libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/tlb.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
42 #include "internal.h"
43
44 void *high_memory;
45 EXPORT_SYMBOL(high_memory);
46 struct page *mem_map;
47 unsigned long max_mapnr;
48 EXPORT_SYMBOL(max_mapnr);
49 unsigned long highest_memmap_pfn;
50 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51 int heap_stack_gap = 0;
52
53 atomic_long_t mmap_pages_allocated;
54
55 EXPORT_SYMBOL(mem_map);
56
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache *vm_region_jar;
59 struct rb_root nommu_region_tree = RB_ROOT;
60 DECLARE_RWSEM(nommu_region_sem);
61
62 const struct vm_operations_struct generic_file_vm_ops = {
63 };
64
65 /*
66  * Return the total memory allocated for this pointer, not
67  * just what the caller asked for.
68  *
69  * Doesn't have to be accurate, i.e. may have races.
70  */
71 unsigned int kobjsize(const void *objp)
72 {
73         struct page *page;
74
75         /*
76          * If the object we have should not have ksize performed on it,
77          * return size of 0
78          */
79         if (!objp || !virt_addr_valid(objp))
80                 return 0;
81
82         page = virt_to_head_page(objp);
83
84         /*
85          * If the allocator sets PageSlab, we know the pointer came from
86          * kmalloc().
87          */
88         if (PageSlab(page))
89                 return ksize(objp);
90
91         /*
92          * If it's not a compound page, see if we have a matching VMA
93          * region. This test is intentionally done in reverse order,
94          * so if there's no VMA, we still fall through and hand back
95          * PAGE_SIZE for 0-order pages.
96          */
97         if (!PageCompound(page)) {
98                 struct vm_area_struct *vma;
99
100                 vma = find_vma(current->mm, (unsigned long)objp);
101                 if (vma)
102                         return vma->vm_end - vma->vm_start;
103         }
104
105         /*
106          * The ksize() function is only guaranteed to work for pointers
107          * returned by kmalloc(). So handle arbitrary pointers here.
108          */
109         return PAGE_SIZE << compound_order(page);
110 }
111
112 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
113                       unsigned long start, unsigned long nr_pages,
114                       unsigned int foll_flags, struct page **pages,
115                       struct vm_area_struct **vmas, int *nonblocking)
116 {
117         struct vm_area_struct *vma;
118         unsigned long vm_flags;
119         int i;
120
121         /* calculate required read or write permissions.
122          * If FOLL_FORCE is set, we only require the "MAY" flags.
123          */
124         vm_flags  = (foll_flags & FOLL_WRITE) ?
125                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
126         vm_flags &= (foll_flags & FOLL_FORCE) ?
127                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
128
129         for (i = 0; i < nr_pages; i++) {
130                 vma = find_vma(mm, start);
131                 if (!vma)
132                         goto finish_or_fault;
133
134                 /* protect what we can, including chardevs */
135                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
136                     !(vm_flags & vma->vm_flags))
137                         goto finish_or_fault;
138
139                 if (pages) {
140                         pages[i] = virt_to_page(start);
141                         if (pages[i])
142                                 page_cache_get(pages[i]);
143                 }
144                 if (vmas)
145                         vmas[i] = vma;
146                 start = (start + PAGE_SIZE) & PAGE_MASK;
147         }
148
149         return i;
150
151 finish_or_fault:
152         return i ? : -EFAULT;
153 }
154
155 /*
156  * get a list of pages in an address range belonging to the specified process
157  * and indicate the VMA that covers each page
158  * - this is potentially dodgy as we may end incrementing the page count of a
159  *   slab page or a secondary page from a compound page
160  * - don't permit access to VMAs that don't support it, such as I/O mappings
161  */
162 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
163                     unsigned long start, unsigned long nr_pages,
164                     int write, int force, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         int flags = 0;
168
169         if (write)
170                 flags |= FOLL_WRITE;
171         if (force)
172                 flags |= FOLL_FORCE;
173
174         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
175                                 NULL);
176 }
177 EXPORT_SYMBOL(get_user_pages);
178
179 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
180                            unsigned long start, unsigned long nr_pages,
181                            int write, int force, struct page **pages,
182                            int *locked)
183 {
184         return get_user_pages(tsk, mm, start, nr_pages, write, force,
185                               pages, NULL);
186 }
187 EXPORT_SYMBOL(get_user_pages_locked);
188
189 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
190                                unsigned long start, unsigned long nr_pages,
191                                int write, int force, struct page **pages,
192                                unsigned int gup_flags)
193 {
194         long ret;
195         down_read(&mm->mmap_sem);
196         ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
197                              pages, NULL);
198         up_read(&mm->mmap_sem);
199         return ret;
200 }
201 EXPORT_SYMBOL(__get_user_pages_unlocked);
202
203 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
204                              unsigned long start, unsigned long nr_pages,
205                              int write, int force, struct page **pages)
206 {
207         return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
208                                          force, pages, 0);
209 }
210 EXPORT_SYMBOL(get_user_pages_unlocked);
211
212 /**
213  * follow_pfn - look up PFN at a user virtual address
214  * @vma: memory mapping
215  * @address: user virtual address
216  * @pfn: location to store found PFN
217  *
218  * Only IO mappings and raw PFN mappings are allowed.
219  *
220  * Returns zero and the pfn at @pfn on success, -ve otherwise.
221  */
222 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
223         unsigned long *pfn)
224 {
225         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
226                 return -EINVAL;
227
228         *pfn = address >> PAGE_SHIFT;
229         return 0;
230 }
231 EXPORT_SYMBOL(follow_pfn);
232
233 LIST_HEAD(vmap_area_list);
234
235 void vfree(const void *addr)
236 {
237         kfree(addr);
238 }
239 EXPORT_SYMBOL(vfree);
240
241 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
242 {
243         /*
244          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
245          * returns only a logical address.
246          */
247         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
248 }
249 EXPORT_SYMBOL(__vmalloc);
250
251 void *vmalloc_user(unsigned long size)
252 {
253         void *ret;
254
255         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
256                         PAGE_KERNEL);
257         if (ret) {
258                 struct vm_area_struct *vma;
259
260                 down_write(&current->mm->mmap_sem);
261                 vma = find_vma(current->mm, (unsigned long)ret);
262                 if (vma)
263                         vma->vm_flags |= VM_USERMAP;
264                 up_write(&current->mm->mmap_sem);
265         }
266
267         return ret;
268 }
269 EXPORT_SYMBOL(vmalloc_user);
270
271 struct page *vmalloc_to_page(const void *addr)
272 {
273         return virt_to_page(addr);
274 }
275 EXPORT_SYMBOL(vmalloc_to_page);
276
277 unsigned long vmalloc_to_pfn(const void *addr)
278 {
279         return page_to_pfn(virt_to_page(addr));
280 }
281 EXPORT_SYMBOL(vmalloc_to_pfn);
282
283 long vread(char *buf, char *addr, unsigned long count)
284 {
285         /* Don't allow overflow */
286         if ((unsigned long) buf + count < count)
287                 count = -(unsigned long) buf;
288
289         memcpy(buf, addr, count);
290         return count;
291 }
292
293 long vwrite(char *buf, char *addr, unsigned long count)
294 {
295         /* Don't allow overflow */
296         if ((unsigned long) addr + count < count)
297                 count = -(unsigned long) addr;
298
299         memcpy(addr, buf, count);
300         return count;
301 }
302
303 /*
304  *      vmalloc  -  allocate virtually contiguous memory
305  *
306  *      @size:          allocation size
307  *
308  *      Allocate enough pages to cover @size from the page level
309  *      allocator and map them into contiguous kernel virtual space.
