
1882  * Register a notifier to be called when network device events occur.
1883  * The notifier passed is linked into the kernel structures and must
1884  * not be reused until it has been unregistered. A negative errno code
1885  * is returned on a failure.
1886  *
1887  * When registered all registration and up events are replayed
1888  * to the new notifier to allow device to have a race free
1889  * view of the network device list.
1890  */
1891
1892 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1893 {
1894         int err;
1895
1896         rtnl_lock();
1897         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898         if (err)
1899                 goto unlock;
1900         if (dev_boot_phase)
1901                 goto unlock;
1902
1903         err = call_netdevice_register_net_notifiers(nb, net);
1904         if (err)
1905                 goto chain_unregister;
1906
1907 unlock:
1908         rtnl_unlock();
1909         return err;
1910
1911 chain_unregister:
1912         raw_notifier_chain_unregister(&netdev_chain, nb);
1913         goto unlock;
1914 }
1915 EXPORT_SYMBOL(register_netdevice_notifier_net);
1916
1917 /**
1918  * unregister_netdevice_notifier_net - unregister a per-netns
1919  *                                     network notifier block
1920  * @net: network namespace
1921  * @nb: notifier
1922  *
1923  * Unregister a notifier previously registered by
1924  * register_netdevice_notifier(). The notifier is unlinked into the
1925  * kernel structures and may then be reused. A negative errno code
1926  * is returned on a failure.
1927  *
1928  * After unregistering unregister and down device events are synthesized
1929  * for all devices on the device list to the removed notifier to remove
1930  * the need for special case cleanup code.
1931  */
1932
1933 int unregister_netdevice_notifier_net(struct net *net,
1934                                       struct notifier_block *nb)
1935 {
1936         int err;
1937
1938         rtnl_lock();
1939         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1940         if (err)
1941                 goto unlock;
1942
1943         call_netdevice_unregister_net_notifiers(nb, net);
1944
1945 unlock:
1946         rtnl_unlock();
1947         return err;
1948 }
1949 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1950
1951 /**
1952  *      call_netdevice_notifiers_info - call all network notifier blocks
1953  *      @val: value passed unmodified to notifier function
1954  *      @info: notifier information data
1955  *
1956  *      Call all network notifier blocks.  Parameters and return value
1957  *      are as for raw_notifier_call_chain().
1958  */
1959
1960 static int call_netdevice_notifiers_info(unsigned long val,
1961                                          struct netdev_notifier_info *info)
1962 {
1963         struct net *net = dev_net(info->dev);
1964         int ret;
1965
1966         ASSERT_RTNL();
1967
1968         /* Run per-netns notifier block chain first, then run the global one.
1969          * Hopefully, one day, the global one is going to be removed after
1970          * all notifier block registrators get converted to be per-netns.
1971          */
1972         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1973         if (ret & NOTIFY_STOP_MASK)
1974                 return ret;
1975         return raw_notifier_call_chain(&netdev_chain, val, info);
1976 }
1977
1978 static int call_netdevice_notifiers_extack(unsigned long val,
1979                                            struct net_device *dev,
1980                                            struct netlink_ext_ack *extack)
1981 {
1982         struct netdev_notifier_info info = {
1983                 .dev = dev,
1984                 .extack = extack,
1985         };
1986
1987         return call_netdevice_notifiers_info(val, &info);
1988 }
1989
1990 /**
1991  *      call_netdevice_notifiers - call all network notifier blocks
1992  *      @val: value passed unmodified to notifier function
1993  *      @dev: net_device pointer passed unmodified to notifier function
1994  *
1995  *      Call all network notifier blocks.  Parameters and return value
1996  *      are as for raw_notifier_call_chain().
1997  */
1998
1999 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2000 {
2001         return call_netdevice_notifiers_extack(val, dev, NULL);
2002 }
2003 EXPORT_SYMBOL(call_netdevice_notifiers);
2004
2005 /**
2006  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2007  *      @val: value passed unmodified to notifier function
2008  *      @dev: net_device pointer passed unmodified to notifier function
2009  *      @arg: additional u32 argument passed to the notifier function
2010  *
2011  *      Call all network notifier blocks.  Parameters and return value
2012  *      are as for raw_notifier_call_chain().
2013  */
2014 static int call_netdevice_notifiers_mtu(unsigned long val,
2015                                         struct net_device *dev, u32 arg)
2016 {
2017         struct netdev_notifier_info_ext info = {
2018                 .info.dev = dev,
2019                 .ext.mtu = arg,
2020         };
2021
2022         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2023
2024         return call_netdevice_notifiers_info(val, &info.info);
2025 }
2026
2027 #ifdef CONFIG_NET_INGRESS
2028 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2029
2030 void net_inc_ingress_queue(void)
2031 {
2032         static_branch_inc(&ingress_needed_key);
2033 }
2034 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2035
2036 void net_dec_ingress_queue(void)
2037 {
2038         static_branch_dec(&ingress_needed_key);
2039 }
2040 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2041 #endif
2042
2043 #ifdef CONFIG_NET_EGRESS
2044 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2045
2046 void net_inc_egress_queue(void)
2047 {
2048         static_branch_inc(&egress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2051
2052 void net_dec_egress_queue(void)
2053 {
2054         static_branch_dec(&egress_needed_key);
2055 }
2056 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2057 #endif
2058
2059 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2060 #ifdef CONFIG_JUMP_LABEL
2061 static atomic_t netstamp_needed_deferred;
2062 static atomic_t netstamp_wanted;
2063 static void netstamp_clear(struct work_struct *work)
2064 {
2065         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2066         int wanted;
2067
2068         wanted = atomic_add_return(deferred, &netstamp_wanted);
2069         if (wanted > 0)
2070                 static_branch_enable(&netstamp_needed_key);
2071         else
2072                 static_branch_disable(&netstamp_needed_key);
2073 }
2074 static DECLARE_WORK(netstamp_work, netstamp_clear);
2075 #endif
2076
2077 void net_enable_timestamp(void)
2078 {
2079 #ifdef CONFIG_JUMP_LABEL
2080         int wanted;
2081
2082         while (1) {
2083                 wanted = atomic_read(&netstamp_wanted);
2084                 if (wanted <= 0)
2085                         break;
2086                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2087                         return;
2088         }
2089         atomic_inc(&netstamp_needed_deferred);
2090         schedule_work(&netstamp_work);
2091 #else
2092         static_branch_inc(&netstamp_needed_key);
2093 #endif
2094 }
2095 EXPORT_SYMBOL(net_enable_timestamp);
2096
2097 void net_disable_timestamp(void)
2098 {
2099 #ifdef CONFIG_JUMP_LABEL
2100         int wanted;
2101
2102         while (1) {
2103                 wanted = atomic_read(&netstamp_wanted);
2104                 if (wanted <= 1)
2105                         break;
2106                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2107                         return;
2108         }
2109         atomic_dec(&netstamp_needed_deferred);
2110         schedule_work(&netstamp_work);
2111 #else
2112         static_branch_dec(&netstamp_needed_key);
2113 #endif
2114 }
2115 EXPORT_SYMBOL(net_disable_timestamp);
2116
2117 static inline void net_timestamp_set(struct sk_buff *skb)
2118 {
2119         skb->tstamp = 0;
2120         if (static_branch_unlikely(&netstamp_needed_key))
2121                 __net_timestamp(skb);
2122 }
2123
2124 #define net_timestamp_check(COND, SKB)                          \
2125         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2126                 if ((COND) && !(SKB)->tstamp)                   \
2127                         __net_timestamp(SKB);                   \
2128         }                                                       \
2129
2130 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2131 {
2132         unsigned int len;
2133
2134         if (!(dev->flags & IFF_UP))
2135                 return false;
2136
2137         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2138         if (skb->len <= len)
2139                 return true;
2140
2141         /* if TSO is enabled, we don't care about the length as the packet
2142          * could be forwarded without being segmented before
2143          */
2144         if (skb_is_gso(skb))
2145                 return true;
2146
2147         return false;
2148 }
2149 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2150
2151 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2152 {
2153         int ret = ____dev_forward_skb(dev, skb);
2154
2155         if (likely(!ret)) {
2156                 skb->protocol = eth_type_trans(skb, dev);
2157                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158         }
2159
2160         return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2163
2164 /**
2165  * dev_forward_skb - loopback an skb to another netif
2166  *
2167  * @dev: destination network device
2168  * @skb: buffer to forward
2169  *
2170  * return values:
2171  *      NET_RX_SUCCESS  (no congestion)
2172  *      NET_RX_DROP     (packet was dropped, but freed)
2173  *
2174  * dev_forward_skb can be used for injecting an skb from the
2175  * start_xmit function of one device into the receive queue
2176  * of another device.
2177  *
2178  * The receiving device may be in another namespace, so
2179  * we have to clear all information in the skb that could
2180  * impact namespace isolation.
2181  */
2182 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2183 {
2184         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2185 }
2186 EXPORT_SYMBOL_GPL(dev_forward_skb);
2187
2188 static inline int deliver_skb(struct sk_buff *skb,
2189                               struct packet_type *pt_prev,
2190                               struct net_device *orig_dev)
2191 {
2192         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2193                 return -ENOMEM;
2194         refcount_inc(&skb->users);
2195         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2196 }
2197
2198 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2199                                           struct packet_type **pt,
2200                                           struct net_device *orig_dev,
2201                                           __be16 type,
2202                                           struct list_head *ptype_list)
2203 {
2204         struct packet_type *ptype, *pt_prev = *pt;
2205
2206         list_for_each_entry_rcu(ptype, ptype_list, list) {
2207                 if (ptype->type != type)
2208                         continue;
2209                 if (pt_prev)
2210                         deliver_skb(skb, pt_prev, orig_dev);
2211                 pt_prev = ptype;
2212         }
2213         *pt = pt_prev;
2214 }
2215
2216 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2217 {
2218         if (!ptype->af_packet_priv || !skb->sk)
2219                 return false;
2220
2221         if (ptype->id_match)
2222                 return ptype->id_match(ptype, skb->sk);
2223         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2224                 return true;
2225
2226         return false;
2227 }
2228
2229 /**
2230  * dev_nit_active - return true if any network interface taps are in use
2231  *
2232  * @dev: network device to check for the presence of taps
2233  */
2234 bool dev_nit_active(struct net_device *dev)
2235 {
2236         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2237 }
2238 EXPORT_SYMBOL_GPL(dev_nit_active);
2239
2240 /*
2241  *      Support routine. Sends outgoing frames to any network
2242  *      taps currently in use.
2243  */
2244
2245 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2246 {
2247         struct packet_type *ptype;
2248         struct sk_buff *skb2 = NULL;
2249         struct packet_type *pt_prev = NULL;
2250         struct list_head *ptype_list = &ptype_all;
2251
2252         rcu_read_lock();
2253 again:
2254         list_for_each_entry_rcu(ptype, ptype_list, list) {
2255                 if (ptype->ignore_outgoing)
2256                         continue;
2257
2258                 /* Never send packets back to the socket
2259                  * they originated from - MvS (miquels@drinkel.ow.org)
2260                  */
2261                 if (skb_loop_sk(ptype, skb))
2262                         continue;
2263
2264                 if (pt_prev) {
2265                         deliver_skb(skb2, pt_prev, skb->dev);
2266                         pt_prev = ptype;
2267                         continue;
2268                 }
2269
2270                 /* need to clone skb, done only once */
2271                 skb2 = skb_clone(skb, GFP_ATOMIC);
2272                 if (!skb2)
2273                         goto out_unlock;
2274
2275                 net_timestamp_set(skb2);
2276
2277                 /* skb->nh should be correctly
2278                  * set by sender, so that the second statement is
2279                  * just protection against buggy protocols.
2280                  */
2281                 skb_reset_mac_header(skb2);
2282
2283                 if (skb_network_header(skb2) < skb2->data ||
2284                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2285                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2286                                              ntohs(skb2->protocol),
2287                                              dev->name);
2288                         skb_reset_network_header(skb2);
2289                 }
2290
2291                 skb2->transport_header = skb2->network_header;
2292                 skb2->pkt_type = PACKET_OUTGOING;
2293                 pt_prev = ptype;
2294         }
2295
2296         if (ptype_list == &ptype_all) {
2297                 ptype_list = &dev->ptype_all;
2298                 goto again;
2299         }
2300 out_unlock:
2301         if (pt_prev) {
2302                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2303                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2304                 else
2305                         kfree_skb(skb2);
2306         }
2307         rcu_read_unlock();
2308 }
2309 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2310
2311 /**
2312  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2313  * @dev: Network device
2314  * @txq: number of queues available
2315  *
2316  * If real_num_tx_queues is changed the tc mappings may no longer be
2317  * valid. To resolve this verify the tc mapping remains valid and if
2318  * not NULL the mapping. With no priorities mapping to this
2319  * offset/count pair it will no longer be used. In the worst case TC0
2320  * is invalid nothing can be done so disable priority mappings. If is
2321  * expected that drivers will fix this mapping if they can before
2322  * calling netif_set_real_num_tx_queues.
2323  */
2324 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2325 {
2326         int i;
2327         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2328
2329         /* If TC0 is invalidated disable TC mapping */
2330         if (tc->offset + tc->count > txq) {
2331                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2332                 dev->num_tc = 0;
2333                 return;
2334         }
2335
2336         /* Invalidated prio to tc mappings set to TC0 */
2337         for (i = 1; i < TC_BITMASK + 1; i++) {
2338                 int q = netdev_get_prio_tc_map(dev, i);
2339
2340                 tc = &dev->tc_to_txq[q];
2341                 if (tc->offset + tc->count > txq) {
2342                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2343                                 i, q);
2344                         netdev_set_prio_tc_map(dev, i, 0);
2345                 }
2346         }
2347 }
2348
2349 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2350 {
2351         if (dev->num_tc) {
2352                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2353                 int i;
2354
2355                 /* walk through the TCs and see if it falls into any of them */
2356                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2357                         if ((txq - tc->offset) < tc->count)
2358                                 return i;
2359                 }
2360
2361                 /* didn't find it, just return -1 to indicate no match */
2362                 return -1;
2363         }
2364
2365         return 0;
2366 }
2367 EXPORT_SYMBOL(netdev_txq_to_tc);
2368
2369 #ifdef CONFIG_XPS
2370 struct static_key xps_needed __read_mostly;
2371 EXPORT_SYMBOL(xps_needed);
2372 struct static_key xps_rxqs_needed __read_mostly;
2373 EXPORT_SYMBOL(xps_rxqs_needed);
2374 static DEFINE_MUTEX(xps_map_mutex);
2375 #define xmap_dereference(P)             \
2376         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2377
2378 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2379                              int tci, u16 index)
2380 {
2381         struct xps_map *map = NULL;
2382         int pos;
2383
2384         if (dev_maps)
2385                 map = xmap_dereference(dev_maps->attr_map[tci]);
2386         if (!map)
2387                 return false;
2388
2389         for (pos = map->len; pos--;) {
2390                 if (map->queues[pos] != index)
2391                         continue;
2392
2393                 if (map->len > 1) {
2394                         map->queues[pos] = map->queues[--map->len];
2395                         break;
2396                 }
2397
2398                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2399                 kfree_rcu(map, rcu);
2400                 return false;
2401         }
2402
2403         return true;
2404 }
2405
2406 static bool remove_xps_queue_cpu(struct net_device *dev,
2407                                  struct xps_dev_maps *dev_maps,
2408                                  int cpu, u16 offset, u16 count)
2409 {
2410         int num_tc = dev->num_tc ? : 1;
2411         bool active = false;
2412         int tci;
2413
2414         for (tci = cpu * num_tc; num_tc--; tci++) {
2415                 int i, j;
2416
2417                 for (i = count, j = offset; i--; j++) {
2418                         if (!remove_xps_queue(dev_maps, tci, j))
2419                                 break;
2420                 }
2421
2422                 active |= i < 0;
2423         }
2424
2425         return active;
2426 }
2427
2428 static void reset_xps_maps(struct net_device *dev,
2429                            struct xps_dev_maps *dev_maps,
2430                            bool is_rxqs_map)
2431 {
2432         if (is_rxqs_map) {
2433                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2434                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2435         } else {
2436                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2437         }
2438         static_key_slow_dec_cpuslocked(&xps_needed);
2439         kfree_rcu(dev_maps, rcu);
2440 }
2441
2442 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2443                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2444                            u16 offset, u16 count, bool is_rxqs_map)
2445 {
2446         bool active = false;
2447         int i, j;
2448
2449         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2450              j < nr_ids;)
2451                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2452                                                count);
2453         if (!active)
2454                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2455
2456         if (!is_rxqs_map) {
2457                 for (i = offset + (count - 1); count--; i--) {
2458                         netdev_queue_numa_node_write(
2459                                 netdev_get_tx_queue(dev, i),
2460                                 NUMA_NO_NODE);
2461                 }
2462         }
2463 }
2464
2465 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2466                                    u16 count)
2467 {
2468         const unsigned long *possible_mask = NULL;
2469         struct xps_dev_maps *dev_maps;
2470         unsigned int nr_ids;
2471
2472         if (!static_key_false(&xps_needed))
2473                 return;
2474
2475         cpus_read_lock();
2476         mutex_lock(&xps_map_mutex);
2477
2478         if (static_key_false(&xps_rxqs_needed)) {
2479                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2480                 if (dev_maps) {
2481                         nr_ids = dev->num_rx_queues;
2482                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2483                                        offset, count, true);
2484                 }
2485         }
2486
2487         dev_maps = xmap_dereference(dev->xps_cpus_map);
2488         if (!dev_maps)
2489                 goto out_no_maps;
2490
2491         if (num_possible_cpus() > 1)
2492                 possible_mask = cpumask_bits(cpu_possible_mask);
2493         nr_ids = nr_cpu_ids;
2494         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2495                        false);
2496
2497 out_no_maps:
2498         mutex_unlock(&xps_map_mutex);
2499         cpus_read_unlock();
2500 }
2501
2502 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2503 {
2504         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2505 }
2506
2507 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2508                                       u16 index, bool is_rxqs_map)
2509 {
2510         struct xps_map *new_map;
2511         int alloc_len = XPS_MIN_MAP_ALLOC;
2512         int i, pos;
2513
2514         for (pos = 0; map && pos < map->len; pos++) {
2515                 if (map->queues[pos] != index)
2516                         continue;
2517                 return map;
2518         }
2519
2520         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2521         if (map) {
2522                 if (pos < map->alloc_len)
2523                         return map;
2524
2525                 alloc_len = map->alloc_len * 2;
2526         }
2527
2528         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2529          *  map
2530          */
2531         if (is_rxqs_map)
2532                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2533         else
2534                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2535                                        cpu_to_node(attr_index));
2536         if (!new_map)
2537                 return NULL;
2538
2539         for (i = 0; i < pos; i++)
2540                 new_map->queues[i] = map->queues[i];
2541         new_map->alloc_len = alloc_len;
2542         new_map->len = pos;
2543
2544         return new_map;
2545 }
2546
2547 /* Must be called under cpus_read_lock */
2548 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2549                           u16 index, bool is_rxqs_map)
2550 {
2551         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2552         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2553         int i, j, tci, numa_node_id = -2;
2554         int maps_sz, num_tc = 1, tc = 0;
2555         struct xps_map *map, *new_map;
2556         bool active = false;
2557         unsigned int nr_ids;
2558
2559         if (dev->num_tc) {
2560                 /* Do not allow XPS on subordinate device directly */
2561                 num_tc = dev->num_tc;
2562                 if (num_tc < 0)
2563                         return -EINVAL;
2564
2565                 /* If queue belongs to subordinate dev use its map */
2566                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2567
2568                 tc = netdev_txq_to_tc(dev, index);
2569                 if (tc < 0)
2570                         return -EINVAL;
2571         }
2572
2573         mutex_lock(&xps_map_mutex);
2574         if (is_rxqs_map) {
2575                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2576                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2577                 nr_ids = dev->num_rx_queues;
2578         } else {
2579                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2580                 if (num_possible_cpus() > 1) {
2581                         online_mask = cpumask_bits(cpu_online_mask);
2582                         possible_mask = cpumask_bits(cpu_possible_mask);
2583                 }
2584                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2585                 nr_ids = nr_cpu_ids;
2586         }
2587
2588         if (maps_sz < L1_CACHE_BYTES)
2589                 maps_sz = L1_CACHE_BYTES;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps)
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                 if (!new_dev_maps) {
2597                         mutex_unlock(&xps_map_mutex);
2598                         return -ENOMEM;
2599                 }
2600
2601                 tci = j * num_tc + tc;
2602                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2603                                  NULL;
2604
2605                 map = expand_xps_map(map, j, index, is_rxqs_map);
2606                 if (!map)
2607                         goto error;
2608
2609                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2610         }
2611
2612         if (!new_dev_maps)
2613                 goto out_no_new_maps;
2614
2615         if (!dev_maps) {
2616                 /* Increment static keys at most once per type */
2617                 static_key_slow_inc_cpuslocked(&xps_needed);
2618                 if (is_rxqs_map)
2619                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2620         }
2621
2622         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2623              j < nr_ids;) {
2624                 /* copy maps belonging to foreign traffic classes */
2625                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2626                         /* fill in the new device map from the old device map */
2627                         map = xmap_dereference(dev_maps->attr_map[tci]);
2628                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629                 }
2630
2631                 /* We need to explicitly update tci as prevous loop
2632                  * could break out early if dev_maps is NULL.
2633                  */
2634                 tci = j * num_tc + tc;
2635
2636                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2637                     netif_attr_test_online(j, online_mask, nr_ids)) {
2638                         /* add tx-queue to CPU/rx-queue maps */
2639                         int pos = 0;
2640
2641                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2642                         while ((pos < map->len) && (map->queues[pos] != index))
2643                                 pos++;
2644
2645                         if (pos == map->len)
2646                                 map->queues[map->len++] = index;
2647 #ifdef CONFIG_NUMA
2648                         if (!is_rxqs_map) {
2649                                 if (numa_node_id == -2)
2650                                         numa_node_id = cpu_to_node(j);
2651                                 else if (numa_node_id != cpu_to_node(j))
2652                                         numa_node_id = -1;
2653                         }
2654 #endif
2655                 } else if (dev_maps) {
2656                         /* fill in the new device map from the old device map */
2657                         map = xmap_dereference(dev_maps->attr_map[tci]);
2658                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2659                 }
2660
2661                 /* copy maps belonging to foreign traffic classes */
2662                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2663                         /* fill in the new device map from the old device map */
2664                         map = xmap_dereference(dev_maps->attr_map[tci]);
2665                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2666                 }
2667         }
2668
2669         if (is_rxqs_map)
2670                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2671         else
2672                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2673
2674         /* Cleanup old maps */
2675         if (!dev_maps)
2676                 goto out_no_old_maps;
2677
2678         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2679              j < nr_ids;) {
2680                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2681                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682                         map = xmap_dereference(dev_maps->attr_map[tci]);
2683                         if (map && map != new_map)
2684                                 kfree_rcu(map, rcu);
2685                 }
2686         }
2687
2688         kfree_rcu(dev_maps, rcu);
2689
2690 out_no_old_maps:
2691         dev_maps = new_dev_maps;
2692         active = true;
2693
2694 out_no_new_maps:
2695         if (!is_rxqs_map) {
2696                 /* update Tx queue numa node */
2697                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2698                                              (numa_node_id >= 0) ?
2699                                              numa_node_id : NUMA_NO_NODE);
2700         }
2701
2702         if (!dev_maps)
2703                 goto out_no_maps;
2704
2705         /* removes tx-queue from unused CPUs/rx-queues */
2706         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2707              j < nr_ids;) {
2708                 for (i = tc, tci = j * num_tc; i--; tci++)
2709                         active |= remove_xps_queue(dev_maps, tci, index);
2710                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2711                     !netif_attr_test_online(j, online_mask, nr_ids))
2712                         active |= remove_xps_queue(dev_maps, tci, index);
2713                 for (i = num_tc - tc, tci++; --i; tci++)
2714                         active |= remove_xps_queue(dev_maps, tci, index);
2715         }
2716
2717         /* free map if not active */
2718         if (!active)
2719                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2720
2721 out_no_maps:
2722         mutex_unlock(&xps_map_mutex);
2723
2724         return 0;
2725 error:
2726         /* remove any maps that we added */
2727         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2728              j < nr_ids;) {
2729                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2730                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2731                         map = dev_maps ?
2732                               xmap_dereference(dev_maps->attr_map[tci]) :
2733                               NULL;
2734                         if (new_map && new_map != map)
2735                                 kfree(new_map);
2736                 }
2737         }
2738
2739         mutex_unlock(&xps_map_mutex);
2740
2741         kfree(new_dev_maps);
2742         return -ENOMEM;
2743 }
2744 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2745
2746 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2747                         u16 index)
2748 {
2749         int ret;
2750
2751         cpus_read_lock();
2752         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2753         cpus_read_unlock();
2754
2755         return ret;
2756 }
2757 EXPORT_SYMBOL(netif_set_xps_queue);
2758
2759 #endif
2760 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2761 {
2762         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2763
2764         /* Unbind any subordinate channels */
2765         while (txq-- != &dev->_tx[0]) {
2766                 if (txq->sb_dev)
2767                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2768         }
2769 }
2770
2771 void netdev_reset_tc(struct net_device *dev)
2772 {
2773 #ifdef CONFIG_XPS
2774         netif_reset_xps_queues_gt(dev, 0);
2775 #endif
2776         netdev_unbind_all_sb_channels(dev);
2777
2778         /* Reset TC configuration of device */
2779         dev->num_tc = 0;
2780         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2781         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2782 }
2783 EXPORT_SYMBOL(netdev_reset_tc);
2784
2785 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2786 {
2787         if (tc >= dev->num_tc)
2788                 return -EINVAL;
2789
2790 #ifdef CONFIG_XPS
2791         netif_reset_xps_queues(dev, offset, count);
2792 #endif
2793         dev->tc_to_txq[tc].count = count;
2794         dev->tc_to_txq[tc].offset = offset;
2795         return 0;
2796 }
2797 EXPORT_SYMBOL(netdev_set_tc_queue);
2798
2799 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2800 {
2801         if (num_tc > TC_MAX_QUEUE)
2802                 return -EINVAL;
2803
2804 #ifdef CONFIG_XPS
2805         netif_reset_xps_queues_gt(dev, 0);
2806 #endif
2807         netdev_unbind_all_sb_channels(dev);
2808
2809         dev->num_tc = num_tc;
2810         return 0;
2811 }
2812 EXPORT_SYMBOL(netdev_set_num_tc);
2813
2814 void netdev_unbind_sb_channel(struct net_device *dev,
2815                               struct net_device *sb_dev)
2816 {
2817         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2818
2819 #ifdef CONFIG_XPS
2820         netif_reset_xps_queues_gt(sb_dev, 0);
2821 #endif
2822         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2823         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2824
2825         while (txq-- != &dev->_tx[0]) {
2826                 if (txq->sb_dev == sb_dev)
2827                         txq->sb_dev = NULL;
2828         }
2829 }
2830 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2831
2832 int netdev_bind_sb_channel_queue(struct net_device *dev,
2833                                  struct net_device *sb_dev,
2834                                  u8 tc, u16 count, u16 offset)
2835 {
2836         /* Make certain the sb_dev and dev are already configured */
2837         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2838                 return -EINVAL;
2839
2840         /* We cannot hand out queues we don't have */
2841         if ((offset + count) > dev->real_num_tx_queues)
2842                 return -EINVAL;
2843
2844         /* Record the mapping */
2845         sb_dev->tc_to_txq[tc].count = count;
2846         sb_dev->tc_to_txq[tc].offset = offset;
2847
2848         /* Provide a way for Tx queue to find the tc_to_txq map or
2849          * XPS map for itself.
2850          */
2851         while (count--)
2852                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2853
2854         return 0;
2855 }
2856 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2857
2858 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2859 {
2860         /* Do not use a multiqueue device to represent a subordinate channel */
2861         if (netif_is_multiqueue(dev))
2862                 return -ENODEV;
2863
2864         /* We allow channels 1 - 32767 to be used for subordinate channels.
2865          * Channel 0 is meant to be "native" mode and used only to represent
2866          * the main root device. We allow writing 0 to reset the device back
2867          * to normal mode after being used as a subordinate channel.
2868          */
2869         if (channel > S16_MAX)
2870                 return -EINVAL;
2871
2872         dev->num_tc = -channel;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_set_sb_channel);
2877
2878 /*
2879  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2880  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2881  */
2882 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2883 {
2884         bool disabling;
2885         int rc;
2886
2887         disabling = txq < dev->real_num_tx_queues;
2888
2889         if (txq < 1 || txq > dev->num_tx_queues)
2890                 return -EINVAL;
2891
2892         if (dev->reg_state == NETREG_REGISTERED ||
2893             dev->reg_state == NETREG_UNREGISTERING) {
2894                 ASSERT_RTNL();
2895
2896                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2897                                                   txq);
2898                 if (rc)
2899                         return rc;
2900
2901                 if (dev->num_tc)
2902                         netif_setup_tc(dev, txq);
2903
2904                 dev->real_num_tx_queues = txq;
2905
2906                 if (disabling) {
2907                         synchronize_net();
2908                         qdisc_reset_all_tx_gt(dev, txq);
2909 #ifdef CONFIG_XPS
2910                         netif_reset_xps_queues_gt(dev, txq);
2911 #endif
2912                 }
2913         } else {
2914                 dev->real_num_tx_queues = txq;
2915         }
2916
2917         return 0;
2918 }
2919 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2920
2921 #ifdef CONFIG_SYSFS
2922 /**
2923  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2924  *      @dev: Network device
2925  *      @rxq: Actual number of RX queues
2926  *
2927  *      This must be called either with the rtnl_lock held or before
2928  *      registration of the net device.  Returns 0 on success, or a
2929  *      negative error code.  If called before registration, it always
2930  *      succeeds.
2931  */
2932 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2933 {
2934         int rc;
2935
2936         if (rxq < 1 || rxq > dev->num_rx_queues)
2937                 return -EINVAL;
2938
2939         if (dev->reg_state == NETREG_REGISTERED) {
2940                 ASSERT_RTNL();
2941
2942                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2943                                                   rxq);
2944                 if (rc)
2945                         return rc;
2946         }
2947
2948         dev->real_num_rx_queues = rxq;
2949         return 0;
2950 }
2951 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2952 #endif
2953
2954 /**
2955  * netif_get_num_default_rss_queues - default number of RSS queues
2956  *
2957  * This routine should set an upper limit on the number of RSS queues
2958  * used by default by multiqueue devices.
2959  */
2960 int netif_get_num_default_rss_queues(void)
2961 {
2962         return is_kdump_kernel() ?
