zsmalloc: introduce zs_huge_class_size()
[linux-2.6-block.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58
59 #define ZSPAGE_MAGIC    0x58
60
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN                8
68
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT  0
109
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
122 #define FULLNESS_BITS   2
123 #define CLASS_BITS      8
124 #define ISOLATED_BITS   3
125 #define MAGIC_VAL_BITS  8
126
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
133
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149                                       ZS_SIZE_CLASS_DELTA) + 1)
150
151 enum fullness_group {
152         ZS_EMPTY,
153         ZS_ALMOST_EMPTY,
154         ZS_ALMOST_FULL,
155         ZS_FULL,
156         NR_ZS_FULLNESS,
157 };
158
159 enum zs_stat_type {
160         CLASS_EMPTY,
161         CLASS_ALMOST_EMPTY,
162         CLASS_ALMOST_FULL,
163         CLASS_FULL,
164         OBJ_ALLOCATED,
165         OBJ_USED,
166         NR_ZS_STAT_TYPE,
167 };
168
169 struct zs_size_stat {
170         unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *      n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *      ZS_ALMOST_FULL  when n > N / f
190  *      ZS_EMPTY        when n == 0
191  *      ZS_FULL         when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
197
198 struct size_class {
199         spinlock_t lock;
200         struct list_head fullness_list[NR_ZS_FULLNESS];
201         /*
202          * Size of objects stored in this class. Must be multiple
203          * of ZS_ALIGN.
204          */
205         int size;
206         int objs_per_zspage;
207         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208         int pages_per_zspage;
209
210         unsigned int index;
211         struct zs_size_stat stats;
212 };
213
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
216 {
217         SetPageOwnerPriv1(page);
218 }
219
220 static void ClearPageHugeObject(struct page *page)
221 {
222         ClearPageOwnerPriv1(page);
223 }
224
225 static int PageHugeObject(struct page *page)
226 {
227         return PageOwnerPriv1(page);
228 }
229
230 /*
231  * Placed within free objects to form a singly linked list.
232  * For every zspage, zspage->freeobj gives head of this list.
233  *
234  * This must be power of 2 and less than or equal to ZS_ALIGN
235  */
236 struct link_free {
237         union {
238                 /*
239                  * Free object index;
240                  * It's valid for non-allocated object
241                  */
242                 unsigned long next;
243                 /*
244                  * Handle of allocated object.
245                  */
246                 unsigned long handle;
247         };
248 };
249
250 struct zs_pool {
251         const char *name;
252
253         struct size_class *size_class[ZS_SIZE_CLASSES];
254         struct kmem_cache *handle_cachep;
255         struct kmem_cache *zspage_cachep;
256
257         atomic_long_t pages_allocated;
258
259         struct zs_pool_stats stats;
260
261         /* Compact classes */
262         struct shrinker shrinker;
263
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270 #endif
271 };
272
273 struct zspage {
274         struct {
275                 unsigned int fullness:FULLNESS_BITS;
276                 unsigned int class:CLASS_BITS + 1;
277                 unsigned int isolated:ISOLATED_BITS;
278                 unsigned int magic:MAGIC_VAL_BITS;
279         };
280         unsigned int inuse;
281         unsigned int freeobj;
282         struct page *first_page;
283         struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285         rwlock_t lock;
286 #endif
287 };
288
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291         struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293         char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295         char *vm_addr; /* address of kmap_atomic()'ed pages */
296         enum zs_mapmode vm_mm; /* mapping mode */
297 };
298
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320
321 static int create_cache(struct zs_pool *pool)
322 {
323         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324                                         0, 0, NULL);
325         if (!pool->handle_cachep)
326                 return 1;
327
328         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329                                         0, 0, NULL);
330         if (!pool->zspage_cachep) {
331                 kmem_cache_destroy(pool->handle_cachep);
332                 pool->handle_cachep = NULL;
333                 return 1;
334         }
335
336         return 0;
337 }
338
339 static void destroy_cache(struct zs_pool *pool)
340 {
341         kmem_cache_destroy(pool->handle_cachep);
342         kmem_cache_destroy(pool->zspage_cachep);
343 }
344
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353         kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358         return kmem_cache_alloc(pool->zspage_cachep,
359                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364         kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369         /*
370          * lsb of @obj represents handle lock while other bits
371          * represent object value the handle is pointing so
372          * updating shouldn't do store tearing.
373          */
374         WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376
377 /* zpool driver */
378
379 #ifdef CONFIG_ZPOOL
380
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382                              const struct zpool_ops *zpool_ops,
383                              struct zpool *zpool)
384 {
385         /*
386          * Ignore global gfp flags: zs_malloc() may be invoked from
387          * different contexts and its caller must provide a valid
388          * gfp mask.
389          */
390         return zs_create_pool(name);
391 }
392
393 static void zs_zpool_destroy(void *pool)
394 {
395         zs_destroy_pool(pool);
396 }
397
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399                         unsigned long *handle)
400 {
401         *handle = zs_malloc(pool, size, gfp);
402         return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406         zs_free(pool, handle);
407 }
408
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410                         enum zpool_mapmode mm)
411 {
412         enum zs_mapmode zs_mm;
413
414         switch (mm) {
415         case ZPOOL_MM_RO:
416                 zs_mm = ZS_MM_RO;
417                 break;
418         case ZPOOL_MM_WO:
419                 zs_mm = ZS_MM_WO;
420                 break;
421         case ZPOOL_MM_RW: /* fallthru */
422         default:
423                 zs_mm = ZS_MM_RW;
424                 break;
425         }
426
427         return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431         zs_unmap_object(pool, handle);
432 }
433
434 static u64 zs_zpool_total_size(void *pool)
435 {
436         return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438
439 static struct zpool_driver zs_zpool_driver = {
440         .type =         "zsmalloc",
441         .owner =        THIS_MODULE,
442         .create =       zs_zpool_create,
443         .destroy =      zs_zpool_destroy,
444         .malloc =       zs_zpool_malloc,
445         .free =         zs_zpool_free,
446         .map =          zs_zpool_map,
447         .unmap =        zs_zpool_unmap,
448         .total_size =   zs_zpool_total_size,
449 };
450
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
453
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456
457 static bool is_zspage_isolated(struct zspage *zspage)
458 {
459         return zspage->isolated;
460 }
461
462 static __maybe_unused int is_first_page(struct page *page)
463 {
464         return PagePrivate(page);
465 }
466
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
469 {
470         return zspage->inuse;
471 }
472
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
474 {
475         zspage->inuse = val;
476 }
477
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 {
480         zspage->inuse += val;
481 }
482
483 static inline struct page *get_first_page(struct zspage *zspage)
484 {
485         struct page *first_page = zspage->first_page;
486
487         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488         return first_page;
489 }
490
491 static inline int get_first_obj_offset(struct page *page)
492 {
493         return page->units;
494 }
495
496 static inline void set_first_obj_offset(struct page *page, int offset)
497 {
498         page->units = offset;
499 }
500
501 static inline unsigned int get_freeobj(struct zspage *zspage)
502 {
503         return zspage->freeobj;
504 }
505
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 {
508         zspage->freeobj = obj;
509 }
510
511 static void get_zspage_mapping(struct zspage *zspage,
512                                 unsigned int *class_idx,
513                                 enum fullness_group *fullness)
514 {
515         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516
517         *fullness = zspage->fullness;
518         *class_idx = zspage->class;
519 }
520
521 static void set_zspage_mapping(struct zspage *zspage,
522                                 unsigned int class_idx,
523                                 enum fullness_group fullness)
524 {
525         zspage->class = class_idx;
526         zspage->fullness = fullness;
527 }
528
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the give size.