310  *
311  *      For tight control over page level allocator and protection flags
312  *      use __vmalloc() instead.
313  */
314 void *vmalloc(unsigned long size)
315 {
316        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
317 }
318 EXPORT_SYMBOL(vmalloc);
319
320 /*
321  *      vzalloc - allocate virtually contiguous memory with zero fill
322  *
323  *      @size:          allocation size
324  *
325  *      Allocate enough pages to cover @size from the page level
326  *      allocator and map them into contiguous kernel virtual space.
327  *      The memory allocated is set to zero.
328  *
329  *      For tight control over page level allocator and protection flags
330  *      use __vmalloc() instead.
331  */
332 void *vzalloc(unsigned long size)
333 {
334         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
335                         PAGE_KERNEL);
336 }
337 EXPORT_SYMBOL(vzalloc);
338
339 /**
340  * vmalloc_node - allocate memory on a specific node
341  * @size:       allocation size
342  * @node:       numa node
343  *
344  * Allocate enough pages to cover @size from the page level
345  * allocator and map them into contiguous kernel virtual space.
346  *
347  * For tight control over page level allocator and protection flags
348  * use __vmalloc() instead.
349  */
350 void *vmalloc_node(unsigned long size, int node)
351 {
352         return vmalloc(size);
353 }
354 EXPORT_SYMBOL(vmalloc_node);
355
356 /**
357  * vzalloc_node - allocate memory on a specific node with zero fill
358  * @size:       allocation size
359  * @node:       numa node
360  *
361  * Allocate enough pages to cover @size from the page level
362  * allocator and map them into contiguous kernel virtual space.
363  * The memory allocated is set to zero.
364  *
365  * For tight control over page level allocator and protection flags
366  * use __vmalloc() instead.
367  */
368 void *vzalloc_node(unsigned long size, int node)
369 {
370         return vzalloc(size);
371 }
372 EXPORT_SYMBOL(vzalloc_node);
373
374 #ifndef PAGE_KERNEL_EXEC
375 # define PAGE_KERNEL_EXEC PAGE_KERNEL
376 #endif
377
378 /**
379  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
380  *      @size:          allocation size
381  *
382  *      Kernel-internal function to allocate enough pages to cover @size
383  *      the page level allocator and map them into contiguous and
384  *      executable kernel virtual space.
385  *
386  *      For tight control over page level allocator and protection flags
387  *      use __vmalloc() instead.
388  */
389
390 void *vmalloc_exec(unsigned long size)
391 {
392         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
393 }
394
395 /**
396  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
397  *      @size:          allocation size
398  *
399  *      Allocate enough 32bit PA addressable pages to cover @size from the
400  *      page level allocator and map them into contiguous kernel virtual space.
401  */
402 void *vmalloc_32(unsigned long size)
403 {
404         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
405 }
406 EXPORT_SYMBOL(vmalloc_32);
407
408 /**
409  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
410  *      @size:          allocation size
411  *
412  * The resulting memory area is 32bit addressable and zeroed so it can be
413  * mapped to userspace without leaking data.
414  *
415  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
416  * remap_vmalloc_range() are permissible.
417  */
418 void *vmalloc_32_user(unsigned long size)
419 {
420         /*
421          * We'll have to sort out the ZONE_DMA bits for 64-bit,
422          * but for now this can simply use vmalloc_user() directly.
423          */
424         return vmalloc_user(size);
425 }
426 EXPORT_SYMBOL(vmalloc_32_user);
427
428 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
429 {
430         BUG();
431         return NULL;
432 }
433 EXPORT_SYMBOL(vmap);
434
435 void vunmap(const void *addr)
436 {
437         BUG();
438 }
439 EXPORT_SYMBOL(vunmap);
440
441 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
442 {
443         BUG();
444         return NULL;
445 }
446 EXPORT_SYMBOL(vm_map_ram);
447
448 void vm_unmap_ram(const void *mem, unsigned int count)
449 {
450         BUG();
451 }
452 EXPORT_SYMBOL(vm_unmap_ram);
453
454 void vm_unmap_aliases(void)
455 {
456 }
457 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
458
459 /*
460  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
461  * have one.
462  */
463 void __weak vmalloc_sync_all(void)
464 {
465 }
466
467 /**
468  *      alloc_vm_area - allocate a range of kernel address space
469  *      @size:          size of the area
470  *
471  *      Returns:        NULL on failure, vm_struct on success
472  *
473  *      This function reserves a range of kernel address space, and
474  *      allocates pagetables to map that range.  No actual mappings
475  *      are created.  If the kernel address space is not shared
476  *      between processes, it syncs the pagetable across all
477  *      processes.
478  */
479 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
480 {
481         BUG();
482         return NULL;
483 }
484 EXPORT_SYMBOL_GPL(alloc_vm_area);
485
486 void free_vm_area(struct vm_struct *area)
487 {
488         BUG();
489 }
490 EXPORT_SYMBOL_GPL(free_vm_area);
491
492 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
493                    struct page *page)
494 {
495         return -EINVAL;
496 }
497 EXPORT_SYMBOL(vm_insert_page);
498
499 /*
500  *  sys_brk() for the most part doesn't need the global kernel
501  *  lock, except when an application is doing something nasty
502  *  like trying to un-brk an area that has already been mapped
503  *  to a regular file.  in this case, the unmapping will need
504  *  to invoke file system routines that need the global lock.
505  */
506 SYSCALL_DEFINE1(brk, unsigned long, brk)
507 {
508         struct mm_struct *mm = current->mm;
509
510         if (brk < mm->start_brk || brk > mm->context.end_brk)
511                 return mm->brk;
512
513         if (mm->brk == brk)
514                 return mm->brk;
515
516         /*
517          * Always allow shrinking brk
518          */
519         if (brk <= mm->brk) {
520                 mm->brk = brk;
521                 return brk;
522         }
523
524         /*
525          * Ok, looks good - let it rip.