2963                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2964 }
2965 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2966
2967 static void __netif_reschedule(struct Qdisc *q)
2968 {
2969         struct softnet_data *sd;
2970         unsigned long flags;
2971
2972         local_irq_save(flags);
2973         sd = this_cpu_ptr(&softnet_data);
2974         q->next_sched = NULL;
2975         *sd->output_queue_tailp = q;
2976         sd->output_queue_tailp = &q->next_sched;
2977         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2978         local_irq_restore(flags);
2979 }
2980
2981 void __netif_schedule(struct Qdisc *q)
2982 {
2983         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2984                 __netif_reschedule(q);
2985 }
2986 EXPORT_SYMBOL(__netif_schedule);
2987
2988 struct dev_kfree_skb_cb {
2989         enum skb_free_reason reason;
2990 };
2991
2992 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2993 {
2994         return (struct dev_kfree_skb_cb *)skb->cb;
2995 }
2996
2997 void netif_schedule_queue(struct netdev_queue *txq)
2998 {
2999         rcu_read_lock();
3000         if (!netif_xmit_stopped(txq)) {
3001                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3002
3003                 __netif_schedule(q);
3004         }
3005         rcu_read_unlock();
3006 }
3007 EXPORT_SYMBOL(netif_schedule_queue);
3008
3009 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3010 {
3011         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3012                 struct Qdisc *q;
3013
3014                 rcu_read_lock();
3015                 q = rcu_dereference(dev_queue->qdisc);
3016                 __netif_schedule(q);
3017                 rcu_read_unlock();
3018         }
3019 }
3020 EXPORT_SYMBOL(netif_tx_wake_queue);
3021
3022 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3023 {
3024         unsigned long flags;
3025
3026         if (unlikely(!skb))
3027                 return;
3028
3029         if (likely(refcount_read(&skb->users) == 1)) {
3030                 smp_rmb();
3031                 refcount_set(&skb->users, 0);
3032         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3033                 return;
3034         }
3035         get_kfree_skb_cb(skb)->reason = reason;
3036         local_irq_save(flags);
3037         skb->next = __this_cpu_read(softnet_data.completion_queue);
3038         __this_cpu_write(softnet_data.completion_queue, skb);
3039         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3040         local_irq_restore(flags);
3041 }
3042 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3043
3044 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3045 {
3046         if (in_irq() || irqs_disabled())
3047                 __dev_kfree_skb_irq(skb, reason);
3048         else
3049                 dev_kfree_skb(skb);
3050 }
3051 EXPORT_SYMBOL(__dev_kfree_skb_any);
3052
3053
3054 /**
3055  * netif_device_detach - mark device as removed
3056  * @dev: network device
3057  *
3058  * Mark device as removed from system and therefore no longer available.
3059  */
3060 void netif_device_detach(struct net_device *dev)
3061 {
3062         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3063             netif_running(dev)) {
3064                 netif_tx_stop_all_queues(dev);
3065         }
3066 }
3067 EXPORT_SYMBOL(netif_device_detach);
3068
3069 /**
3070  * netif_device_attach - mark device as attached
3071  * @dev: network device
3072  *
3073  * Mark device as attached from system and restart if needed.
3074  */
3075 void netif_device_attach(struct net_device *dev)
3076 {
3077         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3078             netif_running(dev)) {
3079                 netif_tx_wake_all_queues(dev);
3080                 __netdev_watchdog_up(dev);
3081         }
3082 }
3083 EXPORT_SYMBOL(netif_device_attach);
3084
3085 /*
3086  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3087  * to be used as a distribution range.
3088  */
3089 static u16 skb_tx_hash(const struct net_device *dev,
3090                        const struct net_device *sb_dev,
3091                        struct sk_buff *skb)
3092 {
3093         u32 hash;
3094         u16 qoffset = 0;
3095         u16 qcount = dev->real_num_tx_queues;
3096
3097         if (dev->num_tc) {
3098                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3099
3100                 qoffset = sb_dev->tc_to_txq[tc].offset;
3101                 qcount = sb_dev->tc_to_txq[tc].count;
3102         }
3103
3104         if (skb_rx_queue_recorded(skb)) {
3105                 hash = skb_get_rx_queue(skb);
3106                 while (unlikely(hash >= qcount))
3107                         hash -= qcount;
3108                 return hash + qoffset;
3109         }
3110
3111         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3112 }
3113
3114 static void skb_warn_bad_offload(const struct sk_buff *skb)
3115 {
3116         static const netdev_features_t null_features;
3117         struct net_device *dev = skb->dev;
3118         const char *name = "";
3119
3120         if (!net_ratelimit())
3121                 return;
3122
3123         if (dev) {
3124                 if (dev->dev.parent)
3125                         name = dev_driver_string(dev->dev.parent);
3126                 else
3127                         name = netdev_name(dev);
3128         }
3129         skb_dump(KERN_WARNING, skb, false);
3130         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3131              name, dev ? &dev->features : &null_features,
3132              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3133 }
3134
3135 /*
3136  * Invalidate hardware checksum when packet is to be mangled, and
3137  * complete checksum manually on outgoing path.
3138  */
3139 int skb_checksum_help(struct sk_buff *skb)
3140 {
3141         __wsum csum;
3142         int ret = 0, offset;
3143
3144         if (skb->ip_summed == CHECKSUM_COMPLETE)
3145                 goto out_set_summed;
3146
3147         if (unlikely(skb_shinfo(skb)->gso_size)) {
3148                 skb_warn_bad_offload(skb);
3149                 return -EINVAL;
3150         }
3151
3152         /* Before computing a checksum, we should make sure no frag could
3153          * be modified by an external entity : checksum could be wrong.
3154          */
3155         if (skb_has_shared_frag(skb)) {
3156                 ret = __skb_linearize(skb);
3157                 if (ret)
3158                         goto out;
3159         }
3160
3161         offset = skb_checksum_start_offset(skb);
3162         BUG_ON(offset >= skb_headlen(skb));
3163         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3164
3165         offset += skb->csum_offset;
3166         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3167
3168         if (skb_cloned(skb) &&
3169             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
3170                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3171                 if (ret)
3172                         goto out;
3173         }
3174
3175         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3176 out_set_summed:
3177         skb->ip_summed = CHECKSUM_NONE;
3178 out:
3179         return ret;
3180 }
3181 EXPORT_SYMBOL(skb_checksum_help);
3182
3183 int skb_crc32c_csum_help(struct sk_buff *skb)
3184 {
3185         __le32 crc32c_csum;
3186         int ret = 0, offset, start;
3187
3188         if (skb->ip_summed != CHECKSUM_PARTIAL)
3189                 goto out;
3190
3191         if (unlikely(skb_is_gso(skb)))
3192                 goto out;
3193
3194         /* Before computing a checksum, we should make sure no frag could
3195          * be modified by an external entity : checksum could be wrong.
3196          */
3197         if (unlikely(skb_has_shared_frag(skb))) {
3198                 ret = __skb_linearize(skb);
3199                 if (ret)
3200                         goto out;
3201         }
3202         start = skb_checksum_start_offset(skb);
3203         offset = start + offsetof(struct sctphdr, checksum);
3204         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3205                 ret = -EINVAL;
3206                 goto out;
3207         }
3208         if (skb_cloned(skb) &&
3209             !skb_clone_writable(skb, offset + sizeof(__le32))) {
3210                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3211                 if (ret)
3212                         goto out;
3213         }
3214         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3215                                                   skb->len - start, ~(__u32)0,
3216                                                   crc32c_csum_stub));
3217         *(__le32 *)(skb->data + offset) = crc32c_csum;
3218         skb->ip_summed = CHECKSUM_NONE;
3219         skb->csum_not_inet = 0;
3220 out:
3221         return ret;
3222 }
3223
3224 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3225 {
3226         __be16 type = skb->protocol;
3227
3228         /* Tunnel gso handlers can set protocol to ethernet. */
3229         if (type == htons(ETH_P_TEB)) {
3230                 struct ethhdr *eth;
3231
3232                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3233                         return 0;
3234
3235                 eth = (struct ethhdr *)skb->data;
3236                 type = eth->h_proto;
3237         }
3238
3239         return __vlan_get_protocol(skb, type, depth);
3240 }
3241
3242 /**
3243  *      skb_mac_gso_segment - mac layer segmentation handler.
3244  *      @skb: buffer to segment
3245  *      @features: features for the output path (see dev->features)
3246  */
3247 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3248                                     netdev_features_t features)
3249 {
3250         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3251         struct packet_offload *ptype;
3252         int vlan_depth = skb->mac_len;
3253         __be16 type = skb_network_protocol(skb, &vlan_depth);
3254
3255         if (unlikely(!type))
3256                 return ERR_PTR(-EINVAL);
3257
3258         __skb_pull(skb, vlan_depth);
3259
3260         rcu_read_lock();
3261         list_for_each_entry_rcu(ptype, &offload_base, list) {
3262                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3263                         segs = ptype->callbacks.gso_segment(skb, features);
3264                         break;
3265                 }
3266         }
3267         rcu_read_unlock();
3268
3269         __skb_push(skb, skb->data - skb_mac_header(skb));
3270
3271         return segs;
3272 }
3273 EXPORT_SYMBOL(skb_mac_gso_segment);
3274
3275
3276 /* openvswitch calls this on rx path, so we need a different check.
3277  */
3278 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3279 {
3280         if (tx_path)
3281                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3282                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3283
3284         return skb->ip_summed == CHECKSUM_NONE;
3285 }
3286
3287 /**
3288  *      __skb_gso_segment - Perform segmentation on skb.
3289  *      @skb: buffer to segment
3290  *      @features: features for the output path (see dev->features)
3291  *      @tx_path: whether it is called in TX path
3292  *
3293  *      This function segments the given skb and returns a list of segments.
3294  *
3295  *      It may return NULL if the skb requires no segmentation.  This is
3296  *      only possible when GSO is used for verifying header integrity.
3297  *
3298  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3299  */
3300 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3301                                   netdev_features_t features, bool tx_path)
3302 {
3303         struct sk_buff *segs;
3304
3305         if (unlikely(skb_needs_check(skb, tx_path))) {
3306                 int err;
3307
3308                 /* We're going to init ->check field in TCP or UDP header */
3309                 err = skb_cow_head(skb, 0);
3310                 if (err < 0)
3311                         return ERR_PTR(err);
3312         }
3313
3314         /* Only report GSO partial support if it will enable us to
3315          * support segmentation on this frame without needing additional
3316          * work.
3317          */
3318         if (features & NETIF_F_GSO_PARTIAL) {
3319                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3320                 struct net_device *dev = skb->dev;
3321
3322                 partial_features |= dev->features & dev->gso_partial_features;
3323                 if (!skb_gso_ok(skb, features | partial_features))
3324                         features &= ~NETIF_F_GSO_PARTIAL;
3325         }
3326
3327         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3328                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3329
3330         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3331         SKB_GSO_CB(skb)->encap_level = 0;
3332
3333         skb_reset_mac_header(skb);
3334         skb_reset_mac_len(skb);
3335
3336         segs = skb_mac_gso_segment(skb, features);
3337
3338         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3339                 skb_warn_bad_offload(skb);
3340
3341         return segs;
3342 }
3343 EXPORT_SYMBOL(__skb_gso_segment);
3344
3345 /* Take action when hardware reception checksum errors are detected. */
3346 #ifdef CONFIG_BUG
3347 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3348 {
3349         if (net_ratelimit()) {
3350                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3351                 skb_dump(KERN_ERR, skb, true);
3352                 dump_stack();
3353         }
3354 }
3355 EXPORT_SYMBOL(netdev_rx_csum_fault);
3356 #endif
3357
3358 /* XXX: check that highmem exists at all on the given machine. */
3359 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3360 {
3361 #ifdef CONFIG_HIGHMEM
3362         int i;
3363
3364         if (!(dev->features & NETIF_F_HIGHDMA)) {
3365                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3366                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3367
3368                         if (PageHighMem(skb_frag_page(frag)))
3369                                 return 1;
3370                 }
3371         }
3372 #endif
3373         return 0;
3374 }
3375
3376 /* If MPLS offload request, verify we are testing hardware MPLS features
3377  * instead of standard features for the netdev.
3378  */
3379 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3380 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3381                                            netdev_features_t features,
3382                                            __be16 type)
3383 {
3384         if (eth_p_mpls(type))
3385                 features &= skb->dev->mpls_features;
3386
3387         return features;
3388 }
3389 #else
3390 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3391                                            netdev_features_t features,
3392                                            __be16 type)
3393 {
3394         return features;
3395 }
3396 #endif
3397
3398 static netdev_features_t harmonize_features(struct sk_buff *skb,
3399         netdev_features_t features)
3400 {
3401         int tmp;
3402         __be16 type;
3403
3404         type = skb_network_protocol(skb, &tmp);
3405         features = net_mpls_features(skb, features, type);
3406
3407         if (skb->ip_summed != CHECKSUM_NONE &&
3408             !can_checksum_protocol(features, type)) {
3409                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3410         }
3411         if (illegal_highdma(skb->dev, skb))
3412                 features &= ~NETIF_F_SG;
3413
3414         return features;
3415 }
3416
3417 netdev_features_t passthru_features_check(struct sk_buff *skb,
3418                                           struct net_device *dev,
3419                                           netdev_features_t features)
3420 {
3421         return features;
3422 }
3423 EXPORT_SYMBOL(passthru_features_check);
3424
3425 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3426                                              struct net_device *dev,
3427                                              netdev_features_t features)
3428 {
3429         return vlan_features_check(skb, features);
3430 }
3431
3432 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3433                                             struct net_device *dev,
3434                                             netdev_features_t features)
3435 {
3436         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3437
3438         if (gso_segs > dev->gso_max_segs)
3439                 return features & ~NETIF_F_GSO_MASK;
3440
3441         /* Support for GSO partial features requires software
3442          * intervention before we can actually process the packets
3443          * so we need to strip support for any partial features now
3444          * and we can pull them back in after we have partially
3445          * segmented the frame.
3446          */
3447         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3448                 features &= ~dev->gso_partial_features;
3449
3450         /* Make sure to clear the IPv4 ID mangling feature if the
3451          * IPv4 header has the potential to be fragmented.
3452          */
3453         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3454                 struct iphdr *iph = skb->encapsulation ?
3455                                     inner_ip_hdr(skb) : ip_hdr(skb);
3456
3457                 if (!(iph->frag_off & htons(IP_DF)))
3458                         features &= ~NETIF_F_TSO_MANGLEID;
3459         }
3460
3461         return features;
3462 }
3463
3464 netdev_features_t netif_skb_features(struct sk_buff *skb)
3465 {
3466         struct net_device *dev = skb->dev;
3467         netdev_features_t features = dev->features;
3468
3469         if (skb_is_gso(skb))
3470                 features = gso_features_check(skb, dev, features);
3471
3472         /* If encapsulation offload request, verify we are testing
3473          * hardware encapsulation features instead of standard
3474          * features for the netdev
3475          */
3476         if (skb->encapsulation)
3477                 features &= dev->hw_enc_features;
3478
3479         if (skb_vlan_tagged(skb))
3480                 features = netdev_intersect_features(features,
3481                                                      dev->vlan_features |
3482                                                      NETIF_F_HW_VLAN_CTAG_TX |
3483                                                      NETIF_F_HW_VLAN_STAG_TX);
3484
3485         if (dev->netdev_ops->ndo_features_check)
3486                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3487                                                                 features);
3488         else
3489                 features &= dflt_features_check(skb, dev, features);
3490
3491         return harmonize_features(skb, features);
3492 }
3493 EXPORT_SYMBOL(netif_skb_features);
3494
3495 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3496                     struct netdev_queue *txq, bool more)
3497 {
3498         unsigned int len;
3499         int rc;
3500
3501         if (dev_nit_active(dev))
3502                 dev_queue_xmit_nit(skb, dev);
3503
3504         len = skb->len;
3505         trace_net_dev_start_xmit(skb, dev);
3506         rc = netdev_start_xmit(skb, dev, txq, more);
3507         trace_net_dev_xmit(skb, rc, dev, len);
3508
3509         return rc;
3510 }
3511
3512 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3513                                     struct netdev_queue *txq, int *ret)
3514 {
3515         struct sk_buff *skb = first;
3516         int rc = NETDEV_TX_OK;
3517
3518         while (skb) {
3519                 struct sk_buff *next = skb->next;
3520
3521                 skb_mark_not_on_list(skb);
3522                 rc = xmit_one(skb, dev, txq, next != NULL);
3523                 if (unlikely(!dev_xmit_complete(rc))) {
3524                         skb->next = next;
3525                         goto out;
3526                 }
3527
3528                 skb = next;
3529                 if (netif_tx_queue_stopped(txq) && skb) {
3530                         rc = NETDEV_TX_BUSY;
3531                         break;
3532                 }
3533         }
3534
3535 out:
3536         *ret = rc;
3537         return skb;
3538 }
3539
3540 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3541                                           netdev_features_t features)
3542 {
3543         if (skb_vlan_tag_present(skb) &&
3544             !vlan_hw_offload_capable(features, skb->vlan_proto))
3545                 skb = __vlan_hwaccel_push_inside(skb);
3546         return skb;
3547 }
3548
3549 int skb_csum_hwoffload_help(struct sk_buff *skb,
3550                             const netdev_features_t features)
3551 {
3552         if (unlikely(skb->csum_not_inet))
3553                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3554                         skb_crc32c_csum_help(skb);
3555
3556         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3557 }
3558 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3559
3560 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3561 {
3562         netdev_features_t features;
3563
3564         features = netif_skb_features(skb);
3565         skb = validate_xmit_vlan(skb, features);
3566         if (unlikely(!skb))
3567                 goto out_null;
3568
3569         skb = sk_validate_xmit_skb(skb, dev);
3570         if (unlikely(!skb))
3571                 goto out_null;
3572
3573         if (netif_needs_gso(skb, features)) {
3574                 struct sk_buff *segs;
3575
3576                 segs = skb_gso_segment(skb, features);
3577                 if (IS_ERR(segs)) {
3578                         goto out_kfree_skb;
3579                 } else if (segs) {
3580                         consume_skb(skb);
3581                         skb = segs;
3582                 }
3583         } else {
3584                 if (skb_needs_linearize(skb, features) &&
3585                     __skb_linearize(skb))
3586                         goto out_kfree_skb;
3587
3588                 /* If packet is not checksummed and device does not
3589                  * support checksumming for this protocol, complete
3590                  * checksumming here.
3591                  */
3592                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3593                         if (skb->encapsulation)
3594                                 skb_set_inner_transport_header(skb,
3595                                                                skb_checksum_start_offset(skb));
3596                         else
3597                                 skb_set_transport_header(skb,
3598                                                          skb_checksum_start_offset(skb));
3599                         if (skb_csum_hwoffload_help(skb, features))
3600                                 goto out_kfree_skb;
3601                 }
3602         }
3603
3604         skb = validate_xmit_xfrm(skb, features, again);
3605
3606         return skb;
3607
3608 out_kfree_skb:
3609         kfree_skb(skb);
3610 out_null:
3611         atomic_long_inc(&dev->tx_dropped);
3612         return NULL;
3613 }
3614
3615 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3616 {
3617         struct sk_buff *next, *head = NULL, *tail;
3618
3619         for (; skb != NULL; skb = next) {
3620                 next = skb->next;
3621                 skb_mark_not_on_list(skb);
3622
3623                 /* in case skb wont be segmented, point to itself */
3624                 skb->prev = skb;
3625
3626                 skb = validate_xmit_skb(skb, dev, again);
3627                 if (!skb)
3628                         continue;
3629
3630                 if (!head)
3631                         head = skb;
3632                 else
3633                         tail->next = skb;
3634                 /* If skb was segmented, skb->prev points to
3635                  * the last segment. If not, it still contains skb.
3636                  */
3637                 tail = skb->prev;
3638         }
3639         return head;
3640 }
3641 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3642
3643 static void qdisc_pkt_len_init(struct sk_buff *skb)
3644 {
3645         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3646
3647         qdisc_skb_cb(skb)->pkt_len = skb->len;
3648
3649         /* To get more precise estimation of bytes sent on wire,
3650          * we add to pkt_len the headers size of all segments
3651          */
3652         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3653                 unsigned int hdr_len;
3654                 u16 gso_segs = shinfo->gso_segs;
3655
3656                 /* mac layer + network layer */
3657                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3658
3659                 /* + transport layer */
3660                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3661                         const struct tcphdr *th;
3662                         struct tcphdr _tcphdr;
3663
3664                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3665                                                 sizeof(_tcphdr), &_tcphdr);
3666                         if (likely(th))
3667                                 hdr_len += __tcp_hdrlen(th);
3668                 } else {
3669                         struct udphdr _udphdr;
3670
3671                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3672                                                sizeof(_udphdr), &_udphdr))
3673                                 hdr_len += sizeof(struct udphdr);
3674                 }
3675
3676                 if (shinfo->gso_type & SKB_GSO_DODGY)
3677                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3678                                                 shinfo->gso_size);
3679
3680                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3681         }
3682 }
3683
3684 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3685                                  struct net_device *dev,
3686                                  struct netdev_queue *txq)
3687 {
3688         spinlock_t *root_lock = qdisc_lock(q);
3689         struct sk_buff *to_free = NULL;
3690         bool contended;
3691         int rc;
3692
3693         qdisc_calculate_pkt_len(skb, q);
3694
3695         if (q->flags & TCQ_F_NOLOCK) {
3696                 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3697                     qdisc_run_begin(q)) {
3698                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3699                                               &q->state))) {
3700                                 __qdisc_drop(skb, &to_free);
3701                                 rc = NET_XMIT_DROP;
3702                                 goto end_run;
3703                         }
3704                         qdisc_bstats_cpu_update(q, skb);
3705
3706                         rc = NET_XMIT_SUCCESS;
3707                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3708                                 __qdisc_run(q);
3709
3710 end_run:
3711                         qdisc_run_end(q);
3712                 } else {
3713                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3714                         qdisc_run(q);
3715                 }
3716
3717                 if (unlikely(to_free))
3718                         kfree_skb_list(to_free);
3719                 return rc;
3720         }
3721
3722         /*
3723          * Heuristic to force contended enqueues to serialize on a
3724          * separate lock before trying to get qdisc main lock.
3725          * This permits qdisc->running owner to get the lock more
3726          * often and dequeue packets faster.
3727          */
3728         contended = qdisc_is_running(q);
3729         if (unlikely(contended))
3730                 spin_lock(&q->busylock);
3731
3732         spin_lock(root_lock);
3733         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3734                 __qdisc_drop(skb, &to_free);
3735                 rc = NET_XMIT_DROP;
3736         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3737                    qdisc_run_begin(q)) {
3738                 /*
3739                  * This is a work-conserving queue; there are no old skbs
3740                  * waiting to be sent out; and the qdisc is not running -
3741                  * xmit the skb directly.
3742                  */
3743
3744                 qdisc_bstats_update(q, skb);
3745
3746                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3747                         if (unlikely(contended)) {
3748                                 spin_unlock(&q->busylock);
3749                                 contended = false;
3750                         }
3751                         __qdisc_run(q);
3752                 }
3753
3754                 qdisc_run_end(q);
3755                 rc = NET_XMIT_SUCCESS;
3756         } else {
3757                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3758                 if (qdisc_run_begin(q)) {
3759                         if (unlikely(contended)) {
3760                                 spin_unlock(&q->busylock);
3761                                 contended = false;
3762                         }
3763                         __qdisc_run(q);
3764                         qdisc_run_end(q);
3765                 }
3766         }
3767         spin_unlock(root_lock);
3768         if (unlikely(to_free))
3769                 kfree_skb_list(to_free);
3770         if (unlikely(contended))
3771                 spin_unlock(&q->busylock);
3772         return rc;
3773 }
3774
3775 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3776 static void skb_update_prio(struct sk_buff *skb)
3777 {
3778         const struct netprio_map *map;
3779         const struct sock *sk;
3780         unsigned int prioidx;
3781
3782         if (skb->priority)
3783                 return;
3784         map = rcu_dereference_bh(skb->dev->priomap);
3785         if (!map)
3786                 return;
3787         sk = skb_to_full_sk(skb);
3788         if (!sk)
3789                 return;
3790
3791         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3792
3793         if (prioidx < map->priomap_len)
3794                 skb->priority = map->priomap[prioidx];
3795 }
3796 #else
3797 #define skb_update_prio(skb)
3798 #endif
3799
3800 /**
3801  *      dev_loopback_xmit - loop back @skb
3802  *      @net: network namespace this loopback is happening in
3803  *      @sk:  sk needed to be a netfilter okfn
3804  *      @skb: buffer to transmit
3805  */
3806 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3807 {
3808         skb_reset_mac_header(skb);
3809         __skb_pull(skb, skb_network_offset(skb));
3810         skb->pkt_type = PACKET_LOOPBACK;
3811         skb->ip_summed = CHECKSUM_UNNECESSARY;
3812         WARN_ON(!skb_dst(skb));
3813         skb_dst_force(skb);
3814         netif_rx_ni(skb);
3815         return 0;
3816 }
3817 EXPORT_SYMBOL(dev_loopback_xmit);
3818
3819 #ifdef CONFIG_NET_EGRESS
3820 static struct sk_buff *
3821 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3822 {
3823         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3824         struct tcf_result cl_res;
3825
3826         if (!miniq)
3827                 return skb;
3828
3829         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3830         mini_qdisc_bstats_cpu_update(miniq, skb);
3831
3832         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3833         case TC_ACT_OK:
3834         case TC_ACT_RECLASSIFY:
3835                 skb->tc_index = TC_H_MIN(cl_res.classid);
3836                 break;
3837         case TC_ACT_SHOT:
3838                 mini_qdisc_qstats_cpu_drop(miniq);
3839                 *ret = NET_XMIT_DROP;
3840                 kfree_skb(skb);
3841                 return NULL;
3842         case TC_ACT_STOLEN:
3843         case TC_ACT_QUEUED:
3844         case TC_ACT_TRAP:
3845                 *ret = NET_XMIT_SUCCESS;
3846                 consume_skb(skb);
3847                 return NULL;
3848         case TC_ACT_REDIRECT:
3849                 /* No need to push/pop skb's mac_header here on egress! */
3850                 skb_do_redirect(skb);
3851                 *ret = NET_XMIT_SUCCESS;
3852                 return NULL;
3853         default:
3854                 break;
3855         }
3856
3857         return skb;
3858 }
3859 #endif /* CONFIG_NET_EGRESS */
3860
3861 #ifdef CONFIG_XPS
3862 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3863                                struct xps_dev_maps *dev_maps, unsigned int tci)
3864 {
3865         struct xps_map *map;
3866         int queue_index = -1;
3867
3868         if (dev->num_tc) {
3869                 tci *= dev->num_tc;
3870                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3871         }
3872
3873         map = rcu_dereference(dev_maps->attr_map[tci]);
3874         if (map) {
3875                 if (map->len == 1)
3876                         queue_index = map->queues[0];
3877                 else
3878                         queue_index = map->queues[reciprocal_scale(
3879                                                 skb_get_hash(skb), map->len)];
3880                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3881                         queue_index = -1;
3882         }
3883         return queue_index;
3884 }
3885 #endif
3886
3887 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3888                          struct sk_buff *skb)
3889 {
3890 #ifdef CONFIG_XPS
3891         struct xps_dev_maps *dev_maps;
3892         struct sock *sk = skb->sk;
3893         int queue_index = -1;
3894
3895         if (!static_key_false(&xps_needed))
3896                 return -1;
3897
3898         rcu_read_lock();
3899         if (!static_key_false(&xps_rxqs_needed))
3900                 goto get_cpus_map;
3901
3902         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3903         if (dev_maps) {
3904                 int tci = sk_rx_queue_get(sk);
3905
3906                 if (tci >= 0 && tci < dev->num_rx_queues)
3907                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3908                                                           tci);
3909         }
3910
3911 get_cpus_map:
3912         if (queue_index < 0) {
3913                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3914                 if (dev_maps) {
3915                         unsigned int tci = skb->sender_cpu - 1;
3916
3917                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3918                                                           tci);
3919                 }
3920         }
3921         rcu_read_unlock();
3922
3923         return queue_index;
3924 #else
3925         return -1;
3926 #endif
3927 }
3928
3929 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3930                      struct net_device *sb_dev)
3931 {
3932         return 0;
3933 }
3934 EXPORT_SYMBOL(dev_pick_tx_zero);
3935
3936 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3937                        struct net_device *sb_dev)
3938 {
3939         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3940 }
3941 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3942
3943 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3944                      struct net_device *sb_dev)
3945 {
3946         struct sock *sk = skb->sk;
3947         int queue_index = sk_tx_queue_get(sk);
3948
3949         sb_dev = sb_dev ? : dev;
3950
3951         if (queue_index < 0 || skb->ooo_okay ||
3952             queue_index >= dev->real_num_tx_queues) {
3953                 int new_index = get_xps_queue(dev, sb_dev, skb);
3954
3955                 if (new_index < 0)
3956                         new_index = skb_tx_hash(dev, sb_dev, skb);
3957
3958                 if (queue_index != new_index && sk &&
3959                     sk_fullsock(sk) &&
3960                     rcu_access_pointer(sk->sk_dst_cache))
3961                         sk_tx_queue_set(sk, new_index);
3962
3963                 queue_index = new_index;
3964         }
3965
3966         return queue_index;
3967 }
3968 EXPORT_SYMBOL(netdev_pick_tx);
3969
3970 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3971                                          struct sk_buff *skb,
3972                                          struct net_device *sb_dev)
3973 {
3974         int queue_index = 0;
3975
3976 #ifdef CONFIG_XPS
3977         u32 sender_cpu = skb->sender_cpu - 1;
3978
3979         if (sender_cpu >= (u32)NR_CPUS)
3980                 skb->sender_cpu = raw_smp_processor_id() + 1;
3981 #endif
3982
3983         if (dev->real_num_tx_queues != 1) {
3984                 const struct net_device_ops *ops = dev->netdev_ops;
3985
3986                 if (ops->ndo_select_queue)
3987                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3988                 else
3989                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3990
3991                 queue_index = netdev_cap_txqueue(dev, queue_index);
3992         }
3993
3994         skb_set_queue_mapping(skb, queue_index);
3995         return netdev_get_tx_queue(dev, queue_index);
3996 }
3997
3998 /**
3999  *      __dev_queue_xmit - transmit a buffer
4000  *      @skb: buffer to transmit
4001  *      @sb_dev: suboordinate device used for L2 forwarding offload
4002  *
4003  *      Queue a buffer for transmission to a network device. The caller must
4004  *      have set the device and priority and built the buffer before calling
4005  *      this function. The function can be called from an interrupt.