535  */
536 static int get_size_class_index(int size)
537 {
538         int idx = 0;
539
540         if (likely(size > ZS_MIN_ALLOC_SIZE))
541                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542                                 ZS_SIZE_CLASS_DELTA);
543
544         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549                                 int type, unsigned long cnt)
550 {
551         class->stats.objs[type] += cnt;
552 }
553
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556                                 int type, unsigned long cnt)
557 {
558         class->stats.objs[type] -= cnt;
559 }
560
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563                                 int type)
564 {
565         return class->stats.objs[type];
566 }
567
568 #ifdef CONFIG_ZSMALLOC_STAT
569
570 static void __init zs_stat_init(void)
571 {
572         if (!debugfs_initialized()) {
573                 pr_warn("debugfs not available, stat dir not created\n");
574                 return;
575         }
576
577         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578         if (!zs_stat_root)
579                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580 }
581
582 static void __exit zs_stat_exit(void)
583 {
584         debugfs_remove_recursive(zs_stat_root);
585 }
586
587 static unsigned long zs_can_compact(struct size_class *class);
588
589 static int zs_stats_size_show(struct seq_file *s, void *v)
590 {
591         int i;
592         struct zs_pool *pool = s->private;
593         struct size_class *class;
594         int objs_per_zspage;
595         unsigned long class_almost_full, class_almost_empty;
596         unsigned long obj_allocated, obj_used, pages_used, freeable;
597         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599         unsigned long total_freeable = 0;
600
601         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602                         "class", "size", "almost_full", "almost_empty",
603                         "obj_allocated", "obj_used", "pages_used",
604                         "pages_per_zspage", "freeable");
605
606         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607                 class = pool->size_class[i];
608
609                 if (class->index != i)
610                         continue;
611
612                 spin_lock(&class->lock);
613                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616                 obj_used = zs_stat_get(class, OBJ_USED);
617                 freeable = zs_can_compact(class);
618                 spin_unlock(&class->lock);
619
620                 objs_per_zspage = class->objs_per_zspage;
621                 pages_used = obj_allocated / objs_per_zspage *
622                                 class->pages_per_zspage;
623
624                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625                                 " %10lu %10lu %16d %8lu\n",
626                         i, class->size, class_almost_full, class_almost_empty,
627                         obj_allocated, obj_used, pages_used,
628                         class->pages_per_zspage, freeable);
629
630                 total_class_almost_full += class_almost_full;
631                 total_class_almost_empty += class_almost_empty;
632                 total_objs += obj_allocated;
633                 total_used_objs += obj_used;
634                 total_pages += pages_used;
635                 total_freeable += freeable;
636         }
637
638         seq_puts(s, "\n");
639         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640                         "Total", "", total_class_almost_full,
641                         total_class_almost_empty, total_objs,
642                         total_used_objs, total_pages, "", total_freeable);
643
644         return 0;
645 }
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
647
648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 {
650         struct dentry *entry;
651
652         if (!zs_stat_root) {
653                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654                 return;
655         }
656
657         entry = debugfs_create_dir(name, zs_stat_root);
658         if (!entry) {
659                 pr_warn("debugfs dir <%s> creation failed\n", name);
660                 return;
661         }
662         pool->stat_dentry = entry;
663
664         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
665                         pool->stat_dentry, pool, &zs_stats_size_fops);
666         if (!entry) {
667                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
668                                 name, "classes");
669                 debugfs_remove_recursive(pool->stat_dentry);
670                 pool->stat_dentry = NULL;
671         }
672 }
673
674 static void zs_pool_stat_destroy(struct zs_pool *pool)
675 {
676         debugfs_remove_recursive(pool->stat_dentry);
677 }
678
679 #else /* CONFIG_ZSMALLOC_STAT */
680 static void __init zs_stat_init(void)
681 {
682 }
683
684 static void __exit zs_stat_exit(void)
685 {
686 }
687
688 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
689 {
690 }
691
692 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
693 {
694 }
695 #endif
696
697
698 /*
699  * For each size class, zspages are divided into different groups
700  * depending on how "full" they are. This was done so that we could
701  * easily find empty or nearly empty zspages when we try to shrink
702  * the pool (not yet implemented). This function returns fullness
703  * status of the given page.
704  */
705 static enum fullness_group get_fullness_group(struct size_class *class,
706                                                 struct zspage *zspage)
707 {
708         int inuse, objs_per_zspage;
709         enum fullness_group fg;
710
711         inuse = get_zspage_inuse(zspage);
712         objs_per_zspage = class->objs_per_zspage;
713
714         if (inuse == 0)
715                 fg = ZS_EMPTY;
716         else if (inuse == objs_per_zspage)
717                 fg = ZS_FULL;
718         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
719                 fg = ZS_ALMOST_EMPTY;
720         else
721                 fg = ZS_ALMOST_FULL;
722
723         return fg;
724 }
725
726 /*
727  * Each size class maintains various freelists and zspages are assigned
728  * to one of these freelists based on the number of live objects they
729  * have. This functions inserts the given zspage into the freelist
730  * identified by <class, fullness_group>.
731  */
732 static void insert_zspage(struct size_class *class,
733                                 struct zspage *zspage,
734                                 enum fullness_group fullness)
735 {
736         struct zspage *head;
737
738         zs_stat_inc(class, fullness, 1);
739         head = list_first_entry_or_null(&class->fullness_list[fullness],
740                                         struct zspage, list);
741         /*
742          * We want to see more ZS_FULL pages and less almost empty/full.
743          * Put pages with higher ->inuse first.
744          */
745         if (head) {
746                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747                         list_add(&zspage->list, &head->list);
748                         return;
749                 }
750         }
751         list_add(&zspage->list, &class->fullness_list[fullness]);
752 }
753
754 /*
755  * This function removes the given zspage from the freelist identified
756  * by <class, fullness_group>.
757  */
758 static void remove_zspage(struct size_class *class,
759                                 struct zspage *zspage,
760                                 enum fullness_group fullness)
761 {
762         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
763         VM_BUG_ON(is_zspage_isolated(zspage));
764
765         list_del_init(&zspage->list);
766         zs_stat_dec(class, fullness, 1);
767 }
768
769 /*
770  * Each size class maintains zspages in different fullness groups depending
771  * on the number of live objects they contain. When allocating or freeing
772  * objects, the fullness status of the page can change, say, from ALMOST_FULL
773  * to ALMOST_EMPTY when freeing an object. This function checks if such
774  * a status change has occurred for the given page and accordingly moves the
775  * page from the freelist of the old fullness group to that of the new
776  * fullness group.
777  */
778 static enum fullness_group fix_fullness_group(struct size_class *class,
779                                                 struct zspage *zspage)
780 {
781         int class_idx;
782         enum fullness_group currfg, newfg;
783
784         get_zspage_mapping(zspage, &class_idx, &currfg);
785         newfg = get_fullness_group(class, zspage);
786         if (newfg == currfg)
787                 goto out;
788
789         if (!is_zspage_isolated(zspage)) {
790                 remove_zspage(class, zspage, currfg);
791                 insert_zspage(class, zspage, newfg);
792         }
793
794         set_zspage_mapping(zspage, class_idx, newfg);
795
796 out:
797         return newfg;
798 }
799
800 /*
801  * We have to decide on how many pages to link together
802  * to form a zspage for each size class. This is important
803  * to reduce wastage due to unusable space left at end of
804  * each zspage which is given as:
805  *     wastage = Zp % class_size
806  *     usage = Zp - wastage
807  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
808  *
809  * For example, for size class of 3/8 * PAGE_SIZE, we should
810  * link together 3 PAGE_SIZE sized pages to form a zspage
811  * since then we can perfectly fit in 8 such objects.
812  */
813 static int get_pages_per_zspage(int class_size)
814 {
815         int i, max_usedpc = 0;
816         /* zspage order which gives maximum used size per KB */
817         int max_usedpc_order = 1;
818
819         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
820                 int zspage_size;
821                 int waste, usedpc;
822
823                 zspage_size = i * PAGE_SIZE;
824                 waste = zspage_size % class_size;
825                 usedpc = (zspage_size - waste) * 100 / zspage_size;
826
827                 if (usedpc > max_usedpc) {
828                         max_usedpc = usedpc;
829                         max_usedpc_order = i;
830                 }
831         }
832
833         return max_usedpc_order;
834 }
835
836 static struct zspage *get_zspage(struct page *page)
837 {
838         struct zspage *zspage = (struct zspage *)page->private;
839
840         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841         return zspage;
842 }
843
844 static struct page *get_next_page(struct page *page)
845 {
846         if (unlikely(PageHugeObject(page)))
847                 return NULL;
848
849         return page->freelist;
850 }
851
852 /**
853  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854  * @page: page object resides in zspage
855  * @obj_idx: object index
856  */
857 static void obj_to_location(unsigned long obj, struct page **page,
858                                 unsigned int *obj_idx)
859 {
860         obj >>= OBJ_TAG_BITS;
861         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
862         *obj_idx = (obj & OBJ_INDEX_MASK);
863 }
864
865 /**
866  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
867  * @page: page object resides in zspage
868  * @obj_idx: object index
869  */
870 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
871 {
872         unsigned long obj;
873
874         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
875         obj |= obj_idx & OBJ_INDEX_MASK;
876         obj <<= OBJ_TAG_BITS;
877
878         return obj;
879 }
880
881 static unsigned long handle_to_obj(unsigned long handle)
882 {
883         return *(unsigned long *)handle;
884 }
885
886 static unsigned long obj_to_head(struct page *page, void *obj)
887 {
888         if (unlikely(PageHugeObject(page))) {
889                 VM_BUG_ON_PAGE(!is_first_page(page), page);
890                 return page->index;
891         } else
892                 return *(unsigned long *)obj;
893 }
894
895 static inline int testpin_tag(unsigned long handle)
896 {
897         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899
900 static inline int trypin_tag(unsigned long handle)
901 {
902         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
903 }
904
905 static void pin_tag(unsigned long handle)
906 {
907         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
908 }
909
910 static void unpin_tag(unsigned long handle)
911 {
912         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
913 }
914
915 static void reset_page(struct page *page)
916 {
917         __ClearPageMovable(page);
918         ClearPagePrivate(page);
919         set_page_private(page, 0);
920         page_mapcount_reset(page);
921         ClearPageHugeObject(page);
922         page->freelist = NULL;
923 }
924
925 /*
926  * To prevent zspage destroy during migration, zspage freeing should
927  * hold locks of all pages in the zspage.