526          */
527         flush_icache_range(mm->brk, brk);
528         return mm->brk = brk;
529 }
530
531 /*
532  * initialise the VMA and region record slabs
533  */
534 void __init mmap_init(void)
535 {
536         int ret;
537
538         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
539         VM_BUG_ON(ret);
540         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
541 }
542
543 /*
544  * validate the region tree
545  * - the caller must hold the region lock
546  */
547 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
548 static noinline void validate_nommu_regions(void)
549 {
550         struct vm_region *region, *last;
551         struct rb_node *p, *lastp;
552
553         lastp = rb_first(&nommu_region_tree);
554         if (!lastp)
555                 return;
556
557         last = rb_entry(lastp, struct vm_region, vm_rb);
558         BUG_ON(last->vm_end <= last->vm_start);
559         BUG_ON(last->vm_top < last->vm_end);
560
561         while ((p = rb_next(lastp))) {
562                 region = rb_entry(p, struct vm_region, vm_rb);
563                 last = rb_entry(lastp, struct vm_region, vm_rb);
564
565                 BUG_ON(region->vm_end <= region->vm_start);
566                 BUG_ON(region->vm_top < region->vm_end);
567                 BUG_ON(region->vm_start < last->vm_top);
568
569                 lastp = p;
570         }
571 }
572 #else
573 static void validate_nommu_regions(void)
574 {
575 }
576 #endif
577
578 /*
579  * add a region into the global tree
580  */
581 static void add_nommu_region(struct vm_region *region)
582 {
583         struct vm_region *pregion;
584         struct rb_node **p, *parent;
585
586         validate_nommu_regions();
587
588         parent = NULL;
589         p = &nommu_region_tree.rb_node;
590         while (*p) {
591                 parent = *p;
592                 pregion = rb_entry(parent, struct vm_region, vm_rb);
593                 if (region->vm_start < pregion->vm_start)
594                         p = &(*p)->rb_left;
595                 else if (region->vm_start > pregion->vm_start)
596                         p = &(*p)->rb_right;
597                 else if (pregion == region)
598                         return;
599                 else
600                         BUG();
601         }
602
603         rb_link_node(&region->vm_rb, parent, p);
604         rb_insert_color(&region->vm_rb, &nommu_region_tree);
605
606         validate_nommu_regions();
607 }
608
609 /*
610  * delete a region from the global tree
611  */
612 static void delete_nommu_region(struct vm_region *region)
613 {
614         BUG_ON(!nommu_region_tree.rb_node);
615
616         validate_nommu_regions();
617         rb_erase(&region->vm_rb, &nommu_region_tree);
618         validate_nommu_regions();
619 }
620
621 /*
622  * free a contiguous series of pages
623  */
624 static void free_page_series(unsigned long from, unsigned long to)
625 {
626         for (; from < to; from += PAGE_SIZE) {
627                 struct page *page = virt_to_page(from);
628
629                 atomic_long_dec(&mmap_pages_allocated);
630                 put_page(page);
631         }
632 }
633
634 /*
635  * release a reference to a region
636  * - the caller must hold the region semaphore for writing, which this releases
637  * - the region may not have been added to the tree yet, in which case vm_top
638  *   will equal vm_start
639  */
640 static void __put_nommu_region(struct vm_region *region)
641         __releases(nommu_region_sem)
642 {
643         BUG_ON(!nommu_region_tree.rb_node);
644
645         if (--region->vm_usage == 0) {
646                 if (region->vm_top > region->vm_start)
647                         delete_nommu_region(region);
648                 up_write(&nommu_region_sem);
649
650                 if (region->vm_file)
651                         fput(region->vm_file);
652
653                 /* IO memory and memory shared directly out of the pagecache
654                  * from ramfs/tmpfs mustn't be released here */
655                 if (region->vm_flags & VM_MAPPED_COPY)
656                         free_page_series(region->vm_start, region->vm_top);
657                 kmem_cache_free(vm_region_jar, region);
658         } else {
659                 up_write(&nommu_region_sem);
660         }
661 }
662
663 /*
664  * release a reference to a region
665  */
666 static void put_nommu_region(struct vm_region *region)
667 {
668         down_write(&nommu_region_sem);
669         __put_nommu_region(region);
670 }
671
672 /*
673  * update protection on a vma
674  */
675 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
676 {
677 #ifdef CONFIG_MPU
678         struct mm_struct *mm = vma->vm_mm;
679         long start = vma->vm_start & PAGE_MASK;
680         while (start < vma->vm_end) {
681                 protect_page(mm, start, flags);
682                 start += PAGE_SIZE;
683         }
684         update_protections(mm);
685 #endif
686 }
687
688 /*
689  * add a VMA into a process's mm_struct in the appropriate place in the list
690  * and tree and add to the address space's page tree also if not an anonymous
691  * page
692  * - should be called with mm->mmap_sem held writelocked
693  */
694 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696         struct vm_area_struct *pvma, *prev;
697         struct address_space *mapping;
698         struct rb_node **p, *parent, *rb_prev;
699
700         BUG_ON(!vma->vm_region);
701
702         mm->map_count++;
703         vma->vm_mm = mm;
704
705         protect_vma(vma, vma->vm_flags);
706
707         /* add the VMA to the mapping */
708         if (vma->vm_file) {
709                 mapping = vma->vm_file->f_mapping;
710
711                 i_mmap_lock_write(mapping);
712                 flush_dcache_mmap_lock(mapping);
713                 vma_interval_tree_insert(vma, &mapping->i_mmap);
714                 flush_dcache_mmap_unlock(mapping);
715                 i_mmap_unlock_write(mapping);
716         }
717
718         /* add the VMA to the tree */
719         parent = rb_prev = NULL;
720         p = &mm->mm_rb.rb_node;
721         while (*p) {
722                 parent = *p;
723                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
724
725                 /* sort by: start addr, end addr, VMA struct addr in that order
726                  * (the latter is necessary as we may get identical VMAs) */
727                 if (vma->vm_start < pvma->vm_start)
728                         p = &(*p)->rb_left;
729                 else if (vma->vm_start > pvma->vm_start) {
730                         rb_prev = parent;
731                         p = &(*p)->rb_right;
732                 } else if (vma->vm_end < pvma->vm_end)
733                         p = &(*p)->rb_left;
734                 else if (vma->vm_end > pvma->vm_end) {
735                         rb_prev = parent;
736                         p = &(*p)->rb_right;
737                 } else if (vma < pvma)
738                         p = &(*p)->rb_left;
739                 else if (vma > pvma) {
740                         rb_prev = parent;
741                         p = &(*p)->rb_right;
742                 } else
743                         BUG();
744         }
745
746         rb_link_node(&vma->vm_rb, parent, p);
747         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
748
749         /* add VMA to the VMA list also */
750         prev = NULL;
751         if (rb_prev)
752                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
753
754         __vma_link_list(mm, vma, prev, parent);
755 }
756
757 /*
758  * delete a VMA from its owning mm_struct and address space
759  */
760 static void delete_vma_from_mm(struct vm_area_struct *vma)
761 {
762         int i;
763         struct address_space *mapping;
764         struct mm_struct *mm = vma->vm_mm;
765         struct task_struct *curr = current;
766
767         protect_vma(vma, 0);
768
769         mm->map_count--;
770         for (i = 0; i < VMACACHE_SIZE; i++) {
771                 /* if the vma is cached, invalidate the entire cache */
772                 if (curr->vmacache[i] == vma) {
773                         vmacache_invalidate(mm);
774                         break;
775                 }
776         }
777
778         /* remove the VMA from the mapping */
779         if (vma->vm_file) {
780                 mapping = vma->vm_file->f_mapping;
781
782                 i_mmap_lock_write(mapping);
783                 flush_dcache_mmap_lock(mapping);
784                 vma_interval_tree_remove(vma, &mapping->i_mmap);
785                 flush_dcache_mmap_unlock(mapping);
786                 i_mmap_unlock_write(mapping);
787         }
788
789         /* remove from the MM's tree and list */
790         rb_erase(&vma->vm_rb, &mm->mm_rb);
791
792         if (vma->vm_prev)
793                 vma->vm_prev->vm_next = vma->vm_next;
794         else
795                 mm->mmap = vma->vm_next;
796
797         if (vma->vm_next)
798                 vma->vm_next->vm_prev = vma->vm_prev;
799 }
800
801 /*
802  * destroy a VMA record
803  */
804 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