4006  *
4007  *      A negative errno code is returned on a failure. A success does not
4008  *      guarantee the frame will be transmitted as it may be dropped due
4009  *      to congestion or traffic shaping.
4010  *
4011  * -----------------------------------------------------------------------------------
4012  *      I notice this method can also return errors from the queue disciplines,
4013  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4014  *      be positive.
4015  *
4016  *      Regardless of the return value, the skb is consumed, so it is currently
4017  *      difficult to retry a send to this method.  (You can bump the ref count
4018  *      before sending to hold a reference for retry if you are careful.)
4019  *
4020  *      When calling this method, interrupts MUST be enabled.  This is because
4021  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4022  *          --BLG
4023  */
4024 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4025 {
4026         struct net_device *dev = skb->dev;
4027         struct netdev_queue *txq;
4028         struct Qdisc *q;
4029         int rc = -ENOMEM;
4030         bool again = false;
4031
4032         skb_reset_mac_header(skb);
4033
4034         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4035                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4036
4037         /* Disable soft irqs for various locks below. Also
4038          * stops preemption for RCU.
4039          */
4040         rcu_read_lock_bh();
4041
4042         skb_update_prio(skb);
4043
4044         qdisc_pkt_len_init(skb);
4045 #ifdef CONFIG_NET_CLS_ACT
4046         skb->tc_at_ingress = 0;
4047 # ifdef CONFIG_NET_EGRESS
4048         if (static_branch_unlikely(&egress_needed_key)) {
4049                 skb = sch_handle_egress(skb, &rc, dev);
4050                 if (!skb)
4051                         goto out;
4052         }
4053 # endif
4054 #endif
4055         /* If device/qdisc don't need skb->dst, release it right now while
4056          * its hot in this cpu cache.
4057          */
4058         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4059                 skb_dst_drop(skb);
4060         else
4061                 skb_dst_force(skb);
4062
4063         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4064         q = rcu_dereference_bh(txq->qdisc);
4065
4066         trace_net_dev_queue(skb);
4067         if (q->enqueue) {
4068                 rc = __dev_xmit_skb(skb, q, dev, txq);
4069                 goto out;
4070         }
4071
4072         /* The device has no queue. Common case for software devices:
4073          * loopback, all the sorts of tunnels...
4074
4075          * Really, it is unlikely that netif_tx_lock protection is necessary
4076          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4077          * counters.)
4078          * However, it is possible, that they rely on protection
4079          * made by us here.
4080
4081          * Check this and shot the lock. It is not prone from deadlocks.
4082          *Either shot noqueue qdisc, it is even simpler 8)
4083          */
4084         if (dev->flags & IFF_UP) {
4085                 int cpu = smp_processor_id(); /* ok because BHs are off */
4086
4087                 if (txq->xmit_lock_owner != cpu) {
4088                         if (dev_xmit_recursion())
4089                                 goto recursion_alert;
4090
4091                         skb = validate_xmit_skb(skb, dev, &again);
4092                         if (!skb)
4093                                 goto out;
4094
4095                         HARD_TX_LOCK(dev, txq, cpu);
4096
4097                         if (!netif_xmit_stopped(txq)) {
4098                                 dev_xmit_recursion_inc();
4099                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4100                                 dev_xmit_recursion_dec();
4101                                 if (dev_xmit_complete(rc)) {
4102                                         HARD_TX_UNLOCK(dev, txq);
4103                                         goto out;
4104                                 }
4105                         }
4106                         HARD_TX_UNLOCK(dev, txq);
4107                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4108                                              dev->name);
4109                 } else {
4110                         /* Recursion is detected! It is possible,
4111                          * unfortunately
4112                          */
4113 recursion_alert:
4114                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4115                                              dev->name);
4116                 }
4117         }
4118
4119         rc = -ENETDOWN;
4120         rcu_read_unlock_bh();
4121
4122         atomic_long_inc(&dev->tx_dropped);
4123         kfree_skb_list(skb);
4124         return rc;
4125 out:
4126         rcu_read_unlock_bh();
4127         return rc;
4128 }
4129
4130 int dev_queue_xmit(struct sk_buff *skb)
4131 {
4132         return __dev_queue_xmit(skb, NULL);
4133 }
4134 EXPORT_SYMBOL(dev_queue_xmit);
4135
4136 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4137 {
4138         return __dev_queue_xmit(skb, sb_dev);
4139 }
4140 EXPORT_SYMBOL(dev_queue_xmit_accel);
4141
4142 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4143 {
4144         struct net_device *dev = skb->dev;
4145         struct sk_buff *orig_skb = skb;
4146         struct netdev_queue *txq;
4147         int ret = NETDEV_TX_BUSY;
4148         bool again = false;
4149
4150         if (unlikely(!netif_running(dev) ||
4151                      !netif_carrier_ok(dev)))
4152                 goto drop;
4153
4154         skb = validate_xmit_skb_list(skb, dev, &again);
4155         if (skb != orig_skb)
4156                 goto drop;
4157
4158         skb_set_queue_mapping(skb, queue_id);
4159         txq = skb_get_tx_queue(dev, skb);
4160
4161         local_bh_disable();
4162
4163         HARD_TX_LOCK(dev, txq, smp_processor_id());
4164         if (!netif_xmit_frozen_or_drv_stopped(txq))
4165                 ret = netdev_start_xmit(skb, dev, txq, false);
4166         HARD_TX_UNLOCK(dev, txq);
4167
4168         local_bh_enable();
4169
4170         if (!dev_xmit_complete(ret))
4171                 kfree_skb(skb);
4172
4173         return ret;
4174 drop:
4175         atomic_long_inc(&dev->tx_dropped);
4176         kfree_skb_list(skb);
4177         return NET_XMIT_DROP;
4178 }
4179 EXPORT_SYMBOL(dev_direct_xmit);
4180
4181 /*************************************************************************
4182  *                      Receiver routines
4183  *************************************************************************/
4184
4185 int netdev_max_backlog __read_mostly = 1000;
4186 EXPORT_SYMBOL(netdev_max_backlog);
4187
4188 int netdev_tstamp_prequeue __read_mostly = 1;
4189 int netdev_budget __read_mostly = 300;
4190 unsigned int __read_mostly netdev_budget_usecs = 2000;
4191 int weight_p __read_mostly = 64;           /* old backlog weight */
4192 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4193 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4194 int dev_rx_weight __read_mostly = 64;
4195 int dev_tx_weight __read_mostly = 64;
4196 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4197 int gro_normal_batch __read_mostly = 8;
4198
4199 /* Called with irq disabled */
4200 static inline void ____napi_schedule(struct softnet_data *sd,
4201                                      struct napi_struct *napi)
4202 {
4203         list_add_tail(&napi->poll_list, &sd->poll_list);
4204         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4205 }
4206
4207 #ifdef CONFIG_RPS
4208
4209 /* One global table that all flow-based protocols share. */
4210 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4211 EXPORT_SYMBOL(rps_sock_flow_table);
4212 u32 rps_cpu_mask __read_mostly;
4213 EXPORT_SYMBOL(rps_cpu_mask);
4214
4215 struct static_key_false rps_needed __read_mostly;
4216 EXPORT_SYMBOL(rps_needed);
4217 struct static_key_false rfs_needed __read_mostly;
4218 EXPORT_SYMBOL(rfs_needed);
4219
4220 static struct rps_dev_flow *
4221 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4222             struct rps_dev_flow *rflow, u16 next_cpu)
4223 {
4224         if (next_cpu < nr_cpu_ids) {
4225 #ifdef CONFIG_RFS_ACCEL
4226                 struct netdev_rx_queue *rxqueue;
4227                 struct rps_dev_flow_table *flow_table;
4228                 struct rps_dev_flow *old_rflow;
4229                 u32 flow_id;
4230                 u16 rxq_index;
4231                 int rc;
4232
4233                 /* Should we steer this flow to a different hardware queue? */
4234                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4235                     !(dev->features & NETIF_F_NTUPLE))
4236                         goto out;
4237                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4238                 if (rxq_index == skb_get_rx_queue(skb))
4239                         goto out;
4240
4241                 rxqueue = dev->_rx + rxq_index;
4242                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4243                 if (!flow_table)
4244                         goto out;
4245                 flow_id = skb_get_hash(skb) & flow_table->mask;
4246                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4247                                                         rxq_index, flow_id);
4248                 if (rc < 0)
4249                         goto out;
4250                 old_rflow = rflow;
4251                 rflow = &flow_table->flows[flow_id];
4252                 rflow->filter = rc;
4253                 if (old_rflow->filter == rflow->filter)
4254                         old_rflow->filter = RPS_NO_FILTER;
4255         out:
4256 #endif
4257                 rflow->last_qtail =
4258                         per_cpu(softnet_data, next_cpu).input_queue_head;
4259         }
4260
4261         rflow->cpu = next_cpu;
4262         return rflow;
4263 }
4264
4265 /*
4266  * get_rps_cpu is called from netif_receive_skb and returns the target
4267  * CPU from the RPS map of the receiving queue for a given skb.
4268  * rcu_read_lock must be held on entry.
4269  */
4270 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4271                        struct rps_dev_flow **rflowp)
4272 {
4273         const struct rps_sock_flow_table *sock_flow_table;
4274         struct netdev_rx_queue *rxqueue = dev->_rx;
4275         struct rps_dev_flow_table *flow_table;
4276         struct rps_map *map;
4277         int cpu = -1;
4278         u32 tcpu;
4279         u32 hash;
4280
4281         if (skb_rx_queue_recorded(skb)) {
4282                 u16 index = skb_get_rx_queue(skb);
4283
4284                 if (unlikely(index >= dev->real_num_rx_queues)) {
4285                         WARN_ONCE(dev->real_num_rx_queues > 1,
4286                                   "%s received packet on queue %u, but number "
4287                                   "of RX queues is %u\n",
4288                                   dev->name, index, dev->real_num_rx_queues);
4289                         goto done;
4290                 }
4291                 rxqueue += index;
4292         }
4293
4294         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4295
4296         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4297         map = rcu_dereference(rxqueue->rps_map);
4298         if (!flow_table && !map)
4299                 goto done;
4300
4301         skb_reset_network_header(skb);
4302         hash = skb_get_hash(skb);
4303         if (!hash)
4304                 goto done;
4305
4306         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4307         if (flow_table && sock_flow_table) {
4308                 struct rps_dev_flow *rflow;
4309                 u32 next_cpu;
4310                 u32 ident;
4311
4312                 /* First check into global flow table if there is a match */
4313                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4314                 if ((ident ^ hash) & ~rps_cpu_mask)
4315                         goto try_rps;
4316
4317                 next_cpu = ident & rps_cpu_mask;
4318
4319                 /* OK, now we know there is a match,
4320                  * we can look at the local (per receive queue) flow table
4321                  */
4322                 rflow = &flow_table->flows[hash & flow_table->mask];
4323                 tcpu = rflow->cpu;
4324
4325                 /*
4326                  * If the desired CPU (where last recvmsg was done) is
4327                  * different from current CPU (one in the rx-queue flow
4328                  * table entry), switch if one of the following holds:
4329                  *   - Current CPU is unset (>= nr_cpu_ids).
4330                  *   - Current CPU is offline.
4331                  *   - The current CPU's queue tail has advanced beyond the
4332                  *     last packet that was enqueued using this table entry.
4333                  *     This guarantees that all previous packets for the flow
4334                  *     have been dequeued, thus preserving in order delivery.
4335                  */
4336                 if (unlikely(tcpu != next_cpu) &&
4337                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4338                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4339                       rflow->last_qtail)) >= 0)) {
4340                         tcpu = next_cpu;
4341                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4342                 }
4343
4344                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4345                         *rflowp = rflow;
4346                         cpu = tcpu;
4347                         goto done;
4348                 }
4349         }
4350
4351 try_rps:
4352
4353         if (map) {
4354                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4355                 if (cpu_online(tcpu)) {
4356                         cpu = tcpu;
4357                         goto done;
4358                 }
4359         }
4360
4361 done:
4362         return cpu;
4363 }
4364
4365 #ifdef CONFIG_RFS_ACCEL
4366
4367 /**
4368  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4369  * @dev: Device on which the filter was set
4370  * @rxq_index: RX queue index
4371  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4372  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4373  *
4374  * Drivers that implement ndo_rx_flow_steer() should periodically call
4375  * this function for each installed filter and remove the filters for
4376  * which it returns %true.
4377  */
4378 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4379                          u32 flow_id, u16 filter_id)
4380 {
4381         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4382         struct rps_dev_flow_table *flow_table;
4383         struct rps_dev_flow *rflow;
4384         bool expire = true;
4385         unsigned int cpu;
4386
4387         rcu_read_lock();
4388         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4389         if (flow_table && flow_id <= flow_table->mask) {
4390                 rflow = &flow_table->flows[flow_id];
4391                 cpu = READ_ONCE(rflow->cpu);
4392                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4393                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4394                            rflow->last_qtail) <
4395                      (int)(10 * flow_table->mask)))
4396                         expire = false;
4397         }
4398         rcu_read_unlock();
4399         return expire;
4400 }
4401 EXPORT_SYMBOL(rps_may_expire_flow);
4402
4403 #endif /* CONFIG_RFS_ACCEL */
4404
4405 /* Called from hardirq (IPI) context */
4406 static void rps_trigger_softirq(void *data)
4407 {
4408         struct softnet_data *sd = data;
4409
4410         ____napi_schedule(sd, &sd->backlog);
4411         sd->received_rps++;
4412 }
4413
4414 #endif /* CONFIG_RPS */
4415
4416 /*
4417  * Check if this softnet_data structure is another cpu one
4418  * If yes, queue it to our IPI list and return 1
4419  * If no, return 0
4420  */
4421 static int rps_ipi_queued(struct softnet_data *sd)
4422 {
4423 #ifdef CONFIG_RPS
4424         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4425
4426         if (sd != mysd) {
4427                 sd->rps_ipi_next = mysd->rps_ipi_list;
4428                 mysd->rps_ipi_list = sd;
4429
4430                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4431                 return 1;
4432         }
4433 #endif /* CONFIG_RPS */
4434         return 0;
4435 }
4436
4437 #ifdef CONFIG_NET_FLOW_LIMIT
4438 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4439 #endif
4440
4441 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4442 {
4443 #ifdef CONFIG_NET_FLOW_LIMIT
4444         struct sd_flow_limit *fl;
4445         struct softnet_data *sd;
4446         unsigned int old_flow, new_flow;
4447
4448         if (qlen < (netdev_max_backlog >> 1))
4449                 return false;
4450
4451         sd = this_cpu_ptr(&softnet_data);
4452
4453         rcu_read_lock();
4454         fl = rcu_dereference(sd->flow_limit);
4455         if (fl) {
4456                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4457                 old_flow = fl->history[fl->history_head];
4458                 fl->history[fl->history_head] = new_flow;
4459
4460                 fl->history_head++;
4461                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4462
4463                 if (likely(fl->buckets[old_flow]))
4464                         fl->buckets[old_flow]--;
4465
4466                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4467                         fl->count++;
4468                         rcu_read_unlock();
4469                         return true;
4470                 }
4471         }
4472         rcu_read_unlock();
4473 #endif
4474         return false;
4475 }
4476
4477 /*
4478  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4479  * queue (may be a remote CPU queue).
4480  */
4481 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4482                               unsigned int *qtail)
4483 {
4484         struct softnet_data *sd;
4485         unsigned long flags;
4486         unsigned int qlen;
4487
4488         sd = &per_cpu(softnet_data, cpu);
4489
4490         local_irq_save(flags);
4491
4492         rps_lock(sd);
4493         if (!netif_running(skb->dev))
4494                 goto drop;
4495         qlen = skb_queue_len(&sd->input_pkt_queue);
4496         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4497                 if (qlen) {
4498 enqueue:
4499                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4500                         input_queue_tail_incr_save(sd, qtail);
4501                         rps_unlock(sd);
4502                         local_irq_restore(flags);
4503                         return NET_RX_SUCCESS;
4504                 }
4505
4506                 /* Schedule NAPI for backlog device
4507                  * We can use non atomic operation since we own the queue lock
4508                  */
4509                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4510                         if (!rps_ipi_queued(sd))
4511                                 ____napi_schedule(sd, &sd->backlog);
4512                 }
4513                 goto enqueue;
4514         }
4515
4516 drop:
4517         sd->dropped++;
4518         rps_unlock(sd);
4519
4520         local_irq_restore(flags);
4521
4522         atomic_long_inc(&skb->dev->rx_dropped);
4523         kfree_skb(skb);
4524         return NET_RX_DROP;
4525 }
4526
4527 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4528 {
4529         struct net_device *dev = skb->dev;
4530         struct netdev_rx_queue *rxqueue;
4531
4532         rxqueue = dev->_rx;
4533
4534         if (skb_rx_queue_recorded(skb)) {
4535                 u16 index = skb_get_rx_queue(skb);
4536
4537                 if (unlikely(index >= dev->real_num_rx_queues)) {
4538                         WARN_ONCE(dev->real_num_rx_queues > 1,
4539                                   "%s received packet on queue %u, but number "
4540                                   "of RX queues is %u\n",
4541                                   dev->name, index, dev->real_num_rx_queues);
4542
4543                         return rxqueue; /* Return first rxqueue */
4544                 }
4545                 rxqueue += index;
4546         }
4547         return rxqueue;
4548 }
4549
4550 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4551                                      struct xdp_buff *xdp,
4552                                      struct bpf_prog *xdp_prog)
4553 {
4554         struct netdev_rx_queue *rxqueue;
4555         void *orig_data, *orig_data_end;
4556         u32 metalen, act = XDP_DROP;
4557         __be16 orig_eth_type;
4558         struct ethhdr *eth;
4559         bool orig_bcast;
4560         int hlen, off;
4561         u32 mac_len;
4562
4563         /* Reinjected packets coming from act_mirred or similar should
4564          * not get XDP generic processing.
4565          */
4566         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4567                 return XDP_PASS;
4568
4569         /* XDP packets must be linear and must have sufficient headroom
4570          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4571          * native XDP provides, thus we need to do it here as well.
4572          */
4573         if (skb_is_nonlinear(skb) ||
4574             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4575                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4576                 int troom = skb->tail + skb->data_len - skb->end;
4577
4578                 /* In case we have to go down the path and also linearize,
4579                  * then lets do the pskb_expand_head() work just once here.
4580                  */
4581                 if (pskb_expand_head(skb,
4582                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4583                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4584                         goto do_drop;
4585                 if (skb_linearize(skb))
4586                         goto do_drop;
4587         }
4588
4589         /* The XDP program wants to see the packet starting at the MAC
4590          * header.
4591          */
4592         mac_len = skb->data - skb_mac_header(skb);
4593         hlen = skb_headlen(skb) + mac_len;
4594         xdp->data = skb->data - mac_len;
4595         xdp->data_meta = xdp->data;
4596         xdp->data_end = xdp->data + hlen;
4597         xdp->data_hard_start = skb->data - skb_headroom(skb);
4598         orig_data_end = xdp->data_end;
4599         orig_data = xdp->data;
4600         eth = (struct ethhdr *)xdp->data;
4601         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4602         orig_eth_type = eth->h_proto;
4603
4604         rxqueue = netif_get_rxqueue(skb);
4605         xdp->rxq = &rxqueue->xdp_rxq;
4606
4607         act = bpf_prog_run_xdp(xdp_prog, xdp);
4608
4609         /* check if bpf_xdp_adjust_head was used */
4610         off = xdp->data - orig_data;
4611         if (off) {
4612                 if (off > 0)
4613                         __skb_pull(skb, off);
4614                 else if (off < 0)
4615                         __skb_push(skb, -off);
4616
4617                 skb->mac_header += off;
4618                 skb_reset_network_header(skb);
4619         }
4620
4621         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4622          * pckt.
4623          */
4624         off = orig_data_end - xdp->data_end;
4625         if (off != 0) {
4626                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4627                 skb->len -= off;
4628
4629         }
4630
4631         /* check if XDP changed eth hdr such SKB needs update */
4632         eth = (struct ethhdr *)xdp->data;
4633         if ((orig_eth_type != eth->h_proto) ||
4634             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4635                 __skb_push(skb, ETH_HLEN);
4636                 skb->protocol = eth_type_trans(skb, skb->dev);
4637         }
4638
4639         switch (act) {
4640         case XDP_REDIRECT:
4641         case XDP_TX:
4642                 __skb_push(skb, mac_len);
4643                 break;
4644         case XDP_PASS:
4645                 metalen = xdp->data - xdp->data_meta;
4646                 if (metalen)
4647                         skb_metadata_set(skb, metalen);
4648                 break;
4649         default:
4650                 bpf_warn_invalid_xdp_action(act);
4651                 /* fall through */
4652         case XDP_ABORTED:
4653                 trace_xdp_exception(skb->dev, xdp_prog, act);
4654                 /* fall through */
4655         case XDP_DROP:
4656         do_drop:
4657                 kfree_skb(skb);
4658                 break;
4659         }
4660
4661         return act;
4662 }
4663
4664 /* When doing generic XDP we have to bypass the qdisc layer and the
4665  * network taps in order to match in-driver-XDP behavior.
4666  */
4667 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4668 {
4669         struct net_device *dev = skb->dev;
4670         struct netdev_queue *txq;
4671         bool free_skb = true;
4672         int cpu, rc;
4673
4674         txq = netdev_core_pick_tx(dev, skb, NULL);
4675         cpu = smp_processor_id();
4676         HARD_TX_LOCK(dev, txq, cpu);
4677         if (!netif_xmit_stopped(txq)) {
4678                 rc = netdev_start_xmit(skb, dev, txq, 0);
4679                 if (dev_xmit_complete(rc))
4680                         free_skb = false;
4681         }
4682         HARD_TX_UNLOCK(dev, txq);
4683         if (free_skb) {
4684                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4685                 kfree_skb(skb);
4686         }
4687 }
4688 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4689
4690 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4691
4692 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4693 {
4694         if (xdp_prog) {
4695                 struct xdp_buff xdp;
4696                 u32 act;
4697                 int err;
4698
4699                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4700                 if (act != XDP_PASS) {
4701                         switch (act) {
4702                         case XDP_REDIRECT:
4703                                 err = xdp_do_generic_redirect(skb->dev, skb,
4704                                                               &xdp, xdp_prog);
4705                                 if (err)
4706                                         goto out_redir;
4707                                 break;
4708                         case XDP_TX:
4709                                 generic_xdp_tx(skb, xdp_prog);
4710                                 break;
4711                         }
4712                         return XDP_DROP;
4713                 }
4714         }
4715         return XDP_PASS;
4716 out_redir:
4717         kfree_skb(skb);
4718         return XDP_DROP;
4719 }
4720 EXPORT_SYMBOL_GPL(do_xdp_generic);
4721
4722 static int netif_rx_internal(struct sk_buff *skb)
4723 {
4724         int ret;
4725
4726         net_timestamp_check(netdev_tstamp_prequeue, skb);
4727
4728         trace_netif_rx(skb);
4729
4730 #ifdef CONFIG_RPS
4731         if (static_branch_unlikely(&rps_needed)) {
4732                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4733                 int cpu;
4734
4735                 preempt_disable();
4736                 rcu_read_lock();
4737
4738                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4739                 if (cpu < 0)
4740                         cpu = smp_processor_id();
4741
4742                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4743
4744                 rcu_read_unlock();
4745                 preempt_enable();
4746         } else
4747 #endif
4748         {
4749                 unsigned int qtail;
4750
4751                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4752                 put_cpu();
4753         }
4754         return ret;
4755 }
4756
4757 /**
4758  *      netif_rx        -       post buffer to the network code
4759  *      @skb: buffer to post
4760  *
4761  *      This function receives a packet from a device driver and queues it for
4762  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4763  *      may be dropped during processing for congestion control or by the
4764  *      protocol layers.
4765  *
4766  *      return values:
4767  *      NET_RX_SUCCESS  (no congestion)
4768  *      NET_RX_DROP     (packet was dropped)
4769  *
4770  */
4771
4772 int netif_rx(struct sk_buff *skb)
4773 {
4774         int ret;
4775
4776         trace_netif_rx_entry(skb);
4777
4778         ret = netif_rx_internal(skb);
4779         trace_netif_rx_exit(ret);
4780
4781         return ret;
4782 }
4783 EXPORT_SYMBOL(netif_rx);
4784
4785 int netif_rx_ni(struct sk_buff *skb)
4786 {
4787         int err;
4788
4789         trace_netif_rx_ni_entry(skb);
4790
4791         preempt_disable();
4792         err = netif_rx_internal(skb);
4793         if (local_softirq_pending())
4794                 do_softirq();
4795         preempt_enable();
4796         trace_netif_rx_ni_exit(err);
4797
4798         return err;
4799 }
4800 EXPORT_SYMBOL(netif_rx_ni);
4801
4802 static __latent_entropy void net_tx_action(struct softirq_action *h)
4803 {
4804         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4805
4806         if (sd->completion_queue) {
4807                 struct sk_buff *clist;
4808
4809                 local_irq_disable();
4810                 clist = sd->completion_queue;
4811                 sd->completion_queue = NULL;
4812                 local_irq_enable();
4813
4814                 while (clist) {
4815                         struct sk_buff *skb = clist;
4816
4817                         clist = clist->next;
4818
4819                         WARN_ON(refcount_read(&skb->users));
4820                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4821                                 trace_consume_skb(skb);
4822                         else
4823                                 trace_kfree_skb(skb, net_tx_action);
4824
4825                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4826                                 __kfree_skb(skb);
4827                         else
4828                                 __kfree_skb_defer(skb);
4829                 }
4830
4831                 __kfree_skb_flush();
4832         }
4833
4834         if (sd->output_queue) {
4835                 struct Qdisc *head;
4836
4837                 local_irq_disable();
4838                 head = sd->output_queue;
4839                 sd->output_queue = NULL;
4840                 sd->output_queue_tailp = &sd->output_queue;
4841                 local_irq_enable();
4842
4843                 while (head) {
4844                         struct Qdisc *q = head;
4845                         spinlock_t *root_lock = NULL;
4846
4847                         head = head->next_sched;
4848
4849                         if (!(q->flags & TCQ_F_NOLOCK)) {
4850                                 root_lock = qdisc_lock(q);
4851                                 spin_lock(root_lock);
4852                         }
4853                         /* We need to make sure head->next_sched is read
4854                          * before clearing __QDISC_STATE_SCHED
4855                          */
4856                         smp_mb__before_atomic();
4857                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4858                         qdisc_run(q);
4859                         if (root_lock)
4860                                 spin_unlock(root_lock);
4861                 }
4862         }
4863
4864         xfrm_dev_backlog(sd);
4865 }
4866
4867 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4868 /* This hook is defined here for ATM LANE */
4869 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4870                              unsigned char *addr) __read_mostly;
4871 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4872 #endif
4873
4874 static inline struct sk_buff *
4875 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4876                    struct net_device *orig_dev)
4877 {
4878 #ifdef CONFIG_NET_CLS_ACT
4879         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4880         struct tcf_result cl_res;
4881
4882         /* If there's at least one ingress present somewhere (so
4883          * we get here via enabled static key), remaining devices
4884          * that are not configured with an ingress qdisc will bail
4885          * out here.
4886          */
4887         if (!miniq)
4888                 return skb;
4889
4890         if (*pt_prev) {
4891                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4892                 *pt_prev = NULL;
4893         }
4894
4895         qdisc_skb_cb(skb)->pkt_len = skb->len;
4896         skb->tc_at_ingress = 1;
4897         mini_qdisc_bstats_cpu_update(miniq, skb);
4898
4899         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4900         case TC_ACT_OK:
4901         case TC_ACT_RECLASSIFY:
4902                 skb->tc_index = TC_H_MIN(cl_res.classid);
4903                 break;
4904         case TC_ACT_SHOT:
4905                 mini_qdisc_qstats_cpu_drop(miniq);
4906                 kfree_skb(skb);
4907                 return NULL;
4908         case TC_ACT_STOLEN:
4909         case TC_ACT_QUEUED:
4910         case TC_ACT_TRAP:
4911                 consume_skb(skb);
4912                 return NULL;
4913         case TC_ACT_REDIRECT:
4914                 /* skb_mac_header check was done by cls/act_bpf, so
4915                  * we can safely push the L2 header back before
4916                  * redirecting to another netdev
4917                  */
4918                 __skb_push(skb, skb->mac_len);
4919                 skb_do_redirect(skb);
4920                 return NULL;
4921         case TC_ACT_CONSUMED:
4922                 return NULL;
4923         default:
4924                 break;
4925         }
4926 #endif /* CONFIG_NET_CLS_ACT */
4927         return skb;
4928 }
4929
4930 /**
4931  *      netdev_is_rx_handler_busy - check if receive handler is registered
4932  *      @dev: device to check
4933  *
4934  *      Check if a receive handler is already registered for a given device.
4935  *      Return true if there one.
4936  *
4937  *      The caller must hold the rtnl_mutex.
4938  */
4939 bool netdev_is_rx_handler_busy(struct net_device *dev)
4940 {
4941         ASSERT_RTNL();
4942         return dev && rtnl_dereference(dev->rx_handler);
4943 }
4944 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4945
4946 /**
4947  *      netdev_rx_handler_register - register receive handler
4948  *      @dev: device to register a handler for
4949  *      @rx_handler: receive handler to register
4950  *      @rx_handler_data: data pointer that is used by rx handler
4951  *
4952  *      Register a receive handler for a device. This handler will then be
4953  *      called from __netif_receive_skb. A negative errno code is returned
4954  *      on a failure.
4955  *
4956  *      The caller must hold the rtnl_mutex.
4957  *
4958  *      For a general description of rx_handler, see enum rx_handler_result.
4959  */
4960 int netdev_rx_handler_register(struct net_device *dev,
4961                                rx_handler_func_t *rx_handler,
4962                                void *rx_handler_data)
4963 {
4964         if (netdev_is_rx_handler_busy(dev))
4965                 return -EBUSY;
4966
4967         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4968                 return -EINVAL;
4969
4970         /* Note: rx_handler_data must be set before rx_handler */
4971         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4972         rcu_assign_pointer(dev->rx_handler, rx_handler);
4973
4974         return 0;
4975 }
4976 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4977
4978 /**
4979  *      netdev_rx_handler_unregister - unregister receive handler
4980  *      @dev: device to unregister a handler from
4981  *
4982  *      Unregister a receive handler from a device.
4983  *
4984  *      The caller must hold the rtnl_mutex.
4985  */
4986 void netdev_rx_handler_unregister(struct net_device *dev)
4987 {
4988
4989         ASSERT_RTNL();
4990         RCU_INIT_POINTER(dev->rx_handler, NULL);
4991         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4992          * section has a guarantee to see a non NULL rx_handler_data
4993          * as well.