928  */
929 void lock_zspage(struct zspage *zspage)
930 {
931         struct page *page = get_first_page(zspage);
932
933         do {
934                 lock_page(page);
935         } while ((page = get_next_page(page)) != NULL);
936 }
937
938 int trylock_zspage(struct zspage *zspage)
939 {
940         struct page *cursor, *fail;
941
942         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
943                                         get_next_page(cursor)) {
944                 if (!trylock_page(cursor)) {
945                         fail = cursor;
946                         goto unlock;
947                 }
948         }
949
950         return 1;
951 unlock:
952         for (cursor = get_first_page(zspage); cursor != fail; cursor =
953                                         get_next_page(cursor))
954                 unlock_page(cursor);
955
956         return 0;
957 }
958
959 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
960                                 struct zspage *zspage)
961 {
962         struct page *page, *next;
963         enum fullness_group fg;
964         unsigned int class_idx;
965
966         get_zspage_mapping(zspage, &class_idx, &fg);
967
968         assert_spin_locked(&class->lock);
969
970         VM_BUG_ON(get_zspage_inuse(zspage));
971         VM_BUG_ON(fg != ZS_EMPTY);
972
973         next = page = get_first_page(zspage);
974         do {
975                 VM_BUG_ON_PAGE(!PageLocked(page), page);
976                 next = get_next_page(page);
977                 reset_page(page);
978                 unlock_page(page);
979                 dec_zone_page_state(page, NR_ZSPAGES);
980                 put_page(page);
981                 page = next;
982         } while (page != NULL);
983
984         cache_free_zspage(pool, zspage);
985
986         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
987         atomic_long_sub(class->pages_per_zspage,
988                                         &pool->pages_allocated);
989 }
990
991 static void free_zspage(struct zs_pool *pool, struct size_class *class,
992                                 struct zspage *zspage)
993 {
994         VM_BUG_ON(get_zspage_inuse(zspage));
995         VM_BUG_ON(list_empty(&zspage->list));
996
997         if (!trylock_zspage(zspage)) {
998                 kick_deferred_free(pool);
999                 return;
1000         }
1001
1002         remove_zspage(class, zspage, ZS_EMPTY);
1003         __free_zspage(pool, class, zspage);
1004 }
1005
1006 /* Initialize a newly allocated zspage */
1007 static void init_zspage(struct size_class *class, struct zspage *zspage)
1008 {
1009         unsigned int freeobj = 1;
1010         unsigned long off = 0;
1011         struct page *page = get_first_page(zspage);
1012
1013         while (page) {
1014                 struct page *next_page;
1015                 struct link_free *link;
1016                 void *vaddr;
1017
1018                 set_first_obj_offset(page, off);
1019
1020                 vaddr = kmap_atomic(page);
1021                 link = (struct link_free *)vaddr + off / sizeof(*link);
1022
1023                 while ((off += class->size) < PAGE_SIZE) {
1024                         link->next = freeobj++ << OBJ_TAG_BITS;
1025                         link += class->size / sizeof(*link);
1026                 }
1027
1028                 /*
1029                  * We now come to the last (full or partial) object on this
1030                  * page, which must point to the first object on the next
1031                  * page (if present)
1032                  */
1033                 next_page = get_next_page(page);
1034                 if (next_page) {
1035                         link->next = freeobj++ << OBJ_TAG_BITS;
1036                 } else {
1037                         /*
1038                          * Reset OBJ_TAG_BITS bit to last link to tell
1039                          * whether it's allocated object or not.
1040                          */
1041                         link->next = -1UL << OBJ_TAG_BITS;
1042                 }
1043                 kunmap_atomic(vaddr);
1044                 page = next_page;
1045                 off %= PAGE_SIZE;
1046         }
1047
1048         set_freeobj(zspage, 0);
1049 }
1050
1051 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1052                                 struct page *pages[])
1053 {
1054         int i;
1055         struct page *page;
1056         struct page *prev_page = NULL;
1057         int nr_pages = class->pages_per_zspage;
1058
1059         /*
1060          * Allocate individual pages and link them together as:
1061          * 1. all pages are linked together using page->freelist
1062          * 2. each sub-page point to zspage using page->private
1063          *
1064          * we set PG_private to identify the first page (i.e. no other sub-page
1065          * has this flag set).
1066          */
1067         for (i = 0; i < nr_pages; i++) {
1068                 page = pages[i];
1069                 set_page_private(page, (unsigned long)zspage);
1070                 page->freelist = NULL;
1071                 if (i == 0) {
1072                         zspage->first_page = page;
1073                         SetPagePrivate(page);
1074                         if (unlikely(class->objs_per_zspage == 1 &&
1075                                         class->pages_per_zspage == 1))
1076                                 SetPageHugeObject(page);
1077                 } else {
1078                         prev_page->freelist = page;
1079                 }
1080                 prev_page = page;
1081         }
1082 }
1083
1084 /*
1085  * Allocate a zspage for the given size class
1086  */
1087 static struct zspage *alloc_zspage(struct zs_pool *pool,
1088                                         struct size_class *class,
1089                                         gfp_t gfp)
1090 {
1091         int i;
1092         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1093         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1094
1095         if (!zspage)
1096                 return NULL;
1097
1098         memset(zspage, 0, sizeof(struct zspage));
1099         zspage->magic = ZSPAGE_MAGIC;
1100         migrate_lock_init(zspage);
1101
1102         for (i = 0; i < class->pages_per_zspage; i++) {
1103                 struct page *page;
1104
1105                 page = alloc_page(gfp);
1106                 if (!page) {
1107                         while (--i >= 0) {
1108                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1109                                 __free_page(pages[i]);
1110                         }
1111                         cache_free_zspage(pool, zspage);
1112                         return NULL;
1113                 }
1114
1115                 inc_zone_page_state(page, NR_ZSPAGES);
1116                 pages[i] = page;
1117         }
1118
1119         create_page_chain(class, zspage, pages);
1120         init_zspage(class, zspage);
1121
1122         return zspage;
1123 }
1124
1125 static struct zspage *find_get_zspage(struct size_class *class)
1126 {
1127         int i;
1128         struct zspage *zspage;
1129
1130         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1131                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1132                                 struct zspage, list);
1133                 if (zspage)
1134                         break;
1135         }
1136
1137         return zspage;
1138 }
1139
1140 #ifdef CONFIG_PGTABLE_MAPPING
1141 static inline int __zs_cpu_up(struct mapping_area *area)
1142 {
1143         /*
1144          * Make sure we don't leak memory if a cpu UP notification
1145          * and zs_init() race and both call zs_cpu_up() on the same cpu
1146          */
1147         if (area->vm)
1148                 return 0;
1149         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1150         if (!area->vm)
1151                 return -ENOMEM;
1152         return 0;
1153 }
1154
1155 static inline void __zs_cpu_down(struct mapping_area *area)
1156 {
1157         if (area->vm)
1158                 free_vm_area(area->vm);
1159         area->vm = NULL;
1160 }
1161
1162 static inline void *__zs_map_object(struct mapping_area *area,
1163                                 struct page *pages[2], int off, int size)
1164 {
1165         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1166         area->vm_addr = area->vm->addr;