805 {
806         if (vma->vm_ops && vma->vm_ops->close)
807                 vma->vm_ops->close(vma);
808         if (vma->vm_file)
809                 fput(vma->vm_file);
810         put_nommu_region(vma->vm_region);
811         kmem_cache_free(vm_area_cachep, vma);
812 }
813
814 /*
815  * look up the first VMA in which addr resides, NULL if none
816  * - should be called with mm->mmap_sem at least held readlocked
817  */
818 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
819 {
820         struct vm_area_struct *vma;
821
822         /* check the cache first */
823         vma = vmacache_find(mm, addr);
824         if (likely(vma))
825                 return vma;
826
827         /* trawl the list (there may be multiple mappings in which addr
828          * resides) */
829         for (vma = mm->mmap; vma; vma = vma->vm_next) {
830                 if (vma->vm_start > addr)
831                         return NULL;
832                 if (vma->vm_end > addr) {
833                         vmacache_update(addr, vma);
834                         return vma;
835                 }
836         }
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(find_vma);
841
842 /*
843  * find a VMA
844  * - we don't extend stack VMAs under NOMMU conditions
845  */
846 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
847 {
848         return find_vma(mm, addr);
849 }
850
851 /*
852  * expand a stack to a given address
853  * - not supported under NOMMU conditions
854  */
855 int expand_stack(struct vm_area_struct *vma, unsigned long address)
856 {
857         return -ENOMEM;
858 }
859
860 /*
861  * look up the first VMA exactly that exactly matches addr
862  * - should be called with mm->mmap_sem at least held readlocked
863  */
864 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
865                                              unsigned long addr,
866                                              unsigned long len)
867 {
868         struct vm_area_struct *vma;
869         unsigned long end = addr + len;
870
871         /* check the cache first */
872         vma = vmacache_find_exact(mm, addr, end);
873         if (vma)
874                 return vma;
875
876         /* trawl the list (there may be multiple mappings in which addr
877          * resides) */
878         for (vma = mm->mmap; vma; vma = vma->vm_next) {
879                 if (vma->vm_start < addr)
880                         continue;
881                 if (vma->vm_start > addr)
882                         return NULL;
883                 if (vma->vm_end == end) {
884                         vmacache_update(addr, vma);
885                         return vma;
886                 }
887         }
888
889         return NULL;
890 }
891
892 /*
893  * determine whether a mapping should be permitted and, if so, what sort of
894  * mapping we're capable of supporting
895  */
896 static int validate_mmap_request(struct file *file,
897                                  unsigned long addr,
898                                  unsigned long len,
899                                  unsigned long prot,
900                                  unsigned long flags,
901                                  unsigned long pgoff,
902                                  unsigned long *_capabilities)
903 {
904         unsigned long capabilities, rlen;
905         int ret;
906
907         /* do the simple checks first */
908         if (flags & MAP_FIXED)
909                 return -EINVAL;
910
911         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
912             (flags & MAP_TYPE) != MAP_SHARED)
913                 return -EINVAL;
914
915         if (!len)
916                 return -EINVAL;
917
918         /* Careful about overflows.. */
919         rlen = PAGE_ALIGN(len);
920         if (!rlen || rlen > TASK_SIZE)
921                 return -ENOMEM;
922
923         /* offset overflow? */
924         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
925                 return -EOVERFLOW;
926
927         if (file) {
928                 /* files must support mmap */
929                 if (!file->f_op->mmap)
930                         return -ENODEV;
931
932                 /* work out if what we've got could possibly be shared
933                  * - we support chardevs that provide their own "memory"
934                  * - we support files/blockdevs that are memory backed
935                  */
936                 if (file->f_op->mmap_capabilities) {
937                         capabilities = file->f_op->mmap_capabilities(file);
938                 } else {
939                         /* no explicit capabilities set, so assume some
940                          * defaults */
941                         switch (file_inode(file)->i_mode & S_IFMT) {
942                         case S_IFREG:
943                         case S_IFBLK:
944                                 capabilities = NOMMU_MAP_COPY;
945                                 break;
946
947                         case S_IFCHR:
948                                 capabilities =
949                                         NOMMU_MAP_DIRECT |
950                                         NOMMU_MAP_READ |
951                                         NOMMU_MAP_WRITE;
952                                 break;
953
954                         default:
955                                 return -EINVAL;
956                         }
957                 }
958
959                 /* eliminate any capabilities that we can't support on this
960                  * device */
961                 if (!file->f_op->get_unmapped_area)
962                         capabilities &= ~NOMMU_MAP_DIRECT;
963                 if (!(file->f_mode & FMODE_CAN_READ))
964                         capabilities &= ~NOMMU_MAP_COPY;
965
966                 /* The file shall have been opened with read permission. */
967                 if (!(file->f_mode & FMODE_READ))
968                         return -EACCES;
969
970                 if (flags & MAP_SHARED) {
971                         /* do checks for writing, appending and locking */
972                         if ((prot & PROT_WRITE) &&
973                             !(file->f_mode & FMODE_WRITE))
974                                 return -EACCES;
975
976                         if (IS_APPEND(file_inode(file)) &&
977                             (file->f_mode & FMODE_WRITE))
978                                 return -EACCES;
979
980                         if (locks_verify_locked(file))
981                                 return -EAGAIN;
982
983                         if (!(capabilities & NOMMU_MAP_DIRECT))
984                                 return -ENODEV;
985
986                         /* we mustn't privatise shared mappings */
987                         capabilities &= ~NOMMU_MAP_COPY;
988                 } else {
989                         /* we're going to read the file into private memory we
990                          * allocate */
991                         if (!(capabilities & NOMMU_MAP_COPY))
992                                 return -ENODEV;
993
994                         /* we don't permit a private writable mapping to be
995                          * shared with the backing device */
996                         if (prot & PROT_WRITE)
997                                 capabilities &= ~NOMMU_MAP_DIRECT;
998                 }
999
1000                 if (capabilities & NOMMU_MAP_DIRECT) {
1001                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
1002                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1003                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
1004                             ) {
1005                                 capabilities &= ~NOMMU_MAP_DIRECT;
1006                                 if (flags & MAP_SHARED) {
1007                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
1008                                         return -EINVAL;
1009                                 }
1010                         }
1011                 }
1012
1013                 /* handle executable mappings and implied executable
1014                  * mappings */
1015                 if (path_noexec(&file->f_path)) {
1016                         if (prot & PROT_EXEC)
1017                                 return -EPERM;
1018                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1019                         /* handle implication of PROT_EXEC by PROT_READ */
1020                         if (current->personality & READ_IMPLIES_EXEC) {
1021                                 if (capabilities & NOMMU_MAP_EXEC)
1022                                         prot |= PROT_EXEC;
1023                         }
1024                 } else if ((prot & PROT_READ) &&
1025                          (prot & PROT_EXEC) &&
1026                          !(capabilities & NOMMU_MAP_EXEC)
1027                          ) {
1028                         /* backing file is not executable, try to copy */
1029                         capabilities &= ~NOMMU_MAP_DIRECT;
1030                 }
1031         } else {