4994          */
4995         synchronize_net();
4996         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4997 }
4998 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4999
5000 /*
5001  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5002  * the special handling of PFMEMALLOC skbs.
5003  */
5004 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5005 {
5006         switch (skb->protocol) {
5007         case htons(ETH_P_ARP):
5008         case htons(ETH_P_IP):
5009         case htons(ETH_P_IPV6):
5010         case htons(ETH_P_8021Q):
5011         case htons(ETH_P_8021AD):
5012                 return true;
5013         default:
5014                 return false;
5015         }
5016 }
5017
5018 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5019                              int *ret, struct net_device *orig_dev)
5020 {
5021 #ifdef CONFIG_NETFILTER_INGRESS
5022         if (nf_hook_ingress_active(skb)) {
5023                 int ingress_retval;
5024
5025                 if (*pt_prev) {
5026                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5027                         *pt_prev = NULL;
5028                 }
5029
5030                 rcu_read_lock();
5031                 ingress_retval = nf_hook_ingress(skb);
5032                 rcu_read_unlock();
5033                 return ingress_retval;
5034         }
5035 #endif /* CONFIG_NETFILTER_INGRESS */
5036         return 0;
5037 }
5038
5039 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5040                                     struct packet_type **ppt_prev)
5041 {
5042         struct packet_type *ptype, *pt_prev;
5043         rx_handler_func_t *rx_handler;
5044         struct net_device *orig_dev;
5045         bool deliver_exact = false;
5046         int ret = NET_RX_DROP;
5047         __be16 type;
5048
5049         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5050
5051         trace_netif_receive_skb(skb);
5052
5053         orig_dev = skb->dev;
5054
5055         skb_reset_network_header(skb);
5056         if (!skb_transport_header_was_set(skb))
5057                 skb_reset_transport_header(skb);
5058         skb_reset_mac_len(skb);
5059
5060         pt_prev = NULL;
5061
5062 another_round:
5063         skb->skb_iif = skb->dev->ifindex;
5064
5065         __this_cpu_inc(softnet_data.processed);
5066
5067         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5068                 int ret2;
5069
5070                 preempt_disable();
5071                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5072                 preempt_enable();
5073
5074                 if (ret2 != XDP_PASS)
5075                         return NET_RX_DROP;
5076                 skb_reset_mac_len(skb);
5077         }
5078
5079         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5080             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5081                 skb = skb_vlan_untag(skb);
5082                 if (unlikely(!skb))
5083                         goto out;
5084         }
5085
5086         if (skb_skip_tc_classify(skb))
5087                 goto skip_classify;
5088
5089         if (pfmemalloc)
5090                 goto skip_taps;
5091
5092         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5093                 if (pt_prev)
5094                         ret = deliver_skb(skb, pt_prev, orig_dev);
5095                 pt_prev = ptype;
5096         }
5097
5098         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5099                 if (pt_prev)
5100                         ret = deliver_skb(skb, pt_prev, orig_dev);
5101                 pt_prev = ptype;
5102         }
5103
5104 skip_taps:
5105 #ifdef CONFIG_NET_INGRESS
5106         if (static_branch_unlikely(&ingress_needed_key)) {
5107                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5108                 if (!skb)
5109                         goto out;
5110
5111                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5112                         goto out;
5113         }
5114 #endif
5115         skb_reset_tc(skb);
5116 skip_classify:
5117         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5118                 goto drop;
5119
5120         if (skb_vlan_tag_present(skb)) {
5121                 if (pt_prev) {
5122                         ret = deliver_skb(skb, pt_prev, orig_dev);
5123                         pt_prev = NULL;
5124                 }
5125                 if (vlan_do_receive(&skb))
5126                         goto another_round;
5127                 else if (unlikely(!skb))
5128                         goto out;
5129         }
5130
5131         rx_handler = rcu_dereference(skb->dev->rx_handler);
5132         if (rx_handler) {
5133                 if (pt_prev) {
5134                         ret = deliver_skb(skb, pt_prev, orig_dev);
5135                         pt_prev = NULL;
5136                 }
5137                 switch (rx_handler(&skb)) {
5138                 case RX_HANDLER_CONSUMED:
5139                         ret = NET_RX_SUCCESS;
5140                         goto out;
5141                 case RX_HANDLER_ANOTHER:
5142                         goto another_round;
5143                 case RX_HANDLER_EXACT:
5144                         deliver_exact = true;
5145                 case RX_HANDLER_PASS:
5146                         break;
5147                 default:
5148                         BUG();
5149                 }
5150         }
5151
5152         if (unlikely(skb_vlan_tag_present(skb))) {
5153 check_vlan_id:
5154                 if (skb_vlan_tag_get_id(skb)) {
5155                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5156                          * find vlan device.
5157                          */
5158                         skb->pkt_type = PACKET_OTHERHOST;
5159                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5160                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5161                         /* Outer header is 802.1P with vlan 0, inner header is
5162                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5163                          * not find vlan dev for vlan id 0.
5164                          */
5165                         __vlan_hwaccel_clear_tag(skb);
5166                         skb = skb_vlan_untag(skb);
5167                         if (unlikely(!skb))
5168                                 goto out;
5169                         if (vlan_do_receive(&skb))
5170                                 /* After stripping off 802.1P header with vlan 0
5171                                  * vlan dev is found for inner header.
5172                                  */
5173                                 goto another_round;
5174                         else if (unlikely(!skb))
5175                                 goto out;
5176                         else
5177                                 /* We have stripped outer 802.1P vlan 0 header.
5178                                  * But could not find vlan dev.
5179                                  * check again for vlan id to set OTHERHOST.
5180                                  */
5181                                 goto check_vlan_id;
5182                 }
5183                 /* Note: we might in the future use prio bits
5184                  * and set skb->priority like in vlan_do_receive()
5185                  * For the time being, just ignore Priority Code Point
5186                  */
5187                 __vlan_hwaccel_clear_tag(skb);
5188         }
5189
5190         type = skb->protocol;
5191
5192         /* deliver only exact match when indicated */
5193         if (likely(!deliver_exact)) {
5194                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5195                                        &ptype_base[ntohs(type) &
5196                                                    PTYPE_HASH_MASK]);
5197         }
5198
5199         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5200                                &orig_dev->ptype_specific);
5201
5202         if (unlikely(skb->dev != orig_dev)) {
5203                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5204                                        &skb->dev->ptype_specific);
5205         }
5206
5207         if (pt_prev) {
5208                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5209                         goto drop;
5210                 *ppt_prev = pt_prev;
5211         } else {
5212 drop:
5213                 if (!deliver_exact)
5214                         atomic_long_inc(&skb->dev->rx_dropped);
5215                 else
5216                         atomic_long_inc(&skb->dev->rx_nohandler);
5217                 kfree_skb(skb);
5218                 /* Jamal, now you will not able to escape explaining
5219                  * me how you were going to use this. :-)
5220                  */
5221                 ret = NET_RX_DROP;
5222         }
5223
5224 out:
5225         return ret;
5226 }
5227
5228 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5229 {
5230         struct net_device *orig_dev = skb->dev;
5231         struct packet_type *pt_prev = NULL;
5232         int ret;
5233
5234         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5235         if (pt_prev)
5236                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5237                                          skb->dev, pt_prev, orig_dev);
5238         return ret;
5239 }
5240
5241 /**
5242  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5243  *      @skb: buffer to process
5244  *
5245  *      More direct receive version of netif_receive_skb().  It should
5246  *      only be used by callers that have a need to skip RPS and Generic XDP.
5247  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5248  *
5249  *      This function may only be called from softirq context and interrupts
5250  *      should be enabled.
5251  *
5252  *      Return values (usually ignored):
5253  *      NET_RX_SUCCESS: no congestion
5254  *      NET_RX_DROP: packet was dropped
5255  */
5256 int netif_receive_skb_core(struct sk_buff *skb)
5257 {
5258         int ret;
5259
5260         rcu_read_lock();
5261         ret = __netif_receive_skb_one_core(skb, false);
5262         rcu_read_unlock();
5263
5264         return ret;
5265 }
5266 EXPORT_SYMBOL(netif_receive_skb_core);
5267
5268 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5269                                                   struct packet_type *pt_prev,
5270                                                   struct net_device *orig_dev)
5271 {
5272         struct sk_buff *skb, *next;
5273
5274         if (!pt_prev)
5275                 return;
5276         if (list_empty(head))
5277                 return;
5278         if (pt_prev->list_func != NULL)
5279                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5280                                    ip_list_rcv, head, pt_prev, orig_dev);
5281         else
5282                 list_for_each_entry_safe(skb, next, head, list) {
5283                         skb_list_del_init(skb);
5284                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5285                 }
5286 }
5287
5288 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5289 {
5290         /* Fast-path assumptions:
5291          * - There is no RX handler.
5292          * - Only one packet_type matches.
5293          * If either of these fails, we will end up doing some per-packet
5294          * processing in-line, then handling the 'last ptype' for the whole
5295          * sublist.  This can't cause out-of-order delivery to any single ptype,
5296          * because the 'last ptype' must be constant across the sublist, and all
5297          * other ptypes are handled per-packet.
5298          */
5299         /* Current (common) ptype of sublist */
5300         struct packet_type *pt_curr = NULL;
5301         /* Current (common) orig_dev of sublist */
5302         struct net_device *od_curr = NULL;
5303         struct list_head sublist;
5304         struct sk_buff *skb, *next;
5305
5306         INIT_LIST_HEAD(&sublist);
5307         list_for_each_entry_safe(skb, next, head, list) {
5308                 struct net_device *orig_dev = skb->dev;
5309                 struct packet_type *pt_prev = NULL;
5310
5311                 skb_list_del_init(skb);
5312                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5313                 if (!pt_prev)
5314                         continue;
5315                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5316                         /* dispatch old sublist */
5317                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5318                         /* start new sublist */
5319                         INIT_LIST_HEAD(&sublist);
5320                         pt_curr = pt_prev;
5321                         od_curr = orig_dev;
5322                 }
5323                 list_add_tail(&skb->list, &sublist);
5324         }
5325
5326         /* dispatch final sublist */
5327         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5328 }
5329
5330 static int __netif_receive_skb(struct sk_buff *skb)
5331 {
5332         int ret;
5333
5334         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5335                 unsigned int noreclaim_flag;
5336
5337                 /*
5338                  * PFMEMALLOC skbs are special, they should
5339                  * - be delivered to SOCK_MEMALLOC sockets only
5340                  * - stay away from userspace
5341                  * - have bounded memory usage
5342                  *
5343                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5344                  * context down to all allocation sites.
5345                  */
5346                 noreclaim_flag = memalloc_noreclaim_save();
5347                 ret = __netif_receive_skb_one_core(skb, true);
5348                 memalloc_noreclaim_restore(noreclaim_flag);
5349         } else
5350                 ret = __netif_receive_skb_one_core(skb, false);
5351
5352         return ret;
5353 }
5354
5355 static void __netif_receive_skb_list(struct list_head *head)
5356 {
5357         unsigned long noreclaim_flag = 0;
5358         struct sk_buff *skb, *next;
5359         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5360
5361         list_for_each_entry_safe(skb, next, head, list) {
5362                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5363                         struct list_head sublist;
5364
5365                         /* Handle the previous sublist */
5366                         list_cut_before(&sublist, head, &skb->list);
5367                         if (!list_empty(&sublist))
5368                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5369                         pfmemalloc = !pfmemalloc;
5370                         /* See comments in __netif_receive_skb */
5371                         if (pfmemalloc)
5372                                 noreclaim_flag = memalloc_noreclaim_save();
5373                         else
5374                                 memalloc_noreclaim_restore(noreclaim_flag);
5375                 }
5376         }
5377         /* Handle the remaining sublist */
5378         if (!list_empty(head))
5379                 __netif_receive_skb_list_core(head, pfmemalloc);
5380         /* Restore pflags */
5381         if (pfmemalloc)
5382                 memalloc_noreclaim_restore(noreclaim_flag);
5383 }
5384
5385 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5386 {
5387         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5388         struct bpf_prog *new = xdp->prog;
5389         int ret = 0;
5390
5391         switch (xdp->command) {
5392         case XDP_SETUP_PROG:
5393                 rcu_assign_pointer(dev->xdp_prog, new);
5394                 if (old)
5395                         bpf_prog_put(old);
5396
5397                 if (old && !new) {
5398                         static_branch_dec(&generic_xdp_needed_key);
5399                 } else if (new && !old) {
5400                         static_branch_inc(&generic_xdp_needed_key);
5401                         dev_disable_lro(dev);
5402                         dev_disable_gro_hw(dev);
5403                 }
5404                 break;
5405
5406         case XDP_QUERY_PROG:
5407                 xdp->prog_id = old ? old->aux->id : 0;
5408                 break;
5409
5410         default:
5411                 ret = -EINVAL;
5412                 break;
5413         }
5414
5415         return ret;
5416 }
5417
5418 static int netif_receive_skb_internal(struct sk_buff *skb)
5419 {
5420         int ret;
5421
5422         net_timestamp_check(netdev_tstamp_prequeue, skb);
5423
5424         if (skb_defer_rx_timestamp(skb))
5425                 return NET_RX_SUCCESS;
5426
5427         rcu_read_lock();
5428 #ifdef CONFIG_RPS
5429         if (static_branch_unlikely(&rps_needed)) {
5430                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5431                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5432
5433                 if (cpu >= 0) {
5434                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5435                         rcu_read_unlock();
5436                         return ret;
5437                 }
5438         }
5439 #endif
5440         ret = __netif_receive_skb(skb);
5441         rcu_read_unlock();
5442         return ret;
5443 }
5444
5445 static void netif_receive_skb_list_internal(struct list_head *head)
5446 {
5447         struct sk_buff *skb, *next;
5448         struct list_head sublist;
5449
5450         INIT_LIST_HEAD(&sublist);
5451         list_for_each_entry_safe(skb, next, head, list) {
5452                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5453                 skb_list_del_init(skb);
5454                 if (!skb_defer_rx_timestamp(skb))
5455                         list_add_tail(&skb->list, &sublist);
5456         }
5457         list_splice_init(&sublist, head);
5458
5459         rcu_read_lock();
5460 #ifdef CONFIG_RPS
5461         if (static_branch_unlikely(&rps_needed)) {
5462                 list_for_each_entry_safe(skb, next, head, list) {
5463                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5464                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5465
5466                         if (cpu >= 0) {
5467                                 /* Will be handled, remove from list */
5468                                 skb_list_del_init(skb);
5469                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5470                         }
5471                 }
5472         }
5473 #endif
5474         __netif_receive_skb_list(head);
5475         rcu_read_unlock();
5476 }
5477
5478 /**
5479  *      netif_receive_skb - process receive buffer from network
5480  *      @skb: buffer to process
5481  *
5482  *      netif_receive_skb() is the main receive data processing function.
5483  *      It always succeeds. The buffer may be dropped during processing
5484  *      for congestion control or by the protocol layers.
5485  *
5486  *      This function may only be called from softirq context and interrupts
5487  *      should be enabled.
5488  *
5489  *      Return values (usually ignored):
5490  *      NET_RX_SUCCESS: no congestion
5491  *      NET_RX_DROP: packet was dropped
5492  */
5493 int netif_receive_skb(struct sk_buff *skb)
5494 {
5495         int ret;
5496
5497         trace_netif_receive_skb_entry(skb);
5498
5499         ret = netif_receive_skb_internal(skb);
5500         trace_netif_receive_skb_exit(ret);
5501
5502         return ret;
5503 }
5504 EXPORT_SYMBOL(netif_receive_skb);
5505
5506 /**
5507  *      netif_receive_skb_list - process many receive buffers from network
5508  *      @head: list of skbs to process.
5509  *
5510  *      Since return value of netif_receive_skb() is normally ignored, and
5511  *      wouldn't be meaningful for a list, this function returns void.
5512  *
5513  *      This function may only be called from softirq context and interrupts
5514  *      should be enabled.
5515  */
5516 void netif_receive_skb_list(struct list_head *head)
5517 {
5518         struct sk_buff *skb;
5519
5520         if (list_empty(head))
5521                 return;
5522         if (trace_netif_receive_skb_list_entry_enabled()) {
5523                 list_for_each_entry(skb, head, list)
5524                         trace_netif_receive_skb_list_entry(skb);
5525         }
5526         netif_receive_skb_list_internal(head);
5527         trace_netif_receive_skb_list_exit(0);
5528 }
5529 EXPORT_SYMBOL(netif_receive_skb_list);
5530
5531 DEFINE_PER_CPU(struct work_struct, flush_works);
5532
5533 /* Network device is going away, flush any packets still pending */
5534 static void flush_backlog(struct work_struct *work)
5535 {
5536         struct sk_buff *skb, *tmp;
5537         struct softnet_data *sd;
5538
5539         local_bh_disable();
5540         sd = this_cpu_ptr(&softnet_data);
5541
5542         local_irq_disable();
5543         rps_lock(sd);
5544         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5545                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5546                         __skb_unlink(skb, &sd->input_pkt_queue);
5547                         kfree_skb(skb);
5548                         input_queue_head_incr(sd);
5549                 }
5550         }
5551         rps_unlock(sd);
5552         local_irq_enable();
5553
5554         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5555                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5556                         __skb_unlink(skb, &sd->process_queue);
5557                         kfree_skb(skb);
5558                         input_queue_head_incr(sd);
5559                 }
5560         }
5561         local_bh_enable();
5562 }
5563
5564 static void flush_all_backlogs(void)
5565 {
5566         unsigned int cpu;
5567
5568         get_online_cpus();
5569
5570         for_each_online_cpu(cpu)
5571                 queue_work_on(cpu, system_highpri_wq,
5572                               per_cpu_ptr(&flush_works, cpu));
5573
5574         for_each_online_cpu(cpu)
5575                 flush_work(per_cpu_ptr(&flush_works, cpu));
5576
5577         put_online_cpus();
5578 }
5579
5580 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5581 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5582 static int napi_gro_complete(struct sk_buff *skb)
5583 {
5584         struct packet_offload *ptype;
5585         __be16 type = skb->protocol;
5586         struct list_head *head = &offload_base;
5587         int err = -ENOENT;
5588
5589         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5590
5591         if (NAPI_GRO_CB(skb)->count == 1) {
5592                 skb_shinfo(skb)->gso_size = 0;
5593                 goto out;
5594         }
5595
5596         rcu_read_lock();
5597         list_for_each_entry_rcu(ptype, head, list) {
5598                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5599                         continue;
5600
5601                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5602                                          ipv6_gro_complete, inet_gro_complete,
5603                                          skb, 0);
5604                 break;
5605         }
5606         rcu_read_unlock();
5607
5608         if (err) {
5609                 WARN_ON(&ptype->list == head);
5610                 kfree_skb(skb);
5611                 return NET_RX_SUCCESS;
5612         }
5613
5614 out:
5615         return netif_receive_skb_internal(skb);
5616 }
5617
5618 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5619                                    bool flush_old)
5620 {
5621         struct list_head *head = &napi->gro_hash[index].list;
5622         struct sk_buff *skb, *p;
5623
5624         list_for_each_entry_safe_reverse(skb, p, head, list) {
5625                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5626                         return;
5627                 skb_list_del_init(skb);
5628                 napi_gro_complete(skb);
5629                 napi->gro_hash[index].count--;
5630         }
5631
5632         if (!napi->gro_hash[index].count)
5633                 __clear_bit(index, &napi->gro_bitmask);
5634 }
5635
5636 /* napi->gro_hash[].list contains packets ordered by age.
5637  * youngest packets at the head of it.
5638  * Complete skbs in reverse order to reduce latencies.
5639  */
5640 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5641 {
5642         unsigned long bitmask = napi->gro_bitmask;
5643         unsigned int i, base = ~0U;
5644
5645         while ((i = ffs(bitmask)) != 0) {
5646                 bitmask >>= i;
5647                 base += i;
5648                 __napi_gro_flush_chain(napi, base, flush_old);
5649         }
5650 }
5651 EXPORT_SYMBOL(napi_gro_flush);
5652
5653 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5654                                           struct sk_buff *skb)
5655 {
5656         unsigned int maclen = skb->dev->hard_header_len;
5657         u32 hash = skb_get_hash_raw(skb);
5658         struct list_head *head;
5659         struct sk_buff *p;
5660
5661         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5662         list_for_each_entry(p, head, list) {
5663                 unsigned long diffs;
5664
5665                 NAPI_GRO_CB(p)->flush = 0;
5666
5667                 if (hash != skb_get_hash_raw(p)) {
5668                         NAPI_GRO_CB(p)->same_flow = 0;
5669                         continue;
5670                 }
5671
5672                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5673                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5674                 if (skb_vlan_tag_present(p))
5675                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5676                 diffs |= skb_metadata_dst_cmp(p, skb);
5677                 diffs |= skb_metadata_differs(p, skb);
5678                 if (maclen == ETH_HLEN)
5679                         diffs |= compare_ether_header(skb_mac_header(p),
5680                                                       skb_mac_header(skb));
5681                 else if (!diffs)
5682                         diffs = memcmp(skb_mac_header(p),
5683                                        skb_mac_header(skb),
5684                                        maclen);
5685                 NAPI_GRO_CB(p)->same_flow = !diffs;
5686         }
5687
5688         return head;
5689 }
5690
5691 static void skb_gro_reset_offset(struct sk_buff *skb)
5692 {
5693         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5694         const skb_frag_t *frag0 = &pinfo->frags[0];
5695
5696         NAPI_GRO_CB(skb)->data_offset = 0;
5697         NAPI_GRO_CB(skb)->frag0 = NULL;
5698         NAPI_GRO_CB(skb)->frag0_len = 0;
5699
5700         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5701             pinfo->nr_frags &&
5702             !PageHighMem(skb_frag_page(frag0))) {
5703                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5704                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5705                                                     skb_frag_size(frag0),
5706                                                     skb->end - skb->tail);
5707         }
5708 }
5709
5710 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5711 {
5712         struct skb_shared_info *pinfo = skb_shinfo(skb);
5713
5714         BUG_ON(skb->end - skb->tail < grow);
5715
5716         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5717
5718         skb->data_len -= grow;
5719         skb->tail += grow;
5720
5721         skb_frag_off_add(&pinfo->frags[0], grow);
5722         skb_frag_size_sub(&pinfo->frags[0], grow);
5723
5724         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5725                 skb_frag_unref(skb, 0);
5726                 memmove(pinfo->frags, pinfo->frags + 1,
5727                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5728         }
5729 }
5730
5731 static void gro_flush_oldest(struct list_head *head)
5732 {
5733         struct sk_buff *oldest;
5734
5735         oldest = list_last_entry(head, struct sk_buff, list);
5736
5737         /* We are called with head length >= MAX_GRO_SKBS, so this is
5738          * impossible.
5739          */
5740         if (WARN_ON_ONCE(!oldest))
5741                 return;
5742
5743         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5744          * SKB to the chain.
5745          */
5746         skb_list_del_init(oldest);
5747         napi_gro_complete(oldest);
5748 }
5749
5750 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5751                                                            struct sk_buff *));
5752 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5753                                                            struct sk_buff *));
5754 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5755 {
5756         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5757         struct list_head *head = &offload_base;
5758         struct packet_offload *ptype;
5759         __be16 type = skb->protocol;
5760         struct list_head *gro_head;
5761         struct sk_buff *pp = NULL;
5762         enum gro_result ret;
5763         int same_flow;
5764         int grow;
5765
5766         if (netif_elide_gro(skb->dev))
5767                 goto normal;
5768
5769         gro_head = gro_list_prepare(napi, skb);
5770
5771         rcu_read_lock();
5772         list_for_each_entry_rcu(ptype, head, list) {
5773                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5774                         continue;
5775
5776                 skb_set_network_header(skb, skb_gro_offset(skb));
5777                 skb_reset_mac_len(skb);
5778                 NAPI_GRO_CB(skb)->same_flow = 0;
5779                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5780                 NAPI_GRO_CB(skb)->free = 0;
5781                 NAPI_GRO_CB(skb)->encap_mark = 0;
5782                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5783                 NAPI_GRO_CB(skb)->is_fou = 0;
5784                 NAPI_GRO_CB(skb)->is_atomic = 1;
5785                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5786
5787                 /* Setup for GRO checksum validation */
5788                 switch (skb->ip_summed) {
5789                 case CHECKSUM_COMPLETE:
5790                         NAPI_GRO_CB(skb)->csum = skb->csum;
5791                         NAPI_GRO_CB(skb)->csum_valid = 1;
5792                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5793                         break;
5794                 case CHECKSUM_UNNECESSARY:
5795                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5796                         NAPI_GRO_CB(skb)->csum_valid = 0;
5797                         break;
5798                 default:
5799                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5800                         NAPI_GRO_CB(skb)->csum_valid = 0;
5801                 }
5802
5803                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5804                                         ipv6_gro_receive, inet_gro_receive,
5805                                         gro_head, skb);
5806                 break;
5807         }
5808         rcu_read_unlock();
5809
5810         if (&ptype->list == head)
5811                 goto normal;
5812
5813         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5814                 ret = GRO_CONSUMED;
5815                 goto ok;
5816         }
5817
5818         same_flow = NAPI_GRO_CB(skb)->same_flow;
5819         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5820
5821         if (pp) {
5822                 skb_list_del_init(pp);
5823                 napi_gro_complete(pp);
5824                 napi->gro_hash[hash].count--;
5825         }
5826
5827         if (same_flow)
5828                 goto ok;
5829
5830         if (NAPI_GRO_CB(skb)->flush)
5831                 goto normal;
5832
5833         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5834                 gro_flush_oldest(gro_head);
5835         } else {
5836                 napi->gro_hash[hash].count++;
5837         }
5838         NAPI_GRO_CB(skb)->count = 1;
5839         NAPI_GRO_CB(skb)->age = jiffies;
5840         NAPI_GRO_CB(skb)->last = skb;
5841         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5842         list_add(&skb->list, gro_head);
5843         ret = GRO_HELD;
5844
5845 pull:
5846         grow = skb_gro_offset(skb) - skb_headlen(skb);
5847         if (grow > 0)
5848                 gro_pull_from_frag0(skb, grow);
5849 ok:
5850         if (napi->gro_hash[hash].count) {
5851                 if (!test_bit(hash, &napi->gro_bitmask))
5852                         __set_bit(hash, &napi->gro_bitmask);
5853         } else if (test_bit(hash, &napi->gro_bitmask)) {
5854                 __clear_bit(hash, &napi->gro_bitmask);
5855         }
5856
5857         return ret;
5858
5859 normal:
5860         ret = GRO_NORMAL;
5861         goto pull;
5862 }
5863
5864 struct packet_offload *gro_find_receive_by_type(__be16 type)
5865 {
5866         struct list_head *offload_head = &offload_base;
5867         struct packet_offload *ptype;
5868
5869         list_for_each_entry_rcu(ptype, offload_head, list) {
5870                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5871                         continue;
5872                 return ptype;
5873         }
5874         return NULL;
5875 }
5876 EXPORT_SYMBOL(gro_find_receive_by_type);
5877
5878 struct packet_offload *gro_find_complete_by_type(__be16 type)
5879 {
5880         struct list_head *offload_head = &offload_base;
5881         struct packet_offload *ptype;
5882
5883         list_for_each_entry_rcu(ptype, offload_head, list) {
5884                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5885                         continue;
5886                 return ptype;
5887         }
5888         return NULL;
5889 }
5890 EXPORT_SYMBOL(gro_find_complete_by_type);
5891
5892 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5893 {
5894         skb_dst_drop(skb);
5895         skb_ext_put(skb);
5896         kmem_cache_free(skbuff_head_cache, skb);
5897 }
5898
5899 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5900 {
5901         switch (ret) {
5902         case GRO_NORMAL:
5903                 if (netif_receive_skb_internal(skb))
5904                         ret = GRO_DROP;
5905                 break;
5906
5907         case GRO_DROP:
5908                 kfree_skb(skb);
5909                 break;
5910
5911         case GRO_MERGED_FREE:
5912                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5913                         napi_skb_free_stolen_head(skb);
5914                 else
5915                         __kfree_skb(skb);
5916                 break;
5917
5918         case GRO_HELD:
5919         case GRO_MERGED:
5920         case GRO_CONSUMED:
5921                 break;
5922         }
5923
5924         return ret;
5925 }
5926
5927 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5928 {
5929         gro_result_t ret;
5930
5931         skb_mark_napi_id(skb, napi);
5932         trace_napi_gro_receive_entry(skb);
5933
5934         skb_gro_reset_offset(skb);
5935
5936         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5937         trace_napi_gro_receive_exit(ret);
5938
5939         return ret;
5940 }
5941 EXPORT_SYMBOL(napi_gro_receive);
5942
5943 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5944 {
5945         if (unlikely(skb->pfmemalloc)) {
5946                 consume_skb(skb);
5947                 return;
5948         }
5949         __skb_pull(skb, skb_headlen(skb));
5950         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5951         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5952         __vlan_hwaccel_clear_tag(skb);
5953         skb->dev = napi->dev;
5954         skb->skb_iif = 0;
5955
5956         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5957         skb->pkt_type = PACKET_HOST;
5958
5959         skb->encapsulation = 0;
5960         skb_shinfo(skb)->gso_type = 0;
5961         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5962         skb_ext_reset(skb);
5963
5964         napi->skb = skb;
5965 }
5966
5967 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5968 {
5969         struct sk_buff *skb = napi->skb;
5970
5971         if (!skb) {
5972                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5973                 if (skb) {
5974                         napi->skb = skb;
5975                         skb_mark_napi_id(skb, napi);
5976                 }
5977         }
5978         return skb;
5979 }
5980 EXPORT_SYMBOL(napi_get_frags);
5981
5982 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5983 static void gro_normal_list(struct napi_struct *napi)
5984 {
5985         if (!napi->rx_count)
5986                 return;
5987         netif_receive_skb_list_internal(&napi->rx_list);
5988         INIT_LIST_HEAD(&napi->rx_list);
5989         napi->rx_count = 0;
5990 }
5991
5992 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5993  * pass the whole batch up to the stack.
5994  */
5995 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5996 {
5997         list_add_tail(&skb->list, &napi->rx_list);
5998         if (++napi->rx_count >= gro_normal_batch)
5999                 gro_normal_list(napi);
6000 }
6001
6002 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6003                                       struct sk_buff *skb,
6004                                       gro_result_t ret)
6005 {
6006         switch (ret) {
6007         case GRO_NORMAL:
6008         case GRO_HELD:
6009                 __skb_push(skb, ETH_HLEN);
6010                 skb->protocol = eth_type_trans(skb, skb->dev);
6011                 if (ret == GRO_NORMAL)
6012                         gro_normal_one(napi, skb);
6013                 break;
6014
6015         case GRO_DROP:
6016                 napi_reuse_skb(napi, skb);
6017                 break;
6018
6019         case GRO_MERGED_FREE:
6020                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6021                         napi_skb_free_stolen_head(skb);
6022                 else
6023                         napi_reuse_skb(napi, skb);
6024                 break;
6025
6026         case GRO_MERGED:
6027         case GRO_CONSUMED:
6028                 break;
6029         }
6030
6031         return ret;
6032 }
6033
6034 /* Upper GRO stack assumes network header starts at gro_offset=0
6035  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6036  * We copy ethernet header into skb->data to have a common layout.