1167         return area->vm_addr + off;
1168 }
1169
1170 static inline void __zs_unmap_object(struct mapping_area *area,
1171                                 struct page *pages[2], int off, int size)
1172 {
1173         unsigned long addr = (unsigned long)area->vm_addr;
1174
1175         unmap_kernel_range(addr, PAGE_SIZE * 2);
1176 }
1177
1178 #else /* CONFIG_PGTABLE_MAPPING */
1179
1180 static inline int __zs_cpu_up(struct mapping_area *area)
1181 {
1182         /*
1183          * Make sure we don't leak memory if a cpu UP notification
1184          * and zs_init() race and both call zs_cpu_up() on the same cpu
1185          */
1186         if (area->vm_buf)
1187                 return 0;
1188         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1189         if (!area->vm_buf)
1190                 return -ENOMEM;
1191         return 0;
1192 }
1193
1194 static inline void __zs_cpu_down(struct mapping_area *area)
1195 {
1196         kfree(area->vm_buf);
1197         area->vm_buf = NULL;
1198 }
1199
1200 static void *__zs_map_object(struct mapping_area *area,
1201                         struct page *pages[2], int off, int size)
1202 {
1203         int sizes[2];
1204         void *addr;
1205         char *buf = area->vm_buf;
1206
1207         /* disable page faults to match kmap_atomic() return conditions */
1208         pagefault_disable();
1209
1210         /* no read fastpath */
1211         if (area->vm_mm == ZS_MM_WO)
1212                 goto out;
1213
1214         sizes[0] = PAGE_SIZE - off;
1215         sizes[1] = size - sizes[0];
1216
1217         /* copy object to per-cpu buffer */
1218         addr = kmap_atomic(pages[0]);
1219         memcpy(buf, addr + off, sizes[0]);
1220         kunmap_atomic(addr);
1221         addr = kmap_atomic(pages[1]);
1222         memcpy(buf + sizes[0], addr, sizes[1]);
1223         kunmap_atomic(addr);
1224 out:
1225         return area->vm_buf;
1226 }
1227
1228 static void __zs_unmap_object(struct mapping_area *area,
1229                         struct page *pages[2], int off, int size)
1230 {
1231         int sizes[2];
1232         void *addr;
1233         char *buf;
1234
1235         /* no write fastpath */
1236         if (area->vm_mm == ZS_MM_RO)
1237                 goto out;
1238
1239         buf = area->vm_buf;
1240         buf = buf + ZS_HANDLE_SIZE;
1241         size -= ZS_HANDLE_SIZE;
1242         off += ZS_HANDLE_SIZE;
1243
1244         sizes[0] = PAGE_SIZE - off;
1245         sizes[1] = size - sizes[0];
1246
1247         /* copy per-cpu buffer to object */
1248         addr = kmap_atomic(pages[0]);
1249         memcpy(addr + off, buf, sizes[0]);
1250         kunmap_atomic(addr);
1251         addr = kmap_atomic(pages[1]);
1252         memcpy(addr, buf + sizes[0], sizes[1]);
1253         kunmap_atomic(addr);
1254
1255 out:
1256         /* enable page faults to match kunmap_atomic() return conditions */
1257         pagefault_enable();
1258 }
1259
1260 #endif /* CONFIG_PGTABLE_MAPPING */
1261
1262 static int zs_cpu_prepare(unsigned int cpu)
1263 {
1264         struct mapping_area *area;
1265
1266         area = &per_cpu(zs_map_area, cpu);
1267         return __zs_cpu_up(area);
1268 }
1269
1270 static int zs_cpu_dead(unsigned int cpu)
1271 {
1272         struct mapping_area *area;
1273
1274         area = &per_cpu(zs_map_area, cpu);
1275         __zs_cpu_down(area);
1276         return 0;
1277 }
1278
1279 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1280                                         int objs_per_zspage)
1281 {
1282         if (prev->pages_per_zspage == pages_per_zspage &&
1283                 prev->objs_per_zspage == objs_per_zspage)
1284                 return true;
1285
1286         return false;
1287 }
1288
1289 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1290 {
1291         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1292 }
1293
1294 unsigned long zs_get_total_pages(struct zs_pool *pool)
1295 {
1296         return atomic_long_read(&pool->pages_allocated);
1297 }
1298 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1299
1300 /**
1301  * zs_map_object - get address of allocated object from handle.
1302  * @pool: pool from which the object was allocated
1303  * @handle: handle returned from zs_malloc
1304  *
1305  * Before using an object allocated from zs_malloc, it must be mapped using
1306  * this function. When done with the object, it must be unmapped using
1307  * zs_unmap_object.
1308  *
1309  * Only one object can be mapped per cpu at a time. There is no protection
1310  * against nested mappings.
1311  *
1312  * This function returns with preemption and page faults disabled.
1313  */
1314 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1315                         enum zs_mapmode mm)
1316 {
1317         struct zspage *zspage;
1318         struct page *page;
1319         unsigned long obj, off;
1320         unsigned int obj_idx;
1321
1322         unsigned int class_idx;
1323         enum fullness_group fg;
1324         struct size_class *class;
1325         struct mapping_area *area;
1326         struct page *pages[2];
1327         void *ret;
1328
1329         /*
1330          * Because we use per-cpu mapping areas shared among the
1331          * pools/users, we can't allow mapping in interrupt context
1332          * because it can corrupt another users mappings.
1333          */
1334         BUG_ON(in_interrupt());
1335
1336         /* From now on, migration cannot move the object */
1337         pin_tag(handle);
1338
1339         obj = handle_to_obj(handle);
1340         obj_to_location(obj, &page, &obj_idx);
1341         zspage = get_zspage(page);
1342
1343         /* migration cannot move any subpage in this zspage */
1344         migrate_read_lock(zspage);
1345
1346         get_zspage_mapping(zspage, &class_idx, &fg);
1347         class = pool->size_class[class_idx];
1348         off = (class->size * obj_idx) & ~PAGE_MASK;
1349
1350         area = &get_cpu_var(zs_map_area);
1351         area->vm_mm = mm;
1352         if (off + class->size <= PAGE_SIZE) {
1353                 /* this object is contained entirely within a page */
1354                 area->vm_addr = kmap_atomic(page);
1355                 ret = area->vm_addr + off;
1356                 goto out;
1357         }
1358
1359         /* this object spans two pages */
1360         pages[0] = page;
1361         pages[1] = get_next_page(page);
1362         BUG_ON(!pages[1]);
1363
1364         ret = __zs_map_object(area, pages, off, class->size);
1365 out:
1366         if (likely(!PageHugeObject(page)))
1367                 ret += ZS_HANDLE_SIZE;
1368
1369         return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(zs_map_object);
1372
1373 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1374 {
1375         struct zspage *zspage;
1376         struct page *page;
1377         unsigned long obj, off;
1378         unsigned int obj_idx;
1379
1380         unsigned int class_idx;
1381         enum fullness_group fg;
1382         struct size_class *class;
1383         struct mapping_area *area;
1384
1385         obj = handle_to_obj(handle);
1386         obj_to_location(obj, &page, &obj_idx);
1387         zspage = get_zspage(page);
1388         get_zspage_mapping(zspage, &class_idx, &fg);
1389         class = pool->size_class[class_idx];
1390         off = (class->size * obj_idx) & ~PAGE_MASK;
1391
1392         area = this_cpu_ptr(&zs_map_area);
1393         if (off + class->size <= PAGE_SIZE)
1394                 kunmap_atomic(area->vm_addr);
1395         else {
1396                 struct page *pages[2];
1397
1398                 pages[0] = page;
1399                 pages[1] = get_next_page(page);
1400                 BUG_ON(!pages[1]);
1401
1402                 __zs_unmap_object(area, pages, off, class->size);
1403         }
1404         put_cpu_var(zs_map_area);
1405
1406         migrate_read_unlock(zspage);
1407         unpin_tag(handle);
1408 }
1409 EXPORT_SYMBOL_GPL(zs_unmap_object);
1410
1411 /**
1412  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1413  *                        zsmalloc &size_class.
1414  * @pool: zsmalloc pool to use
1415  *
1416  * The function returns the size of the first huge class - any object of equal
1417  * or bigger size will be stored in zspage consisting of a single physical
1418  * page.
1419  *
1420  * Context: Any context.