1032                 /* anonymous mappings are always memory backed and can be
1033                  * privately mapped
1034                  */
1035                 capabilities = NOMMU_MAP_COPY;
1036
1037                 /* handle PROT_EXEC implication by PROT_READ */
1038                 if ((prot & PROT_READ) &&
1039                     (current->personality & READ_IMPLIES_EXEC))
1040                         prot |= PROT_EXEC;
1041         }
1042
1043         /* allow the security API to have its say */
1044         ret = security_mmap_addr(addr);
1045         if (ret < 0)
1046                 return ret;
1047
1048         /* looks okay */
1049         *_capabilities = capabilities;
1050         return 0;
1051 }
1052
1053 /*
1054  * we've determined that we can make the mapping, now translate what we
1055  * now know into VMA flags
1056  */
1057 static unsigned long determine_vm_flags(struct file *file,
1058                                         unsigned long prot,
1059                                         unsigned long flags,
1060                                         unsigned long capabilities)
1061 {
1062         unsigned long vm_flags;
1063
1064         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1065         /* vm_flags |= mm->def_flags; */
1066
1067         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1068                 /* attempt to share read-only copies of mapped file chunks */
1069                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1070                 if (file && !(prot & PROT_WRITE))
1071                         vm_flags |= VM_MAYSHARE;
1072         } else {
1073                 /* overlay a shareable mapping on the backing device or inode
1074                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1075                  * romfs/cramfs */
1076                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1077                 if (flags & MAP_SHARED)
1078                         vm_flags |= VM_SHARED;
1079         }
1080
1081         /* refuse to let anyone share private mappings with this process if
1082          * it's being traced - otherwise breakpoints set in it may interfere
1083          * with another untraced process
1084          */
1085         if ((flags & MAP_PRIVATE) && current->ptrace)
1086                 vm_flags &= ~VM_MAYSHARE;
1087
1088         return vm_flags;
1089 }
1090
1091 /*
1092  * set up a shared mapping on a file (the driver or filesystem provides and
1093  * pins the storage)
1094  */
1095 static int do_mmap_shared_file(struct vm_area_struct *vma)
1096 {
1097         int ret;
1098
1099         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1100         if (ret == 0) {
1101                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1102                 return 0;
1103         }
1104         if (ret != -ENOSYS)
1105                 return ret;
1106
1107         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1108          * opposed to tried but failed) so we can only give a suitable error as
1109          * it's not possible to make a private copy if MAP_SHARED was given */
1110         return -ENODEV;
1111 }
1112
1113 /*
1114  * set up a private mapping or an anonymous shared mapping
1115  */
1116 static int do_mmap_private(struct vm_area_struct *vma,
1117                            struct vm_region *region,
1118                            unsigned long len,
1119                            unsigned long capabilities)
1120 {
1121         unsigned long total, point;
1122         void *base;
1123         int ret, order;
1124
1125         /* invoke the file's mapping function so that it can keep track of
1126          * shared mappings on devices or memory
1127          * - VM_MAYSHARE will be set if it may attempt to share
1128          */
1129         if (capabilities & NOMMU_MAP_DIRECT) {
1130                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131                 if (ret == 0) {
1132                         /* shouldn't return success if we're not sharing */
1133                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1134                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1135                         return 0;
1136                 }
1137                 if (ret != -ENOSYS)
1138                         return ret;
1139
1140                 /* getting an ENOSYS error indicates that direct mmap isn't
1141                  * possible (as opposed to tried but failed) so we'll try to
1142                  * make a private copy of the data and map that instead */
1143         }
1144
1145
1146         /* allocate some memory to hold the mapping
1147          * - note that this may not return a page-aligned address if the object
1148          *   we're allocating is smaller than a page
1149          */
1150         order = get_order(len);
1151         total = 1 << order;
1152         point = len >> PAGE_SHIFT;
1153
1154         /* we don't want to allocate a power-of-2 sized page set */
1155         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1156                 total = point;
1157
1158         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1159         if (!base)
1160                 goto enomem;
1161
1162         atomic_long_add(total, &mmap_pages_allocated);
1163
1164         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1165         region->vm_start = (unsigned long) base;
1166         region->vm_end   = region->vm_start + len;
1167         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1168
1169         vma->vm_start = region->vm_start;
1170         vma->vm_end   = region->vm_start + len;
1171
1172         if (vma->vm_file) {
1173                 /* read the contents of a file into the copy */
1174                 mm_segment_t old_fs;
1175                 loff_t fpos;
1176
1177                 fpos = vma->vm_pgoff;
1178                 fpos <<= PAGE_SHIFT;
1179
1180                 old_fs = get_fs();
1181                 set_fs(KERNEL_DS);
1182                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1183                 set_fs(old_fs);
1184
1185                 if (ret < 0)
1186                         goto error_free;
1187
1188                 /* clear the last little bit */
1189                 if (ret < len)
1190                         memset(base + ret, 0, len - ret);
1191
1192         }
1193
1194         return 0;
1195
1196 error_free:
1197         free_page_series(region->vm_start, region->vm_top);
1198         region->vm_start = vma->vm_start = 0;
1199         region->vm_end   = vma->vm_end = 0;
1200         region->vm_top   = 0;
1201         return ret;
1202
1203 enomem:
1204         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1205                len, current->pid, current->comm);
1206         show_free_areas(0);
1207         return -ENOMEM;
1208 }
1209
1210 /*
1211  * handle mapping creation for uClinux
1212  */
1213 unsigned long do_mmap(struct file *file,
1214                         unsigned long addr,
1215                         unsigned long len,
1216                         unsigned long prot,
1217                         unsigned long flags,
1218                         vm_flags_t vm_flags,
1219                         unsigned long pgoff,
1220                         unsigned long *populate)
1221 {
1222         struct vm_area_struct *vma;
1223         struct vm_region *region;
1224         struct rb_node *rb;
1225         unsigned long capabilities, result;
1226         int ret;
1227
1228         *populate = 0;
1229
1230         /* decide whether we should attempt the mapping, and if so what sort of
1231          * mapping */
1232         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1233                                     &capabilities);
1234         if (ret < 0)
1235                 return ret;
1236
1237         /* we ignore the address hint */
1238         addr = 0;
1239         len = PAGE_ALIGN(len);
1240
1241         /* we've determined that we can make the mapping, now translate what we
1242          * now know into VMA flags */
1243         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1244
1245         /* we're going to need to record the mapping */
1246         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1247         if (!region)
1248                 goto error_getting_region;
1249
1250         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1251         if (!vma)
1252                 goto error_getting_vma;
1253
1254         region->vm_usage = 1;
1255         region->vm_flags = vm_flags;
1256         region->vm_pgoff = pgoff;
1257
1258         INIT_LIST_HEAD(&vma->anon_vma_chain);
1259         vma->vm_flags = vm_flags;
1260         vma->vm_pgoff = pgoff;
1261
1262         if (file) {
1263                 region->vm_file = get_file(file);
1264                 vma->vm_file = get_file(file);
1265         }
1266
1267         down_write(&nommu_region_sem);
1268
1269         /* if we want to share, we need to check for regions created by other
1270          * mmap() calls that overlap with our proposed mapping