6037  */
6038 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6039 {
6040         struct sk_buff *skb = napi->skb;
6041         const struct ethhdr *eth;
6042         unsigned int hlen = sizeof(*eth);
6043
6044         napi->skb = NULL;
6045
6046         skb_reset_mac_header(skb);
6047         skb_gro_reset_offset(skb);
6048
6049         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6050                 eth = skb_gro_header_slow(skb, hlen, 0);
6051                 if (unlikely(!eth)) {
6052                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6053                                              __func__, napi->dev->name);
6054                         napi_reuse_skb(napi, skb);
6055                         return NULL;
6056                 }
6057         } else {
6058                 eth = (const struct ethhdr *)skb->data;
6059                 gro_pull_from_frag0(skb, hlen);
6060                 NAPI_GRO_CB(skb)->frag0 += hlen;
6061                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6062         }
6063         __skb_pull(skb, hlen);
6064
6065         /*
6066          * This works because the only protocols we care about don't require
6067          * special handling.
6068          * We'll fix it up properly in napi_frags_finish()
6069          */
6070         skb->protocol = eth->h_proto;
6071
6072         return skb;
6073 }
6074
6075 gro_result_t napi_gro_frags(struct napi_struct *napi)
6076 {
6077         gro_result_t ret;
6078         struct sk_buff *skb = napi_frags_skb(napi);
6079
6080         if (!skb)
6081                 return GRO_DROP;
6082
6083         trace_napi_gro_frags_entry(skb);
6084
6085         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6086         trace_napi_gro_frags_exit(ret);
6087
6088         return ret;
6089 }
6090 EXPORT_SYMBOL(napi_gro_frags);
6091
6092 /* Compute the checksum from gro_offset and return the folded value
6093  * after adding in any pseudo checksum.
6094  */
6095 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6096 {
6097         __wsum wsum;
6098         __sum16 sum;
6099
6100         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6101
6102         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6103         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6104         /* See comments in __skb_checksum_complete(). */
6105         if (likely(!sum)) {
6106                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6107                     !skb->csum_complete_sw)
6108                         netdev_rx_csum_fault(skb->dev, skb);
6109         }
6110
6111         NAPI_GRO_CB(skb)->csum = wsum;
6112         NAPI_GRO_CB(skb)->csum_valid = 1;
6113
6114         return sum;
6115 }
6116 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6117
6118 static void net_rps_send_ipi(struct softnet_data *remsd)
6119 {
6120 #ifdef CONFIG_RPS
6121         while (remsd) {
6122                 struct softnet_data *next = remsd->rps_ipi_next;
6123
6124                 if (cpu_online(remsd->cpu))
6125                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6126                 remsd = next;
6127         }
6128 #endif
6129 }
6130
6131 /*
6132  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6133  * Note: called with local irq disabled, but exits with local irq enabled.
6134  */
6135 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6136 {
6137 #ifdef CONFIG_RPS
6138         struct softnet_data *remsd = sd->rps_ipi_list;
6139
6140         if (remsd) {
6141                 sd->rps_ipi_list = NULL;
6142
6143                 local_irq_enable();
6144
6145                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6146                 net_rps_send_ipi(remsd);
6147         } else
6148 #endif
6149                 local_irq_enable();
6150 }
6151
6152 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6153 {
6154 #ifdef CONFIG_RPS
6155         return sd->rps_ipi_list != NULL;
6156 #else
6157         return false;
6158 #endif
6159 }
6160
6161 static int process_backlog(struct napi_struct *napi, int quota)
6162 {
6163         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6164         bool again = true;
6165         int work = 0;
6166
6167         /* Check if we have pending ipi, its better to send them now,
6168          * not waiting net_rx_action() end.
6169          */
6170         if (sd_has_rps_ipi_waiting(sd)) {
6171                 local_irq_disable();
6172                 net_rps_action_and_irq_enable(sd);
6173         }
6174
6175         napi->weight = dev_rx_weight;
6176         while (again) {
6177                 struct sk_buff *skb;
6178
6179                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6180                         rcu_read_lock();
6181                         __netif_receive_skb(skb);
6182                         rcu_read_unlock();
6183                         input_queue_head_incr(sd);
6184                         if (++work >= quota)
6185                                 return work;
6186
6187                 }
6188
6189                 local_irq_disable();
6190                 rps_lock(sd);
6191                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6192                         /*
6193                          * Inline a custom version of __napi_complete().
6194                          * only current cpu owns and manipulates this napi,
6195                          * and NAPI_STATE_SCHED is the only possible flag set
6196                          * on backlog.
6197                          * We can use a plain write instead of clear_bit(),
6198                          * and we dont need an smp_mb() memory barrier.
6199                          */
6200                         napi->state = 0;
6201                         again = false;
6202                 } else {
6203                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6204                                                    &sd->process_queue);
6205                 }
6206                 rps_unlock(sd);
6207                 local_irq_enable();
6208         }
6209
6210         return work;
6211 }
6212
6213 /**
6214  * __napi_schedule - schedule for receive
6215  * @n: entry to schedule
6216  *
6217  * The entry's receive function will be scheduled to run.
6218  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6219  */
6220 void __napi_schedule(struct napi_struct *n)
6221 {
6222         unsigned long flags;
6223
6224         local_irq_save(flags);
6225         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6226         local_irq_restore(flags);
6227 }
6228 EXPORT_SYMBOL(__napi_schedule);
6229
6230 /**
6231  *      napi_schedule_prep - check if napi can be scheduled
6232  *      @n: napi context
6233  *
6234  * Test if NAPI routine is already running, and if not mark
6235  * it as running.  This is used as a condition variable
6236  * insure only one NAPI poll instance runs.  We also make
6237  * sure there is no pending NAPI disable.
6238  */
6239 bool napi_schedule_prep(struct napi_struct *n)
6240 {
6241         unsigned long val, new;
6242
6243         do {
6244                 val = READ_ONCE(n->state);
6245                 if (unlikely(val & NAPIF_STATE_DISABLE))
6246                         return false;
6247                 new = val | NAPIF_STATE_SCHED;
6248
6249                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6250                  * This was suggested by Alexander Duyck, as compiler
6251                  * emits better code than :
6252                  * if (val & NAPIF_STATE_SCHED)
6253                  *     new |= NAPIF_STATE_MISSED;
6254                  */
6255                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6256                                                    NAPIF_STATE_MISSED;
6257         } while (cmpxchg(&n->state, val, new) != val);
6258
6259         return !(val & NAPIF_STATE_SCHED);
6260 }
6261 EXPORT_SYMBOL(napi_schedule_prep);
6262
6263 /**
6264  * __napi_schedule_irqoff - schedule for receive
6265  * @n: entry to schedule
6266  *
6267  * Variant of __napi_schedule() assuming hard irqs are masked
6268  */
6269 void __napi_schedule_irqoff(struct napi_struct *n)
6270 {
6271         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6272 }
6273 EXPORT_SYMBOL(__napi_schedule_irqoff);
6274
6275 bool napi_complete_done(struct napi_struct *n, int work_done)
6276 {
6277         unsigned long flags, val, new;
6278
6279         /*
6280          * 1) Don't let napi dequeue from the cpu poll list
6281          *    just in case its running on a different cpu.
6282          * 2) If we are busy polling, do nothing here, we have
6283          *    the guarantee we will be called later.
6284          */
6285         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6286                                  NAPIF_STATE_IN_BUSY_POLL)))
6287                 return false;
6288
6289         gro_normal_list(n);
6290
6291         if (n->gro_bitmask) {
6292                 unsigned long timeout = 0;
6293
6294                 if (work_done)
6295                         timeout = n->dev->gro_flush_timeout;
6296
6297                 /* When the NAPI instance uses a timeout and keeps postponing
6298                  * it, we need to bound somehow the time packets are kept in
6299                  * the GRO layer
6300                  */
6301                 napi_gro_flush(n, !!timeout);
6302                 if (timeout)
6303                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6304                                       HRTIMER_MODE_REL_PINNED);
6305         }
6306         if (unlikely(!list_empty(&n->poll_list))) {
6307                 /* If n->poll_list is not empty, we need to mask irqs */
6308                 local_irq_save(flags);
6309                 list_del_init(&n->poll_list);
6310                 local_irq_restore(flags);
6311         }
6312
6313         do {
6314                 val = READ_ONCE(n->state);
6315
6316                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6317
6318                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6319
6320                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6321                  * because we will call napi->poll() one more time.
6322                  * This C code was suggested by Alexander Duyck to help gcc.
6323                  */
6324                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6325                                                     NAPIF_STATE_SCHED;
6326         } while (cmpxchg(&n->state, val, new) != val);
6327
6328         if (unlikely(val & NAPIF_STATE_MISSED)) {
6329                 __napi_schedule(n);
6330                 return false;
6331         }
6332
6333         return true;
6334 }
6335 EXPORT_SYMBOL(napi_complete_done);
6336
6337 /* must be called under rcu_read_lock(), as we dont take a reference */
6338 static struct napi_struct *napi_by_id(unsigned int napi_id)
6339 {
6340         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6341         struct napi_struct *napi;
6342
6343         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6344                 if (napi->napi_id == napi_id)
6345                         return napi;
6346
6347         return NULL;
6348 }
6349
6350 #if defined(CONFIG_NET_RX_BUSY_POLL)
6351
6352 #define BUSY_POLL_BUDGET 8
6353
6354 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6355 {
6356         int rc;
6357
6358         /* Busy polling means there is a high chance device driver hard irq
6359          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6360          * set in napi_schedule_prep().
6361          * Since we are about to call napi->poll() once more, we can safely
6362          * clear NAPI_STATE_MISSED.
6363          *
6364          * Note: x86 could use a single "lock and ..." instruction
6365          * to perform these two clear_bit()
6366          */
6367         clear_bit(NAPI_STATE_MISSED, &napi->state);
6368         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6369
6370         local_bh_disable();
6371
6372         /* All we really want here is to re-enable device interrupts.
6373          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6374          */
6375         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6376         /* We can't gro_normal_list() here, because napi->poll() might have
6377          * rearmed the napi (napi_complete_done()) in which case it could
6378          * already be running on another CPU.
6379          */
6380         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6381         netpoll_poll_unlock(have_poll_lock);
6382         if (rc == BUSY_POLL_BUDGET) {
6383                 /* As the whole budget was spent, we still own the napi so can
6384                  * safely handle the rx_list.
6385                  */
6386                 gro_normal_list(napi);
6387                 __napi_schedule(napi);
6388         }
6389         local_bh_enable();
6390 }
6391
6392 void napi_busy_loop(unsigned int napi_id,
6393                     bool (*loop_end)(void *, unsigned long),
6394                     void *loop_end_arg)
6395 {
6396         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6397         int (*napi_poll)(struct napi_struct *napi, int budget);
6398         void *have_poll_lock = NULL;
6399         struct napi_struct *napi;
6400
6401 restart:
6402         napi_poll = NULL;
6403
6404         rcu_read_lock();
6405
6406         napi = napi_by_id(napi_id);
6407         if (!napi)
6408                 goto out;
6409
6410         preempt_disable();
6411         for (;;) {
6412                 int work = 0;
6413
6414                 local_bh_disable();
6415                 if (!napi_poll) {
6416                         unsigned long val = READ_ONCE(napi->state);
6417
6418                         /* If multiple threads are competing for this napi,
6419                          * we avoid dirtying napi->state as much as we can.
6420                          */
6421                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6422                                    NAPIF_STATE_IN_BUSY_POLL))
6423                                 goto count;
6424                         if (cmpxchg(&napi->state, val,
6425                                     val | NAPIF_STATE_IN_BUSY_POLL |
6426                                           NAPIF_STATE_SCHED) != val)
6427                                 goto count;
6428                         have_poll_lock = netpoll_poll_lock(napi);
6429                         napi_poll = napi->poll;
6430                 }
6431                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6432                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6433                 gro_normal_list(napi);
6434 count:
6435                 if (work > 0)
6436                         __NET_ADD_STATS(dev_net(napi->dev),
6437                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6438                 local_bh_enable();
6439
6440                 if (!loop_end || loop_end(loop_end_arg, start_time))
6441                         break;
6442
6443                 if (unlikely(need_resched())) {
6444                         if (napi_poll)
6445                                 busy_poll_stop(napi, have_poll_lock);
6446                         preempt_enable();
6447                         rcu_read_unlock();
6448                         cond_resched();
6449                         if (loop_end(loop_end_arg, start_time))
6450                                 return;
6451                         goto restart;
6452                 }
6453                 cpu_relax();
6454         }
6455         if (napi_poll)
6456                 busy_poll_stop(napi, have_poll_lock);
6457         preempt_enable();
6458 out:
6459         rcu_read_unlock();
6460 }
6461 EXPORT_SYMBOL(napi_busy_loop);
6462
6463 #endif /* CONFIG_NET_RX_BUSY_POLL */
6464
6465 static void napi_hash_add(struct napi_struct *napi)
6466 {
6467         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6468             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6469                 return;
6470
6471         spin_lock(&napi_hash_lock);
6472
6473         /* 0..NR_CPUS range is reserved for sender_cpu use */
6474         do {
6475                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6476                         napi_gen_id = MIN_NAPI_ID;
6477         } while (napi_by_id(napi_gen_id));
6478         napi->napi_id = napi_gen_id;
6479
6480         hlist_add_head_rcu(&napi->napi_hash_node,
6481                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6482
6483         spin_unlock(&napi_hash_lock);
6484 }
6485
6486 /* Warning : caller is responsible to make sure rcu grace period
6487  * is respected before freeing memory containing @napi
6488  */
6489 bool napi_hash_del(struct napi_struct *napi)
6490 {
6491         bool rcu_sync_needed = false;
6492
6493         spin_lock(&napi_hash_lock);
6494
6495         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6496                 rcu_sync_needed = true;
6497                 hlist_del_rcu(&napi->napi_hash_node);
6498         }
6499         spin_unlock(&napi_hash_lock);
6500         return rcu_sync_needed;
6501 }
6502 EXPORT_SYMBOL_GPL(napi_hash_del);
6503
6504 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6505 {
6506         struct napi_struct *napi;
6507
6508         napi = container_of(timer, struct napi_struct, timer);
6509
6510         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6511          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6512          */
6513         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6514             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6515                 __napi_schedule_irqoff(napi);
6516
6517         return HRTIMER_NORESTART;
6518 }
6519
6520 static void init_gro_hash(struct napi_struct *napi)
6521 {
6522         int i;
6523
6524         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6525                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6526                 napi->gro_hash[i].count = 0;
6527         }
6528         napi->gro_bitmask = 0;
6529 }
6530
6531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6532                     int (*poll)(struct napi_struct *, int), int weight)
6533 {
6534         INIT_LIST_HEAD(&napi->poll_list);
6535         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6536         napi->timer.function = napi_watchdog;
6537         init_gro_hash(napi);
6538         napi->skb = NULL;
6539         INIT_LIST_HEAD(&napi->rx_list);
6540         napi->rx_count = 0;
6541         napi->poll = poll;
6542         if (weight > NAPI_POLL_WEIGHT)
6543                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6544                                 weight);
6545         napi->weight = weight;
6546         list_add(&napi->dev_list, &dev->napi_list);
6547         napi->dev = dev;
6548 #ifdef CONFIG_NETPOLL
6549         napi->poll_owner = -1;
6550 #endif
6551         set_bit(NAPI_STATE_SCHED, &napi->state);
6552         napi_hash_add(napi);
6553 }
6554 EXPORT_SYMBOL(netif_napi_add);
6555
6556 void napi_disable(struct napi_struct *n)
6557 {
6558         might_sleep();
6559         set_bit(NAPI_STATE_DISABLE, &n->state);
6560
6561         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6562                 msleep(1);
6563         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6564                 msleep(1);
6565
6566         hrtimer_cancel(&n->timer);
6567
6568         clear_bit(NAPI_STATE_DISABLE, &n->state);
6569 }
6570 EXPORT_SYMBOL(napi_disable);
6571
6572 static void flush_gro_hash(struct napi_struct *napi)
6573 {
6574         int i;
6575
6576         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6577                 struct sk_buff *skb, *n;
6578
6579                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6580                         kfree_skb(skb);
6581                 napi->gro_hash[i].count = 0;
6582         }
6583 }
6584
6585 /* Must be called in process context */
6586 void netif_napi_del(struct napi_struct *napi)
6587 {
6588         might_sleep();
6589         if (napi_hash_del(napi))
6590                 synchronize_net();
6591         list_del_init(&napi->dev_list);
6592         napi_free_frags(napi);
6593
6594         flush_gro_hash(napi);
6595         napi->gro_bitmask = 0;
6596 }
6597 EXPORT_SYMBOL(netif_napi_del);
6598
6599 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6600 {
6601         void *have;
6602         int work, weight;
6603
6604         list_del_init(&n->poll_list);
6605
6606         have = netpoll_poll_lock(n);
6607
6608         weight = n->weight;
6609
6610         /* This NAPI_STATE_SCHED test is for avoiding a race
6611          * with netpoll's poll_napi().  Only the entity which
6612          * obtains the lock and sees NAPI_STATE_SCHED set will
6613          * actually make the ->poll() call.  Therefore we avoid
6614          * accidentally calling ->poll() when NAPI is not scheduled.
6615          */
6616         work = 0;
6617         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6618                 work = n->poll(n, weight);
6619                 trace_napi_poll(n, work, weight);
6620         }
6621
6622         WARN_ON_ONCE(work > weight);
6623
6624         if (likely(work < weight))
6625                 goto out_unlock;
6626
6627         /* Drivers must not modify the NAPI state if they
6628          * consume the entire weight.  In such cases this code
6629          * still "owns" the NAPI instance and therefore can
6630          * move the instance around on the list at-will.
6631          */
6632         if (unlikely(napi_disable_pending(n))) {
6633                 napi_complete(n);
6634                 goto out_unlock;
6635         }
6636
6637         gro_normal_list(n);
6638
6639         if (n->gro_bitmask) {
6640                 /* flush too old packets
6641                  * If HZ < 1000, flush all packets.
6642                  */
6643                 napi_gro_flush(n, HZ >= 1000);
6644         }
6645
6646         /* Some drivers may have called napi_schedule
6647          * prior to exhausting their budget.
6648          */
6649         if (unlikely(!list_empty(&n->poll_list))) {
6650                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6651                              n->dev ? n->dev->name : "backlog");
6652                 goto out_unlock;
6653         }
6654
6655         list_add_tail(&n->poll_list, repoll);
6656
6657 out_unlock:
6658         netpoll_poll_unlock(have);
6659
6660         return work;
6661 }
6662
6663 static __latent_entropy void net_rx_action(struct softirq_action *h)
6664 {
6665         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6666         unsigned long time_limit = jiffies +
6667                 usecs_to_jiffies(netdev_budget_usecs);
6668         int budget = netdev_budget;
6669         LIST_HEAD(list);
6670         LIST_HEAD(repoll);
6671
6672         local_irq_disable();
6673         list_splice_init(&sd->poll_list, &list);
6674         local_irq_enable();
6675
6676         for (;;) {
6677                 struct napi_struct *n;
6678
6679                 if (list_empty(&list)) {
6680                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6681                                 goto out;
6682                         break;
6683                 }
6684
6685                 n = list_first_entry(&list, struct napi_struct, poll_list);
6686                 budget -= napi_poll(n, &repoll);
6687
6688                 /* If softirq window is exhausted then punt.
6689                  * Allow this to run for 2 jiffies since which will allow
6690                  * an average latency of 1.5/HZ.
6691                  */
6692                 if (unlikely(budget <= 0 ||
6693                              time_after_eq(jiffies, time_limit))) {
6694                         sd->time_squeeze++;
6695                         break;
6696                 }
6697         }
6698
6699         local_irq_disable();
6700
6701         list_splice_tail_init(&sd->poll_list, &list);
6702         list_splice_tail(&repoll, &list);
6703         list_splice(&list, &sd->poll_list);
6704         if (!list_empty(&sd->poll_list))
6705                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6706
6707         net_rps_action_and_irq_enable(sd);
6708 out:
6709         __kfree_skb_flush();
6710 }
6711
6712 struct netdev_adjacent {
6713         struct net_device *dev;
6714
6715         /* upper master flag, there can only be one master device per list */
6716         bool master;
6717
6718         /* counter for the number of times this device was added to us */
6719         u16 ref_nr;
6720
6721         /* private field for the users */
6722         void *private;
6723
6724         struct list_head list;
6725         struct rcu_head rcu;
6726 };
6727
6728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6729                                                  struct list_head *adj_list)
6730 {
6731         struct netdev_adjacent *adj;
6732
6733         list_for_each_entry(adj, adj_list, list) {
6734                 if (adj->dev == adj_dev)
6735                         return adj;
6736         }
6737         return NULL;
6738 }
6739
6740 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6741 {
6742         struct net_device *dev = data;
6743
6744         return upper_dev == dev;
6745 }
6746
6747 /**
6748  * netdev_has_upper_dev - Check if device is linked to an upper device
6749  * @dev: device
6750  * @upper_dev: upper device to check
6751  *
6752  * Find out if a device is linked to specified upper device and return true
6753  * in case it is. Note that this checks only immediate upper device,
6754  * not through a complete stack of devices. The caller must hold the RTNL lock.
6755  */
6756 bool netdev_has_upper_dev(struct net_device *dev,
6757                           struct net_device *upper_dev)
6758 {
6759         ASSERT_RTNL();
6760
6761         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6762                                              upper_dev);
6763 }
6764 EXPORT_SYMBOL(netdev_has_upper_dev);
6765
6766 /**
6767  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6768  * @dev: device
6769  * @upper_dev: upper device to check
6770  *
6771  * Find out if a device is linked to specified upper device and return true
6772  * in case it is. Note that this checks the entire upper device chain.
6773  * The caller must hold rcu lock.
6774  */
6775
6776 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6777                                   struct net_device *upper_dev)
6778 {
6779         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6780                                                upper_dev);
6781 }
6782 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6783
6784 /**
6785  * netdev_has_any_upper_dev - Check if device is linked to some device
6786  * @dev: device
6787  *
6788  * Find out if a device is linked to an upper device and return true in case
6789  * it is. The caller must hold the RTNL lock.
6790  */
6791 bool netdev_has_any_upper_dev(struct net_device *dev)
6792 {
6793         ASSERT_RTNL();
6794
6795         return !list_empty(&dev->adj_list.upper);
6796 }
6797 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6798
6799 /**
6800  * netdev_master_upper_dev_get - Get master upper device
6801  * @dev: device
6802  *
6803  * Find a master upper device and return pointer to it or NULL in case
6804  * it's not there. The caller must hold the RTNL lock.
6805  */
6806 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6807 {
6808         struct netdev_adjacent *upper;
6809
6810         ASSERT_RTNL();
6811
6812         if (list_empty(&dev->adj_list.upper))
6813                 return NULL;
6814
6815         upper = list_first_entry(&dev->adj_list.upper,
6816                                  struct netdev_adjacent, list);
6817         if (likely(upper->master))
6818                 return upper->dev;
6819         return NULL;
6820 }
6821 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6822
6823 /**
6824  * netdev_has_any_lower_dev - Check if device is linked to some device
6825  * @dev: device
6826  *
6827  * Find out if a device is linked to a lower device and return true in case
6828  * it is. The caller must hold the RTNL lock.
6829  */
6830 static bool netdev_has_any_lower_dev(struct net_device *dev)
6831 {
6832         ASSERT_RTNL();
6833
6834         return !list_empty(&dev->adj_list.lower);
6835 }
6836
6837 void *netdev_adjacent_get_private(struct list_head *adj_list)
6838 {
6839         struct netdev_adjacent *adj;
6840
6841         adj = list_entry(adj_list, struct netdev_adjacent, list);
6842
6843         return adj->private;
6844 }
6845 EXPORT_SYMBOL(netdev_adjacent_get_private);
6846
6847 /**
6848  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6849  * @dev: device
6850  * @iter: list_head ** of the current position
6851  *
6852  * Gets the next device from the dev's upper list, starting from iter
6853  * position. The caller must hold RCU read lock.
6854  */
6855 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6856                                                  struct list_head **iter)
6857 {
6858         struct netdev_adjacent *upper;
6859
6860         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6861
6862         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6863
6864         if (&upper->list == &dev->adj_list.upper)
6865                 return NULL;
6866
6867         *iter = &upper->list;
6868
6869         return upper->dev;
6870 }
6871 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6872
6873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6874                                                     struct list_head **iter)
6875 {
6876         struct netdev_adjacent *upper;
6877
6878         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6879
6880         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6881
6882         if (&upper->list == &dev->adj_list.upper)
6883                 return NULL;
6884
6885         *iter = &upper->list;
6886
6887         return upper->dev;
6888 }
6889
6890 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6891                                   int (*fn)(struct net_device *dev,
6892                                             void *data),
6893                                   void *data)
6894 {
6895         struct net_device *udev;
6896         struct list_head *iter;
6897         int ret;
6898
6899         for (iter = &dev->adj_list.upper,
6900              udev = netdev_next_upper_dev_rcu(dev, &iter);
6901              udev;
6902              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6903                 /* first is the upper device itself */
6904                 ret = fn(udev, data);
6905                 if (ret)
6906                         return ret;
6907
6908                 /* then look at all of its upper devices */
6909                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6910                 if (ret)
6911                         return ret;
6912         }
6913
6914         return 0;
6915 }
6916 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6917
6918 /**
6919  * netdev_lower_get_next_private - Get the next ->private from the
6920  *                                 lower neighbour list
6921  * @dev: device
6922  * @iter: list_head ** of the current position
6923  *
6924  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6925  * list, starting from iter position. The caller must hold either hold the
6926  * RTNL lock or its own locking that guarantees that the neighbour lower
6927  * list will remain unchanged.
6928  */
6929 void *netdev_lower_get_next_private(struct net_device *dev,
6930                                     struct list_head **iter)
6931 {
6932         struct netdev_adjacent *lower;
6933
6934         lower = list_entry(*iter, struct netdev_adjacent, list);
6935
6936         if (&lower->list == &dev->adj_list.lower)
6937                 return NULL;
6938
6939         *iter = lower->list.next;
6940
6941         return lower->private;
6942 }
6943 EXPORT_SYMBOL(netdev_lower_get_next_private);
6944
6945 /**
6946  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6947  *                                     lower neighbour list, RCU
6948  *                                     variant
6949  * @dev: device
6950  * @iter: list_head ** of the current position
6951  *
6952  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6953  * list, starting from iter position. The caller must hold RCU read lock.
6954  */
6955 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6956                                         struct list_head **iter)
6957 {
6958         struct netdev_adjacent *lower;
6959
6960         WARN_ON_ONCE(!rcu_read_lock_held());
6961
6962         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6963
6964         if (&lower->list == &dev->adj_list.lower)
6965                 return NULL;
6966
6967         *iter = &lower->list;
6968
6969         return lower->private;
6970 }
6971 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6972
6973 /**
6974  * netdev_lower_get_next - Get the next device from the lower neighbour
6975  *                         list
6976  * @dev: device
6977  * @iter: list_head ** of the current position
6978  *
6979  * Gets the next netdev_adjacent from the dev's lower neighbour
6980  * list, starting from iter position. The caller must hold RTNL lock or
6981  * its own locking that guarantees that the neighbour lower
6982  * list will remain unchanged.
6983  */
6984 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6985 {
6986         struct netdev_adjacent *lower;
6987
6988         lower = list_entry(*iter, struct netdev_adjacent, list);
6989
6990         if (&lower->list == &dev->adj_list.lower)
6991                 return NULL;
6992
6993         *iter = lower->list.next;
6994
6995         return lower->dev;
6996 }
6997 EXPORT_SYMBOL(netdev_lower_get_next);
6998
6999 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7000                                                 struct list_head **iter)
7001 {
7002         struct netdev_adjacent *lower;
7003
7004         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7005
7006         if (&lower->list == &dev->adj_list.lower)
7007                 return NULL;
7008
7009         *iter = &lower->list;
7010
7011         return lower->dev;
7012 }
7013
7014 int netdev_walk_all_lower_dev(struct net_device *dev,
7015                               int (*fn)(struct net_device *dev,
7016                                         void *data),
7017                               void *data)
7018 {
7019         struct net_device *ldev;
7020         struct list_head *iter;
7021         int ret;
7022
7023         for (iter = &dev->adj_list.lower,
7024              ldev = netdev_next_lower_dev(dev, &iter);
7025              ldev;
7026              ldev = netdev_next_lower_dev(dev, &iter)) {
7027                 /* first is the lower device itself */
7028                 ret = fn(ldev, data);
7029                 if (ret)
7030                         return ret;
7031
7032                 /* then look at all of its lower devices */
7033                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
7034                 if (ret)
7035                         return ret;
7036         }
7037
7038         return 0;
7039 }
7040 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7041
7042 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7043                                                     struct list_head **iter)
7044 {
7045         struct netdev_adjacent *lower;
7046
7047         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7048         if (&lower->list == &dev->adj_list.lower)
7049                 return NULL;
7050
7051         *iter = &lower->list;
7052
7053         return lower->dev;
7054 }
7055
7056 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7057                                   int (*fn)(struct net_device *dev,
7058                                             void *data),
7059                                   void *data)
7060 {
7061         struct net_device *ldev;
7062         struct list_head *iter;
7063         int ret;
7064
7065         for (iter = &dev->adj_list.lower,
7066              ldev = netdev_next_lower_dev_rcu(dev, &iter);
7067              ldev;
7068              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
7069                 /* first is the lower device itself */
7070                 ret = fn(ldev, data);
7071                 if (ret)
7072                         return ret;
7073
7074                 /* then look at all of its lower devices */
7075                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
7076                 if (ret)
7077                         return ret;
7078         }
7079
7080         return 0;
7081 }
7082 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7083
7084 /**
7085  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7086  *                                     lower neighbour list, RCU
7087  *                                     variant
7088  * @dev: device
7089  *
7090  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7091  * list. The caller must hold RCU read lock.