1421  *
1422  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1423  */
1424 size_t zs_huge_class_size(struct zs_pool *pool)
1425 {
1426         return huge_class_size;
1427 }
1428 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1429
1430 static unsigned long obj_malloc(struct size_class *class,
1431                                 struct zspage *zspage, unsigned long handle)
1432 {
1433         int i, nr_page, offset;
1434         unsigned long obj;
1435         struct link_free *link;
1436
1437         struct page *m_page;
1438         unsigned long m_offset;
1439         void *vaddr;
1440
1441         handle |= OBJ_ALLOCATED_TAG;
1442         obj = get_freeobj(zspage);
1443
1444         offset = obj * class->size;
1445         nr_page = offset >> PAGE_SHIFT;
1446         m_offset = offset & ~PAGE_MASK;
1447         m_page = get_first_page(zspage);
1448
1449         for (i = 0; i < nr_page; i++)
1450                 m_page = get_next_page(m_page);
1451
1452         vaddr = kmap_atomic(m_page);
1453         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1454         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1455         if (likely(!PageHugeObject(m_page)))
1456                 /* record handle in the header of allocated chunk */
1457                 link->handle = handle;
1458         else
1459                 /* record handle to page->index */
1460                 zspage->first_page->index = handle;
1461
1462         kunmap_atomic(vaddr);
1463         mod_zspage_inuse(zspage, 1);
1464         zs_stat_inc(class, OBJ_USED, 1);
1465
1466         obj = location_to_obj(m_page, obj);
1467
1468         return obj;
1469 }
1470
1471
1472 /**
1473  * zs_malloc - Allocate block of given size from pool.
1474  * @pool: pool to allocate from
1475  * @size: size of block to allocate
1476  * @gfp: gfp flags when allocating object
1477  *
1478  * On success, handle to the allocated object is returned,
1479  * otherwise 0.
1480  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481  */
1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1483 {
1484         unsigned long handle, obj;
1485         struct size_class *class;
1486         enum fullness_group newfg;
1487         struct zspage *zspage;
1488
1489         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1490                 return 0;
1491
1492         handle = cache_alloc_handle(pool, gfp);
1493         if (!handle)
1494                 return 0;
1495
1496         /* extra space in chunk to keep the handle */
1497         size += ZS_HANDLE_SIZE;
1498         class = pool->size_class[get_size_class_index(size)];
1499
1500         spin_lock(&class->lock);
1501         zspage = find_get_zspage(class);
1502         if (likely(zspage)) {
1503                 obj = obj_malloc(class, zspage, handle);
1504                 /* Now move the zspage to another fullness group, if required */
1505                 fix_fullness_group(class, zspage);
1506                 record_obj(handle, obj);
1507                 spin_unlock(&class->lock);
1508
1509                 return handle;
1510         }
1511
1512         spin_unlock(&class->lock);
1513
1514         zspage = alloc_zspage(pool, class, gfp);
1515         if (!zspage) {
1516                 cache_free_handle(pool, handle);
1517                 return 0;
1518         }
1519
1520         spin_lock(&class->lock);
1521         obj = obj_malloc(class, zspage, handle);
1522         newfg = get_fullness_group(class, zspage);
1523         insert_zspage(class, zspage, newfg);
1524         set_zspage_mapping(zspage, class->index, newfg);
1525         record_obj(handle, obj);
1526         atomic_long_add(class->pages_per_zspage,
1527                                 &pool->pages_allocated);
1528         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1529
1530         /* We completely set up zspage so mark them as movable */
1531         SetZsPageMovable(pool, zspage);
1532         spin_unlock(&class->lock);
1533
1534         return handle;
1535 }
1536 EXPORT_SYMBOL_GPL(zs_malloc);
1537
1538 static void obj_free(struct size_class *class, unsigned long obj)
1539 {
1540         struct link_free *link;
1541         struct zspage *zspage;
1542         struct page *f_page;
1543         unsigned long f_offset;
1544         unsigned int f_objidx;
1545         void *vaddr;
1546
1547         obj &= ~OBJ_ALLOCATED_TAG;
1548         obj_to_location(obj, &f_page, &f_objidx);
1549         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1550         zspage = get_zspage(f_page);
1551
1552         vaddr = kmap_atomic(f_page);
1553
1554         /* Insert this object in containing zspage's freelist */
1555         link = (struct link_free *)(vaddr + f_offset);
1556         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1557         kunmap_atomic(vaddr);
1558         set_freeobj(zspage, f_objidx);
1559         mod_zspage_inuse(zspage, -1);
1560         zs_stat_dec(class, OBJ_USED, 1);
1561 }
1562
1563 void zs_free(struct zs_pool *pool, unsigned long handle)
1564 {
1565         struct zspage *zspage;
1566         struct page *f_page;
1567         unsigned long obj;
1568         unsigned int f_objidx;
1569         int class_idx;
1570         struct size_class *class;
1571         enum fullness_group fullness;
1572         bool isolated;
1573
1574         if (unlikely(!handle))
1575                 return;
1576
1577         pin_tag(handle);
1578         obj = handle_to_obj(handle);
1579         obj_to_location(obj, &f_page, &f_objidx);
1580         zspage = get_zspage(f_page);
1581
1582         migrate_read_lock(zspage);
1583
1584         get_zspage_mapping(zspage, &class_idx, &fullness);
1585         class = pool->size_class[class_idx];
1586
1587         spin_lock(&class->lock);
1588         obj_free(class, obj);
1589         fullness = fix_fullness_group(class, zspage);
1590         if (fullness != ZS_EMPTY) {
1591                 migrate_read_unlock(zspage);
1592                 goto out;
1593         }
1594
1595         isolated = is_zspage_isolated(zspage);
1596         migrate_read_unlock(zspage);
1597         /* If zspage is isolated, zs_page_putback will free the zspage */
1598         if (likely(!isolated))
1599                 free_zspage(pool, class, zspage);
1600 out:
1601
1602         spin_unlock(&class->lock);
1603         unpin_tag(handle);
1604         cache_free_handle(pool, handle);
1605 }
1606 EXPORT_SYMBOL_GPL(zs_free);
1607
1608 static void zs_object_copy(struct size_class *class, unsigned long dst,
1609                                 unsigned long src)
1610 {
1611         struct page *s_page, *d_page;
1612         unsigned int s_objidx, d_objidx;
1613         unsigned long s_off, d_off;
1614         void *s_addr, *d_addr;
1615         int s_size, d_size, size;
1616         int written = 0;
1617
1618         s_size = d_size = class->size;
1619
1620         obj_to_location(src, &s_page, &s_objidx);
1621         obj_to_location(dst, &d_page, &d_objidx);
1622
1623         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1625
1626         if (s_off + class->size > PAGE_SIZE)
1627                 s_size = PAGE_SIZE - s_off;
1628
1629         if (d_off + class->size > PAGE_SIZE)
1630                 d_size = PAGE_SIZE - d_off;
1631
1632         s_addr = kmap_atomic(s_page);
1633         d_addr = kmap_atomic(d_page);
1634
1635         while (1) {
1636                 size = min(s_size, d_size);
1637                 memcpy(d_addr + d_off, s_addr + s_off, size);
1638                 written += size;
1639
1640                 if (written == class->size)
1641                         break;
1642
1643                 s_off += size;
1644                 s_size -= size;
1645                 d_off += size;
1646                 d_size -= size;
1647
1648                 if (s_off >= PAGE_SIZE) {
1649                         kunmap_atomic(d_addr);
1650                         kunmap_atomic(s_addr);
1651                         s_page = get_next_page(s_page);
1652                         s_addr = kmap_atomic(s_page);
1653                         d_addr = kmap_atomic(d_page);
1654                         s_size = class->size - written;
1655                         s_off = 0;
1656                 }
1657
1658                 if (d_off >= PAGE_SIZE) {
1659                         kunmap_atomic(d_addr);
1660                         d_page = get_next_page(d_page);
1661                         d_addr = kmap_atomic(d_page);
1662                         d_size = class->size - written;
1663                         d_off = 0;
1664                 }
1665         }
1666
1667         kunmap_atomic(d_addr);
1668         kunmap_atomic(s_addr);
1669 }
1670
1671 /*
1672  * Find alloced object in zspage from index object and
1673  * return handle.