1271          * - we can only share with a superset match on most regular files
1272          * - shared mappings on character devices and memory backed files are
1273          *   permitted to overlap inexactly as far as we are concerned for in
1274          *   these cases, sharing is handled in the driver or filesystem rather
1275          *   than here
1276          */
1277         if (vm_flags & VM_MAYSHARE) {
1278                 struct vm_region *pregion;
1279                 unsigned long pglen, rpglen, pgend, rpgend, start;
1280
1281                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1282                 pgend = pgoff + pglen;
1283
1284                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1285                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1286
1287                         if (!(pregion->vm_flags & VM_MAYSHARE))
1288                                 continue;
1289
1290                         /* search for overlapping mappings on the same file */
1291                         if (file_inode(pregion->vm_file) !=
1292                             file_inode(file))
1293                                 continue;
1294
1295                         if (pregion->vm_pgoff >= pgend)
1296                                 continue;
1297
1298                         rpglen = pregion->vm_end - pregion->vm_start;
1299                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1300                         rpgend = pregion->vm_pgoff + rpglen;
1301                         if (pgoff >= rpgend)
1302                                 continue;
1303
1304                         /* handle inexactly overlapping matches between
1305                          * mappings */
1306                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1307                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1308                                 /* new mapping is not a subset of the region */
1309                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1310                                         goto sharing_violation;
1311                                 continue;
1312                         }
1313
1314                         /* we've found a region we can share */
1315                         pregion->vm_usage++;
1316                         vma->vm_region = pregion;
1317                         start = pregion->vm_start;
1318                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1319                         vma->vm_start = start;
1320                         vma->vm_end = start + len;
1321
1322                         if (pregion->vm_flags & VM_MAPPED_COPY)
1323                                 vma->vm_flags |= VM_MAPPED_COPY;
1324                         else {
1325                                 ret = do_mmap_shared_file(vma);
1326                                 if (ret < 0) {
1327                                         vma->vm_region = NULL;
1328                                         vma->vm_start = 0;
1329                                         vma->vm_end = 0;
1330                                         pregion->vm_usage--;
1331                                         pregion = NULL;
1332                                         goto error_just_free;
1333                                 }
1334                         }
1335                         fput(region->vm_file);
1336                         kmem_cache_free(vm_region_jar, region);
1337                         region = pregion;
1338                         result = start;
1339                         goto share;
1340                 }
1341
1342                 /* obtain the address at which to make a shared mapping
1343                  * - this is the hook for quasi-memory character devices to
1344                  *   tell us the location of a shared mapping
1345                  */
1346                 if (capabilities & NOMMU_MAP_DIRECT) {
1347                         addr = file->f_op->get_unmapped_area(file, addr, len,
1348                                                              pgoff, flags);
1349                         if (IS_ERR_VALUE(addr)) {
1350                                 ret = addr;
1351                                 if (ret != -ENOSYS)
1352                                         goto error_just_free;
1353
1354                                 /* the driver refused to tell us where to site
1355                                  * the mapping so we'll have to attempt to copy
1356                                  * it */
1357                                 ret = -ENODEV;
1358                                 if (!(capabilities & NOMMU_MAP_COPY))
1359                                         goto error_just_free;
1360
1361                                 capabilities &= ~NOMMU_MAP_DIRECT;
1362                         } else {
1363                                 vma->vm_start = region->vm_start = addr;
1364                                 vma->vm_end = region->vm_end = addr + len;
1365                         }
1366                 }
1367         }
1368
1369         vma->vm_region = region;
1370
1371         /* set up the mapping
1372          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1373          */
1374         if (file && vma->vm_flags & VM_SHARED)
1375                 ret = do_mmap_shared_file(vma);
1376         else
1377                 ret = do_mmap_private(vma, region, len, capabilities);
1378         if (ret < 0)
1379                 goto error_just_free;
1380         add_nommu_region(region);
1381
1382         /* clear anonymous mappings that don't ask for uninitialized data */
1383         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1384                 memset((void *)region->vm_start, 0,
1385                        region->vm_end - region->vm_start);
1386
1387         /* okay... we have a mapping; now we have to register it */
1388         result = vma->vm_start;
1389
1390         current->mm->total_vm += len >> PAGE_SHIFT;
1391
1392 share:
1393         add_vma_to_mm(current->mm, vma);
1394
1395         /* we flush the region from the icache only when the first executable
1396          * mapping of it is made  */
1397         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1398                 flush_icache_range(region->vm_start, region->vm_end);
1399                 region->vm_icache_flushed = true;
1400         }
1401
1402         up_write(&nommu_region_sem);
1403
1404         return result;
1405
1406 error_just_free:
1407         up_write(&nommu_region_sem);
1408 error:
1409         if (region->vm_file)
1410                 fput(region->vm_file);
1411         kmem_cache_free(vm_region_jar, region);
1412         if (vma->vm_file)
1413                 fput(vma->vm_file);
1414         kmem_cache_free(vm_area_cachep, vma);
1415         return ret;
1416
1417 sharing_violation:
1418         up_write(&nommu_region_sem);
1419         pr_warn("Attempt to share mismatched mappings\n");
1420         ret = -EINVAL;
1421         goto error;
1422
1423 error_getting_vma:
1424         kmem_cache_free(vm_region_jar, region);
1425         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1426                         len, current->pid);
1427         show_free_areas(0);
1428         return -ENOMEM;
1429
1430 error_getting_region:
1431         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1432                         len, current->pid);
1433         show_free_areas(0);
1434         return -ENOMEM;
1435 }
1436
1437 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1438                 unsigned long, prot, unsigned long, flags,
1439                 unsigned long, fd, unsigned long, pgoff)
1440 {
1441         struct file *file = NULL;
1442         unsigned long retval = -EBADF;
1443
1444         audit_mmap_fd(fd, flags);
1445         if (!(flags & MAP_ANONYMOUS)) {
1446                 file = fget(fd);
1447                 if (!file)
1448                         goto out;
1449         }
1450
1451         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1452
1453         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1454
1455         if (file)
1456                 fput(file);
1457 out:
1458         return retval;
1459 }
1460
1461 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1462 struct mmap_arg_struct {
1463         unsigned long addr;
1464         unsigned long len;
1465         unsigned long prot;
1466         unsigned long flags;
1467         unsigned long fd;
1468         unsigned long offset;
1469 };
1470
1471 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1472 {
1473         struct mmap_arg_struct a;
1474
1475         if (copy_from_user(&a, arg, sizeof(a)))
1476                 return -EFAULT;
1477         if (offset_in_page(a.offset))
1478                 return -EINVAL;
1479
1480         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1481                               a.offset >> PAGE_SHIFT);
1482 }
1483 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1484
1485 /*
1486  * split a vma into two pieces at address 'addr', a new vma is allocated either
1487  * for the first part or the tail.