7092  */
7093 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7094 {
7095         struct netdev_adjacent *lower;
7096
7097         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7098                         struct netdev_adjacent, list);
7099         if (lower)
7100                 return lower->private;
7101         return NULL;
7102 }
7103 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7104
7105 /**
7106  * netdev_master_upper_dev_get_rcu - Get master upper device
7107  * @dev: device
7108  *
7109  * Find a master upper device and return pointer to it or NULL in case
7110  * it's not there. The caller must hold the RCU read lock.
7111  */
7112 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7113 {
7114         struct netdev_adjacent *upper;
7115
7116         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7117                                        struct netdev_adjacent, list);
7118         if (upper && likely(upper->master))
7119                 return upper->dev;
7120         return NULL;
7121 }
7122 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7123
7124 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7125                               struct net_device *adj_dev,
7126                               struct list_head *dev_list)
7127 {
7128         char linkname[IFNAMSIZ+7];
7129
7130         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7131                 "upper_%s" : "lower_%s", adj_dev->name);
7132         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7133                                  linkname);
7134 }
7135 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7136                                char *name,
7137                                struct list_head *dev_list)
7138 {
7139         char linkname[IFNAMSIZ+7];
7140
7141         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7142                 "upper_%s" : "lower_%s", name);
7143         sysfs_remove_link(&(dev->dev.kobj), linkname);
7144 }
7145
7146 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7147                                                  struct net_device *adj_dev,
7148                                                  struct list_head *dev_list)
7149 {
7150         return (dev_list == &dev->adj_list.upper ||
7151                 dev_list == &dev->adj_list.lower) &&
7152                 net_eq(dev_net(dev), dev_net(adj_dev));
7153 }
7154
7155 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7156                                         struct net_device *adj_dev,
7157                                         struct list_head *dev_list,
7158                                         void *private, bool master)
7159 {
7160         struct netdev_adjacent *adj;
7161         int ret;
7162
7163         adj = __netdev_find_adj(adj_dev, dev_list);
7164
7165         if (adj) {
7166                 adj->ref_nr += 1;
7167                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7168                          dev->name, adj_dev->name, adj->ref_nr);
7169
7170                 return 0;
7171         }
7172
7173         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7174         if (!adj)
7175                 return -ENOMEM;
7176
7177         adj->dev = adj_dev;
7178         adj->master = master;
7179         adj->ref_nr = 1;
7180         adj->private = private;
7181         dev_hold(adj_dev);
7182
7183         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7184                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7185
7186         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7187                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7188                 if (ret)
7189                         goto free_adj;
7190         }
7191
7192         /* Ensure that master link is always the first item in list. */
7193         if (master) {
7194                 ret = sysfs_create_link(&(dev->dev.kobj),
7195                                         &(adj_dev->dev.kobj), "master");
7196                 if (ret)
7197                         goto remove_symlinks;
7198
7199                 list_add_rcu(&adj->list, dev_list);
7200         } else {
7201                 list_add_tail_rcu(&adj->list, dev_list);
7202         }
7203
7204         return 0;
7205
7206 remove_symlinks:
7207         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7208                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7209 free_adj:
7210         kfree(adj);
7211         dev_put(adj_dev);
7212
7213         return ret;
7214 }
7215
7216 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7217                                          struct net_device *adj_dev,
7218                                          u16 ref_nr,
7219                                          struct list_head *dev_list)
7220 {
7221         struct netdev_adjacent *adj;
7222
7223         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7224                  dev->name, adj_dev->name, ref_nr);
7225
7226         adj = __netdev_find_adj(adj_dev, dev_list);
7227
7228         if (!adj) {
7229                 pr_err("Adjacency does not exist for device %s from %s\n",
7230                        dev->name, adj_dev->name);
7231                 WARN_ON(1);
7232                 return;
7233         }
7234
7235         if (adj->ref_nr > ref_nr) {
7236                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7237                          dev->name, adj_dev->name, ref_nr,
7238                          adj->ref_nr - ref_nr);
7239                 adj->ref_nr -= ref_nr;
7240                 return;
7241         }
7242
7243         if (adj->master)
7244                 sysfs_remove_link(&(dev->dev.kobj), "master");
7245
7246         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7247                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7248
7249         list_del_rcu(&adj->list);
7250         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7251                  adj_dev->name, dev->name, adj_dev->name);
7252         dev_put(adj_dev);
7253         kfree_rcu(adj, rcu);
7254 }
7255
7256 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7257                                             struct net_device *upper_dev,
7258                                             struct list_head *up_list,
7259                                             struct list_head *down_list,
7260                                             void *private, bool master)
7261 {
7262         int ret;
7263
7264         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7265                                            private, master);
7266         if (ret)
7267                 return ret;
7268
7269         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7270                                            private, false);
7271         if (ret) {
7272                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7273                 return ret;
7274         }
7275
7276         return 0;
7277 }
7278
7279 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7280                                                struct net_device *upper_dev,
7281                                                u16 ref_nr,
7282                                                struct list_head *up_list,
7283                                                struct list_head *down_list)
7284 {
7285         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7286         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7287 }
7288
7289 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7290                                                 struct net_device *upper_dev,
7291                                                 void *private, bool master)
7292 {
7293         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7294                                                 &dev->adj_list.upper,
7295                                                 &upper_dev->adj_list.lower,
7296                                                 private, master);
7297 }
7298
7299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7300                                                    struct net_device *upper_dev)
7301 {
7302         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7303                                            &dev->adj_list.upper,
7304                                            &upper_dev->adj_list.lower);
7305 }
7306
7307 static int __netdev_upper_dev_link(struct net_device *dev,
7308                                    struct net_device *upper_dev, bool master,
7309                                    void *upper_priv, void *upper_info,
7310                                    struct netlink_ext_ack *extack)
7311 {
7312         struct netdev_notifier_changeupper_info changeupper_info = {
7313                 .info = {
7314                         .dev = dev,
7315                         .extack = extack,
7316                 },
7317                 .upper_dev = upper_dev,
7318                 .master = master,
7319                 .linking = true,
7320                 .upper_info = upper_info,
7321         };
7322         struct net_device *master_dev;
7323         int ret = 0;
7324
7325         ASSERT_RTNL();
7326
7327         if (dev == upper_dev)
7328                 return -EBUSY;
7329
7330         /* To prevent loops, check if dev is not upper device to upper_dev. */
7331         if (netdev_has_upper_dev(upper_dev, dev))
7332                 return -EBUSY;
7333
7334         if (!master) {
7335                 if (netdev_has_upper_dev(dev, upper_dev))
7336                         return -EEXIST;
7337         } else {
7338                 master_dev = netdev_master_upper_dev_get(dev);
7339                 if (master_dev)
7340                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7341         }
7342
7343         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7344                                             &changeupper_info.info);
7345         ret = notifier_to_errno(ret);
7346         if (ret)
7347                 return ret;
7348
7349         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7350                                                    master);
7351         if (ret)
7352                 return ret;
7353
7354         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7355                                             &changeupper_info.info);
7356         ret = notifier_to_errno(ret);
7357         if (ret)
7358                 goto rollback;
7359
7360         return 0;
7361
7362 rollback:
7363         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7364
7365         return ret;
7366 }
7367
7368 /**
7369  * netdev_upper_dev_link - Add a link to the upper device
7370  * @dev: device
7371  * @upper_dev: new upper device
7372  * @extack: netlink extended ack
7373  *
7374  * Adds a link to device which is upper to this one. The caller must hold
7375  * the RTNL lock. On a failure a negative errno code is returned.
7376  * On success the reference counts are adjusted and the function
7377  * returns zero.
7378  */
7379 int netdev_upper_dev_link(struct net_device *dev,
7380                           struct net_device *upper_dev,
7381                           struct netlink_ext_ack *extack)
7382 {
7383         return __netdev_upper_dev_link(dev, upper_dev, false,
7384                                        NULL, NULL, extack);
7385 }
7386 EXPORT_SYMBOL(netdev_upper_dev_link);
7387
7388 /**
7389  * netdev_master_upper_dev_link - Add a master link to the upper device
7390  * @dev: device
7391  * @upper_dev: new upper device
7392  * @upper_priv: upper device private
7393  * @upper_info: upper info to be passed down via notifier
7394  * @extack: netlink extended ack
7395  *
7396  * Adds a link to device which is upper to this one. In this case, only
7397  * one master upper device can be linked, although other non-master devices
7398  * might be linked as well. The caller must hold the RTNL lock.
7399  * On a failure a negative errno code is returned. On success the reference
7400  * counts are adjusted and the function returns zero.
7401  */
7402 int netdev_master_upper_dev_link(struct net_device *dev,
7403                                  struct net_device *upper_dev,
7404                                  void *upper_priv, void *upper_info,
7405                                  struct netlink_ext_ack *extack)
7406 {
7407         return __netdev_upper_dev_link(dev, upper_dev, true,
7408                                        upper_priv, upper_info, extack);
7409 }
7410 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7411
7412 /**
7413  * netdev_upper_dev_unlink - Removes a link to upper device
7414  * @dev: device
7415  * @upper_dev: new upper device
7416  *
7417  * Removes a link to device which is upper to this one. The caller must hold
7418  * the RTNL lock.
7419  */
7420 void netdev_upper_dev_unlink(struct net_device *dev,
7421                              struct net_device *upper_dev)
7422 {
7423         struct netdev_notifier_changeupper_info changeupper_info = {
7424                 .info = {
7425                         .dev = dev,
7426                 },
7427                 .upper_dev = upper_dev,
7428                 .linking = false,
7429         };
7430
7431         ASSERT_RTNL();
7432
7433         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7434
7435         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7436                                       &changeupper_info.info);
7437
7438         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7439
7440         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7441                                       &changeupper_info.info);
7442 }
7443 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7444
7445 /**
7446  * netdev_bonding_info_change - Dispatch event about slave change
7447  * @dev: device
7448  * @bonding_info: info to dispatch
7449  *
7450  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7451  * The caller must hold the RTNL lock.
7452  */
7453 void netdev_bonding_info_change(struct net_device *dev,
7454                                 struct netdev_bonding_info *bonding_info)
7455 {
7456         struct netdev_notifier_bonding_info info = {
7457                 .info.dev = dev,
7458         };
7459
7460         memcpy(&info.bonding_info, bonding_info,
7461                sizeof(struct netdev_bonding_info));
7462         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7463                                       &info.info);
7464 }
7465 EXPORT_SYMBOL(netdev_bonding_info_change);
7466
7467 static void netdev_adjacent_add_links(struct net_device *dev)
7468 {
7469         struct netdev_adjacent *iter;
7470
7471         struct net *net = dev_net(dev);
7472
7473         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7474                 if (!net_eq(net, dev_net(iter->dev)))
7475                         continue;
7476                 netdev_adjacent_sysfs_add(iter->dev, dev,
7477                                           &iter->dev->adj_list.lower);
7478                 netdev_adjacent_sysfs_add(dev, iter->dev,
7479                                           &dev->adj_list.upper);
7480         }
7481
7482         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7483                 if (!net_eq(net, dev_net(iter->dev)))
7484                         continue;
7485                 netdev_adjacent_sysfs_add(iter->dev, dev,
7486                                           &iter->dev->adj_list.upper);
7487                 netdev_adjacent_sysfs_add(dev, iter->dev,
7488                                           &dev->adj_list.lower);
7489         }
7490 }
7491
7492 static void netdev_adjacent_del_links(struct net_device *dev)
7493 {
7494         struct netdev_adjacent *iter;
7495
7496         struct net *net = dev_net(dev);
7497
7498         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7499                 if (!net_eq(net, dev_net(iter->dev)))
7500                         continue;
7501                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7502                                           &iter->dev->adj_list.lower);
7503                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7504                                           &dev->adj_list.upper);
7505         }
7506
7507         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7508                 if (!net_eq(net, dev_net(iter->dev)))
7509                         continue;
7510                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7511                                           &iter->dev->adj_list.upper);
7512                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7513                                           &dev->adj_list.lower);
7514         }
7515 }
7516
7517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7518 {
7519         struct netdev_adjacent *iter;
7520
7521         struct net *net = dev_net(dev);
7522
7523         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7524                 if (!net_eq(net, dev_net(iter->dev)))
7525                         continue;
7526                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7527                                           &iter->dev->adj_list.lower);
7528                 netdev_adjacent_sysfs_add(iter->dev, dev,
7529                                           &iter->dev->adj_list.lower);
7530         }
7531
7532         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7533                 if (!net_eq(net, dev_net(iter->dev)))
7534                         continue;
7535                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7536                                           &iter->dev->adj_list.upper);
7537                 netdev_adjacent_sysfs_add(iter->dev, dev,
7538                                           &iter->dev->adj_list.upper);
7539         }
7540 }
7541
7542 void *netdev_lower_dev_get_private(struct net_device *dev,
7543                                    struct net_device *lower_dev)
7544 {
7545         struct netdev_adjacent *lower;
7546
7547         if (!lower_dev)
7548                 return NULL;
7549         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7550         if (!lower)
7551                 return NULL;
7552
7553         return lower->private;
7554 }
7555 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7556
7557
7558 int dev_get_nest_level(struct net_device *dev)
7559 {
7560         struct net_device *lower = NULL;
7561         struct list_head *iter;
7562         int max_nest = -1;
7563         int nest;
7564
7565         ASSERT_RTNL();
7566
7567         netdev_for_each_lower_dev(dev, lower, iter) {
7568                 nest = dev_get_nest_level(lower);
7569                 if (max_nest < nest)
7570                         max_nest = nest;
7571         }
7572
7573         return max_nest + 1;
7574 }
7575 EXPORT_SYMBOL(dev_get_nest_level);
7576
7577 /**
7578  * netdev_lower_change - Dispatch event about lower device state change
7579  * @lower_dev: device
7580  * @lower_state_info: state to dispatch
7581  *
7582  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7583  * The caller must hold the RTNL lock.
7584  */
7585 void netdev_lower_state_changed(struct net_device *lower_dev,
7586                                 void *lower_state_info)
7587 {
7588         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7589                 .info.dev = lower_dev,
7590         };
7591
7592         ASSERT_RTNL();
7593         changelowerstate_info.lower_state_info = lower_state_info;
7594         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7595                                       &changelowerstate_info.info);
7596 }
7597 EXPORT_SYMBOL(netdev_lower_state_changed);
7598
7599 static void dev_change_rx_flags(struct net_device *dev, int flags)
7600 {
7601         const struct net_device_ops *ops = dev->netdev_ops;
7602
7603         if (ops->ndo_change_rx_flags)
7604                 ops->ndo_change_rx_flags(dev, flags);
7605 }
7606
7607 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7608 {
7609         unsigned int old_flags = dev->flags;
7610         kuid_t uid;
7611         kgid_t gid;
7612
7613         ASSERT_RTNL();
7614
7615         dev->flags |= IFF_PROMISC;
7616         dev->promiscuity += inc;
7617         if (dev->promiscuity == 0) {
7618                 /*
7619                  * Avoid overflow.
7620                  * If inc causes overflow, untouch promisc and return error.
7621                  */
7622                 if (inc < 0)
7623                         dev->flags &= ~IFF_PROMISC;
7624                 else {
7625                         dev->promiscuity -= inc;
7626                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7627                                 dev->name);
7628                         return -EOVERFLOW;
7629                 }
7630         }
7631         if (dev->flags != old_flags) {
7632                 pr_info("device %s %s promiscuous mode\n",
7633                         dev->name,
7634                         dev->flags & IFF_PROMISC ? "entered" : "left");
7635                 if (audit_enabled) {
7636                         current_uid_gid(&uid, &gid);
7637                         audit_log(audit_context(), GFP_ATOMIC,
7638                                   AUDIT_ANOM_PROMISCUOUS,
7639                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7640                                   dev->name, (dev->flags & IFF_PROMISC),
7641                                   (old_flags & IFF_PROMISC),
7642                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7643                                   from_kuid(&init_user_ns, uid),
7644                                   from_kgid(&init_user_ns, gid),
7645                                   audit_get_sessionid(current));
7646                 }
7647
7648                 dev_change_rx_flags(dev, IFF_PROMISC);
7649         }
7650         if (notify)
7651                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7652         return 0;
7653 }
7654
7655 /**
7656  *      dev_set_promiscuity     - update promiscuity count on a device
7657  *      @dev: device
7658  *      @inc: modifier
7659  *
7660  *      Add or remove promiscuity from a device. While the count in the device
7661  *      remains above zero the interface remains promiscuous. Once it hits zero
7662  *      the device reverts back to normal filtering operation. A negative inc
7663  *      value is used to drop promiscuity on the device.
7664  *      Return 0 if successful or a negative errno code on error.
7665  */
7666 int dev_set_promiscuity(struct net_device *dev, int inc)
7667 {
7668         unsigned int old_flags = dev->flags;
7669         int err;
7670
7671         err = __dev_set_promiscuity(dev, inc, true);
7672         if (err < 0)
7673                 return err;
7674         if (dev->flags != old_flags)
7675                 dev_set_rx_mode(dev);
7676         return err;
7677 }
7678 EXPORT_SYMBOL(dev_set_promiscuity);
7679
7680 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7681 {
7682         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7683
7684         ASSERT_RTNL();
7685
7686         dev->flags |= IFF_ALLMULTI;
7687         dev->allmulti += inc;
7688         if (dev->allmulti == 0) {
7689                 /*
7690                  * Avoid overflow.
7691                  * If inc causes overflow, untouch allmulti and return error.
7692                  */
7693                 if (inc < 0)
7694                         dev->flags &= ~IFF_ALLMULTI;
7695                 else {
7696                         dev->allmulti -= inc;
7697                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7698                                 dev->name);
7699                         return -EOVERFLOW;
7700                 }
7701         }
7702         if (dev->flags ^ old_flags) {
7703                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7704                 dev_set_rx_mode(dev);
7705                 if (notify)
7706                         __dev_notify_flags(dev, old_flags,
7707                                            dev->gflags ^ old_gflags);
7708         }
7709         return 0;
7710 }
7711
7712 /**
7713  *      dev_set_allmulti        - update allmulti count on a device
7714  *      @dev: device
7715  *      @inc: modifier
7716  *
7717  *      Add or remove reception of all multicast frames to a device. While the
7718  *      count in the device remains above zero the interface remains listening
7719  *      to all interfaces. Once it hits zero the device reverts back to normal
7720  *      filtering operation. A negative @inc value is used to drop the counter
7721  *      when releasing a resource needing all multicasts.
7722  *      Return 0 if successful or a negative errno code on error.
7723  */
7724
7725 int dev_set_allmulti(struct net_device *dev, int inc)
7726 {
7727         return __dev_set_allmulti(dev, inc, true);
7728 }
7729 EXPORT_SYMBOL(dev_set_allmulti);
7730
7731 /*
7732  *      Upload unicast and multicast address lists to device and
7733  *      configure RX filtering. When the device doesn't support unicast
7734  *      filtering it is put in promiscuous mode while unicast addresses
7735  *      are present.
7736  */
7737 void __dev_set_rx_mode(struct net_device *dev)
7738 {
7739         const struct net_device_ops *ops = dev->netdev_ops;
7740
7741         /* dev_open will call this function so the list will stay sane. */
7742         if (!(dev->flags&IFF_UP))
7743                 return;
7744
7745         if (!netif_device_present(dev))
7746                 return;
7747
7748         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7749                 /* Unicast addresses changes may only happen under the rtnl,
7750                  * therefore calling __dev_set_promiscuity here is safe.
7751                  */
7752                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7753                         __dev_set_promiscuity(dev, 1, false);
7754                         dev->uc_promisc = true;
7755                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7756                         __dev_set_promiscuity(dev, -1, false);
7757                         dev->uc_promisc = false;
7758                 }
7759         }
7760
7761         if (ops->ndo_set_rx_mode)
7762                 ops->ndo_set_rx_mode(dev);
7763 }
7764
7765 void dev_set_rx_mode(struct net_device *dev)
7766 {
7767         netif_addr_lock_bh(dev);
7768         __dev_set_rx_mode(dev);
7769         netif_addr_unlock_bh(dev);
7770 }
7771
7772 /**
7773  *      dev_get_flags - get flags reported to userspace
7774  *      @dev: device
7775  *
7776  *      Get the combination of flag bits exported through APIs to userspace.
7777  */
7778 unsigned int dev_get_flags(const struct net_device *dev)
7779 {
7780         unsigned int flags;
7781
7782         flags = (dev->flags & ~(IFF_PROMISC |
7783                                 IFF_ALLMULTI |
7784                                 IFF_RUNNING |
7785                                 IFF_LOWER_UP |
7786                                 IFF_DORMANT)) |
7787                 (dev->gflags & (IFF_PROMISC |
7788                                 IFF_ALLMULTI));
7789
7790         if (netif_running(dev)) {
7791                 if (netif_oper_up(dev))
7792                         flags |= IFF_RUNNING;
7793                 if (netif_carrier_ok(dev))
7794                         flags |= IFF_LOWER_UP;
7795                 if (netif_dormant(dev))
7796                         flags |= IFF_DORMANT;
7797         }
7798
7799         return flags;
7800 }
7801 EXPORT_SYMBOL(dev_get_flags);
7802
7803 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7804                        struct netlink_ext_ack *extack)
7805 {
7806         unsigned int old_flags = dev->flags;
7807         int ret;
7808
7809         ASSERT_RTNL();
7810
7811         /*
7812          *      Set the flags on our device.
7813          */
7814
7815         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7816                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7817                                IFF_AUTOMEDIA)) |
7818                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7819                                     IFF_ALLMULTI));
7820
7821         /*
7822          *      Load in the correct multicast list now the flags have changed.
7823          */
7824
7825         if ((old_flags ^ flags) & IFF_MULTICAST)
7826                 dev_change_rx_flags(dev, IFF_MULTICAST);
7827
7828         dev_set_rx_mode(dev);
7829
7830         /*
7831          *      Have we downed the interface. We handle IFF_UP ourselves
7832          *      according to user attempts to set it, rather than blindly
7833          *      setting it.
7834          */
7835
7836         ret = 0;
7837         if ((old_flags ^ flags) & IFF_UP) {
7838                 if (old_flags & IFF_UP)
7839                         __dev_close(dev);
7840                 else
7841                         ret = __dev_open(dev, extack);
7842         }
7843
7844         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7845                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7846                 unsigned int old_flags = dev->flags;
7847
7848                 dev->gflags ^= IFF_PROMISC;
7849
7850                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7851                         if (dev->flags != old_flags)
7852                                 dev_set_rx_mode(dev);
7853         }
7854
7855         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7856          * is important. Some (broken) drivers set IFF_PROMISC, when
7857          * IFF_ALLMULTI is requested not asking us and not reporting.
7858          */
7859         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7860                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7861
7862                 dev->gflags ^= IFF_ALLMULTI;
7863                 __dev_set_allmulti(dev, inc, false);
7864         }
7865
7866         return ret;
7867 }
7868
7869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7870                         unsigned int gchanges)
7871 {
7872         unsigned int changes = dev->flags ^ old_flags;
7873
7874         if (gchanges)
7875                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7876
7877         if (changes & IFF_UP) {
7878                 if (dev->flags & IFF_UP)
7879                         call_netdevice_notifiers(NETDEV_UP, dev);
7880                 else
7881                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7882         }
7883
7884         if (dev->flags & IFF_UP &&
7885             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7886                 struct netdev_notifier_change_info change_info = {
7887                         .info = {
7888                                 .dev = dev,
7889                         },
7890                         .flags_changed = changes,
7891                 };
7892
7893                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7894         }
7895 }
7896
7897 /**
7898  *      dev_change_flags - change device settings
7899  *      @dev: device
7900  *      @flags: device state flags
7901  *      @extack: netlink extended ack
7902  *
7903  *      Change settings on device based state flags. The flags are
7904  *      in the userspace exported format.
7905  */
7906 int dev_change_flags(struct net_device *dev, unsigned int flags,
7907                      struct netlink_ext_ack *extack)
7908 {
7909         int ret;
7910         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7911
7912         ret = __dev_change_flags(dev, flags, extack);
7913         if (ret < 0)
7914                 return ret;
7915
7916         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7917         __dev_notify_flags(dev, old_flags, changes);
7918         return ret;
7919 }
7920 EXPORT_SYMBOL(dev_change_flags);
7921
7922 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7923 {
7924         const struct net_device_ops *ops = dev->netdev_ops;
7925
7926         if (ops->ndo_change_mtu)
7927                 return ops->ndo_change_mtu(dev, new_mtu);
7928
7929         dev->mtu = new_mtu;
7930         return 0;
7931 }
7932 EXPORT_SYMBOL(__dev_set_mtu);
7933
7934 /**
7935  *      dev_set_mtu_ext - Change maximum transfer unit
7936  *      @dev: device
7937  *      @new_mtu: new transfer unit
7938  *      @extack: netlink extended ack
7939  *
7940  *      Change the maximum transfer size of the network device.
7941  */
7942 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7943                     struct netlink_ext_ack *extack)
7944 {
7945         int err, orig_mtu;
7946
7947         if (new_mtu == dev->mtu)
7948                 return 0;
7949
7950         /* MTU must be positive, and in range */
7951         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7952                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7953                 return -EINVAL;
7954         }
7955
7956         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7957                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7958                 return -EINVAL;
7959         }
7960
7961         if (!netif_device_present(dev))
7962                 return -ENODEV;
7963
7964         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7965         err = notifier_to_errno(err);
7966         if (err)
7967                 return err;
7968
7969         orig_mtu = dev->mtu;
7970         err = __dev_set_mtu(dev, new_mtu);
7971
7972         if (!err) {
7973                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7974                                                    orig_mtu);
7975                 err = notifier_to_errno(err);
7976                 if (err) {
7977                         /* setting mtu back and notifying everyone again,
7978                          * so that they have a chance to revert changes.
7979                          */
7980                         __dev_set_mtu(dev, orig_mtu);
7981                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7982                                                      new_mtu);
7983                 }
7984         }
7985         return err;
7986 }
7987
7988 int dev_set_mtu(struct net_device *dev, int new_mtu)
7989 {
7990         struct netlink_ext_ack extack;
7991         int err;
7992
7993         memset(&extack, 0, sizeof(extack));
7994         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7995         if (err && extack._msg)
7996                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7997         return err;
7998 }
7999 EXPORT_SYMBOL(dev_set_mtu);
8000
8001 /**
8002  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8003  *      @dev: device
8004  *      @new_len: new tx queue length
8005  */
8006 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8007 {
8008         unsigned int orig_len = dev->tx_queue_len;
8009         int res;
8010
8011         if (new_len != (unsigned int)new_len)
8012                 return -ERANGE;
8013
8014         if (new_len != orig_len) {
8015                 dev->tx_queue_len = new_len;
8016                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8017                 res = notifier_to_errno(res);
8018                 if (res)
8019                         goto err_rollback;
8020                 res = dev_qdisc_change_tx_queue_len(dev);
8021                 if (res)
8022                         goto err_rollback;
8023         }
8024
8025         return 0;
8026
8027 err_rollback:
8028         netdev_err(dev, "refused to change device tx_queue_len\n");
8029         dev->tx_queue_len = orig_len;
8030         return res;
8031 }
8032
8033 /**
8034  *      dev_set_group - Change group this device belongs to
8035  *      @dev: device
8036  *      @new_group: group this device should belong to
8037  */
8038 void dev_set_group(struct net_device *dev, int new_group)
8039 {
8040         dev->group = new_group;
8041 }
8042 EXPORT_SYMBOL(dev_set_group);
8043
8044 /**
8045  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8046  *      @dev: device
8047  *      @addr: new address
8048  *      @extack: netlink extended ack
8049  */
8050 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8051                               struct netlink_ext_ack *extack)
8052 {
8053         struct netdev_notifier_pre_changeaddr_info info = {
8054                 .info.dev = dev,
8055                 .info.extack = extack,
8056                 .dev_addr = addr,
8057         };
8058         int rc;
8059
8060         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8061         return notifier_to_errno(rc);
8062 }
8063 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8064
8065 /**
8066  *      dev_set_mac_address - Change Media Access Control Address
8067  *      @dev: device
8068  *      @sa: new address
8069  *      @extack: netlink extended ack
8070  *
8071  *      Change the hardware (MAC) address of the device
8072  */
8073 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8074                         struct netlink_ext_ack *extack)
8075 {
8076         const struct net_device_ops *ops = dev->netdev_ops;
8077         int err;
8078
8079         if (!ops->ndo_set_mac_address)
8080                 return -EOPNOTSUPP;
8081         if (sa->sa_family != dev->type)
8082                 return -EINVAL;
8083         if (!netif_device_present(dev))
8084                 return -ENODEV;
8085         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8086         if (err)
8087                 return err;
8088         err = ops->ndo_set_mac_address(dev, sa);
8089         if (err)
8090                 return err;
8091         dev->addr_assign_type = NET_ADDR_SET;
8092         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8093         add_device_randomness(dev->dev_addr, dev->addr_len);
8094         return 0;
8095 }
8096 EXPORT_SYMBOL(dev_set_mac_address);
8097
8098 /**
8099  *      dev_change_carrier - Change device carrier
8100  *      @dev: device
8101  *      @new_carrier: new value
8102  *
8103  *      Change device carrier
8104  */
8105 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8106 {
8107         const struct net_device_ops *ops = dev->netdev_ops;
8108
8109         if (!ops->ndo_change_carrier)
8110                 return -EOPNOTSUPP;
8111         if (!netif_device_present(dev))
8112                 return -ENODEV;
8113         return ops->ndo_change_carrier(dev, new_carrier);
8114 }
8115 EXPORT_SYMBOL(dev_change_carrier);
8116
8117 /**
8118  *      dev_get_phys_port_id - Get device physical port ID
8119  *      @dev: device
8120  *      @ppid: port ID
8121  *
8122  *      Get device physical port ID
8123  */
8124 int dev_get_phys_port_id(struct net_device *dev,
8125                          struct netdev_phys_item_id *ppid)
8126 {
8127         const struct net_device_ops *ops = dev->netdev_ops;
8128
8129         if (!ops->ndo_get_phys_port_id)
8130                 return -EOPNOTSUPP;
8131         return ops->ndo_get_phys_port_id(dev, ppid);
8132 }
8133 EXPORT_SYMBOL(dev_get_phys_port_id);
8134
8135 /**
8136  *      dev_get_phys_port_name - Get device physical port name
8137  *      @dev: device
8138  *      @name: port name
8139  *      @len: limit of bytes to copy to name
8140  *
8141  *      Get device physical port name
8142  */
8143 int dev_get_phys_port_name(struct net_device *dev,
8144                            char *name, size_t len)
8145 {
8146         const struct net_device_ops *ops = dev->netdev_ops;
8147         int err;
8148
8149         if (ops->ndo_get_phys_port_name) {
8150                 err = ops->ndo_get_phys_port_name(dev, name, len);
8151                 if (err != -EOPNOTSUPP)
8152                         return err;
8153         }
8154         return devlink_compat_phys_port_name_get(dev, name, len);
8155 }
8156 EXPORT_SYMBOL(dev_get_phys_port_name);
8157
8158 /**
8159  *      dev_get_port_parent_id - Get the device's port parent identifier
8160  *      @dev: network device
8161  *      @ppid: pointer to a storage for the port's parent identifier
8162  *      @recurse: allow/disallow recursion to lower devices
8163  *
8164  *      Get the devices's port parent identifier
8165  */
8166 int dev_get_port_parent_id(struct net_device *dev,
8167                            struct netdev_phys_item_id *ppid,
8168                            bool recurse)
8169 {
8170         const struct net_device_ops *ops = dev->netdev_ops;
8171         struct netdev_phys_item_id first = { };
8172         struct net_device *lower_dev;
8173         struct list_head *iter;
8174         int err;
8175
8176         if (ops->ndo_get_port_parent_id) {
8177                 err = ops->ndo_get_port_parent_id(dev, ppid);
8178                 if (err != -EOPNOTSUPP)
8179                         return err;
8180         }
8181
8182         err = devlink_compat_switch_id_get(dev, ppid);
8183         if (!err || err != -EOPNOTSUPP)
8184                 return err;
8185
8186         if (!recurse)
8187                 return -EOPNOTSUPP;
8188
8189         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8190                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8191                 if (err)
8192                         break;
8193                 if (!first.id_len)
8194                         first = *ppid;
8195                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8196                         return -ENODATA;
8197         }
8198
8199         return err;
8200 }
8201 EXPORT_SYMBOL(dev_get_port_parent_id);
8202
8203 /**
8204  *      netdev_port_same_parent_id - Indicate if two network devices have
8205  *      the same port parent identifier
8206  *      @a: first network device
8207  *      @b: second network device
8208  */
8209 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8210 {
8211         struct netdev_phys_item_id a_id = { };
8212         struct netdev_phys_item_id b_id = { };
8213
8214         if (dev_get_port_parent_id(a, &a_id, true) ||
8215             dev_get_port_parent_id(b, &b_id, true))
8216                 return false;
8217
8218         return netdev_phys_item_id_same(&a_id, &b_id);
8219 }
8220 EXPORT_SYMBOL(netdev_port_same_parent_id);
8221
8222 /**
8223  *      dev_change_proto_down - update protocol port state information
8224  *      @dev: device
8225  *      @proto_down: new value
8226  *
8227  *      This info can be used by switch drivers to set the phys state of the
8228  *      port.