1674  */
1675 static unsigned long find_alloced_obj(struct size_class *class,
1676                                         struct page *page, int *obj_idx)
1677 {
1678         unsigned long head;
1679         int offset = 0;
1680         int index = *obj_idx;
1681         unsigned long handle = 0;
1682         void *addr = kmap_atomic(page);
1683
1684         offset = get_first_obj_offset(page);
1685         offset += class->size * index;
1686
1687         while (offset < PAGE_SIZE) {
1688                 head = obj_to_head(page, addr + offset);
1689                 if (head & OBJ_ALLOCATED_TAG) {
1690                         handle = head & ~OBJ_ALLOCATED_TAG;
1691                         if (trypin_tag(handle))
1692                                 break;
1693                         handle = 0;
1694                 }
1695
1696                 offset += class->size;
1697                 index++;
1698         }
1699
1700         kunmap_atomic(addr);
1701
1702         *obj_idx = index;
1703
1704         return handle;
1705 }
1706
1707 struct zs_compact_control {
1708         /* Source spage for migration which could be a subpage of zspage */
1709         struct page *s_page;
1710         /* Destination page for migration which should be a first page
1711          * of zspage. */
1712         struct page *d_page;
1713          /* Starting object index within @s_page which used for live object
1714           * in the subpage. */
1715         int obj_idx;
1716 };
1717
1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719                                 struct zs_compact_control *cc)
1720 {
1721         unsigned long used_obj, free_obj;
1722         unsigned long handle;
1723         struct page *s_page = cc->s_page;
1724         struct page *d_page = cc->d_page;
1725         int obj_idx = cc->obj_idx;
1726         int ret = 0;
1727
1728         while (1) {
1729                 handle = find_alloced_obj(class, s_page, &obj_idx);
1730                 if (!handle) {
1731                         s_page = get_next_page(s_page);
1732                         if (!s_page)
1733                                 break;
1734                         obj_idx = 0;
1735                         continue;
1736                 }
1737
1738                 /* Stop if there is no more space */
1739                 if (zspage_full(class, get_zspage(d_page))) {
1740                         unpin_tag(handle);
1741                         ret = -ENOMEM;
1742                         break;
1743                 }
1744
1745                 used_obj = handle_to_obj(handle);
1746                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1747                 zs_object_copy(class, free_obj, used_obj);
1748                 obj_idx++;
1749                 /*
1750                  * record_obj updates handle's value to free_obj and it will
1751                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752                  * breaks synchronization using pin_tag(e,g, zs_free) so
1753                  * let's keep the lock bit.
1754                  */
1755                 free_obj |= BIT(HANDLE_PIN_BIT);
1756                 record_obj(handle, free_obj);
1757                 unpin_tag(handle);
1758                 obj_free(class, used_obj);
1759         }
1760
1761         /* Remember last position in this iteration */
1762         cc->s_page = s_page;
1763         cc->obj_idx = obj_idx;
1764
1765         return ret;
1766 }
1767
1768 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1769 {
1770         int i;
1771         struct zspage *zspage;
1772         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1773
1774         if (!source) {
1775                 fg[0] = ZS_ALMOST_FULL;
1776                 fg[1] = ZS_ALMOST_EMPTY;
1777         }
1778
1779         for (i = 0; i < 2; i++) {
1780                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781                                                         struct zspage, list);
1782                 if (zspage) {
1783                         VM_BUG_ON(is_zspage_isolated(zspage));
1784                         remove_zspage(class, zspage, fg[i]);
1785                         return zspage;
1786                 }
1787         }
1788
1789         return zspage;
1790 }
1791
1792 /*
1793  * putback_zspage - add @zspage into right class's fullness list
1794  * @class: destination class
1795  * @zspage: target page
1796  *
1797  * Return @zspage's fullness_group
1798  */
1799 static enum fullness_group putback_zspage(struct size_class *class,
1800                         struct zspage *zspage)
1801 {
1802         enum fullness_group fullness;
1803
1804         VM_BUG_ON(is_zspage_isolated(zspage));
1805
1806         fullness = get_fullness_group(class, zspage);
1807         insert_zspage(class, zspage, fullness);
1808         set_zspage_mapping(zspage, class->index, fullness);
1809
1810         return fullness;
1811 }
1812
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry *zs_mount(struct file_system_type *fs_type,
1815                                 int flags, const char *dev_name, void *data)
1816 {
1817         static const struct dentry_operations ops = {
1818                 .d_dname = simple_dname,
1819         };
1820
1821         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822 }
1823
1824 static struct file_system_type zsmalloc_fs = {
1825         .name           = "zsmalloc",
1826         .mount          = zs_mount,
1827         .kill_sb        = kill_anon_super,
1828 };
1829
1830 static int zsmalloc_mount(void)
1831 {
1832         int ret = 0;
1833
1834         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835         if (IS_ERR(zsmalloc_mnt))
1836                 ret = PTR_ERR(zsmalloc_mnt);
1837
1838         return ret;
1839 }
1840
1841 static void zsmalloc_unmount(void)
1842 {
1843         kern_unmount(zsmalloc_mnt);
1844 }
1845
1846 static void migrate_lock_init(struct zspage *zspage)
1847 {
1848         rwlock_init(&zspage->lock);
1849 }
1850
1851 static void migrate_read_lock(struct zspage *zspage)
1852 {
1853         read_lock(&zspage->lock);
1854 }
1855
1856 static void migrate_read_unlock(struct zspage *zspage)
1857 {
1858         read_unlock(&zspage->lock);
1859 }
1860
1861 static void migrate_write_lock(struct zspage *zspage)
1862 {
1863         write_lock(&zspage->lock);
1864 }
1865
1866 static void migrate_write_unlock(struct zspage *zspage)
1867 {
1868         write_unlock(&zspage->lock);
1869 }
1870
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage *zspage)
1873 {
1874         zspage->isolated++;
1875 }
1876
1877 static void dec_zspage_isolation(struct zspage *zspage)
1878 {
1879         zspage->isolated--;
1880 }
1881
1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883                                 struct page *newpage, struct page *oldpage)
1884 {
1885         struct page *page;
1886         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887         int idx = 0;
1888
1889         page = get_first_page(zspage);
1890         do {
1891                 if (page == oldpage)
1892                         pages[idx] = newpage;
1893                 else
1894                         pages[idx] = page;
1895                 idx++;
1896         } while ((page = get_next_page(page)) != NULL);
1897
1898         create_page_chain(class, zspage, pages);
1899         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900         if (unlikely(PageHugeObject(oldpage)))
1901                 newpage->index = oldpage->index;
1902         __SetPageMovable(newpage, page_mapping(oldpage));
1903 }
1904
1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906 {
1907         struct zs_pool *pool;
1908         struct size_class *class;
1909         int class_idx;
1910         enum fullness_group fullness;
1911         struct zspage *zspage;
1912         struct address_space *mapping;
1913
1914         /*
1915          * Page is locked so zspage couldn't be destroyed. For detail, look at
1916          * lock_zspage in free_zspage.
1917          */
1918         VM_BUG_ON_PAGE(!PageMovable(page), page);
1919         VM_BUG_ON_PAGE(PageIsolated(page), page);
1920
1921         zspage = get_zspage(page);
1922
1923         /*
1924          * Without class lock, fullness could be stale while class_idx is okay
1925          * because class_idx is constant unless page is freed so we should get
1926          * fullness again under class lock.
1927          */
1928         get_zspage_mapping(zspage, &class_idx, &fullness);
1929         mapping = page_mapping(page);
1930         pool = mapping->private_data;
1931         class = pool->size_class[class_idx];
1932
1933         spin_lock(&class->lock);
1934         if (get_zspage_inuse(zspage) == 0) {
1935                 spin_unlock(&class->lock);
1936                 return false;
1937         }
1938
1939         /* zspage is isolated for object migration */
1940         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941                 spin_unlock(&class->lock);
1942                 return false;
1943         }
1944
1945         /*
1946          * If this is first time isolation for the zspage, isolate zspage from
1947          * size_class to prevent further object allocation from the zspage.
1948          */
1949         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950                 get_zspage_mapping(zspage, &class_idx, &fullness);
1951                 remove_zspage(class, zspage, fullness);
1952         }
1953
1954         inc_zspage_isolation(zspage);
1955         spin_unlock(&class->lock);
1956
1957         return true;
1958 }
1959
1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961                 struct page *page, enum migrate_mode mode)
1962 {
1963         struct zs_pool *pool;
1964         struct size_class *class;
1965         int class_idx;
1966         enum fullness_group fullness;
1967         struct zspage *zspage;
1968         struct page *dummy;
1969         void *s_addr, *d_addr, *addr;
1970         int offset, pos;
1971         unsigned long handle, head;
1972         unsigned long old_obj, new_obj;
1973         unsigned int obj_idx;
1974         int ret = -EAGAIN;
1975
1976         /*
1977          * We cannot support the _NO_COPY case here, because copy needs to
1978          * happen under the zs lock, which does not work with
1979          * MIGRATE_SYNC_NO_COPY workflow.