1488  */
1489 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1490               unsigned long addr, int new_below)
1491 {
1492         struct vm_area_struct *new;
1493         struct vm_region *region;
1494         unsigned long npages;
1495
1496         /* we're only permitted to split anonymous regions (these should have
1497          * only a single usage on the region) */
1498         if (vma->vm_file)
1499                 return -ENOMEM;
1500
1501         if (mm->map_count >= sysctl_max_map_count)
1502                 return -ENOMEM;
1503
1504         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1505         if (!region)
1506                 return -ENOMEM;
1507
1508         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1509         if (!new) {
1510                 kmem_cache_free(vm_region_jar, region);
1511                 return -ENOMEM;
1512         }
1513
1514         /* most fields are the same, copy all, and then fixup */
1515         *new = *vma;
1516         *region = *vma->vm_region;
1517         new->vm_region = region;
1518
1519         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1520
1521         if (new_below) {
1522                 region->vm_top = region->vm_end = new->vm_end = addr;
1523         } else {
1524                 region->vm_start = new->vm_start = addr;
1525                 region->vm_pgoff = new->vm_pgoff += npages;
1526         }
1527
1528         if (new->vm_ops && new->vm_ops->open)
1529                 new->vm_ops->open(new);
1530
1531         delete_vma_from_mm(vma);
1532         down_write(&nommu_region_sem);
1533         delete_nommu_region(vma->vm_region);
1534         if (new_below) {
1535                 vma->vm_region->vm_start = vma->vm_start = addr;
1536                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1537         } else {
1538                 vma->vm_region->vm_end = vma->vm_end = addr;
1539                 vma->vm_region->vm_top = addr;
1540         }
1541         add_nommu_region(vma->vm_region);
1542         add_nommu_region(new->vm_region);
1543         up_write(&nommu_region_sem);
1544         add_vma_to_mm(mm, vma);
1545         add_vma_to_mm(mm, new);
1546         return 0;
1547 }
1548
1549 /*
1550  * shrink a VMA by removing the specified chunk from either the beginning or
1551  * the end
1552  */
1553 static int shrink_vma(struct mm_struct *mm,
1554                       struct vm_area_struct *vma,
1555                       unsigned long from, unsigned long to)
1556 {
1557         struct vm_region *region;
1558
1559         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1560          * and list */
1561         delete_vma_from_mm(vma);
1562         if (from > vma->vm_start)
1563                 vma->vm_end = from;
1564         else
1565                 vma->vm_start = to;
1566         add_vma_to_mm(mm, vma);
1567
1568         /* cut the backing region down to size */
1569         region = vma->vm_region;
1570         BUG_ON(region->vm_usage != 1);
1571
1572         down_write(&nommu_region_sem);
1573         delete_nommu_region(region);
1574         if (from > region->vm_start) {
1575                 to = region->vm_top;
1576                 region->vm_top = region->vm_end = from;
1577         } else {
1578                 region->vm_start = to;
1579         }
1580         add_nommu_region(region);
1581         up_write(&nommu_region_sem);
1582
1583         free_page_series(from, to);
1584         return 0;
1585 }
1586
1587 /*
1588  * release a mapping
1589  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1590  *   VMA, though it need not cover the whole VMA
1591  */
1592 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1593 {
1594         struct vm_area_struct *vma;
1595         unsigned long end;
1596         int ret;
1597
1598         len = PAGE_ALIGN(len);
1599         if (len == 0)
1600                 return -EINVAL;
1601
1602         end = start + len;
1603
1604         /* find the first potentially overlapping VMA */
1605         vma = find_vma(mm, start);
1606         if (!vma) {
1607                 static int limit;
1608                 if (limit < 5) {
1609                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1610                                         current->pid, current->comm,
1611                                         start, start + len - 1);
1612                         limit++;
1613                 }
1614                 return -EINVAL;
1615         }
1616
1617         /* we're allowed to split an anonymous VMA but not a file-backed one */
1618         if (vma->vm_file) {
1619                 do {
1620                         if (start > vma->vm_start)
1621                                 return -EINVAL;
1622                         if (end == vma->vm_end)
1623                                 goto erase_whole_vma;
1624                         vma = vma->vm_next;
1625                 } while (vma);
1626                 return -EINVAL;
1627         } else {
1628                 /* the chunk must be a subset of the VMA found */
1629                 if (start == vma->vm_start && end == vma->vm_end)
1630                         goto erase_whole_vma;
1631                 if (start < vma->vm_start || end > vma->vm_end)
1632                         return -EINVAL;
1633                 if (offset_in_page(start))
1634                         return -EINVAL;
1635                 if (end != vma->vm_end && offset_in_page(end))
1636                         return -EINVAL;
1637                 if (start != vma->vm_start && end != vma->vm_end) {
1638                         ret = split_vma(mm, vma, start, 1);
1639                         if (ret < 0)
1640                                 return ret;
1641                 }
1642                 return shrink_vma(mm, vma, start, end);
1643         }
1644
1645 erase_whole_vma:
1646         delete_vma_from_mm(vma);
1647         delete_vma(mm, vma);
1648         return 0;
1649 }
1650 EXPORT_SYMBOL(do_munmap);
1651
1652 int vm_munmap(unsigned long addr, size_t len)
1653 {
1654         struct mm_struct *mm = current->mm;
1655         int ret;
1656
1657         down_write(&mm->mmap_sem);
1658         ret = do_munmap(mm, addr, len);
1659         up_write(&mm->mmap_sem);
1660         return ret;
1661 }
1662 EXPORT_SYMBOL(vm_munmap);
1663
1664 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1665 {
1666         return vm_munmap(addr, len);
1667 }
1668
1669 /*
1670  * release all the mappings made in a process's VM space
1671  */
1672 void exit_mmap(struct mm_struct *mm)
1673 {
1674         struct vm_area_struct *vma;
1675
1676         if (!mm)
1677                 return;
1678
1679         mm->total_vm = 0;
1680
1681         while ((vma = mm->mmap)) {
1682                 mm->mmap = vma->vm_next;
1683                 delete_vma_from_mm(vma);
1684                 delete_vma(mm, vma);
1685                 cond_resched();
1686         }
1687 }
1688
1689 unsigned long vm_brk(unsigned long addr, unsigned long len)
1690 {
1691         return -ENOMEM;
1692 }
1693
1694 /*
1695  * expand (or shrink) an existing mapping, potentially moving it at the same
1696  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1697  *
1698  * under NOMMU conditions, we only permit changing a mapping's size, and only
1699  * as long as it stays within the region allocated by do_mmap_private() and the
1700  * block is not shareable
1701  *
1702  * MREMAP_FIXED is not supported under NOMMU conditions
1703  */
1704 static unsigned long do_mremap(unsigned long addr,
1705                         unsigned long old_len, unsigned long new_len,
1706                         unsigned long flags, unsigned long new_addr)
1707 {
1708         struct vm_area_struct *vma;
1709
1710         /* insanity checks first */
1711         old_len = PAGE_ALIGN(old_len);
1712         new_len = PAGE_ALIGN(new_len);
1713         if (old_len == 0 || new_len == 0)
1714                 return (unsigned long) -EINVAL;
1715
1716         if (offset_in_page(addr))
1717                 return -EINVAL;
1718
1719         if (flags & MREMAP_FIXED && new_addr != addr)
1720                 return (unsigned long) -EINVAL;
1721
1722         vma = find_vma_exact(current->mm, addr, old_len);
1723         if (!vma)
1724                 return (unsigned long) -EINVAL;
1725
1726         if (vma->vm_end != vma->vm_start + old_len)
1727                 return (unsigned long) -EFAULT;
1728
1729         if (vma->vm_flags & VM_MAYSHARE)
1730                 return (unsigned long) -EPERM;
1731
1732         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1733                 return (unsigned long) -ENOMEM;
1734
1735         /* all checks complete - do it */
1736         vma->vm_end = vma->vm_start + new_len;
1737         return vma->vm_start;
1738 }
1739