8229  */
8230 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8231 {
8232         const struct net_device_ops *ops = dev->netdev_ops;
8233
8234         if (!ops->ndo_change_proto_down)
8235                 return -EOPNOTSUPP;
8236         if (!netif_device_present(dev))
8237                 return -ENODEV;
8238         return ops->ndo_change_proto_down(dev, proto_down);
8239 }
8240 EXPORT_SYMBOL(dev_change_proto_down);
8241
8242 /**
8243  *      dev_change_proto_down_generic - generic implementation for
8244  *      ndo_change_proto_down that sets carrier according to
8245  *      proto_down.
8246  *
8247  *      @dev: device
8248  *      @proto_down: new value
8249  */
8250 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8251 {
8252         if (proto_down)
8253                 netif_carrier_off(dev);
8254         else
8255                 netif_carrier_on(dev);
8256         dev->proto_down = proto_down;
8257         return 0;
8258 }
8259 EXPORT_SYMBOL(dev_change_proto_down_generic);
8260
8261 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8262                     enum bpf_netdev_command cmd)
8263 {
8264         struct netdev_bpf xdp;
8265
8266         if (!bpf_op)
8267                 return 0;
8268
8269         memset(&xdp, 0, sizeof(xdp));
8270         xdp.command = cmd;
8271
8272         /* Query must always succeed. */
8273         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8274
8275         return xdp.prog_id;
8276 }
8277
8278 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8279                            struct netlink_ext_ack *extack, u32 flags,
8280                            struct bpf_prog *prog)
8281 {
8282         struct netdev_bpf xdp;
8283
8284         memset(&xdp, 0, sizeof(xdp));
8285         if (flags & XDP_FLAGS_HW_MODE)
8286                 xdp.command = XDP_SETUP_PROG_HW;
8287         else
8288                 xdp.command = XDP_SETUP_PROG;
8289         xdp.extack = extack;
8290         xdp.flags = flags;
8291         xdp.prog = prog;
8292
8293         return bpf_op(dev, &xdp);
8294 }
8295
8296 static void dev_xdp_uninstall(struct net_device *dev)
8297 {
8298         struct netdev_bpf xdp;
8299         bpf_op_t ndo_bpf;
8300
8301         /* Remove generic XDP */
8302         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8303
8304         /* Remove from the driver */
8305         ndo_bpf = dev->netdev_ops->ndo_bpf;
8306         if (!ndo_bpf)
8307                 return;
8308
8309         memset(&xdp, 0, sizeof(xdp));
8310         xdp.command = XDP_QUERY_PROG;
8311         WARN_ON(ndo_bpf(dev, &xdp));
8312         if (xdp.prog_id)
8313                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8314                                         NULL));
8315
8316         /* Remove HW offload */
8317         memset(&xdp, 0, sizeof(xdp));
8318         xdp.command = XDP_QUERY_PROG_HW;
8319         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8320                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8321                                         NULL));
8322 }
8323
8324 /**
8325  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8326  *      @dev: device
8327  *      @extack: netlink extended ack
8328  *      @fd: new program fd or negative value to clear
8329  *      @flags: xdp-related flags
8330  *
8331  *      Set or clear a bpf program for a device
8332  */
8333 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8334                       int fd, u32 flags)
8335 {
8336         const struct net_device_ops *ops = dev->netdev_ops;
8337         enum bpf_netdev_command query;
8338         struct bpf_prog *prog = NULL;
8339         bpf_op_t bpf_op, bpf_chk;
8340         bool offload;
8341         int err;
8342
8343         ASSERT_RTNL();
8344
8345         offload = flags & XDP_FLAGS_HW_MODE;
8346         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8347
8348         bpf_op = bpf_chk = ops->ndo_bpf;
8349         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8350                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8351                 return -EOPNOTSUPP;
8352         }
8353         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8354                 bpf_op = generic_xdp_install;
8355         if (bpf_op == bpf_chk)
8356                 bpf_chk = generic_xdp_install;
8357
8358         if (fd >= 0) {
8359                 u32 prog_id;
8360
8361                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8362                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8363                         return -EEXIST;
8364                 }
8365
8366                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8367                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8368                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8369                         return -EBUSY;
8370                 }
8371
8372                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8373                                              bpf_op == ops->ndo_bpf);
8374                 if (IS_ERR(prog))
8375                         return PTR_ERR(prog);
8376
8377                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8378                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8379                         bpf_prog_put(prog);
8380                         return -EINVAL;
8381                 }
8382
8383                 if (prog->aux->id == prog_id) {
8384                         bpf_prog_put(prog);
8385                         return 0;
8386                 }
8387         } else {
8388                 if (!__dev_xdp_query(dev, bpf_op, query))
8389                         return 0;
8390         }
8391
8392         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8393         if (err < 0 && prog)
8394                 bpf_prog_put(prog);
8395
8396         return err;
8397 }
8398
8399 /**
8400  *      dev_new_index   -       allocate an ifindex
8401  *      @net: the applicable net namespace
8402  *
8403  *      Returns a suitable unique value for a new device interface
8404  *      number.  The caller must hold the rtnl semaphore or the
8405  *      dev_base_lock to be sure it remains unique.
8406  */
8407 static int dev_new_index(struct net *net)
8408 {
8409         int ifindex = net->ifindex;
8410
8411         for (;;) {
8412                 if (++ifindex <= 0)
8413                         ifindex = 1;
8414                 if (!__dev_get_by_index(net, ifindex))
8415                         return net->ifindex = ifindex;
8416         }
8417 }
8418
8419 /* Delayed registration/unregisteration */
8420 static LIST_HEAD(net_todo_list);
8421 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8422
8423 static void net_set_todo(struct net_device *dev)
8424 {
8425         list_add_tail(&dev->todo_list, &net_todo_list);
8426         dev_net(dev)->dev_unreg_count++;
8427 }
8428
8429 static void rollback_registered_many(struct list_head *head)
8430 {
8431         struct net_device *dev, *tmp;
8432         LIST_HEAD(close_head);
8433
8434         BUG_ON(dev_boot_phase);
8435         ASSERT_RTNL();
8436
8437         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8438                 /* Some devices call without registering
8439                  * for initialization unwind. Remove those
8440                  * devices and proceed with the remaining.
8441                  */
8442                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8443                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8444                                  dev->name, dev);
8445
8446                         WARN_ON(1);
8447                         list_del(&dev->unreg_list);
8448                         continue;
8449                 }
8450                 dev->dismantle = true;
8451                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8452         }
8453
8454         /* If device is running, close it first. */
8455         list_for_each_entry(dev, head, unreg_list)
8456                 list_add_tail(&dev->close_list, &close_head);
8457         dev_close_many(&close_head, true);
8458
8459         list_for_each_entry(dev, head, unreg_list) {
8460                 /* And unlink it from device chain. */
8461                 unlist_netdevice(dev);
8462
8463                 dev->reg_state = NETREG_UNREGISTERING;
8464         }
8465         flush_all_backlogs();
8466
8467         synchronize_net();
8468
8469         list_for_each_entry(dev, head, unreg_list) {
8470                 struct sk_buff *skb = NULL;
8471
8472                 /* Shutdown queueing discipline. */
8473                 dev_shutdown(dev);
8474
8475                 dev_xdp_uninstall(dev);
8476
8477                 /* Notify protocols, that we are about to destroy
8478                  * this device. They should clean all the things.
8479                  */
8480                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8481
8482                 if (!dev->rtnl_link_ops ||
8483                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8484                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8485                                                      GFP_KERNEL, NULL, 0);
8486
8487                 /*
8488                  *      Flush the unicast and multicast chains
8489                  */
8490                 dev_uc_flush(dev);
8491                 dev_mc_flush(dev);
8492
8493                 netdev_name_node_alt_flush(dev);
8494                 netdev_name_node_free(dev->name_node);
8495
8496                 if (dev->netdev_ops->ndo_uninit)
8497                         dev->netdev_ops->ndo_uninit(dev);
8498
8499                 if (skb)
8500                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8501
8502                 /* Notifier chain MUST detach us all upper devices. */
8503                 WARN_ON(netdev_has_any_upper_dev(dev));
8504                 WARN_ON(netdev_has_any_lower_dev(dev));
8505
8506                 /* Remove entries from kobject tree */
8507                 netdev_unregister_kobject(dev);
8508 #ifdef CONFIG_XPS
8509                 /* Remove XPS queueing entries */
8510                 netif_reset_xps_queues_gt(dev, 0);
8511 #endif
8512         }
8513
8514         synchronize_net();
8515
8516         list_for_each_entry(dev, head, unreg_list)
8517                 dev_put(dev);
8518 }
8519
8520 static void rollback_registered(struct net_device *dev)
8521 {
8522         LIST_HEAD(single);
8523
8524         list_add(&dev->unreg_list, &single);
8525         rollback_registered_many(&single);
8526         list_del(&single);
8527 }
8528
8529 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8530         struct net_device *upper, netdev_features_t features)
8531 {
8532         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8533         netdev_features_t feature;
8534         int feature_bit;
8535
8536         for_each_netdev_feature(upper_disables, feature_bit) {
8537                 feature = __NETIF_F_BIT(feature_bit);
8538                 if (!(upper->wanted_features & feature)
8539                     && (features & feature)) {
8540                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8541                                    &feature, upper->name);
8542                         features &= ~feature;
8543                 }
8544         }
8545
8546         return features;
8547 }
8548
8549 static void netdev_sync_lower_features(struct net_device *upper,
8550         struct net_device *lower, netdev_features_t features)
8551 {
8552         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8553         netdev_features_t feature;
8554         int feature_bit;
8555
8556         for_each_netdev_feature(upper_disables, feature_bit) {
8557                 feature = __NETIF_F_BIT(feature_bit);
8558                 if (!(features & feature) && (lower->features & feature)) {
8559                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8560                                    &feature, lower->name);
8561                         lower->wanted_features &= ~feature;
8562                         netdev_update_features(lower);
8563
8564                         if (unlikely(lower->features & feature))
8565                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8566                                             &feature, lower->name);
8567                 }
8568         }
8569 }
8570
8571 static netdev_features_t netdev_fix_features(struct net_device *dev,
8572         netdev_features_t features)
8573 {
8574         /* Fix illegal checksum combinations */
8575         if ((features & NETIF_F_HW_CSUM) &&
8576             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8577                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8578                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8579         }
8580
8581         /* TSO requires that SG is present as well. */
8582         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8583                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8584                 features &= ~NETIF_F_ALL_TSO;
8585         }
8586
8587         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8588                                         !(features & NETIF_F_IP_CSUM)) {
8589                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8590                 features &= ~NETIF_F_TSO;
8591                 features &= ~NETIF_F_TSO_ECN;
8592         }
8593
8594         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8595                                          !(features & NETIF_F_IPV6_CSUM)) {
8596                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8597                 features &= ~NETIF_F_TSO6;
8598         }
8599
8600         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8601         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8602                 features &= ~NETIF_F_TSO_MANGLEID;
8603
8604         /* TSO ECN requires that TSO is present as well. */
8605         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8606                 features &= ~NETIF_F_TSO_ECN;
8607
8608         /* Software GSO depends on SG. */
8609         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8610                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8611                 features &= ~NETIF_F_GSO;
8612         }
8613
8614         /* GSO partial features require GSO partial be set */
8615         if ((features & dev->gso_partial_features) &&
8616             !(features & NETIF_F_GSO_PARTIAL)) {
8617                 netdev_dbg(dev,
8618                            "Dropping partially supported GSO features since no GSO partial.\n");
8619                 features &= ~dev->gso_partial_features;
8620         }
8621
8622         if (!(features & NETIF_F_RXCSUM)) {
8623                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8624                  * successfully merged by hardware must also have the
8625                  * checksum verified by hardware.  If the user does not
8626                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8627                  */
8628                 if (features & NETIF_F_GRO_HW) {
8629                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8630                         features &= ~NETIF_F_GRO_HW;
8631                 }
8632         }
8633
8634         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8635         if (features & NETIF_F_RXFCS) {
8636                 if (features & NETIF_F_LRO) {
8637                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8638                         features &= ~NETIF_F_LRO;
8639                 }
8640
8641                 if (features & NETIF_F_GRO_HW) {
8642                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8643                         features &= ~NETIF_F_GRO_HW;
8644                 }
8645         }
8646
8647         return features;
8648 }
8649
8650 int __netdev_update_features(struct net_device *dev)
8651 {
8652         struct net_device *upper, *lower;
8653         netdev_features_t features;
8654         struct list_head *iter;
8655         int err = -1;
8656
8657         ASSERT_RTNL();
8658
8659         features = netdev_get_wanted_features(dev);
8660
8661         if (dev->netdev_ops->ndo_fix_features)
8662                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8663
8664         /* driver might be less strict about feature dependencies */
8665         features = netdev_fix_features(dev, features);
8666
8667         /* some features can't be enabled if they're off an an upper device */
8668         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8669                 features = netdev_sync_upper_features(dev, upper, features);
8670
8671         if (dev->features == features)
8672                 goto sync_lower;
8673
8674         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8675                 &dev->features, &features);
8676
8677         if (dev->netdev_ops->ndo_set_features)
8678                 err = dev->netdev_ops->ndo_set_features(dev, features);
8679         else
8680                 err = 0;
8681
8682         if (unlikely(err < 0)) {
8683                 netdev_err(dev,
8684                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8685                         err, &features, &dev->features);
8686                 /* return non-0 since some features might have changed and
8687                  * it's better to fire a spurious notification than miss it
8688                  */
8689                 return -1;
8690         }
8691
8692 sync_lower:
8693         /* some features must be disabled on lower devices when disabled
8694          * on an upper device (think: bonding master or bridge)
8695          */
8696         netdev_for_each_lower_dev(dev, lower, iter)
8697                 netdev_sync_lower_features(dev, lower, features);
8698
8699         if (!err) {
8700                 netdev_features_t diff = features ^ dev->features;
8701
8702                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8703                         /* udp_tunnel_{get,drop}_rx_info both need
8704                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8705                          * device, or they won't do anything.
8706                          * Thus we need to update dev->features
8707                          * *before* calling udp_tunnel_get_rx_info,
8708                          * but *after* calling udp_tunnel_drop_rx_info.
8709                          */
8710                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8711                                 dev->features = features;
8712                                 udp_tunnel_get_rx_info(dev);
8713                         } else {
8714                                 udp_tunnel_drop_rx_info(dev);
8715                         }
8716                 }
8717
8718                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8719                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8720                                 dev->features = features;
8721                                 err |= vlan_get_rx_ctag_filter_info(dev);
8722                         } else {
8723                                 vlan_drop_rx_ctag_filter_info(dev);
8724                         }
8725                 }
8726
8727                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8728                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8729                                 dev->features = features;
8730                                 err |= vlan_get_rx_stag_filter_info(dev);
8731                         } else {
8732                                 vlan_drop_rx_stag_filter_info(dev);
8733                         }
8734                 }
8735
8736                 dev->features = features;
8737         }
8738
8739         return err < 0 ? 0 : 1;
8740 }
8741
8742 /**
8743  *      netdev_update_features - recalculate device features
8744  *      @dev: the device to check
8745  *
8746  *      Recalculate dev->features set and send notifications if it
8747  *      has changed. Should be called after driver or hardware dependent
8748  *      conditions might have changed that influence the features.
8749  */
8750 void netdev_update_features(struct net_device *dev)
8751 {
8752         if (__netdev_update_features(dev))
8753                 netdev_features_change(dev);
8754 }
8755 EXPORT_SYMBOL(netdev_update_features);
8756
8757 /**
8758  *      netdev_change_features - recalculate device features
8759  *      @dev: the device to check
8760  *
8761  *      Recalculate dev->features set and send notifications even
8762  *      if they have not changed. Should be called instead of
8763  *      netdev_update_features() if also dev->vlan_features might
8764  *      have changed to allow the changes to be propagated to stacked
8765  *      VLAN devices.
8766  */
8767 void netdev_change_features(struct net_device *dev)
8768 {
8769         __netdev_update_features(dev);
8770         netdev_features_change(dev);
8771 }
8772 EXPORT_SYMBOL(netdev_change_features);
8773
8774 /**
8775  *      netif_stacked_transfer_operstate -      transfer operstate
8776  *      @rootdev: the root or lower level device to transfer state from
8777  *      @dev: the device to transfer operstate to
8778  *
8779  *      Transfer operational state from root to device. This is normally
8780  *      called when a stacking relationship exists between the root
8781  *      device and the device(a leaf device).
8782  */
8783 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8784                                         struct net_device *dev)
8785 {
8786         if (rootdev->operstate == IF_OPER_DORMANT)
8787                 netif_dormant_on(dev);
8788         else
8789                 netif_dormant_off(dev);
8790
8791         if (netif_carrier_ok(rootdev))
8792                 netif_carrier_on(dev);
8793         else
8794                 netif_carrier_off(dev);
8795 }
8796 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8797
8798 static int netif_alloc_rx_queues(struct net_device *dev)
8799 {
8800         unsigned int i, count = dev->num_rx_queues;
8801         struct netdev_rx_queue *rx;
8802         size_t sz = count * sizeof(*rx);
8803         int err = 0;
8804
8805         BUG_ON(count < 1);
8806
8807         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8808         if (!rx)
8809                 return -ENOMEM;
8810
8811         dev->_rx = rx;
8812
8813         for (i = 0; i < count; i++) {
8814                 rx[i].dev = dev;
8815
8816                 /* XDP RX-queue setup */
8817                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8818                 if (err < 0)
8819                         goto err_rxq_info;
8820         }
8821         return 0;
8822
8823 err_rxq_info:
8824         /* Rollback successful reg's and free other resources */
8825         while (i--)
8826                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8827         kvfree(dev->_rx);
8828         dev->_rx = NULL;
8829         return err;
8830 }
8831
8832 static void netif_free_rx_queues(struct net_device *dev)
8833 {
8834         unsigned int i, count = dev->num_rx_queues;
8835
8836         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8837         if (!dev->_rx)
8838                 return;
8839
8840         for (i = 0; i < count; i++)
8841                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8842
8843         kvfree(dev->_rx);
8844 }
8845
8846 static void netdev_init_one_queue(struct net_device *dev,
8847                                   struct netdev_queue *queue, void *_unused)
8848 {
8849         /* Initialize queue lock */
8850         spin_lock_init(&queue->_xmit_lock);
8851         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8852         queue->xmit_lock_owner = -1;
8853         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8854         queue->dev = dev;
8855 #ifdef CONFIG_BQL
8856         dql_init(&queue->dql, HZ);
8857 #endif
8858 }
8859
8860 static void netif_free_tx_queues(struct net_device *dev)
8861 {
8862         kvfree(dev->_tx);
8863 }
8864
8865 static int netif_alloc_netdev_queues(struct net_device *dev)
8866 {
8867         unsigned int count = dev->num_tx_queues;
8868         struct netdev_queue *tx;
8869         size_t sz = count * sizeof(*tx);
8870
8871         if (count < 1 || count > 0xffff)
8872                 return -EINVAL;
8873
8874         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8875         if (!tx)
8876                 return -ENOMEM;
8877
8878         dev->_tx = tx;
8879
8880         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8881         spin_lock_init(&dev->tx_global_lock);
8882
8883         return 0;
8884 }
8885
8886 void netif_tx_stop_all_queues(struct net_device *dev)
8887 {
8888         unsigned int i;
8889
8890         for (i = 0; i < dev->num_tx_queues; i++) {
8891                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8892
8893                 netif_tx_stop_queue(txq);
8894         }
8895 }
8896 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8897
8898 /**
8899  *      register_netdevice      - register a network device
8900  *      @dev: device to register
8901  *
8902  *      Take a completed network device structure and add it to the kernel
8903  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8904  *      chain. 0 is returned on success. A negative errno code is returned
8905  *      on a failure to set up the device, or if the name is a duplicate.
8906  *
8907  *      Callers must hold the rtnl semaphore. You may want
8908  *      register_netdev() instead of this.
8909  *
8910  *      BUGS:
8911  *      The locking appears insufficient to guarantee two parallel registers
8912  *      will not get the same name.
8913  */
8914
8915 int register_netdevice(struct net_device *dev)
8916 {
8917         int ret;
8918         struct net *net = dev_net(dev);
8919
8920         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8921                      NETDEV_FEATURE_COUNT);
8922         BUG_ON(dev_boot_phase);
8923         ASSERT_RTNL();
8924
8925         might_sleep();
8926
8927         /* When net_device's are persistent, this will be fatal. */
8928         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8929         BUG_ON(!net);
8930
8931         spin_lock_init(&dev->addr_list_lock);
8932         netdev_set_addr_lockdep_class(dev);
8933
8934         ret = dev_get_valid_name(net, dev, dev->name);
8935         if (ret < 0)
8936                 goto out;
8937
8938         dev->name_node = netdev_name_node_head_alloc(dev);
8939         if (!dev->name_node)
8940                 goto out;
8941
8942         /* Init, if this function is available */
8943         if (dev->netdev_ops->ndo_init) {
8944                 ret = dev->netdev_ops->ndo_init(dev);
8945                 if (ret) {
8946                         if (ret > 0)
8947                                 ret = -EIO;
8948                         goto out;
8949                 }
8950         }
8951
8952         if (((dev->hw_features | dev->features) &
8953              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8954             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8955              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8956                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8957                 ret = -EINVAL;
8958                 goto err_uninit;
8959         }
8960
8961         ret = -EBUSY;
8962         if (!dev->ifindex)
8963                 dev->ifindex = dev_new_index(net);
8964         else if (__dev_get_by_index(net, dev->ifindex))
8965                 goto err_uninit;
8966
8967         /* Transfer changeable features to wanted_features and enable
8968          * software offloads (GSO and GRO).
8969          */
8970         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8971         dev->features |= NETIF_F_SOFT_FEATURES;
8972
8973         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8974                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8975                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8976         }
8977
8978         dev->wanted_features = dev->features & dev->hw_features;
8979
8980         if (!(dev->flags & IFF_LOOPBACK))
8981                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8982
8983         /* If IPv4 TCP segmentation offload is supported we should also
8984          * allow the device to enable segmenting the frame with the option
8985          * of ignoring a static IP ID value.  This doesn't enable the
8986          * feature itself but allows the user to enable it later.
8987          */
8988         if (dev->hw_features & NETIF_F_TSO)
8989                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8990         if (dev->vlan_features & NETIF_F_TSO)
8991                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8992         if (dev->mpls_features & NETIF_F_TSO)
8993                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8994         if (dev->hw_enc_features & NETIF_F_TSO)
8995                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8996
8997         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8998          */
8999         dev->vlan_features |= NETIF_F_HIGHDMA;
9000
9001         /* Make NETIF_F_SG inheritable to tunnel devices.
9002          */
9003         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9004
9005         /* Make NETIF_F_SG inheritable to MPLS.
9006          */
9007         dev->mpls_features |= NETIF_F_SG;
9008
9009         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9010         ret = notifier_to_errno(ret);
9011         if (ret)
9012                 goto err_uninit;
9013
9014         ret = netdev_register_kobject(dev);
9015         if (ret)
9016                 goto err_uninit;
9017         dev->reg_state = NETREG_REGISTERED;
9018
9019         __netdev_update_features(dev);
9020
9021         /*
9022          *      Default initial state at registry is that the
9023          *      device is present.
9024          */
9025
9026         set_bit(__LINK_STATE_PRESENT, &dev->state);
9027
9028         linkwatch_init_dev(dev);
9029
9030         dev_init_scheduler(dev);
9031         dev_hold(dev);
9032         list_netdevice(dev);
9033         add_device_randomness(dev->dev_addr, dev->addr_len);
9034
9035         /* If the device has permanent device address, driver should
9036          * set dev_addr and also addr_assign_type should be set to
9037          * NET_ADDR_PERM (default value).
9038          */
9039         if (dev->addr_assign_type == NET_ADDR_PERM)
9040                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9041
9042         /* Notify protocols, that a new device appeared. */
9043         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9044         ret = notifier_to_errno(ret);
9045         if (ret) {
9046                 rollback_registered(dev);
9047                 rcu_barrier();
9048
9049                 dev->reg_state = NETREG_UNREGISTERED;
9050         }
9051         /*
9052          *      Prevent userspace races by waiting until the network
9053          *      device is fully setup before sending notifications.
9054          */
9055         if (!dev->rtnl_link_ops ||
9056             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9057                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9058
9059 out:
9060         return ret;
9061
9062 err_uninit:
9063         if (dev->name_node)
9064                 netdev_name_node_free(dev->name_node);
9065         if (dev->netdev_ops->ndo_uninit)
9066                 dev->netdev_ops->ndo_uninit(dev);
9067         if (dev->priv_destructor)
9068                 dev->priv_destructor(dev);
9069         goto out;
9070 }
9071 EXPORT_SYMBOL(register_netdevice);
9072
9073 /**
9074  *      init_dummy_netdev       - init a dummy network device for NAPI
9075  *      @dev: device to init
9076  *
9077  *      This takes a network device structure and initialize the minimum
9078  *      amount of fields so it can be used to schedule NAPI polls without
9079  *      registering a full blown interface. This is to be used by drivers
9080  *      that need to tie several hardware interfaces to a single NAPI
9081  *      poll scheduler due to HW limitations.
9082  */
9083 int init_dummy_netdev(struct net_device *dev)
9084 {
9085         /* Clear everything. Note we don't initialize spinlocks
9086          * are they aren't supposed to be taken by any of the
9087          * NAPI code and this dummy netdev is supposed to be
9088          * only ever used for NAPI polls
9089          */
9090         memset(dev, 0, sizeof(struct net_device));
9091
9092         /* make sure we BUG if trying to hit standard
9093          * register/unregister code path
9094          */
9095         dev->reg_state = NETREG_DUMMY;
9096
9097         /* NAPI wants this */
9098         INIT_LIST_HEAD(&dev->napi_list);
9099
9100         /* a dummy interface is started by default */
9101         set_bit(__LINK_STATE_PRESENT, &dev->state);
9102         set_bit(__LINK_STATE_START, &dev->state);
9103
9104         /* napi_busy_loop stats accounting wants this */
9105         dev_net_set(dev, &init_net);
9106
9107         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9108          * because users of this 'device' dont need to change
9109          * its refcount.
9110          */
9111
9112         return 0;
9113 }
9114 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9115
9116
9117 /**
9118  *      register_netdev - register a network device
9119  *      @dev: device to register
9120  *
9121  *      Take a completed network device structure and add it to the kernel
9122  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9123  *      chain. 0 is returned on success. A negative errno code is returned
9124  *      on a failure to set up the device, or if the name is a duplicate.
9125  *
9126  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9127  *      and expands the device name if you passed a format string to
9128  *      alloc_netdev.
9129  */
9130 int register_netdev(struct net_device *dev)
9131 {
9132         int err;
9133
9134         if (rtnl_lock_killable())
9135                 return -EINTR;
9136         err = register_netdevice(dev);
9137         rtnl_unlock();
9138         return err;
9139 }
9140 EXPORT_SYMBOL(register_netdev);
9141
9142 int netdev_refcnt_read(const struct net_device *dev)
9143 {
9144         int i, refcnt = 0;
9145
9146         for_each_possible_cpu(i)
9147                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9148         return refcnt;
9149 }
9150 EXPORT_SYMBOL(netdev_refcnt_read);
9151
9152 /**
9153  * netdev_wait_allrefs - wait until all references are gone.
9154  * @dev: target net_device
9155  *
9156  * This is called when unregistering network devices.
9157  *
9158  * Any protocol or device that holds a reference should register
9159  * for netdevice notification, and cleanup and put back the
9160  * reference if they receive an UNREGISTER event.
9161  * We can get stuck here if buggy protocols don't correctly
9162  * call dev_put.
9163  */
9164 static void netdev_wait_allrefs(struct net_device *dev)
9165 {
9166         unsigned long rebroadcast_time, warning_time;
9167         int refcnt;
9168
9169         linkwatch_forget_dev(dev);
9170
9171         rebroadcast_time = warning_time = jiffies;
9172         refcnt = netdev_refcnt_read(dev);
9173
9174         while (refcnt != 0) {
9175                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9176                         rtnl_lock();
9177
9178                         /* Rebroadcast unregister notification */
9179                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9180
9181                         __rtnl_unlock();
9182                         rcu_barrier();
9183                         rtnl_lock();
9184
9185                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9186                                      &dev->state)) {
9187                                 /* We must not have linkwatch events
9188                                  * pending on unregister. If this
9189                                  * happens, we simply run the queue
9190                                  * unscheduled, resulting in a noop
9191                                  * for this device.