1980          */
1981         if (mode == MIGRATE_SYNC_NO_COPY)
1982                 return -EINVAL;
1983
1984         VM_BUG_ON_PAGE(!PageMovable(page), page);
1985         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986
1987         zspage = get_zspage(page);
1988
1989         /* Concurrent compactor cannot migrate any subpage in zspage */
1990         migrate_write_lock(zspage);
1991         get_zspage_mapping(zspage, &class_idx, &fullness);
1992         pool = mapping->private_data;
1993         class = pool->size_class[class_idx];
1994         offset = get_first_obj_offset(page);
1995
1996         spin_lock(&class->lock);
1997         if (!get_zspage_inuse(zspage)) {
1998                 /*
1999                  * Set "offset" to end of the page so that every loops
2000                  * skips unnecessary object scanning.
2001                  */
2002                 offset = PAGE_SIZE;
2003         }
2004
2005         pos = offset;
2006         s_addr = kmap_atomic(page);
2007         while (pos < PAGE_SIZE) {
2008                 head = obj_to_head(page, s_addr + pos);
2009                 if (head & OBJ_ALLOCATED_TAG) {
2010                         handle = head & ~OBJ_ALLOCATED_TAG;
2011                         if (!trypin_tag(handle))
2012                                 goto unpin_objects;
2013                 }
2014                 pos += class->size;
2015         }
2016
2017         /*
2018          * Here, any user cannot access all objects in the zspage so let's move.
2019          */
2020         d_addr = kmap_atomic(newpage);
2021         memcpy(d_addr, s_addr, PAGE_SIZE);
2022         kunmap_atomic(d_addr);
2023
2024         for (addr = s_addr + offset; addr < s_addr + pos;
2025                                         addr += class->size) {
2026                 head = obj_to_head(page, addr);
2027                 if (head & OBJ_ALLOCATED_TAG) {
2028                         handle = head & ~OBJ_ALLOCATED_TAG;
2029                         if (!testpin_tag(handle))
2030                                 BUG();
2031
2032                         old_obj = handle_to_obj(handle);
2033                         obj_to_location(old_obj, &dummy, &obj_idx);
2034                         new_obj = (unsigned long)location_to_obj(newpage,
2035                                                                 obj_idx);
2036                         new_obj |= BIT(HANDLE_PIN_BIT);
2037                         record_obj(handle, new_obj);
2038                 }
2039         }
2040
2041         replace_sub_page(class, zspage, newpage, page);
2042         get_page(newpage);
2043
2044         dec_zspage_isolation(zspage);
2045
2046         /*
2047          * Page migration is done so let's putback isolated zspage to
2048          * the list if @page is final isolated subpage in the zspage.
2049          */
2050         if (!is_zspage_isolated(zspage))
2051                 putback_zspage(class, zspage);
2052
2053         reset_page(page);
2054         put_page(page);
2055         page = newpage;
2056
2057         ret = MIGRATEPAGE_SUCCESS;
2058 unpin_objects:
2059         for (addr = s_addr + offset; addr < s_addr + pos;
2060                                                 addr += class->size) {
2061                 head = obj_to_head(page, addr);
2062                 if (head & OBJ_ALLOCATED_TAG) {
2063                         handle = head & ~OBJ_ALLOCATED_TAG;
2064                         if (!testpin_tag(handle))
2065                                 BUG();
2066                         unpin_tag(handle);
2067                 }
2068         }
2069         kunmap_atomic(s_addr);
2070         spin_unlock(&class->lock);
2071         migrate_write_unlock(zspage);
2072
2073         return ret;
2074 }
2075
2076 void zs_page_putback(struct page *page)
2077 {
2078         struct zs_pool *pool;
2079         struct size_class *class;
2080         int class_idx;
2081         enum fullness_group fg;
2082         struct address_space *mapping;
2083         struct zspage *zspage;
2084
2085         VM_BUG_ON_PAGE(!PageMovable(page), page);
2086         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087
2088         zspage = get_zspage(page);
2089         get_zspage_mapping(zspage, &class_idx, &fg);
2090         mapping = page_mapping(page);
2091         pool = mapping->private_data;
2092         class = pool->size_class[class_idx];
2093
2094         spin_lock(&class->lock);
2095         dec_zspage_isolation(zspage);
2096         if (!is_zspage_isolated(zspage)) {
2097                 fg = putback_zspage(class, zspage);
2098                 /*
2099                  * Due to page_lock, we cannot free zspage immediately
2100                  * so let's defer.
2101                  */
2102                 if (fg == ZS_EMPTY)
2103                         schedule_work(&pool->free_work);
2104         }
2105         spin_unlock(&class->lock);
2106 }
2107
2108 const struct address_space_operations zsmalloc_aops = {
2109         .isolate_page = zs_page_isolate,
2110         .migratepage = zs_page_migrate,
2111         .putback_page = zs_page_putback,
2112 };
2113
2114 static int zs_register_migration(struct zs_pool *pool)
2115 {
2116         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117         if (IS_ERR(pool->inode)) {
2118                 pool->inode = NULL;
2119                 return 1;
2120         }
2121
2122         pool->inode->i_mapping->private_data = pool;
2123         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124         return 0;
2125 }
2126
2127 static void zs_unregister_migration(struct zs_pool *pool)
2128 {
2129         flush_work(&pool->free_work);
2130         iput(pool->inode);
2131 }
2132
2133 /*
2134  * Caller should hold page_lock of all pages in the zspage
2135  * In here, we cannot use zspage meta data.
2136  */
2137 static void async_free_zspage(struct work_struct *work)
2138 {
2139         int i;
2140         struct size_class *class;
2141         unsigned int class_idx;
2142         enum fullness_group fullness;
2143         struct zspage *zspage, *tmp;
2144         LIST_HEAD(free_pages);
2145         struct zs_pool *pool = container_of(work, struct zs_pool,
2146                                         free_work);
2147
2148         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149                 class = pool->size_class[i];
2150                 if (class->index != i)
2151                         continue;
2152
2153                 spin_lock(&class->lock);
2154                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155                 spin_unlock(&class->lock);
2156         }
2157
2158
2159         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160                 list_del(&zspage->list);
2161                 lock_zspage(zspage);
2162
2163                 get_zspage_mapping(zspage, &class_idx, &fullness);
2164                 VM_BUG_ON(fullness != ZS_EMPTY);
2165                 class = pool->size_class[class_idx];
2166                 spin_lock(&class->lock);
2167                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168                 spin_unlock(&class->lock);
2169         }
2170 };
2171
2172 static void kick_deferred_free(struct zs_pool *pool)
2173 {
2174         schedule_work(&pool->free_work);
2175 }
2176
2177 static void init_deferred_free(struct zs_pool *pool)
2178 {
2179         INIT_WORK(&pool->free_work, async_free_zspage);
2180 }
2181
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183 {
2184         struct page *page = get_first_page(zspage);
2185
2186         do {
2187                 WARN_ON(!trylock_page(page));
2188                 __SetPageMovable(page, pool->inode->i_mapping);
2189                 unlock_page(page);
2190         } while ((page = get_next_page(page)) != NULL);
2191 }
2192 #endif
2193
2194 /*
2195  *
2196  * Based on the number of unused allocated objects calculate
2197  * and return the number of pages that we can free.
2198  */
2199 static unsigned long zs_can_compact(struct size_class *class)
2200 {
2201         unsigned long obj_wasted;
2202         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2204
2205         if (obj_allocated <= obj_used)
2206                 return 0;
2207
2208         obj_wasted = obj_allocated - obj_used;
2209         obj_wasted /= class->objs_per_zspage;
2210
2211         return obj_wasted * class->pages_per_zspage;
2212 }
2213
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2215 {
2216         struct zs_compact_control cc;
2217         struct zspage *src_zspage;
2218         struct zspage *dst_zspage = NULL;
2219
2220         spin_lock(&class->lock);
2221         while ((src_zspage = isolate_zspage(class, true))) {
2222
2223                 if (!zs_can_compact(class))
2224                         break;
2225
2226                 cc.obj_idx = 0;
2227                 cc.s_page = get_first_page(src_zspage);
2228
2229                 while ((dst_zspage = isolate_zspage(class, false))) {
2230                         cc.d_page = get_first_page(dst_zspage);
2231                         /*
2232                          * If there is no more space in dst_page, resched
2233                          * and see if anyone had allocated another zspage.