1740 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1741                 unsigned long, new_len, unsigned long, flags,
1742                 unsigned long, new_addr)
1743 {
1744         unsigned long ret;
1745
1746         down_write(&current->mm->mmap_sem);
1747         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1748         up_write(&current->mm->mmap_sem);
1749         return ret;
1750 }
1751
1752 struct page *follow_page_mask(struct vm_area_struct *vma,
1753                               unsigned long address, unsigned int flags,
1754                               unsigned int *page_mask)
1755 {
1756         *page_mask = 0;
1757         return NULL;
1758 }
1759
1760 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1761                 unsigned long pfn, unsigned long size, pgprot_t prot)
1762 {
1763         if (addr != (pfn << PAGE_SHIFT))
1764                 return -EINVAL;
1765
1766         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1767         return 0;
1768 }
1769 EXPORT_SYMBOL(remap_pfn_range);
1770
1771 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1772 {
1773         unsigned long pfn = start >> PAGE_SHIFT;
1774         unsigned long vm_len = vma->vm_end - vma->vm_start;
1775
1776         pfn += vma->vm_pgoff;
1777         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1778 }
1779 EXPORT_SYMBOL(vm_iomap_memory);
1780
1781 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1782                         unsigned long pgoff)
1783 {
1784         unsigned int size = vma->vm_end - vma->vm_start;
1785
1786         if (!(vma->vm_flags & VM_USERMAP))
1787                 return -EINVAL;
1788
1789         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1790         vma->vm_end = vma->vm_start + size;
1791
1792         return 0;
1793 }
1794 EXPORT_SYMBOL(remap_vmalloc_range);
1795
1796 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1797         unsigned long len, unsigned long pgoff, unsigned long flags)
1798 {
1799         return -ENOMEM;
1800 }
1801
1802 void unmap_mapping_range(struct address_space *mapping,
1803                          loff_t const holebegin, loff_t const holelen,
1804                          int even_cows)
1805 {
1806 }
1807 EXPORT_SYMBOL(unmap_mapping_range);
1808
1809 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1810 {
1811         BUG();
1812         return 0;
1813 }
1814 EXPORT_SYMBOL(filemap_fault);
1815
1816 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1817 {
1818         BUG();
1819 }
1820 EXPORT_SYMBOL(filemap_map_pages);
1821
1822 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1823                 unsigned long addr, void *buf, int len, int write)
1824 {
1825         struct vm_area_struct *vma;
1826
1827         down_read(&mm->mmap_sem);
1828
1829         /* the access must start within one of the target process's mappings */
1830         vma = find_vma(mm, addr);
1831         if (vma) {
1832                 /* don't overrun this mapping */
1833                 if (addr + len >= vma->vm_end)
1834                         len = vma->vm_end - addr;
1835
1836                 /* only read or write mappings where it is permitted */
1837                 if (write && vma->vm_flags & VM_MAYWRITE)
1838                         copy_to_user_page(vma, NULL, addr,
1839                                          (void *) addr, buf, len);
1840                 else if (!write && vma->vm_flags & VM_MAYREAD)
1841                         copy_from_user_page(vma, NULL, addr,
1842                                             buf, (void *) addr, len);
1843                 else
1844                         len = 0;
1845         } else {
1846                 len = 0;
1847         }
1848
1849         up_read(&mm->mmap_sem);
1850
1851         return len;
1852 }
1853
1854 /**
1855  * @access_remote_vm - access another process' address space
1856  * @mm:         the mm_struct of the target address space
1857  * @addr:       start address to access
1858  * @buf:        source or destination buffer
1859  * @len:        number of bytes to transfer
1860  * @write:      whether the access is a write
1861  *
1862  * The caller must hold a reference on @mm.
1863  */
1864 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1865                 void *buf, int len, int write)
1866 {
1867         return __access_remote_vm(NULL, mm, addr, buf, len, write);
1868 }
1869
1870 /*
1871  * Access another process' address space.
1872  * - source/target buffer must be kernel space
1873  */
1874 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1875 {
1876         struct mm_struct *mm;
1877
1878         if (addr + len < addr)
1879                 return 0;
1880
1881         mm = get_task_mm(tsk);
1882         if (!mm)
1883                 return 0;
1884
1885         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1886
1887         mmput(mm);
1888         return len;
1889 }
1890
1891 /**
1892  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1893  * @inode: The inode to check
1894  * @size: The current filesize of the inode
1895  * @newsize: The proposed filesize of the inode
1896  *
1897  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1898  * make sure that that any outstanding VMAs aren't broken and then shrink the
1899  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1900  * automatically grant mappings that are too large.
1901  */
1902 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1903                                 size_t newsize)
1904 {
1905         struct vm_area_struct *vma;
1906         struct vm_region *region;
1907         pgoff_t low, high;
1908         size_t r_size, r_top;
1909
1910         low = newsize >> PAGE_SHIFT;
1911         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1912
1913         down_write(&nommu_region_sem);
1914         i_mmap_lock_read(inode->i_mapping);
1915
1916         /* search for VMAs that fall within the dead zone */
1917         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1918                 /* found one - only interested if it's shared out of the page
1919                  * cache */
1920                 if (vma->vm_flags & VM_SHARED) {
1921                         i_mmap_unlock_read(inode->i_mapping);
1922                         up_write(&nommu_region_sem);
1923                         return -ETXTBSY; /* not quite true, but near enough */
1924                 }
1925         }
1926
1927         /* reduce any regions that overlap the dead zone - if in existence,
1928          * these will be pointed to by VMAs that don't overlap the dead zone
1929          *
1930          * we don't check for any regions that start beyond the EOF as there
1931          * shouldn't be any
1932          */
1933         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1934                 if (!(vma->vm_flags & VM_SHARED))
1935                         continue;
1936
1937                 region = vma->vm_region;
1938                 r_size = region->vm_top - region->vm_start;
1939                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1940
1941                 if (r_top > newsize) {
1942                         region->vm_top -= r_top - newsize;
1943                         if (region->vm_end > region->vm_top)
1944                                 region->vm_end = region->vm_top;
1945                 }
1946         }
1947
1948         i_mmap_unlock_read(inode->i_mapping);
1949         up_write(&nommu_region_sem);
1950         return 0;
1951 }
1952
1953 /*
1954  * Initialise sysctl_user_reserve_kbytes.
1955  *
1956  * This is intended to prevent a user from starting a single memory hogging
1957  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1958  * mode.
1959  *
1960  * The default value is min(3% of free memory, 128MB)
1961  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1962  */
1963 static int __meminit init_user_reserve(void)
1964 {
1965         unsigned long free_kbytes;
1966
1967         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1968
1969         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1970         return 0;
1971 }
1972 subsys_initcall(init_user_reserve);
1973
1974 /*
1975  * Initialise sysctl_admin_reserve_kbytes.
1976  *
1977  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1978  * to log in and kill a memory hogging process.
1979  *
1980  * Systems with more than 256MB will reserve 8MB, enough to recover
1981  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1982  * only reserve 3% of free pages by default.
1983  */
1984 static int __meminit init_admin_reserve(void)
1985 {
1986         unsigned long free_kbytes;
1987
1988         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1989
1990         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1991         return 0;
1992 }
1993 subsys_initcall(init_admin_reserve);