9192                                  */
9193                                 linkwatch_run_queue();
9194                         }
9195
9196                         __rtnl_unlock();
9197
9198                         rebroadcast_time = jiffies;
9199                 }
9200
9201                 msleep(250);
9202
9203                 refcnt = netdev_refcnt_read(dev);
9204
9205                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9206                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9207                                  dev->name, refcnt);
9208                         warning_time = jiffies;
9209                 }
9210         }
9211 }
9212
9213 /* The sequence is:
9214  *
9215  *      rtnl_lock();
9216  *      ...
9217  *      register_netdevice(x1);
9218  *      register_netdevice(x2);
9219  *      ...
9220  *      unregister_netdevice(y1);
9221  *      unregister_netdevice(y2);
9222  *      ...
9223  *      rtnl_unlock();
9224  *      free_netdev(y1);
9225  *      free_netdev(y2);
9226  *
9227  * We are invoked by rtnl_unlock().
9228  * This allows us to deal with problems:
9229  * 1) We can delete sysfs objects which invoke hotplug
9230  *    without deadlocking with linkwatch via keventd.
9231  * 2) Since we run with the RTNL semaphore not held, we can sleep
9232  *    safely in order to wait for the netdev refcnt to drop to zero.
9233  *
9234  * We must not return until all unregister events added during
9235  * the interval the lock was held have been completed.
9236  */
9237 void netdev_run_todo(void)
9238 {
9239         struct list_head list;
9240
9241         /* Snapshot list, allow later requests */
9242         list_replace_init(&net_todo_list, &list);
9243
9244         __rtnl_unlock();
9245
9246
9247         /* Wait for rcu callbacks to finish before next phase */
9248         if (!list_empty(&list))
9249                 rcu_barrier();
9250
9251         while (!list_empty(&list)) {
9252                 struct net_device *dev
9253                         = list_first_entry(&list, struct net_device, todo_list);
9254                 list_del(&dev->todo_list);
9255
9256                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9257                         pr_err("network todo '%s' but state %d\n",
9258                                dev->name, dev->reg_state);
9259                         dump_stack();
9260                         continue;
9261                 }
9262
9263                 dev->reg_state = NETREG_UNREGISTERED;
9264
9265                 netdev_wait_allrefs(dev);
9266
9267                 /* paranoia */
9268                 BUG_ON(netdev_refcnt_read(dev));
9269                 BUG_ON(!list_empty(&dev->ptype_all));
9270                 BUG_ON(!list_empty(&dev->ptype_specific));
9271                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9272                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9273 #if IS_ENABLED(CONFIG_DECNET)
9274                 WARN_ON(dev->dn_ptr);
9275 #endif
9276                 if (dev->priv_destructor)
9277                         dev->priv_destructor(dev);
9278                 if (dev->needs_free_netdev)
9279                         free_netdev(dev);
9280
9281                 /* Report a network device has been unregistered */
9282                 rtnl_lock();
9283                 dev_net(dev)->dev_unreg_count--;
9284                 __rtnl_unlock();
9285                 wake_up(&netdev_unregistering_wq);
9286
9287                 /* Free network device */
9288                 kobject_put(&dev->dev.kobj);
9289         }
9290 }
9291
9292 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9293  * all the same fields in the same order as net_device_stats, with only
9294  * the type differing, but rtnl_link_stats64 may have additional fields
9295  * at the end for newer counters.
9296  */
9297 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9298                              const struct net_device_stats *netdev_stats)
9299 {
9300 #if BITS_PER_LONG == 64
9301         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9302         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9303         /* zero out counters that only exist in rtnl_link_stats64 */
9304         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9305                sizeof(*stats64) - sizeof(*netdev_stats));
9306 #else
9307         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9308         const unsigned long *src = (const unsigned long *)netdev_stats;
9309         u64 *dst = (u64 *)stats64;
9310
9311         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9312         for (i = 0; i < n; i++)
9313                 dst[i] = src[i];
9314         /* zero out counters that only exist in rtnl_link_stats64 */
9315         memset((char *)stats64 + n * sizeof(u64), 0,
9316                sizeof(*stats64) - n * sizeof(u64));
9317 #endif
9318 }
9319 EXPORT_SYMBOL(netdev_stats_to_stats64);
9320
9321 /**
9322  *      dev_get_stats   - get network device statistics
9323  *      @dev: device to get statistics from
9324  *      @storage: place to store stats
9325  *
9326  *      Get network statistics from device. Return @storage.
9327  *      The device driver may provide its own method by setting
9328  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9329  *      otherwise the internal statistics structure is used.
9330  */
9331 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9332                                         struct rtnl_link_stats64 *storage)
9333 {
9334         const struct net_device_ops *ops = dev->netdev_ops;
9335
9336         if (ops->ndo_get_stats64) {
9337                 memset(storage, 0, sizeof(*storage));
9338                 ops->ndo_get_stats64(dev, storage);
9339         } else if (ops->ndo_get_stats) {
9340                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9341         } else {
9342                 netdev_stats_to_stats64(storage, &dev->stats);
9343         }
9344         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9345         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9346         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9347         return storage;
9348 }
9349 EXPORT_SYMBOL(dev_get_stats);
9350
9351 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9352 {
9353         struct netdev_queue *queue = dev_ingress_queue(dev);
9354
9355 #ifdef CONFIG_NET_CLS_ACT
9356         if (queue)
9357                 return queue;
9358         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9359         if (!queue)
9360                 return NULL;
9361         netdev_init_one_queue(dev, queue, NULL);
9362         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9363         queue->qdisc_sleeping = &noop_qdisc;
9364         rcu_assign_pointer(dev->ingress_queue, queue);
9365 #endif
9366         return queue;
9367 }
9368
9369 static const struct ethtool_ops default_ethtool_ops;
9370
9371 void netdev_set_default_ethtool_ops(struct net_device *dev,
9372                                     const struct ethtool_ops *ops)
9373 {
9374         if (dev->ethtool_ops == &default_ethtool_ops)
9375                 dev->ethtool_ops = ops;
9376 }
9377 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9378
9379 void netdev_freemem(struct net_device *dev)
9380 {
9381         char *addr = (char *)dev - dev->padded;
9382
9383         kvfree(addr);
9384 }
9385
9386 /**
9387  * alloc_netdev_mqs - allocate network device
9388  * @sizeof_priv: size of private data to allocate space for
9389  * @name: device name format string
9390  * @name_assign_type: origin of device name
9391  * @setup: callback to initialize device
9392  * @txqs: the number of TX subqueues to allocate
9393  * @rxqs: the number of RX subqueues to allocate
9394  *
9395  * Allocates a struct net_device with private data area for driver use
9396  * and performs basic initialization.  Also allocates subqueue structs
9397  * for each queue on the device.
9398  */
9399 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9400                 unsigned char name_assign_type,
9401                 void (*setup)(struct net_device *),
9402                 unsigned int txqs, unsigned int rxqs)
9403 {
9404         struct net_device *dev;
9405         unsigned int alloc_size;
9406         struct net_device *p;
9407
9408         BUG_ON(strlen(name) >= sizeof(dev->name));
9409
9410         if (txqs < 1) {
9411                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9412                 return NULL;
9413         }
9414
9415         if (rxqs < 1) {
9416                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9417                 return NULL;
9418         }
9419
9420         alloc_size = sizeof(struct net_device);
9421         if (sizeof_priv) {
9422                 /* ensure 32-byte alignment of private area */
9423                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9424                 alloc_size += sizeof_priv;
9425         }
9426         /* ensure 32-byte alignment of whole construct */
9427         alloc_size += NETDEV_ALIGN - 1;
9428
9429         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9430         if (!p)
9431                 return NULL;
9432
9433         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9434         dev->padded = (char *)dev - (char *)p;
9435
9436         dev->pcpu_refcnt = alloc_percpu(int);
9437         if (!dev->pcpu_refcnt)
9438                 goto free_dev;
9439
9440         if (dev_addr_init(dev))
9441                 goto free_pcpu;
9442
9443         dev_mc_init(dev);
9444         dev_uc_init(dev);
9445
9446         dev_net_set(dev, &init_net);
9447
9448         dev->gso_max_size = GSO_MAX_SIZE;
9449         dev->gso_max_segs = GSO_MAX_SEGS;
9450
9451         INIT_LIST_HEAD(&dev->napi_list);
9452         INIT_LIST_HEAD(&dev->unreg_list);
9453         INIT_LIST_HEAD(&dev->close_list);
9454         INIT_LIST_HEAD(&dev->link_watch_list);
9455         INIT_LIST_HEAD(&dev->adj_list.upper);
9456         INIT_LIST_HEAD(&dev->adj_list.lower);
9457         INIT_LIST_HEAD(&dev->ptype_all);
9458         INIT_LIST_HEAD(&dev->ptype_specific);
9459 #ifdef CONFIG_NET_SCHED
9460         hash_init(dev->qdisc_hash);
9461 #endif
9462         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9463         setup(dev);
9464
9465         if (!dev->tx_queue_len) {
9466                 dev->priv_flags |= IFF_NO_QUEUE;
9467                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9468         }
9469
9470         dev->num_tx_queues = txqs;
9471         dev->real_num_tx_queues = txqs;
9472         if (netif_alloc_netdev_queues(dev))
9473                 goto free_all;
9474
9475         dev->num_rx_queues = rxqs;
9476         dev->real_num_rx_queues = rxqs;
9477         if (netif_alloc_rx_queues(dev))
9478                 goto free_all;
9479
9480         strcpy(dev->name, name);
9481         dev->name_assign_type = name_assign_type;
9482         dev->group = INIT_NETDEV_GROUP;
9483         if (!dev->ethtool_ops)
9484                 dev->ethtool_ops = &default_ethtool_ops;
9485
9486         nf_hook_ingress_init(dev);
9487
9488         return dev;
9489
9490 free_all:
9491         free_netdev(dev);
9492         return NULL;
9493
9494 free_pcpu:
9495         free_percpu(dev->pcpu_refcnt);
9496 free_dev:
9497         netdev_freemem(dev);
9498         return NULL;
9499 }
9500 EXPORT_SYMBOL(alloc_netdev_mqs);
9501
9502 /**
9503  * free_netdev - free network device
9504  * @dev: device
9505  *
9506  * This function does the last stage of destroying an allocated device
9507  * interface. The reference to the device object is released. If this
9508  * is the last reference then it will be freed.Must be called in process
9509  * context.
9510  */
9511 void free_netdev(struct net_device *dev)
9512 {
9513         struct napi_struct *p, *n;
9514
9515         might_sleep();
9516         netif_free_tx_queues(dev);
9517         netif_free_rx_queues(dev);
9518
9519         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9520
9521         /* Flush device addresses */
9522         dev_addr_flush(dev);
9523
9524         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9525                 netif_napi_del(p);
9526
9527         free_percpu(dev->pcpu_refcnt);
9528         dev->pcpu_refcnt = NULL;
9529
9530         /*  Compatibility with error handling in drivers */
9531         if (dev->reg_state == NETREG_UNINITIALIZED) {
9532                 netdev_freemem(dev);
9533                 return;
9534         }
9535
9536         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9537         dev->reg_state = NETREG_RELEASED;
9538
9539         /* will free via device release */
9540         put_device(&dev->dev);
9541 }
9542 EXPORT_SYMBOL(free_netdev);
9543
9544 /**
9545  *      synchronize_net -  Synchronize with packet receive processing
9546  *
9547  *      Wait for packets currently being received to be done.
9548  *      Does not block later packets from starting.
9549  */
9550 void synchronize_net(void)
9551 {
9552         might_sleep();
9553         if (rtnl_is_locked())
9554                 synchronize_rcu_expedited();
9555         else
9556                 synchronize_rcu();
9557 }
9558 EXPORT_SYMBOL(synchronize_net);
9559
9560 /**
9561  *      unregister_netdevice_queue - remove device from the kernel
9562  *      @dev: device
9563  *      @head: list
9564  *
9565  *      This function shuts down a device interface and removes it
9566  *      from the kernel tables.
9567  *      If head not NULL, device is queued to be unregistered later.
9568  *
9569  *      Callers must hold the rtnl semaphore.  You may want
9570  *      unregister_netdev() instead of this.
9571  */
9572
9573 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9574 {
9575         ASSERT_RTNL();
9576
9577         if (head) {
9578                 list_move_tail(&dev->unreg_list, head);
9579         } else {
9580                 rollback_registered(dev);
9581                 /* Finish processing unregister after unlock */
9582                 net_set_todo(dev);
9583         }
9584 }
9585 EXPORT_SYMBOL(unregister_netdevice_queue);
9586
9587 /**
9588  *      unregister_netdevice_many - unregister many devices
9589  *      @head: list of devices
9590  *
9591  *  Note: As most callers use a stack allocated list_head,
9592  *  we force a list_del() to make sure stack wont be corrupted later.
9593  */
9594 void unregister_netdevice_many(struct list_head *head)
9595 {
9596         struct net_device *dev;
9597
9598         if (!list_empty(head)) {
9599                 rollback_registered_many(head);
9600                 list_for_each_entry(dev, head, unreg_list)
9601                         net_set_todo(dev);
9602                 list_del(head);
9603         }
9604 }
9605 EXPORT_SYMBOL(unregister_netdevice_many);
9606
9607 /**
9608  *      unregister_netdev - remove device from the kernel
9609  *      @dev: device
9610  *
9611  *      This function shuts down a device interface and removes it
9612  *      from the kernel tables.
9613  *
9614  *      This is just a wrapper for unregister_netdevice that takes
9615  *      the rtnl semaphore.  In general you want to use this and not
9616  *      unregister_netdevice.
9617  */
9618 void unregister_netdev(struct net_device *dev)
9619 {
9620         rtnl_lock();
9621         unregister_netdevice(dev);
9622         rtnl_unlock();
9623 }
9624 EXPORT_SYMBOL(unregister_netdev);
9625
9626 /**
9627  *      dev_change_net_namespace - move device to different nethost namespace
9628  *      @dev: device
9629  *      @net: network namespace
9630  *      @pat: If not NULL name pattern to try if the current device name
9631  *            is already taken in the destination network namespace.
9632  *
9633  *      This function shuts down a device interface and moves it
9634  *      to a new network namespace. On success 0 is returned, on
9635  *      a failure a netagive errno code is returned.
9636  *
9637  *      Callers must hold the rtnl semaphore.
9638  */
9639
9640 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9641 {
9642         int err, new_nsid, new_ifindex;
9643
9644         ASSERT_RTNL();
9645
9646         /* Don't allow namespace local devices to be moved. */
9647         err = -EINVAL;
9648         if (dev->features & NETIF_F_NETNS_LOCAL)
9649                 goto out;
9650
9651         /* Ensure the device has been registrered */
9652         if (dev->reg_state != NETREG_REGISTERED)
9653                 goto out;
9654
9655         /* Get out if there is nothing todo */
9656         err = 0;
9657         if (net_eq(dev_net(dev), net))
9658                 goto out;
9659
9660         /* Pick the destination device name, and ensure
9661          * we can use it in the destination network namespace.
9662          */
9663         err = -EEXIST;
9664         if (__dev_get_by_name(net, dev->name)) {
9665                 /* We get here if we can't use the current device name */
9666                 if (!pat)
9667                         goto out;
9668                 err = dev_get_valid_name(net, dev, pat);
9669                 if (err < 0)
9670                         goto out;
9671         }
9672
9673         /*
9674          * And now a mini version of register_netdevice unregister_netdevice.
9675          */
9676
9677         /* If device is running close it first. */
9678         dev_close(dev);
9679
9680         /* And unlink it from device chain */
9681         unlist_netdevice(dev);
9682
9683         synchronize_net();
9684
9685         /* Shutdown queueing discipline. */
9686         dev_shutdown(dev);
9687
9688         /* Notify protocols, that we are about to destroy
9689          * this device. They should clean all the things.
9690          *
9691          * Note that dev->reg_state stays at NETREG_REGISTERED.
9692          * This is wanted because this way 8021q and macvlan know
9693          * the device is just moving and can keep their slaves up.
9694          */
9695         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9696         rcu_barrier();
9697
9698         new_nsid = peernet2id_alloc(dev_net(dev), net);
9699         /* If there is an ifindex conflict assign a new one */
9700         if (__dev_get_by_index(net, dev->ifindex))
9701                 new_ifindex = dev_new_index(net);
9702         else
9703                 new_ifindex = dev->ifindex;
9704
9705         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9706                             new_ifindex);
9707
9708         /*
9709          *      Flush the unicast and multicast chains
9710          */
9711         dev_uc_flush(dev);
9712         dev_mc_flush(dev);
9713
9714         /* Send a netdev-removed uevent to the old namespace */
9715         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9716         netdev_adjacent_del_links(dev);
9717
9718         /* Actually switch the network namespace */
9719         dev_net_set(dev, net);
9720         dev->ifindex = new_ifindex;
9721
9722         /* Send a netdev-add uevent to the new namespace */
9723         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9724         netdev_adjacent_add_links(dev);
9725
9726         /* Fixup kobjects */
9727         err = device_rename(&dev->dev, dev->name);
9728         WARN_ON(err);
9729
9730         /* Add the device back in the hashes */
9731         list_netdevice(dev);
9732
9733         /* Notify protocols, that a new device appeared. */
9734         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9735
9736         /*
9737          *      Prevent userspace races by waiting until the network
9738          *      device is fully setup before sending notifications.
9739          */
9740         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9741
9742         synchronize_net();
9743         err = 0;
9744 out:
9745         return err;
9746 }
9747 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9748
9749 static int dev_cpu_dead(unsigned int oldcpu)
9750 {
9751         struct sk_buff **list_skb;
9752         struct sk_buff *skb;
9753         unsigned int cpu;
9754         struct softnet_data *sd, *oldsd, *remsd = NULL;
9755
9756         local_irq_disable();
9757         cpu = smp_processor_id();
9758         sd = &per_cpu(softnet_data, cpu);
9759         oldsd = &per_cpu(softnet_data, oldcpu);
9760
9761         /* Find end of our completion_queue. */
9762         list_skb = &sd->completion_queue;
9763         while (*list_skb)
9764                 list_skb = &(*list_skb)->next;
9765         /* Append completion queue from offline CPU. */
9766         *list_skb = oldsd->completion_queue;
9767         oldsd->completion_queue = NULL;
9768
9769         /* Append output queue from offline CPU. */
9770         if (oldsd->output_queue) {
9771                 *sd->output_queue_tailp = oldsd->output_queue;
9772                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9773                 oldsd->output_queue = NULL;
9774                 oldsd->output_queue_tailp = &oldsd->output_queue;
9775         }
9776         /* Append NAPI poll list from offline CPU, with one exception :
9777          * process_backlog() must be called by cpu owning percpu backlog.
9778          * We properly handle process_queue & input_pkt_queue later.
9779          */
9780         while (!list_empty(&oldsd->poll_list)) {
9781                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9782                                                             struct napi_struct,
9783                                                             poll_list);
9784
9785                 list_del_init(&napi->poll_list);
9786                 if (napi->poll == process_backlog)
9787                         napi->state = 0;
9788                 else
9789                         ____napi_schedule(sd, napi);
9790         }
9791
9792         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9793         local_irq_enable();
9794
9795 #ifdef CONFIG_RPS
9796         remsd = oldsd->rps_ipi_list;
9797         oldsd->rps_ipi_list = NULL;
9798 #endif
9799         /* send out pending IPI's on offline CPU */
9800         net_rps_send_ipi(remsd);
9801
9802         /* Process offline CPU's input_pkt_queue */
9803         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9804                 netif_rx_ni(skb);
9805                 input_queue_head_incr(oldsd);
9806         }
9807         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9808                 netif_rx_ni(skb);
9809                 input_queue_head_incr(oldsd);
9810         }
9811
9812         return 0;
9813 }
9814
9815 /**
9816  *      netdev_increment_features - increment feature set by one
9817  *      @all: current feature set
9818  *      @one: new feature set
9819  *      @mask: mask feature set
9820  *
9821  *      Computes a new feature set after adding a device with feature set
9822  *      @one to the master device with current feature set @all.  Will not
9823  *      enable anything that is off in @mask. Returns the new feature set.
9824  */
9825 netdev_features_t netdev_increment_features(netdev_features_t all,
9826         netdev_features_t one, netdev_features_t mask)
9827 {
9828         if (mask & NETIF_F_HW_CSUM)
9829                 mask |= NETIF_F_CSUM_MASK;
9830         mask |= NETIF_F_VLAN_CHALLENGED;
9831
9832         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9833         all &= one | ~NETIF_F_ALL_FOR_ALL;
9834
9835         /* If one device supports hw checksumming, set for all. */
9836         if (all & NETIF_F_HW_CSUM)
9837                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9838
9839         return all;
9840 }
9841 EXPORT_SYMBOL(netdev_increment_features);
9842
9843 static struct hlist_head * __net_init netdev_create_hash(void)
9844 {
9845         int i;
9846         struct hlist_head *hash;
9847
9848         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9849         if (hash != NULL)
9850                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9851                         INIT_HLIST_HEAD(&hash[i]);
9852
9853         return hash;
9854 }
9855
9856 /* Initialize per network namespace state */
9857 static int __net_init netdev_init(struct net *net)
9858 {
9859         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9860                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9861
9862         if (net != &init_net)
9863                 INIT_LIST_HEAD(&net->dev_base_head);
9864
9865         net->dev_name_head = netdev_create_hash();
9866         if (net->dev_name_head == NULL)
9867                 goto err_name;
9868
9869         net->dev_index_head = netdev_create_hash();
9870         if (net->dev_index_head == NULL)
9871                 goto err_idx;
9872
9873         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
9874
9875         return 0;
9876
9877 err_idx:
9878         kfree(net->dev_name_head);
9879 err_name:
9880         return -ENOMEM;
9881 }
9882
9883 /**
9884  *      netdev_drivername - network driver for the device
9885  *      @dev: network device
9886  *
9887  *      Determine network driver for device.
9888  */
9889 const char *netdev_drivername(const struct net_device *dev)
9890 {
9891         const struct device_driver *driver;
9892         const struct device *parent;
9893         const char *empty = "";
9894
9895         parent = dev->dev.parent;
9896         if (!parent)
9897                 return empty;
9898
9899         driver = parent->driver;
9900         if (driver && driver->name)
9901                 return driver->name;
9902         return empty;
9903 }
9904
9905 static void __netdev_printk(const char *level, const struct net_device *dev,
9906                             struct va_format *vaf)
9907 {
9908         if (dev && dev->dev.parent) {
9909                 dev_printk_emit(level[1] - '0',
9910                                 dev->dev.parent,
9911                                 "%s %s %s%s: %pV",
9912                                 dev_driver_string(dev->dev.parent),
9913                                 dev_name(dev->dev.parent),
9914                                 netdev_name(dev), netdev_reg_state(dev),
9915                                 vaf);
9916         } else if (dev) {
9917                 printk("%s%s%s: %pV",
9918                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9919         } else {
9920                 printk("%s(NULL net_device): %pV", level, vaf);
9921         }
9922 }
9923
9924 void netdev_printk(const char *level, const struct net_device *dev,
9925                    const char *format, ...)
9926 {
9927         struct va_format vaf;
9928         va_list args;
9929
9930         va_start(args, format);
9931
9932         vaf.fmt = format;
9933         vaf.va = &args;
9934
9935         __netdev_printk(level, dev, &vaf);
9936
9937         va_end(args);
9938 }
9939 EXPORT_SYMBOL(netdev_printk);
9940
9941 #define define_netdev_printk_level(func, level)                 \
9942 void func(const struct net_device *dev, const char *fmt, ...)   \
9943 {                                                               \
9944         struct va_format vaf;                                   \
9945         va_list args;                                           \
9946                                                                 \
9947         va_start(args, fmt);                                    \
9948                                                                 \
9949         vaf.fmt = fmt;                                          \
9950         vaf.va = &args;                                         \
9951                                                                 \
9952         __netdev_printk(level, dev, &vaf);                      \
9953                                                                 \
9954         va_end(args);                                           \
9955 }                                                               \
9956 EXPORT_SYMBOL(func);
9957
9958 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9959 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9960 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9961 define_netdev_printk_level(netdev_err, KERN_ERR);
9962 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9963 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9964 define_netdev_printk_level(netdev_info, KERN_INFO);
9965
9966 static void __net_exit netdev_exit(struct net *net)
9967 {
9968         kfree(net->dev_name_head);
9969         kfree(net->dev_index_head);
9970         if (net != &init_net)
9971                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9972 }
9973
9974 static struct pernet_operations __net_initdata netdev_net_ops = {
9975         .init = netdev_init,
9976         .exit = netdev_exit,
9977 };
9978
9979 static void __net_exit default_device_exit(struct net *net)
9980 {
9981         struct net_device *dev, *aux;
9982         /*
9983          * Push all migratable network devices back to the
9984          * initial network namespace
9985          */
9986         rtnl_lock();
9987         for_each_netdev_safe(net, dev, aux) {
9988                 int err;
9989                 char fb_name[IFNAMSIZ];
9990
9991                 /* Ignore unmoveable devices (i.e. loopback) */
9992                 if (dev->features & NETIF_F_NETNS_LOCAL)
9993                         continue;
9994
9995                 /* Leave virtual devices for the generic cleanup */
9996                 if (dev->rtnl_link_ops)
9997                         continue;
9998
9999                 /* Push remaining network devices to init_net */
10000                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10001                 if (__dev_get_by_name(&init_net, fb_name))
10002                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10003                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10004                 if (err) {
10005                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10006                                  __func__, dev->name, err);
10007                         BUG();
10008                 }
10009         }
10010         rtnl_unlock();
10011 }
10012
10013 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10014 {
10015         /* Return with the rtnl_lock held when there are no network
10016          * devices unregistering in any network namespace in net_list.
10017          */
10018         struct net *net;
10019         bool unregistering;
10020         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10021
10022         add_wait_queue(&netdev_unregistering_wq, &wait);
10023         for (;;) {
10024                 unregistering = false;
10025                 rtnl_lock();
10026                 list_for_each_entry(net, net_list, exit_list) {
10027                         if (net->dev_unreg_count > 0) {
10028                                 unregistering = true;
10029                                 break;
10030                         }
10031                 }
10032                 if (!unregistering)
10033                         break;
10034                 __rtnl_unlock();
10035
10036                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10037         }
10038         remove_wait_queue(&netdev_unregistering_wq, &wait);
10039 }
10040
10041 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10042 {
10043         /* At exit all network devices most be removed from a network
10044          * namespace.  Do this in the reverse order of registration.
10045          * Do this across as many network namespaces as possible to
10046          * improve batching efficiency.
10047          */
10048         struct net_device *dev;
10049         struct net *net;
10050         LIST_HEAD(dev_kill_list);
10051
10052         /* To prevent network device cleanup code from dereferencing
10053          * loopback devices or network devices that have been freed
10054          * wait here for all pending unregistrations to complete,
10055          * before unregistring the loopback device and allowing the
10056          * network namespace be freed.
10057          *
10058          * The netdev todo list containing all network devices
10059          * unregistrations that happen in default_device_exit_batch
10060          * will run in the rtnl_unlock() at the end of
10061          * default_device_exit_batch.
10062          */
10063         rtnl_lock_unregistering(net_list);
10064         list_for_each_entry(net, net_list, exit_list) {
10065                 for_each_netdev_reverse(net, dev) {
10066                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10067                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10068                         else
10069                                 unregister_netdevice_queue(dev, &dev_kill_list);
10070                 }
10071         }
10072         unregister_netdevice_many(&dev_kill_list);
10073         rtnl_unlock();
10074 }
10075
10076 static struct pernet_operations __net_initdata default_device_ops = {
10077         .exit = default_device_exit,
10078         .exit_batch = default_device_exit_batch,
10079 };
10080
10081 /*
10082  *      Initialize the DEV module. At boot time this walks the device list and
10083  *      unhooks any devices that fail to initialise (normally hardware not
10084  *      present) and leaves us with a valid list of present and active devices.
10085  *
10086  */
10087
10088 /*
10089  *       This is called single threaded during boot, so no need
10090  *       to take the rtnl semaphore.
10091  */
10092 static int __init net_dev_init(void)
10093 {
10094         int i, rc = -ENOMEM;
10095
10096         BUG_ON(!dev_boot_phase);
10097
10098         if (dev_proc_init())
10099                 goto out;
10100
10101         if (netdev_kobject_init())
10102                 goto out;
10103
10104         INIT_LIST_HEAD(&ptype_all);
10105         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10106                 INIT_LIST_HEAD(&ptype_base[i]);
10107
10108         INIT_LIST_HEAD(&offload_base);
10109
10110         if (register_pernet_subsys(&netdev_net_ops))
10111                 goto out;
10112
10113         /*
10114          *      Initialise the packet receive queues.
10115          */
10116
10117         for_each_possible_cpu(i) {
10118                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10119                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10120
10121                 INIT_WORK(flush, flush_backlog);
10122
10123                 skb_queue_head_init(&sd->input_pkt_queue);
10124                 skb_queue_head_init(&sd->process_queue);
10125 #ifdef CONFIG_XFRM_OFFLOAD
10126                 skb_queue_head_init(&sd->xfrm_backlog);
10127 #endif
10128                 INIT_LIST_HEAD(&sd->poll_list);
10129                 sd->output_queue_tailp = &sd->output_queue;
10130 #ifdef CONFIG_RPS
10131                 sd->csd.func = rps_trigger_softirq;
10132                 sd->csd.info = sd;
10133                 sd->cpu = i;
10134 #endif
10135
10136                 init_gro_hash(&sd->backlog);
10137                 sd->backlog.poll = process_backlog;
10138                 sd->backlog.weight = weight_p;
10139         }
10140
10141         dev_boot_phase = 0;
10142
10143         /* The loopback device is special if any other network devices
10144          * is present in a network namespace the loopback device must
10145          * be present. Since we now dynamically allocate and free the
10146          * loopback device ensure this invariant is maintained by
10147          * keeping the loopback device as the first device on the
10148          * list of network devices.  Ensuring the loopback devices
10149          * is the first device that appears and the last network device
10150          * that disappears.
10151          */
10152         if (register_pernet_device(&loopback_net_ops))
10153                 goto out;
10154
10155         if (register_pernet_device(&default_device_ops))
10156                 goto out;
10157
10158         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10159         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10160
10161         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10162                                        NULL, dev_cpu_dead);
10163         WARN_ON(rc < 0);
10164         rc = 0;
10165 out:
10166         return rc;
10167 }
10168
10169 subsys_initcall(net_dev_init);