2234                          */
2235                         if (!migrate_zspage(pool, class, &cc))
2236                                 break;
2237
2238                         putback_zspage(class, dst_zspage);
2239                 }
2240
2241                 /* Stop if we couldn't find slot */
2242                 if (dst_zspage == NULL)
2243                         break;
2244
2245                 putback_zspage(class, dst_zspage);
2246                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247                         free_zspage(pool, class, src_zspage);
2248                         pool->stats.pages_compacted += class->pages_per_zspage;
2249                 }
2250                 spin_unlock(&class->lock);
2251                 cond_resched();
2252                 spin_lock(&class->lock);
2253         }
2254
2255         if (src_zspage)
2256                 putback_zspage(class, src_zspage);
2257
2258         spin_unlock(&class->lock);
2259 }
2260
2261 unsigned long zs_compact(struct zs_pool *pool)
2262 {
2263         int i;
2264         struct size_class *class;
2265
2266         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2267                 class = pool->size_class[i];
2268                 if (!class)
2269                         continue;
2270                 if (class->index != i)
2271                         continue;
2272                 __zs_compact(pool, class);
2273         }
2274
2275         return pool->stats.pages_compacted;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286                 struct shrink_control *sc)
2287 {
2288         unsigned long pages_freed;
2289         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290                         shrinker);
2291
2292         pages_freed = pool->stats.pages_compacted;
2293         /*
2294          * Compact classes and calculate compaction delta.
2295          * Can run concurrently with a manually triggered
2296          * (by user) compaction.
2297          */
2298         pages_freed = zs_compact(pool) - pages_freed;
2299
2300         return pages_freed ? pages_freed : SHRINK_STOP;
2301 }
2302
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304                 struct shrink_control *sc)
2305 {
2306         int i;
2307         struct size_class *class;
2308         unsigned long pages_to_free = 0;
2309         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310                         shrinker);
2311
2312         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313                 class = pool->size_class[i];
2314                 if (!class)
2315                         continue;
2316                 if (class->index != i)
2317                         continue;
2318
2319                 pages_to_free += zs_can_compact(class);
2320         }
2321
2322         return pages_to_free;
2323 }
2324
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327         unregister_shrinker(&pool->shrinker);
2328 }
2329
2330 static int zs_register_shrinker(struct zs_pool *pool)
2331 {
2332         pool->shrinker.scan_objects = zs_shrinker_scan;
2333         pool->shrinker.count_objects = zs_shrinker_count;
2334         pool->shrinker.batch = 0;
2335         pool->shrinker.seeks = DEFAULT_SEEKS;
2336
2337         return register_shrinker(&pool->shrinker);
2338 }
2339
2340 /**
2341  * zs_create_pool - Creates an allocation pool to work from.
2342  * @name: pool name to be created
2343  *
2344  * This function must be called before anything when using
2345  * the zsmalloc allocator.
2346  *
2347  * On success, a pointer to the newly created pool is returned,
2348  * otherwise NULL.
2349  */
2350 struct zs_pool *zs_create_pool(const char *name)
2351 {
2352         int i;
2353         struct zs_pool *pool;
2354         struct size_class *prev_class = NULL;
2355
2356         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2357         if (!pool)
2358                 return NULL;
2359
2360         init_deferred_free(pool);
2361
2362         pool->name = kstrdup(name, GFP_KERNEL);
2363         if (!pool->name)
2364                 goto err;
2365
2366         if (create_cache(pool))
2367                 goto err;
2368
2369         /*
2370          * Iterate reversely, because, size of size_class that we want to use
2371          * for merging should be larger or equal to current size.
2372          */
2373         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2374                 int size;
2375                 int pages_per_zspage;
2376                 int objs_per_zspage;
2377                 struct size_class *class;
2378                 int fullness = 0;
2379
2380                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2381                 if (size > ZS_MAX_ALLOC_SIZE)
2382                         size = ZS_MAX_ALLOC_SIZE;
2383                 pages_per_zspage = get_pages_per_zspage(size);
2384                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2385
2386                 /*
2387                  * We iterate from biggest down to smallest classes,
2388                  * so huge_class_size holds the size of the first huge
2389                  * class. Any object bigger than or equal to that will
2390                  * endup in the huge class.
2391                  */
2392                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2393                                 !huge_class_size) {
2394                         huge_class_size = size;
2395                         /*
2396                          * The object uses ZS_HANDLE_SIZE bytes to store the
2397                          * handle. We need to subtract it, because zs_malloc()
2398                          * unconditionally adds handle size before it performs
2399                          * size class search - so object may be smaller than
2400                          * huge class size, yet it still can end up in the huge
2401                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2402                          * right before class lookup.
2403                          */
2404                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2405                 }
2406
2407                 /*
2408                  * size_class is used for normal zsmalloc operation such
2409                  * as alloc/free for that size. Although it is natural that we
2410                  * have one size_class for each size, there is a chance that we
2411                  * can get more memory utilization if we use one size_class for
2412                  * many different sizes whose size_class have same
2413                  * characteristics. So, we makes size_class point to
2414                  * previous size_class if possible.
2415                  */
2416                 if (prev_class) {
2417                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2418                                 pool->size_class[i] = prev_class;
2419                                 continue;
2420                         }
2421                 }
2422
2423                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2424                 if (!class)
2425                         goto err;
2426
2427                 class->size = size;
2428                 class->index = i;
2429                 class->pages_per_zspage = pages_per_zspage;
2430                 class->objs_per_zspage = objs_per_zspage;
2431                 spin_lock_init(&class->lock);
2432                 pool->size_class[i] = class;
2433                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2434                                                         fullness++)
2435                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2436
2437                 prev_class = class;
2438         }
2439
2440         /* debug only, don't abort if it fails */
2441         zs_pool_stat_create(pool, name);
2442
2443         if (zs_register_migration(pool))
2444                 goto err;
2445
2446         /*
2447          * Not critical since shrinker is only used to trigger internal
2448          * defragmentation of the pool which is pretty optional thing.  If
2449          * registration fails we still can use the pool normally and user can
2450          * trigger compaction manually. Thus, ignore return code.
2451          */
2452         zs_register_shrinker(pool);
2453
2454         return pool;
2455
2456 err:
2457         zs_destroy_pool(pool);
2458         return NULL;
2459 }
2460 EXPORT_SYMBOL_GPL(zs_create_pool);
2461
2462 void zs_destroy_pool(struct zs_pool *pool)
2463 {
2464         int i;
2465
2466         zs_unregister_shrinker(pool);
2467         zs_unregister_migration(pool);
2468         zs_pool_stat_destroy(pool);
2469
2470         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2471                 int fg;
2472                 struct size_class *class = pool->size_class[i];
2473
2474                 if (!class)
2475                         continue;
2476
2477                 if (class->index != i)
2478                         continue;
2479
2480                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2481                         if (!list_empty(&class->fullness_list[fg])) {
2482                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2483                                         class->size, fg);
2484                         }
2485                 }
2486                 kfree(class);
2487         }
2488
2489         destroy_cache(pool);
2490         kfree(pool->name);
2491         kfree(pool);
2492 }
2493 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2494
2495 static int __init zs_init(void)
2496 {
2497         int ret;
2498
2499         ret = zsmalloc_mount();
2500         if (ret)
2501                 goto out;
2502
2503         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2504                                 zs_cpu_prepare, zs_cpu_dead);
2505         if (ret)
2506                 goto hp_setup_fail;
2507
2508 #ifdef CONFIG_ZPOOL
2509         zpool_register_driver(&zs_zpool_driver);
2510 #endif
2511
2512         zs_stat_init();
2513
2514         return 0;
2515
2516 hp_setup_fail:
2517         zsmalloc_unmount();
2518 out:
2519         return ret;
2520 }
2521
2522 static void __exit zs_exit(void)
2523 {
2524 #ifdef CONFIG_ZPOOL
2525         zpool_unregister_driver(&zs_zpool_driver);
2526 #endif
2527         zsmalloc_unmount();
2528         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2529
2530         zs_stat_exit();
2531 }
2532
2533 module_init(zs_init);
2534 module_exit(zs_exit);
2535
2536 MODULE_LICENSE("Dual BSD/GPL");
2537 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");